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Abstract

This Scientific Briefing presents results from a nearly 10-year hydrometric and iso-

tope monitoring network across north-central Costa Rica, a region known as a

headwater-dependent system. This monitoring system has recorded different El Niño

and La Niña events and the direct/indirect effects of several hurricane and tropical

storm passages. Our results show that El Niño-Southern Oscillation (ENSO) exerts a

significant but predictable impact on rainfall amount anomalies, groundwater level

and spring discharge, as evidenced by second-order water isotope parameters

(e.g., line conditioned-excess or line-conditioned (LC)-excess). Sea surface tempera-

ture anomaly (El Niño Region 3) is correlated with a reduction in mean annual and

cold front rainfall across the headwaters of north-central Costa Rica. During El Niño

conditions, rainfall is substantially reduced (up to 69.2%) during the critical cold fronts

period, limiting groundwater recharge and promoting an early onset of minimum

baseflow conditions (up to 5 months). In contrast, La Niña is associated with

increased rainfall and groundwater recharge (up to 94.7% during active cold front

periods). During La Niña, the long-term mean spring discharge (39 Ls�1) is exceeded

63–80% of the time, whereas, during El Niño, the exceedance time ranges between

26% and 44%. The regional hydroclimatic variability is also imprinted on the hydro-

gen and oxygen isotopic compositions of meteoric waters. Drier conditions favoured

lower LC-excess in rainfall (�17.3‰) and spring water (�6.5‰), whereas wetter con-

ditions resulted in greater values (rainfall = +17.5‰; spring water = +10.7‰). The

lower and higher LC-excess values in rainfall corresponded to the very strong 2014–

2016 El Niño and 2018 La Niña, respectively. During the recent triple-dip 2021–23

La Niña, LC-excess exhibited a significant and consistently increasing trend. These

findings highlight the importance of combining hydrometric, synoptic and isotopic

monitoring as ENSO sentinels to advance our current understanding of ENSO

impacts on hydrological systems across the humid Tropics. Such information is critical

to constraining the 21st century projections of future water stress across this fragile

region.
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1 | THE ENSO IMPACT CONUNDRUM:
FROM A GLOBAL TO A REGIONAL
PERSPECTIVE

El Niño-Southern Oscillation (ENSO) phenomena is an interannual cli-

mate variability with oceanic and atmospheric climate variation origi-

nating in the tropical Pacific region. ENSO is one of the most

influential modes of variability largely due to its global teleconnec-

tions, which affect temperature and precipitation patterns worldwide

(Bjerknes, 1966; Capotondi et al., 2015; Dijkstra, 2006; McPhaden

et al., 2006; Posada-Marín et al., 2023; Wang et al., 2017). ENSO

cycles are characterized by complex air–sea feedback processes,

resulting in substantial droughts and flooding events (Fasullo

et al., 2018; Kirtman, 2019; Latif et al., 1994; L'Heureux et al., 2020;

Stevenson et al., 2012; Timmermann et al., 2018; Yun et al., 2021).

The intricate nature of event-specific temperature and precipitation

responses is rooted in the large spectrum of ENSO ‘flavours’ (An &

Jin, 2004; Hoerling et al., 1997; Trenberth & Stepaniak, 2001), which

depend on (a) the spatial distribution of sea surface temperatures

(SST), (b) the prevailing hydrometeorological state of a particular

region and (c) interaction with other climate conditions and variability

modes (i.e., regional atmospheric noise, watershed storage conditions,

Pacific Decadal and Atlantic Multidecadal Oscillations, Madden-Julian

Oscillation) (Hendon et al., 2007; Kug et al., 2008; Larkin &

Harrison, 2005; Levine et al., 2017; Soden, 2000; van Oldenborgh &

Burgers, 2005; Wang et al., 2014; Wang & Hendon, 2007;

Watanabe & Wittenberg, 2012; Weng et al., 2007). For example, the

strong intensity of the 1997 El Niño event was associated with near-

average rainfall across eastern Australia, but this region experienced

record drought during the modest 2002 El Niño (Chung & Power,

2017; Wang & Hendon, 2007). Similarly, the very strong 2014–2016

El Niño was associated with a strong water deficit in northwestern

Costa Rica and moderate deficits in the central portion of the country,

whereas the weak 2018–2020 El Niño resulted in large water short-

ages in the Central Valley of Costa Rica (Morataya-Montenegro &

Bautista-Solís, 2020; Sánchez-Murillo et al., 2017). Thus, ENSO's

strength, pattern diversity and development evolution lead to uncer-

tainties in individual event expression and enigmatic features of this

recurrent climate pattern (Cai et al., 2020; Thual & Dewitte, 2023).

The main impacts of ENSO in Mesoamerica are the alterations of

the onset and duration of the rainy season, where anomalous dis-

placement of moisture convergence causes variations in rainfall

amount, intensity and spatial distribution. In an area extending from

central Mexico south through Central America, ENSO cold (La Niña)

and warm (El Niño) phases translate into significant hydroclimatic

anomalies and associated socio-economic impacts (Giannini

et al., 2000; Hund et al., 2021; Magaña et al., 2003). During El Niño,

the intensification of the easterly flow from the Caribbean Sea

modulates the transport of moisture and moves the centres of moist

convection to the Pacific Ocean (Figure 1). The latter results in

warmer and drier conditions in the region, causing a net decrease in

agricultural productivity as well as an increased risk of wildfires, water

conflicts and vector-borne diseases due to the impact of water scar-

city on sanitation (Bouma et al., 1997; Depsky & Pons, 2020;

Esquivel-Hernández et al., 2018; Ewbank et al., 2019; Sardo

et al., 2023).

More specifically, across the Central American Dry Corridor (i.e., a

region embedded into the Mesoamerican Pacific slope domain from

Chiapas, Mexico to central Panama) (Hidalgo et al., 2019; Muñoz-

Jiménez et al., 2019), El Niño has led to widespread food insecurity

(i.e., food shortages), economic hardship (i.e., increased prices) for

local communities and massive climate-induced migrations to North

America (Balsari et al., 2020; Simon & Riosmena, 2022). ENSO-

induced droughts and floods, coupled with crop failures (e.g., beans

and corn), are often a primary driver for the multi-country exodus,

particularly among rural and indigenous communities (Baez

et al., 2017). Briones (2022) estimated that the economic impact of

hydroclimatic events linked to ENSO in Central America from 1972 to

2010 was $4015 billion. For a region with a total gross domestic prod-

uct close to $1370 billion (2015), this three-fold economic dispropor-

tionality poses a true challenge to climate change resilience and

adaptive capacity (Bouroncle et al., 2017). In a global tropical context,

by combining ENSO intensity variations (1986–2018) with data on

children's height and weight from 186 surveys conducted in 51 coun-

tries with ENSO-teleconnection (i.e., 48% of the world's under-5 pop-

ulation), Anttila-Hughes et al. (2021) estimated the association of

ENSO with child nutrition. Their findings indicate that in most of the

developing world, warmer El Niño conditions are strongly associated

with child malnutrition.

In contrast, La Niña events often bring cooler and wetter condi-

tions, leading to increased flooding and landslides linked to more

active cyclogenesis over the Atlantic, resulting in extensive infrastruc-

ture damage, displacement of communities and loss of life

(Dominguez & Magaña, 2018; Klotzbach, 2011; Poveda et al., 2006).

Previous work also suggests that extreme rainfall events during La

Niña are one of the dominant groundwater recharge sources (Dores

et al., 2020) across the Pacific slope of Mesoamerica. However, this

recharge mechanism has received less attention than the effects of

dry spells on the region. La Niña events can negatively impact agricul-

ture, as heavy rains can damage crops and cause soil erosion, as well

as reduction to the available habitat volume or increase sediment and

contaminant transport, respectively (Whitfield et al., 2016; Wolfe &

Ralph, 2009). Broadly speaking, ENSO strongly affects the availability

of water resources in the region, particularly for hydroelectric power

generation and municipal water supply (Gonzalez-Salazar &

Poganietz, 2021; Hund et al., 2021) across headwater-dependent
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systems (HDS). These HDS are ecosystems that rely on water flowing

from mountainous or upland areas (Scott et al., 2019), including rivers,

lakes, wetlands and other freshwater habitats, which are critical for

supporting biodiversity, providing multiple environmental services and

sustaining human livelihoods.

Hydrometric and isotopic monitoring across mountainous tropical

biomes is crucial but severely limited. However, it is recognized that

observations and data from long-term experimental settings provide

novel insights into the hydrological cycle by recording trends and nat-

ural cycles under baseline or disturbed conditions and can operate as

a sentinel for future patterns (Tetzlaff et al., 2017). While remote

sensing and satellite products are emerging as complementary tech-

niques in the tropics to improve regional modelling of data-scarce

regions (Arciniega-Esparza et al., 2022), in situ observations are

F IGURE 1 The upper panel shows the location of the study area within north-central Costa Rica and SST monitoring regions adapted from
https://www.noaa.gov/jetstream/tropical/enso. The numbers of the El Niño 1, 2, 3 and 4 regions correspond to the labels assigned to historical
ship tracks that crossed these regions. Data from these tracks enabled the historic records of El Niño to be reconstructed back in time to 1949
(https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni) (Rasmusson & Carpenter, 1982). The middle and
bottom panels show conceptual diagrams, including moisture transport and rainfall generation processes within the Central America Cordillera
during El Niño-Southern Oscillation neutral and warm phases, respectively.
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needed to validate such efforts and to provide different lines of sur-

face hydrology evidence, as in the case of ENSO-induced water

resource variability. Furthermore, the spatial and temporal resolution

of satellite products is not fit to inform water resources impacts at

local scales (<103 km2), which hinders the advancement of early warn-

ing systems and management.

To address these shortcomings, the continuous monitoring of sta-

ble oxygen and hydrogen isotopic compositions of water has shown

potential to be used as a climatic sentinel in Mesoamerica. During an

El Niño event, the trade winds weaken, reducing coastal upwelling,

rise in SST, and increasing atmospheric instability over the eastern

tropical Pacific Ocean, and the Choco low-level jet becomes stronger

during its seasonal peak (Figure 1; Builes-Jaramillo et al., 2023), which

allows warm water vapour from the western Pacific Ocean to flow

eastward towards the Americas. Since warmer SST tends to favour

kinetic fractionation, the water vapour in the atmosphere over the

eastern Pacific Ocean should tend towards isotopically lighter

(depleted) values during an El Niño event. Similarly, changes in con-

vection patterns and reduced rainfall in the context of a drier atmo-

sphere likely led to isotopically heavier (enriched) precipitation events

over the eastern Pacific Ocean and in the surrounding land areas of

Mesoamerica. This Scientific Briefing aims to (a) analyse the effects

of ENSO phases in rainfall amount, groundwater levels and spring dis-

charge anomalies in north-central Costa Rica (as a valid example of

the wet tropics of Mesoamerica) and (b) evaluate line-conditioned

(LC)-excess as a potential sentinel (predictor) of water deficit or sur-

plus in ENSO-affected tropical regions. Overall, isotopic changes can

potentially be used as an early regional warning signal of an impending

El Niño event, providing a complimentary diagnosis tool for ENSO-

induced changes in the regional hydrological cycle. The latter is

particularly pressing due to the current increasing SST trend in the

tropical Pacific Ocean, which favours the potential development of a

strong El Niño event during the boreal autumn, with a probability

ranging from 70% to 80% (ENSO Blog Team, 2023; WMO, 2023).

Very strong El Niño events have produced catastrophic impacts

across Mesoamerica in the last 40 years (1982–1983, 1997–1998

and 2015–2016) (Briones, 2022; Martínez et al., 2017).

2 | STUDY AREA

Figure 1 shows the location of the study area within north-central

Costa Rica (in a transect between 1100 and 2400 m asl) (see Sánchez-

Murillo et al., 2022 for a detailed hydrogeological and meteorological

description), SST monitoring regions (i.e., 4, 3.4, 3 and 1 + 2) (see

Rasmusson & Carpenter, 1982), and conceptual diagrams of moisture

transport and rainfall generation during ENSO neutral and warm

phases (Figure 1, middle and bottom panels), including ocean–

atmosphere processes and their interaction with the Central America

Cordillera. During El Niño, a net increase in the intensity of the Carib-

bean Low-Level Jet (known as CLLJ; Amador, 2008) generates an

increase in vertical wind shear, causing inhibition of convection along

the Pacific slope of Mesoamerica (Figure 1, bottom panel). This

increase in the CCLJ intensity displaces the region of convergence of

humid and warm air at low levels to the westwards, resulting in less

Pacific slope rainfall and more precipitation over the eastern Pacific

Ocean.

This region (Figure 2) comprises the most important recharge area

for the lowland urban centres of the country (e.g., San José, Heredia,

Alajuela). Annual precipitation ranges from nearly 2500–4000 mm in

F IGURE 2 Location map of
weather stations (pink crossed
dots), spring (high elevation) and
groundwater well (urban area;
cyan crossed dots) and spring and
rainfall isotope monitoring
(orange star). The black polygon
denotes the boundary of the
unconfined aquifer unit. The land
used was adapted after Sánchez-
Murillo et al. (2022).
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the urban centre and high-elevation recharge areas (Sánchez-Murillo

et al., 2020), respectively, with roughly 20% of total recharge occur-

ring above 1500 m asl (Sánchez-Murillo et al., 2022). In Costa Rica, a

nation with a vast water capital of c. 2.8 � 104 m3/person-year, over

700 water conflicts emerged during the last decade in response to the

abrupt inter-annual climate variability and inefficient water use

(Esquivel-Hernández et al., 2018; Stan et al., 2022; Vazquez &

Muneepeerakul, 2013). Roughly 80% of the disputes have occurred

due to inadequate water infrastructure or a lack of scientific knowl-

edge ranging from spatial rainfall variability, groundwater recharge

processes and tap water distribution (Esquivel-Hernández

et al., 2018).

3 | METHODS

3.1 | Hydrometric and isotope measurements

Here, we present a representative case for the humid tropics of

Mesoamerica, where a continuous hydrometric and isotopic monitor-

ing network has been operating for nearly a decade across a natural-

urban coupled system in north-central Costa Rica (from 1100 to c.

2400 m asl). This network has recorded different El Niño (2014–

2016; 2018–2020) and La Niña (2016–2018; 2020–2022) events,

neutral phases and the direct/indirect effects of several hurricane and

tropical storm passages (2016-Otto, 2017-Nate, 2020-Eta and

2020-Iota), resulting in traceable hydrological variations. Records

include (a) 30-min weather data (urban and a headwater system),

(b) 15-min and hourly water levels in a high-elevation spring and a

low-land observational well (urban area), respectively, and (c) 15-min

spring discharge and weekly discharge measurements (i.e., volumetric

method) (Figure 2). Hydrometric data were used to compute (i) spring

rating curve and discharge duration curves, (ii) normalized precipita-

tion and water level anomalies (i.e., a departure from the mean divided

by the standard deviation) and (iii) cold front to annual rainfall ratio

(i.e., cold front rainfall amount divided by the annual rainfall amount).

Rainfall samples were collected weekly using a passive device (Palmex

Ltd., Croatia). Spring samples were collected daily and weekly (using

an automated sampler, Sigma 900MAX., HACH, Colorado, USA). All

samples were transferred to 30 mL HDPE bottles and stored at 5�C

until analysis. Samples were analysed at the Stable Isotopes Research

Group laboratory at the Universidad Nacional (Heredia, Costa Rica)

using an IWA-45EP water analyser (Los Gatos Research, Inc., Califor-

nia, USA) with a precision of ±0.5‰ for δ2H and ± 0.1‰ for δ18O

(1σ; 8 injections). 18O/16O and 2H/1H ratios are presented in delta

notation δ (‰), relative to the VSMOW-SLAP scale.

3.2 | ENSO relationship with annual/cold front
rainfall amounts and LC-excess

Several ENSO indices are used to monitor and predict hydrological

patterns worldwide (e.g., Southern Oscillation Index; Oceanic Niño

Index: ONI; Multivariate ENSO Index: MEI V2; NOAA, 2023), but spa-

tial and temporal variability obscures the accurate prediction of hydro-

meteorological patterns at regional and local scales using ENSO

indices alone. ENSO can affect different regions in different ways, and

the timing and duration of these effects can vary yearly. Specifically, a

large body of recent work demonstrates the importance of ENSO SST

patterns on North American rainfall (e.g., Luo et al., 2022, 2023;

Patricola et al., 2020). The centre of maximum warming in the tropical

Pacific during individual El Niño events is variable and often shifts

towards either the central or eastern Pacific (CP, EP events, called

ENSO ‘flavours’) (Ashok et al., 2007; Capotondi et al., 2015; Kao &

Yu, 2009; Kug et al., 2009; Luo et al., 2022; Takahashi et al., 2011).

The impacts of these diverse SST patterns and ENSO ‘flavours’ on tel-

econnection rainfall requires a large sample size, but only c. 10 CP and

EP events have occurred during the 20th century instrumental period,

hindering our ability to robustly quantify how SST spatial variability in

the eastern tropical Pacific should shift Mesoamerican rainfall (Liang

et al., 2014; Ning & Bradley, 2015).

Despite these challenges, ENSO indices remain valuable, particu-

larly in regions such as Mesoamerica, where the relationship between

ENSO and hydrological variables is well established. We primarily

explored annual and seasonal rainfall amount relationships using the

SST anomaly index across El Niño regions. This index is calculated by

averaging SST anomalies in a defined region of the Pacific Ocean

(Figure 1; upper panel) (Bamston et al., 1997). For example, the ONI

index (Region 3.4) is calculated on a three-monthly basis and can be

used to classify the ENSO into El Niño (positive), La Niña (negative),

or neutral phase (Glantz & Ramirez, 2020; NOAA, 2023; Webb &

Magi, 2022). Linear correlations between SST anomalies (within El

Niño regions 4, 3.4, 3 and 1 + 2) were evaluated as predictors of

mean annual and cold front rainfall amounts in the headwaters of

north-central Costa Rica. In addition, since ENSO results in significant

rainfall amount and intensity as well as temperature and moisture var-

iability across the globe, it seems reasonable that stable isotope ratios

in meteoric water will capture the influence of El Niño and La Niña

events (Cobb et al., 2003; Lachniet et al., 2004; Moerman et al., 2013,

2014; Pasquini & Depetris, 2010; Sánchez-Murillo et al., 2017;

Sutanto et al., 2013; Tindall et al., 2009; Vuille et al., 2003). SST

annual anomaly (El Niño Region 3) was evaluated against the annual

LC-excess variability in rainfall and spring water over the headwaters

of central Costa Rica. The LC-excess (Landwehr & Coplen, 2006) was

computed as LC-excess = δ2H = a�δ18O-b; where a and b are the

slope and intercept of the meteoric water line, respectively, using

daily and weekly data (N = 1120) from rainfall and spring water.

4 | RESULTS AND DISCUSSION

4.1 | ENSO-induced long-term rainfall anomalies:
A tropical urban perspective

Figure 3 shows the normalized monthly rainfall anomalies (2014–

2022) compared to a 30-year averaging period (1982–2012) in the
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lowland urban area of north-central Costa Rica. During the very

strong 2014–2016 El Niño, the net rainfall deficit varied from �25.1%

(2014) to �13.1% (2016), with a maximum deficit in 2015 (�40.4%).

During the weak 2018–2020 El Niño event, rainfall deficits varied

from �22.6% (2018) to �16.1% (2020), with a maximum deficit in

2019 (�37.7%). In contrast, La Niña years have been characterized by

rainfall surplus ranging from +2.4% (2017) to +28.7% (2022). The

greatest rainfall deficits were reported during El Niño episodes

(2015–2016 and 2019), whereas the wettest year (2022) occurred

during the recent triple-dip La Niña event. Overall, these rainfall pat-

tern changes may indicate a temporal shift in the typical bimodal rain-

fall mode of the Pacific slope of Mesoamerica as well as a potential

intensification of the mid-summer drought (Corrales-Suastegui

et al., 2020; Magaña et al., 1999; Rauscher et al., 2008). Aside from

monthly or annual rainfall deficits, this region has also experienced

increased extreme events, resulting in unprecedented and urban flash

floods. A better understanding of changes in the intensity and dura-

tion of extreme rainfall events across the tropics under a warming cli-

mate is a matter of current global debate (Feng et al., 2013; Fowler

et al., 2021; Li et al., 2020; Westra et al., 2014).

4.2 | ENSO-induced synoptic rainfall patterns: A
tropical headwater perspective

As El Niño develops, the region experiences a significant reduction of

(a) synoptic scale systems that cause rainfall during the second semes-

ter of the year (e.g., cyclones) and (b) the passage of cold fronts

(an important contribution to annual rainfall), which can be affected

by the drier conditions. Figure 4 explores the relationship between

ONI and cold fronts and annual rainfall variability (2016–2023) in the

headwaters (c. 3000 m asl) of north-central Costa Rica. During

the monitoring period, warm ENSO events (2015–2016, 2018–2020)

resulted in a notable disruption of cold front occurrences and, conse-

quently, in a net rainfall decrease (Figure 4a,b). During cold front

events, groundwater recharge is critical to maintaining the dry season

low flow regime, which typically lasts until the end of May or the

beginning of June. In contrast, cold ENSO events (2016–2018 and

2021–2023) were characterized by a net increase in cold front rainfall

totals, with values up to 2068 mm (2017–2018) (Figure 4b).

F IGURE 3 Normalized monthly rainfall anomaly (2014–2022) for
a lowland urban centre in central Costa Rica, based on a normal
period from 1982 to 2012. The 30-year mean annual rainfall is equal
to 2452 ± 88 mm.

F IGURE 4 (a) Oceanic Niño Index (ONI) rolling 3-month average
SST anomaly between 2014 and 2023 in the Niño 3.4 region (as a
reference). Red and blue bars denote El Niño and La Niña years,
respectively. (b) Annual (grey bars) and cold front rainfall (pink bars)
(in mm) in the northern headwaters of central Costa Rica. (c) Cold
front to annual rainfall ratio between 2016 and 2022. Red and blue
dots denote El Niño and La Niña years, respectively.
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Overall, El Niño years are characterized by lower cold fronts

(e.g., fronts originated from North America) to annual rainfall ratios

(<0.20). In contrast, during La Niña years, cold front rainfall contrib-

utes from 27% up to 41% to the annual rainfall budget (Figure 4c). In

2023, the transition from a triple-dip La Niña (Graham, 2022;

McPhaden et al., 2023) towards a most likely strong El Niño, with a

very short transition period, resulted in the second lowest cold front

rainfall amount recorded (528 mm) (Figure 4a,b). The lowest annual

rainfall values coincided with two El Niño events, 2016 (3552 mm)

and 2019 (2958 mm) (Figure 4b). In contrast, in La Niña years

(or years partially dominated by a cold phase), total rainfall between

4100 and 5000 mm were recorded (Figure 4b). During El Niño events,

the warmer SSTs can cause changes in atmospheric circulation that

can weaken or delay the arrival of cold fronts in Central America. This

leads to drier conditions and reduced precipitation, particularly across

HDS, that rely on such rains to sustain greater baseflows. Interest-

ingly, the weak 2019 El Niño resulted in the greatest cold front rainfall

deficit (69.2%) compared to the very strong 2016 El Niño deficit

(35.2%). The weak 2018 La Niña recorded the greatest cold front sur-

plus (94.7%).

In general, correlations between SST anomaly values from El Niño

Region 3 exhibited the strongest correlations with the rainfall anoma-

lies observed in north-central Costa Rica (Figure 5). Other El Niño SST

anomalies did not exhibit significant correlations. Annually averaged

SST anomaly values show a weak correlation (r2 = 0.18, p < 0.001)

with annual rainfall amounts. However, SST anomaly values during

the boreal winter (December–February) are strongly correlated with

the decrease in cold front rainfall amounts (r2 = 0.42, p = 0.008)

(Figure 5). The latter suggests that ENSO's evolution, as reflected in

SST anomalies (El Niño Region 3) during the boreal winter months,

could be explored as a potential predictor of a cold front rainfall defi-

cit and surplus, and highlights the strong teleconnection between

ENSO phases and rainfall generation in the Pacific slope of

Mesoamerica.

Several additional metrics have been developed to capture the

diversity of ENSO events that occur year to year. While we here

employ only SST anomalies (e.g., Region: Niño 3), extension work

could monitor climate observations in Mesoamerica alongside the

Niño 4, 3.4 and 1 + 2 regions, as well as CP and EP event classifica-

tions such as the ENSO longitudinal index (Williams &

Patricola, 2018). Recent work extending the instrumental record and

employing paleoclimate data assimilation and annual proxy recon-

structions suggests that Central America is dry on average during both

CP and EP events, while southern Mexico is relatively wet (Luo

et al., 2022, 2023). Combined with a wide array of SST-based ENSO

indices, the incorporation of high-resolution paleoclimate data

(e.g., Cobb et al., 2013) and the use of the full SST pattern along with

climate models (e.g., Brown et al., 2020) could bolster predictions of

ENSO event-based rainfall anomalies in the region. Machine learning

techniques such as self-organizing maps are increasingly used to

develop predictive models linking tropical SST patterns to rainfall

anomalies in North America; such techniques may also prove useful

for rainfall prediction and monitoring in the Americas (e.g., Luo

et al., 2023; Steiger et al., 2019).

4.3 | ENSO rainfall and tropical groundwater
connectivity

The subsurface hydrological response also depicts the impact of ENSO

on the seasonal rainfall patterns (deficit and surplus) (Figure 6a). For

example, the lowest groundwater levels reported in an unconfined vol-

canic aquifer (well depth: 153 m; located in the lowland urban centre)

and spring discharge (c. 2400 m asl) (Figures 2 and 6), consistently have

coincided with El Niño years (2014–2016 and 2018–2020), whereas

the highest water levels and spring peak discharge have corresponded

with the influence of La Niña years (2016–2018 and 2021–2023)

(Figure 6a). La Niña events were also characterized by direct and indi-

rect impacts of hurricanes and tropical storm passages (e.g., Otto, Nate,

Eta and Iota). This unconfined aquifer is part of a multi-aquifer volcanic

system, where the upper unconfined formation exhibits young water

ages and a strong hydrogeological conductivity with the headwater

recharge areas (Sánchez-Murillo et al., 2022) (Figure 2). Figure 6c shows

the continuous (15 min) spring discharge response in the headwaters

(Salas-Navarro et al., 2018). In this system, prolonged baseflow periods

are systematically linked with El Niño years and weak cold front

periods, whereas peak discharge is related to La Niña events. Baseflow

recession time decreases during La Niña years, resulting in relatively

high discharge during the dry season. During ENSO cold phases, the

percentage of time equal to or above the long-term discharge value (c.

39 L/s) is greater than 63–80% (Figure 6d). However, during El Niño

years, the percentage of exceedance ranges between 26% and 44%

(Figure 6d). These significant water availability changes pose a chal-

lenge for drinking water operators and result in notable water shortages

across the region. Predicting potential rainfall deficits (6 months to

1 year before the event) and, consequently, water deficits due to pro-

longed low flow regimes will allow water managers to improve infra-

structure and drinking water allocation as well as to raise community

awareness for efficient water use and water conservation during warm

ENSO phases (Hund et al., 2021; Stan et al., 2022; Veldkamp

et al., 2015; Vignola et al., 2018).

F IGURE 5 Linear regressions between sea surface temperatures
(SST) anomaly values (Region: Niño 3) and annual and cold front
rainfall amounts.
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4.4 | Water isotopes as ENSO sentinels:
Observations, potential indicators and current
challenges

Figure 7 shows, to the best of our knowledge, one of the longest and

continuous isotope records (in the humid tropics of Mesoamerica)

from the headwaters of north-central Costa Rica. Drier conditions

favoured significantly lower LC-excess in rainfall and spring water. In

contrast, wetter conditions resulted in greater LC-excess (Figure 7a).

Interestingly, during the triple-dip La Niña episode (the first isotopi-

cally recorded in Mesoamerica), LC-excess exhibited a consistent

increasing trend as La Niña evolved from 2021 to 2023 (Figure 7a).

The seasonal response between meteoric and spring water provided

strong evidence of how isotope rainfall inputs are translated to sur-

face water and relatively shallow groundwater reservoirs in the humid

tropics. Greater LC-excess values during La Niña years could be

explained by the overall increase in moisture availability, cloud cover

and rainfall surplus throughout the year, including stronger cold front

incursions. During El Niño, warmer oceans and land surface tempera-

tures coupled with a notable rainfall decrease favour stronger sub-

cloud (e.g., re-evaporation) and surface fractionation (e.g., infiltration).

These mechanisms are represented by strong linear correlations

between LC-excess and SST annual averaged anomaly values (Region:

Niño 3) in rainfall (r2 = 0.66, p < 0.001) and spring water in rainfall

(r2 = 0.74, p = 0.003). The peak of the strong 2014–2016 El Niño

resulted in the lowest annual LC-excess, whereas the most recent

triple-dip 2021–2023 La Niña exhibited the greatest annual LC-

excess. These significant relationships, representing fractionation

changes across the humid tropics in rainfall and subsurface water res-

ervoirs, could serve as an early impact predictor for regional ENSO tel-

econnections. In addition, ENSO-isotope association can also serve as

a valuable proxy for paleoclimatic reconstructions and interpretations

in the Mesoamerica region, where clearly defined causes and timing

of climate-induced past civilization collapses are still subject to contra-

dictory paleoclimate interpretations (Evans et al., 2018; Lachniet et al.,

2012; Haug et al., 2010; Medina-Elizalde et al., 2016;

Messenger, 2002; Therrell et al., 2010).

Despite the potential of stable isotopes to predict annual and sea-

sonal ENSO teleconnections in rainfall and shallow groundwater in

the Pacific slope of Mesoamerica, several challenges must be

addressed before this approach can be widely used for operational

forecasting. One of the main challenges is disentangling the complex-

ity of the processes and factors that control the isotopic composition

of precipitation in the humid tropics, including humidity, oceanic and

terrestrial moisture sources, precipitation type and intensity (Aggarwal

et al., 2016; Munksgaard et al., 2019; Sánchez-Murillo et al., 2016,

2019; Scholl et al., 2009; Scholl & Murphy, 2014). Employing water

F IGURE 7 (a) Annual LC-excess (‰) variability (±1 σ) during El
Niño and La Niña years in rainfall and spring water across the
headwaters of central Costa Rica. (b) Linear regressions between SST
annual averaged anomaly values (Region: Niño 3) and annual LC-
excess (‰) in rainfall and spring water.

F IGURE 6 (a) Normalized water table and spring discharge
anomaly. (b) Water level (in m) in a lowland well (153 m depth;
1147 m asl). (c) Automated (blue line) (15 min resolution) and manual
discharge (red dots) (in L/s) in a high-elevation large spring system.
(d) Annual duration curves for a high-elevation large spring system. El
Niño and La Niña years are colour-coded. The grey dashed line
depicts the long-term mean annual discharge, Q (in L/s).
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isotope-enabled general circulation models with moisture tagging

capabilities would facilitate a more targeted investigation of moisture

source and isotopic composition changes accompanying ENSO phases

and climatic shifts (e.g., Dee et al., 2023 and references therein).

Another challenge is the lack of long-term observational data for sta-

ble isotopes in the tropics (Sánchez-Murillo & Durán-Quesada, 2019;

Terzer-Wassmuth et al., 2021). While there have been significant

advances in the measurement and analysis of stable isotopes in recent

years (Terzer-Wassmuth et al., 2020; Wassenaar et al., 2018), the

available data is still limited in terms of its spatial and temporal cover-

age (Bowen & Good, 2015). The latter is required to constrain the

development of robust statistical models that accurately predict

ENSO patterns based on stable isotopes. In addition, the relationship

between stable isotopes and ENSO can be affected by other factors

that are not directly related to the climate variation, such as changes

in land use and vegetation cover (Jasechko et al., 2013; Singh

et al., 2023). These factors can introduce noise and uncertainty into

the isotopic data, making it more difficult to identify the underlying

ENSO signal.

5 | CONCLUSIONS

Although ENSO-based predictions of rainfall deficits and drought con-

ditions have improved in recent years (Cai et al., 2021; Chattopadhyay

et al., 2019; Wohl et al., 2012), there are still challenges across the

humid tropics to sustaining long-term hydrometric records and accu-

rately predicting the timing and magnitude of these events. This study

demonstrates the strong teleconnection between ENSO phases, rain-

fall deficit/surplus and hydrological responses across an HDS in the

humid tropics of Mesoamerica. We show that by combining hydro-

metric, synoptic and isotopic information, temporal variations can be

identified in advance, allowing managers and policymakers to develop

strategies to diagnose and mitigate the impacts of extreme weather

events and promote ecosystem resilience across HDS. The case pre-

sented here constitutes an example of advances towards developing

science-based solutions to inform water resources management that

can be explored in other humid tropical regions.

Other factors, such as local weather patterns and land use change

(e.g., deforestation or urbanization), can also exacerbate rainfall

deficits and drought conditions. Therefore, there is a need to use

high-resolution Earth system models with water isotope physics, fore-

casting tools, paleoclimate reconstructions, and, importantly, a robust

observational hydrometric and isotopic record network. Local knowl-

edge and expertise are also critical to developing citizen awareness

and generating accurate and reliable predictions of Mesoamerican

rainfall patterns and water availability. Combining hydrometeorologi-

cal observations, modelling and water isotope ratios has the potential

to become a more reliable forecasting ENSO indicator. Such develop-

ments are particularly timely given current warming conditions, under

which the intensification of ENSO events has been projected (Cai

et al., 2020). Addressing current challenges and incorporating isotopic

information in operational forecasts will require continued investment

in observational data, open science data, models representing local

scale processes and interdisciplinary collaboration between climate

scientists, hydrologists, isotope geochemists and policymakers.
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of quasi-decadal dry-spells in the Central America dry corridor. Climate

Dynamics, 53, 1307–1322. https://doi.org/10.1007/s00382-019-

04638-y

Hoerling, M. P., Kumar, A., & Zhong, M. (1997). El Niño, La Niña, and the non-

linearity of their teleconnections. Journal of Climate, 10, 1769–1786.
https://doi.org/10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2

Hund, S. V., Grossmann, I., Steyn, D. G., Allen, D. M., & Johnson, M. S.

(2021). Changing water resources under El Niño, climate change, and

growing water demands in seasonally dry tropical watersheds. Water

Resources Research, 57, e2020WR028535. https://doi.org/10.1029/

2020WR028535

Jasechko, S., Sharp, Z., Gibson, J., Birks, S. J., Yi, Y., & Fawcett, P. J. (2013).

Terrestrial water fluxes dominated by transpiration. Nature, 496, 347–
350. https://doi.org/10.1038/nature11983

Kao, H.-Y., & Yu, J.-Y. (2009). Contrasting eastern-Pacific and central-

Pacific types of ENSO. Journal of Climate, 22(3), 615–632. https://doi.
org/10.1175/2008jcli2309.1

Kirtman, B. (2019). Special issue: ENSO diversity. Clim Dyn, 52, 7133.

https://doi.org/10.1007/s00382-019-04723-2

Klotzbach, P. J. (2011). The influence of El Niño–Southern Oscillation and

the Atlantic multidecadal oscillation on Caribbean tropical cyclone

activity. Journal of Climate, 24(3), 721–731. https://doi.org/10.1175/
2010JCLI3705.1

Kug, J.-S., Jin, F.-F., & An, S.-I. (2009). Two types of El Ni.o events: Cold

tongue El Niño and warm pool El Niño. Journal of Climate, 22(6),

1499–1515. https://doi.org/10.1175/2008jcli2624.1
Kug, J.-S., Jin, F.-F., Sooraj, K. P., & Kang, I.-S. (2008). State-dependent

atmospheric noise associated with ENSO. Geophysical Research Letters,

35, L05701. https://doi.org/10.1029/2007GL032017

Lachniet, M. S., Bernal, J. P., Asmerom, Y., Polyak, V., & Piperno, D. (2012).

A 2400 yr Mesoamerican rainfall reconstruction links climate and cul-

tural change. Geology, 40(3), 259–262.
Lachniet, M. S., Burns, S. J., Piperno, D. R., Asmerom, Y., Polyak, V. J.,

Moy, C. M., & Christenson, K. (2004). A 1500-year El Niño/southern

oscillation and rainfall history for the isthmus of Panama from spe-

leothem calcite. Journal of Geophysical Research: Atmospheres,

109(D20), D20117.

Landwehr, J. M., & Coplen, T. B. (2006). Line-conditioned excess: A new

method for characterizing stable hydrogen and oxygen isotope ratios

in hydrologic systems. In International conference on isotopes in environ-

mental studies (pp. 132–135). IAEA.
Larkin, N. K., & Harrison, D. (2005). On the definition of El Niño and asso-

ciated seasonal average US weather anomalies. Geophysical Research

Letters, 32(13), L13705. https://doi.org/10.1029/2005gl022738

Latif, M., Barnett, T. P., Cane, M. A., Flügel, M., Graham, N. E., Von

Storch, H., Xu, J.-S., & Zebiak, S. E. (1994). A review of ENSO predic-

tion studies. Climate Dynamics, 9, 167–179.
Levine, A. F., McPhaden, M. J., & Frierson, D. M. (2017). The impact of the

AMO on multidecadal ENSO variability. Geophysical Research Letters,

44(8), 3877–3886.
L'Heureux, M. L., Levine, A. F. Z., Newman, M., Ganter, C., Luo, J.-J.,

Tippett, M. K., & Stockdale, T. N. (2020). ENSO prediction. In M. J.

McPhaden, A. Santoso, & W. Cai (Eds.), El Niño southern oscillation in a

changing climate (pp. 227–248). Wiley. https://doi.org/10.1002/

9781119548164.ch10

Li, Y., Fowler, H. J., Argüeso, D., Blenkinsop, S., Evans, J. P., Lenderink, G.,

Yan, X., Guerreiro, S. B., Lewis, E., & Li, X. F. (2020). Strong intensifica-

tion of hourly rainfall extremes by urbanization. Geophysical Research

Letters, 47, e2020GL088758. https://doi.org/10.1029/2020GL088758

Liang, Y.-C., Lo, M.-H., & Yu, J.-Y. (2014). Asymmetric responses of land

hydroclimatology to two types of El Niño in the Mississippi River

basin. Geophysical Research Letters, 41(2), 582–588. https://doi.org/
10.1002/2013gl058828

Luo, X., Dee, S., Lavenhouse, T., Muñoz, S., & Steiger, N. (2023). Tropical

Pacific and North Atlantic Sea surface temperature patterns modulate

Mississippi basin hydroclimate extremes over the last millennium. Geo-

physical Research Letters, 50, e2022GL100715. https://doi.org/10.

1029/2022GL100715

Luo, X., Dee, S., Stevenson, S., Okumura, Y., Steiger, N., & Parsons, L.

(2022). Last millennium ENSO diversity and north American telecon-

nections: New insights from paleoclimate data assimilation. Paleocea-

nography and Paleoclimatology, 37, e2021PA004283. https://doi.org/

10.1029/2021PA004283

Magaña, V., Amador, J. A., & Medina, S. (1999). The midsummer drought over

Mexico and Central America. Journal of Climate, 12(1967), 1577–1588.
https://doi.org/10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2

Magaña, V. O., Vázquez, J. L., Pérez, J. L., & Pérez, J. B. (2003). Impact of El

Niño on precipitation in Mexico. Geofisica Internacional, 42(3),

313–330.
Martínez, R., Zambrano, E., Nieto, J. J., Hernández, J., & Costa, F. (2017).

Evoluci�on, vulnerabilidad e impactos econ�omicos y sociales de El Niño

2015-2016 en América Latina. Investigaciones Geográficas, 68, 65–78.
https://doi.org/10.14198/INGEO2017.68.04

McPhaden, M. J., Hasan, N., & Chikamoto, Y. (2023). Causes and Conse-

quences of the Prolonged 2020–2023 La Niña. In EGU General Assem-

bly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-10801. European

Geosciences Union. https://doi.org/10.5194/egusphere-egu23-

10801

McPhaden, M. J., Zebiak, S. E., & Glantz, M. H. (2006). ENSO as an inte-

grating concept in earth science. Science, 314(5806), 1740–1745.
Medina-Elizalde, M., Polanco-Martínez, J. M., Lases-Hernández, F.,

Bradley, R., & Burns, S. (2016). Testing the “tropical storm” hypothesis
of Yucatan peninsula climate variability during the Maya terminal clas-

sic period. Quaternary Research, 86(2), 111–119.
Messenger, L. C. (2002). Los mayas y el niño: Paleoclimatic correlations,

environmental dynamics, and cultural implications for the ancient

Maya. Ancient Mesoamerica, 13(1), 159–170.
Moerman, J. W., Cobb, K. M., Adkins, J. F., Sodemann, H., Clark, B., &

Tuen, A. A. (2013). Diurnal to interannual rainfall δ18O variations in

northern Borneo driven by regional hydrology. Earth and Planetary Sci-

ence Letters, 369, 108–119.
Moerman, J. W., Cobb, K. M., Partin, J. W., Meckler, A. N., Carolin, S. A.,

Adkins, J. F., Lejau, S., Malang, J., Clark, B., & Tuen, A. A. (2014). Trans-

formation of ENSO-related rainwater to dripwater δ18O variability by
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