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Abstract

This Scientific Briefing presents results from a nearly 10-year hydrometric and iso-
tope monitoring network across north-central Costa Rica, a region known as a
headwater-dependent system. This monitoring system has recorded different El Nifo
and La Nifa events and the direct/indirect effects of several hurricane and tropical
storm passages. Our results show that El Nifio-Southern Oscillation (ENSO) exerts a
significant but predictable impact on rainfall amount anomalies, groundwater level
and spring discharge, as evidenced by second-order water isotope parameters
(e.g., line conditioned-excess or line-conditioned (LC)-excess). Sea surface tempera-
ture anomaly (El Nifio Region 3) is correlated with a reduction in mean annual and
cold front rainfall across the headwaters of north-central Costa Rica. During El Nifio
conditions, rainfall is substantially reduced (up to 69.2%) during the critical cold fronts
period, limiting groundwater recharge and promoting an early onset of minimum
baseflow conditions (up to 5 months). In contrast, La Nifa is associated with
increased rainfall and groundwater recharge (up to 94.7% during active cold front
periods). During La Nifia, the long-term mean spring discharge (39 Ls™?) is exceeded
63-80% of the time, whereas, during El Nifio, the exceedance time ranges between
26% and 44%. The regional hydroclimatic variability is also imprinted on the hydro-
gen and oxygen isotopic compositions of meteoric waters. Drier conditions favoured
lower LC-excess in rainfall (—17.3%o) and spring water (—6.5%o), whereas wetter con-
ditions resulted in greater values (rainfall = +17.5%o; spring water = +10.7%s.). The
lower and higher LC-excess values in rainfall corresponded to the very strong 2014-
2016 El Nino and 2018 La Niia, respectively. During the recent triple-dip 2021-23
La Nifa, LC-excess exhibited a significant and consistently increasing trend. These
findings highlight the importance of combining hydrometric, synoptic and isotopic
monitoring as ENSO sentinels to advance our current understanding of ENSO
impacts on hydrological systems across the humid Tropics. Such information is critical
to constraining the 21st century projections of future water stress across this fragile

region.
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1|
FROM A GLOBAL TO A REGIONAL
PERSPECTIVE

THE ENSO IMPACT CONUNDRUM:

El Nifio-Southern Oscillation (ENSO) phenomena is an interannual cli-
mate variability with oceanic and atmospheric climate variation origi-
nating in the tropical Pacific region. ENSO is one of the most
influential modes of variability largely due to its global teleconnec-
tions, which affect temperature and precipitation patterns worldwide
(Bjerknes, 1966; Capotondi et al., 2015; Dijkstra, 2006; McPhaden
et al, 2006; Posada-Marin et al., 2023; Wang et al., 2017). ENSO
cycles are characterized by complex air-sea feedback processes,
resulting in substantial droughts and flooding events (Fasullo
et al,, 2018; Kirtman, 2019; Latif et al., 1994; L'Heureux et al., 2020;
Stevenson et al., 2012; Timmermann et al., 2018; Yun et al., 2021).
The intricate nature of event-specific temperature and precipitation
responses is rooted in the large spectrum of ENSO ‘flavours’ (An &
Jin, 2004; Hoerling et al., 1997; Trenberth & Stepaniak, 2001), which
depend on (a) the spatial distribution of sea surface temperatures
(SST), (b) the prevailing hydrometeorological state of a particular
region and (c) interaction with other climate conditions and variability
modes (i.e., regional atmospheric noise, watershed storage conditions,
Pacific Decadal and Atlantic Multidecadal Oscillations, Madden-Julian
Oscillation) (Hendon et al., 2007; Kug et al, 2008; Larkin &
Harrison, 2005; Levine et al., 2017; Soden, 2000; van Oldenborgh &
Burgers, 2005; Wang et al., 2014; Wang & Hendon, 2007;
Watanabe & Wittenberg, 2012; Weng et al., 2007). For example, the
strong intensity of the 1997 El Nifio event was associated with near-
average rainfall across eastern Australia, but this region experienced
record drought during the modest 2002 El Nifno (Chung & Power,
2017; Wang & Hendon, 2007). Similarly, the very strong 2014-2016
El Nifio was associated with a strong water deficit in northwestern
Costa Rica and moderate deficits in the central portion of the country,
whereas the weak 2018-2020 EI Nifo resulted in large water short-
ages in the Central Valley of Costa Rica (Morataya-Montenegro &
Bautista-Solis, 2020; Sanchez-Murillo et al., 2017). Thus, ENSO's
strength, pattern diversity and development evolution lead to uncer-
tainties in individual event expression and enigmatic features of this
recurrent climate pattern (Cai et al., 2020; Thual & Dewitte, 2023).
The main impacts of ENSO in Mesoamerica are the alterations of
the onset and duration of the rainy season, where anomalous dis-
placement of moisture convergence causes variations in rainfall
amount, intensity and spatial distribution. In an area extending from
central Mexico south through Central America, ENSO cold (La Nifia)
and warm (El Nifo) phases translate into significant hydroclimatic
impacts  (Giannini
et al., 2000; Hund et al., 2021; Magana et al., 2003). During El Nifo,
the intensification of the easterly flow from the Caribbean Sea

anomalies and associated socio-economic

modulates the transport of moisture and moves the centres of moist
convection to the Pacific Ocean (Figure 1). The latter results in
warmer and drier conditions in the region, causing a net decrease in
agricultural productivity as well as an increased risk of wildfires, water
conflicts and vector-borne diseases due to the impact of water scar-
city on sanitation (Bouma et al., 1997; Depsky & Pons, 2020;
Esquivel-Hernandez et al, 2018; Ewbank et al, 2019; Sardo
et al,, 2023).

More specifically, across the Central American Dry Corridor (i.e., a
region embedded into the Mesoamerican Pacific slope domain from
Chiapas, Mexico to central Panama) (Hidalgo et al., 2019; Mufoz-
Jiménez et al., 2019), El Nifio has led to widespread food insecurity
(i.e., food shortages), economic hardship (i.e., increased prices) for
local communities and massive climate-induced migrations to North
America (Balsari et al., 2020; Simon & Riosmena, 2022). ENSO-
induced droughts and floods, coupled with crop failures (e.g., beans
and corn), are often a primary driver for the multi-country exodus,
particularly among rural and indigenous communities (Baez
et al., 2017). Briones (2022) estimated that the economic impact of
hydroclimatic events linked to ENSO in Central America from 1972 to
2010 was $4015 billion. For a region with a total gross domestic prod-
uct close to $1370 billion (2015), this three-fold economic dispropor-
tionality poses a true challenge to climate change resilience and
adaptive capacity (Bouroncle et al., 2017). In a global tropical context,
by combining ENSO intensity variations (1986-2018) with data on
children's height and weight from 186 surveys conducted in 51 coun-
tries with ENSO-teleconnection (i.e., 48% of the world's under-5 pop-
ulation), Anttila-Hughes et al. (2021) estimated the association of
ENSO with child nutrition. Their findings indicate that in most of the
developing world, warmer El Nifio conditions are strongly associated
with child malnutrition.

In contrast, La Nifia events often bring cooler and wetter condi-
tions, leading to increased flooding and landslides linked to more
active cyclogenesis over the Atlantic, resulting in extensive infrastruc-
ture damage, displacement of communities and loss of life
(Dominguez & Magana, 2018; Klotzbach, 2011; Poveda et al., 2006).
Previous work also suggests that extreme rainfall events during La
Nifia are one of the dominant groundwater recharge sources (Dores
et al., 2020) across the Pacific slope of Mesoamerica. However, this
recharge mechanism has received less attention than the effects of
dry spells on the region. La Nifa events can negatively impact agricul-
ture, as heavy rains can damage crops and cause soil erosion, as well
as reduction to the available habitat volume or increase sediment and
contaminant transport, respectively (Whitfield et al., 2016; Wolfe &
Ralph, 2009). Broadly speaking, ENSO strongly affects the availability
of water resources in the region, particularly for hydroelectric power
water supply (Gonzalez-Salazar &

generation and municipal

Poganietz, 2021; Hund et al., 2021) across headwater-dependent



SANCHEZ-MURILLO €T AL.

Pacific Ocean

Costa Rica
Study Area

Neutral

Divergence

Eastern Pacific Ocean

El Nifo

Rainfall
/" maximum

/

/

FIGURE 1

" - o
"\ - iy,

Rainfall
minimum

_ Divergence
- N B ——

/

“ % Moist 85
convection

Low level Exit Entrance

Y CLLJ

« -
REE]
;maximum

Carribean Sea

Stronger CLLJ

The upper panel shows the location of the study area within north-central Costa Rica and SST monitoring regions adapted from

https://www.noaa.gov/jetstream/tropical/enso. The numbers of the El Nifio 1, 2, 3 and 4 regions correspond to the labels assigned to historical
ship tracks that crossed these regions. Data from these tracks enabled the historic records of El Nifio to be reconstructed back in time to 1949
(https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni) (Rasmusson & Carpenter, 1982). The middle and
bottom panels show conceptual diagrams, including moisture transport and rainfall generation processes within the Central America Cordillera

during El Nifio-Southern Oscillation neutral and warm phases, respectively.

systems (HDS). These HDS are ecosystems that rely on water flowing
from mountainous or upland areas (Scott et al., 2019), including rivers,
lakes, wetlands and other freshwater habitats, which are critical for
supporting biodiversity, providing multiple environmental services and
sustaining human livelihoods.

Hydrometric and isotopic monitoring across mountainous tropical

biomes is crucial but severely limited. However, it is recognized that

observations and data from long-term experimental settings provide
novel insights into the hydrological cycle by recording trends and nat-
ural cycles under baseline or disturbed conditions and can operate as
a sentinel for future patterns (Tetzlaff et al., 2017). While remote
sensing and satellite products are emerging as complementary tech-
niques in the tropics to improve regional modelling of data-scarce

regions (Arciniega-Esparza et al, 2022), in situ observations are
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needed to validate such efforts and to provide different lines of sur-
face hydrology evidence, as in the case of ENSO-induced water
resource variability. Furthermore, the spatial and temporal resolution
of satellite products is not fit to inform water resources impacts at
local scales (<10% km?), which hinders the advancement of early warn-
ing systems and management.

To address these shortcomings, the continuous monitoring of sta-
ble oxygen and hydrogen isotopic compositions of water has shown
potential to be used as a climatic sentinel in Mesoamerica. During an
El Nifo event, the trade winds weaken, reducing coastal upwelling,
rise in SST, and increasing atmospheric instability over the eastern
tropical Pacific Ocean, and the Choco low-level jet becomes stronger
during its seasonal peak (Figure 1; Builes-Jaramillo et al., 2023), which
allows warm water vapour from the western Pacific Ocean to flow
eastward towards the Americas. Since warmer SST tends to favour
kinetic fractionation, the water vapour in the atmosphere over the
eastern Pacific Ocean should tend towards isotopically lighter
(depleted) values during an El Nifio event. Similarly, changes in con-
vection patterns and reduced rainfall in the context of a drier atmo-
sphere likely led to isotopically heavier (enriched) precipitation events
over the eastern Pacific Ocean and in the surrounding land areas of
Mesoamerica. This Scientific Briefing aims to (a) analyse the effects
of ENSO phases in rainfall amount, groundwater levels and spring dis-
charge anomalies in north-central Costa Rica (as a valid example of
the wet tropics of Mesoamerica) and (b) evaluate line-conditioned
(LC)-excess as a potential sentinel (predictor) of water deficit or sur-
plus in ENSO-affected tropical regions. Overall, isotopic changes can
potentially be used as an early regional warning signal of an impending
El Nifio event, providing a complimentary diagnosis tool for ENSO-
induced changes in the regional hydrological cycle. The latter is

particularly pressing due to the current increasing SST trend in the
tropical Pacific Ocean, which favours the potential development of a
strong El Nifo event during the boreal autumn, with a probability
ranging from 70% to 80% (ENSO Blog Team, 2023; WMO, 2023).
Very strong El Nifio events have produced catastrophic impacts
across Mesoamerica in the last 40 years (1982-1983, 1997-1998
and 2015-2016) (Briones, 2022; Martinez et al., 2017).

2 | STUDY AREA
Figure 1 shows the location of the study area within north-central
Costa Rica (in a transect between 1100 and 2400 m asl) (see Sanchez-
Murillo et al., 2022 for a detailed hydrogeological and meteorological
description), SST monitoring regions (i.e., 4, 3.4, 3 and 1 + 2) (see
Rasmusson & Carpenter, 1982), and conceptual diagrams of moisture
transport and rainfall generation during ENSO neutral and warm
phases (Figure 1, middle and bottom panels), including ocean-
atmosphere processes and their interaction with the Central America
Cordillera. During EI Nifio, a net increase in the intensity of the Carib-
bean Low-Level Jet (known as CLLJ; Amador, 2008) generates an
increase in vertical wind shear, causing inhibition of convection along
the Pacific slope of Mesoamerica (Figure 1, bottom panel). This
increase in the CCLJ intensity displaces the region of convergence of
humid and warm air at low levels to the westwards, resulting in less
Pacific slope rainfall and more precipitation over the eastern Pacific
Ocean.

This region (Figure 2) comprises the most important recharge area
for the lowland urban centres of the country (e.g., San José, Heredia,
Alajuela). Annual precipitation ranges from nearly 2500-4000 mm in
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the urban centre and high-elevation recharge areas (Sanchez-Murillo
et al., 2020), respectively, with roughly 20% of total recharge occur-
ring above 1500 m asl (Sdnchez-Murillo et al., 2022). In Costa Rica, a
nation with a vast water capital of c. 2.8 x 10* m®/person-year, over
700 water conflicts emerged during the last decade in response to the
abrupt inter-annual climate variability and inefficient water use
(Esquivel-Hernandez et al., 2018; Stan et al., 2022; Vazquez &
Muneepeerakul, 2013). Roughly 80% of the disputes have occurred
due to inadequate water infrastructure or a lack of scientific knowl-

edge ranging from spatial rainfall variability, groundwater recharge

processes and tap water distribution (Esquivel-Hernandez
et al., 2018).

3 | METHODS

3.1 | Hydrometric and isotope measurements

Here, we present a representative case for the humid tropics of
Mesoamerica, where a continuous hydrometric and isotopic monitor-
ing network has been operating for nearly a decade across a natural-
urban coupled system in north-central Costa Rica (from 1100 to c.
2400 m asl). This network has recorded different El Nifio (2014-
2016; 2018-2020) and La Nifia (2016-2018; 2020-2022) events,
neutral phases and the direct/indirect effects of several hurricane and
tropical storm passages (2016-Otto, 2017-Nate, 2020-Eta and
2020-lota), resulting in traceable hydrological variations. Records
include (a) 30-min weather data (urban and a headwater system),
(b) 15-min and hourly water levels in a high-elevation spring and a
low-land observational well (urban area), respectively, and (c) 15-min
spring discharge and weekly discharge measurements (i.e., volumetric
method) (Figure 2). Hydrometric data were used to compute (i) spring
rating curve and discharge duration curves, (i) normalized precipita-
tion and water level anomalies (i.e., a departure from the mean divided
by the standard deviation) and (iii) cold front to annual rainfall ratio
(i.e., cold front rainfall amount divided by the annual rainfall amount).
Rainfall samples were collected weekly using a passive device (Palmex
Ltd., Croatia). Spring samples were collected daily and weekly (using
an automated sampler, Sigma 900MAX., HACH, Colorado, USA). All
samples were transferred to 30 mL HDPE bottles and stored at 5°C
until analysis. Samples were analysed at the Stable Isotopes Research
Group laboratory at the Universidad Nacional (Heredia, Costa Rica)
using an IWA-45EP water analyser (Los Gatos Research, Inc., Califor-
nia, USA) with a precision of +0.5%o for §?H and  0.1%. for 680
(10; 8 injections). 80/*0 and 2H/!H ratios are presented in delta
notation 6 (%o), relative to the VSMOW-SLAP scale.

3.2 | ENSO relationship with annual/cold front
rainfall amounts and LC-excess

Several ENSO indices are used to monitor and predict hydrological

patterns worldwide (e.g., Southern Oscillation Index; Oceanic Nifio

Index: ONI; Multivariate ENSO Index: MEI V2; NOAA, 2023), but spa-
tial and temporal variability obscures the accurate prediction of hydro-
meteorological patterns at regional and local scales using ENSO
indices alone. ENSO can affect different regions in different ways, and
the timing and duration of these effects can vary yearly. Specifically, a
large body of recent work demonstrates the importance of ENSO SST
patterns on North American rainfall (e.g., Luo et al., 2022, 2023;
Patricola et al., 2020). The centre of maximum warming in the tropical
Pacific during individual El Nifio events is variable and often shifts
towards either the central or eastern Pacific (CP, EP events, called
ENSO ‘flavours’) (Ashok et al., 2007; Capotondi et al., 2015; Kao &
Yu, 2009; Kug et al., 2009; Luo et al., 2022; Takahashi et al., 2011).
The impacts of these diverse SST patterns and ENSO ‘flavours’ on tel-
econnection rainfall requires a large sample size, but only c¢. 10 CP and
EP events have occurred during the 20th century instrumental period,
hindering our ability to robustly quantify how SST spatial variability in
the eastern tropical Pacific should shift Mesoamerican rainfall (Liang
et al., 2014; Ning & Bradley, 2015).

Despite these challenges, ENSO indices remain valuable, particu-
larly in regions such as Mesoamerica, where the relationship between
ENSO and hydrological variables is well established. We primarily
explored annual and seasonal rainfall amount relationships using the
SST anomaly index across El Nifio regions. This index is calculated by
averaging SST anomalies in a defined region of the Pacific Ocean
(Figure 1; upper panel) (Bamston et al., 1997). For example, the ONI
index (Region 3.4) is calculated on a three-monthly basis and can be
used to classify the ENSO into El Nifio (positive), La Nifa (negative),
or neutral phase (Glantz & Ramirez, 2020; NOAA, 2023; Webb &
Magi, 2022). Linear correlations between SST anomalies (within El
Nifio regions 4, 3.4, 3 and 1 + 2) were evaluated as predictors of
mean annual and cold front rainfall amounts in the headwaters of
north-central Costa Rica. In addition, since ENSO results in significant
rainfall amount and intensity as well as temperature and moisture var-
iability across the globe, it seems reasonable that stable isotope ratios
in meteoric water will capture the influence of El Nifio and La Nifa
events (Cobb et al., 2003; Lachniet et al., 2004; Moerman et al., 2013,
2014; Pasquini & Depetris, 2010; Sanchez-Murillo et al., 2017;
Sutanto et al., 2013; Tindall et al., 2009; Vuille et al., 2003). SST
annual anomaly (El Nifio Region 3) was evaluated against the annual
LC-excess variability in rainfall and spring water over the headwaters
of central Costa Rica. The LC-excess (Landwehr & Coplen, 2006) was
computed as LC-excess = 6?H = a-6'80-b; where a and b are the
slope and intercept of the meteoric water line, respectively, using

daily and weekly data (N = 1120) from rainfall and spring water.

4 | RESULTS AND DISCUSSION

4.1 | ENSO-induced long-term rainfall anomalies:
A tropical urban perspective

Figure 3 shows the normalized monthly rainfall anomalies (2014-
2022) compared to a 30-year averaging period (1982-2012) in the
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lowland urban area of north-central Costa Rica. During the very
strong 2014-2016 El Nifo, the net rainfall deficit varied from —25.1%
(2014) to —13.1% (2016), with a maximum deficit in 2015 (—40.4%).
During the weak 2018-2020 El Nifio event, rainfall deficits varied
from —22.6% (2018) to —16.1% (2020), with a maximum deficit in
2019 (—37.7%). In contrast, La Nifa years have been characterized by
rainfall surplus ranging from +2.4% (2017) to +28.7% (2022). The
greatest rainfall deficits were reported during El Nifio episodes
(2015-2016 and 2019), whereas the wettest year (2022) occurred
during the recent triple-dip La Nifa event. Overall, these rainfall pat-
tern changes may indicate a temporal shift in the typical bimodal rain-
fall mode of the Pacific slope of Mesoamerica as well as a potential
intensification of the mid-summer drought (Corrales-Suastegui
et al., 2020; Magania et al., 1999; Rauscher et al., 2008). Aside from
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FIGURE 3 Normalized monthly rainfall anomaly (2014-2022) for
a lowland urban centre in central Costa Rica, based on a normal
period from 1982 to 2012. The 30-year mean annual rainfall is equal
to 2452 + 88 mm.

monthly or annual rainfall deficits, this region has also experienced
increased extreme events, resulting in unprecedented and urban flash
floods. A better understanding of changes in the intensity and dura-
tion of extreme rainfall events across the tropics under a warming cli-
mate is a matter of current global debate (Feng et al., 2013; Fowler
et al,, 2021; Li et al., 2020; Westra et al., 2014).

4.2 | ENSO-induced synoptic rainfall patterns: A
tropical headwater perspective

As El Nifio develops, the region experiences a significant reduction of
(a) synoptic scale systems that cause rainfall during the second semes-
ter of the year (e.g., cyclones) and (b) the passage of cold fronts
(an important contribution to annual rainfall), which can be affected
by the drier conditions. Figure 4 explores the relationship between
ONI and cold fronts and annual rainfall variability (2016-2023) in the
headwaters (c. 3000 m asl) of north-central Costa Rica. During
the monitoring period, warm ENSO events (2015-2016, 2018-2020)
resulted in a notable disruption of cold front occurrences and, conse-
quently, in a net rainfall decrease (Figure 4a,b). During cold front
events, groundwater recharge is critical to maintaining the dry season
low flow regime, which typically lasts until the end of May or the
beginning of June. In contrast, cold ENSO events (2016-2018 and
2021-2023) were characterized by a net increase in cold front rainfall
totals, with values up to 2068 mm (2017-2018) (Figure 4b).
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Overall, El Nifio years are characterized by lower cold fronts
(e.g., fronts originated from North America) to annual rainfall ratios
(<0.20). In contrast, during La Nifa years, cold front rainfall contrib-
utes from 27% up to 41% to the annual rainfall budget (Figure 4c). In
2023, the transition from a triple-dip La Nifa (Graham, 2022;
McPhaden et al., 2023) towards a most likely strong El Nifio, with a
very short transition period, resulted in the second lowest cold front
rainfall amount recorded (528 mm) (Figure 4a,b). The lowest annual
rainfall values coincided with two El Nifio events, 2016 (3552 mm)
and 2019 (2958 mm) (Figure 4b). In contrast, in La Nina years
(or years partially dominated by a cold phase), total rainfall between
4100 and 5000 mm were recorded (Figure 4b). During El Nifio events,
the warmer SSTs can cause changes in atmospheric circulation that
can weaken or delay the arrival of cold fronts in Central America. This
leads to drier conditions and reduced precipitation, particularly across
HDS, that rely on such rains to sustain greater baseflows. Interest-
ingly, the weak 2019 EI Nifo resulted in the greatest cold front rainfall
deficit (69.2%) compared to the very strong 2016 El Nifo deficit
(35.2%). The weak 2018 La Nifa recorded the greatest cold front sur-
plus (94.7%).

In general, correlations between SST anomaly values from El Nifio
Region 3 exhibited the strongest correlations with the rainfall anoma-
lies observed in north-central Costa Rica (Figure 5). Other El Nifio SST
anomalies did not exhibit significant correlations. Annually averaged
SST anomaly values show a weak correlation (r? = 0.18, p < 0.001)
with annual rainfall amounts. However, SST anomaly values during
the boreal winter (December-February) are strongly correlated with
the decrease in cold front rainfall amounts (> = 0.42, p = 0.008)
(Figure 5). The latter suggests that ENSO's evolution, as reflected in
SST anomalies (El Nifio Region 3) during the boreal winter months,
could be explored as a potential predictor of a cold front rainfall defi-
cit and surplus, and highlights the strong teleconnection between
ENSO phases and rainfall generation in the Pacific slope of
Mesoamerica.

Several additional metrics have been developed to capture the
diversity of ENSO events that occur year to year. While we here
employ only SST anomalies (e.g., Region: Nifio 3), extension work

could monitor climate observations in Mesoamerica alongside the

Nifo 4, 3.4 and 1 + 2 regions, as well as CP and EP event classifica-
ENSO (Williams &

Patricola, 2018). Recent work extending the instrumental record and

tions such as the longitudinal index
employing paleoclimate data assimilation and annual proxy recon-
structions suggests that Central America is dry on average during both
CP and EP events, while southern Mexico is relatively wet (Luo
et al., 2022, 2023). Combined with a wide array of SST-based ENSO
indices, the incorporation of high-resolution paleoclimate data
(e.g., Cobb et al., 2013) and the use of the full SST pattern along with
climate models (e.g., Brown et al., 2020) could bolster predictions of
ENSO event-based rainfall anomalies in the region. Machine learning
techniques such as self-organizing maps are increasingly used to
develop predictive models linking tropical SST patterns to rainfall
anomalies in North America; such techniques may also prove useful
for rainfall prediction and monitoring in the Americas (e.g., Luo
et al., 2023; Steiger et al., 2019).

4.3 | ENSO rainfall and tropical groundwater
connectivity

The subsurface hydrological response also depicts the impact of ENSO
on the seasonal rainfall patterns (deficit and surplus) (Figure 6a). For
example, the lowest groundwater levels reported in an unconfined vol-
canic aquifer (well depth: 153 m; located in the lowland urban centre)
and spring discharge (c. 2400 m asl) (Figures 2 and 6), consistently have
coincided with El Nifio years (2014-2016 and 2018-2020), whereas
the highest water levels and spring peak discharge have corresponded
with the influence of La Nifa years (2016-2018 and 2021-2023)
(Figure 6a). La Nifia events were also characterized by direct and indi-
rect impacts of hurricanes and tropical storm passages (e.g., Otto, Nate,
Eta and lota). This unconfined aquifer is part of a multi-aquifer volcanic
system, where the upper unconfined formation exhibits young water
ages and a strong hydrogeological conductivity with the headwater
recharge areas (Sanchez-Murillo et al., 2022) (Figure 2). Figure 6c shows
the continuous (15 min) spring discharge response in the headwaters
(Salas-Navarro et al., 2018). In this system, prolonged baseflow periods
are systematically linked with El Nifo years and weak cold front
periods, whereas peak discharge is related to La Nifa events. Baseflow
recession time decreases during La Nifa years, resulting in relatively
high discharge during the dry season. During ENSO cold phases, the
percentage of time equal to or above the long-term discharge value (c.
39 L/s) is greater than 63-80% (Figure 6d). However, during El Nifio
years, the percentage of exceedance ranges between 26% and 44%
(Figure 6d). These significant water availability changes pose a chal-
lenge for drinking water operators and result in notable water shortages
across the region. Predicting potential rainfall deficits (6 months to
1 year before the event) and, consequently, water deficits due to pro-
longed low flow regimes will allow water managers to improve infra-
structure and drinking water allocation as well as to raise community
awareness for efficient water use and water conservation during warm
ENSO phases (Hund et al, 2021; Stan et al, 2022; Veldkamp
et al., 2015; Vignola et al., 2018).
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FIGURE 6 (a) Normalized water table and spring discharge
anomaly. (b) Water level (in m) in a lowland well (153 m depth;

1147 m asl). (c) Automated (blue line) (15 min resolution) and manual
discharge (red dots) (in L/s) in a high-elevation large spring system.
(d) Annual duration curves for a high-elevation large spring system. El
Nifo and La Nifa years are colour-coded. The grey dashed line
depicts the long-term mean annual discharge, Q (in L/s).

44 | Waterisotopes as ENSO sentinels:
Observations, potential indicators and current
challenges

Figure 7 shows, to the best of our knowledge, one of the longest and
continuous isotope records (in the humid tropics of Mesoamerica)
from the headwaters of north-central Costa Rica. Drier conditions
favoured significantly lower LC-excess in rainfall and spring water. In
contrast, wetter conditions resulted in greater LC-excess (Figure 7a).
Interestingly, during the triple-dip La Nifa episode (the first isotopi-
cally recorded in Mesoamerica), LC-excess exhibited a consistent
increasing trend as La Nifa evolved from 2021 to 2023 (Figure 7a).
The seasonal response between meteoric and spring water provided
strong evidence of how isotope rainfall inputs are translated to sur-
face water and relatively shallow groundwater reservoirs in the humid
tropics. Greater LC-excess values during La Nifa years could be

explained by the overall increase in moisture availability, cloud cover
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FIGURE 7 (a) Annual LC-excess (%o) variability (+1 o) during El

Nifo and La Nifa years in rainfall and spring water across the
headwaters of central Costa Rica. (b) Linear regressions between SST
annual averaged anomaly values (Region: Nifio 3) and annual LC-
excess (%o) in rainfall and spring water.

and rainfall surplus throughout the year, including stronger cold front
incursions. During El Niflo, warmer oceans and land surface tempera-
tures coupled with a notable rainfall decrease favour stronger sub-
cloud (e.g., re-evaporation) and surface fractionation (e.g., infiltration).
These mechanisms are represented by strong linear correlations
between LC-excess and SST annual averaged anomaly values (Region:
Nifio 3) in rainfall (¥ = 0.66, p < 0.001) and spring water in rainfall
(? = 0.74, p = 0.003). The peak of the strong 2014-2016 El Nifio
resulted in the lowest annual LC-excess, whereas the most recent
triple-dip 2021-2023 La Nina exhibited the greatest annual LC-
excess. These significant relationships, representing fractionation
changes across the humid tropics in rainfall and subsurface water res-
ervoirs, could serve as an early impact predictor for regional ENSO tel-
econnections. In addition, ENSO-isotope association can also serve as
a valuable proxy for paleoclimatic reconstructions and interpretations
in the Mesoamerica region, where clearly defined causes and timing
of climate-induced past civilization collapses are still subject to contra-
dictory paleoclimate interpretations (Evans et al., 2018; Lachniet et al.,
2012; Haug et al, 2010; Medina-Elizalde et al., 2016;
Messenger, 2002; Therrell et al., 2010).

Despite the potential of stable isotopes to predict annual and sea-
sonal ENSO teleconnections in rainfall and shallow groundwater in
the Pacific slope of Mesoamerica, several challenges must be
addressed before this approach can be widely used for operational
forecasting. One of the main challenges is disentangling the complex-
ity of the processes and factors that control the isotopic composition
of precipitation in the humid tropics, including humidity, oceanic and
terrestrial moisture sources, precipitation type and intensity (Aggarwal
et al., 2016; Munksgaard et al., 2019; Sanchez-Murillo et al., 2016,
2019; Scholl et al., 2009; Scholl & Murphy, 2014). Employing water
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isotope-enabled general circulation models with moisture tagging
capabilities would facilitate a more targeted investigation of moisture
source and isotopic composition changes accompanying ENSO phases
and climatic shifts (e.g., Dee et al., 2023 and references therein).
Another challenge is the lack of long-term observational data for sta-
ble isotopes in the tropics (Sanchez-Murillo & Duran-Quesada, 2019;
Terzer-Wassmuth et al., 2021). While there have been significant
advances in the measurement and analysis of stable isotopes in recent
years (Terzer-Wassmuth et al., 2020; Wassenaar et al., 2018), the
available data is still limited in terms of its spatial and temporal cover-
age (Bowen & Good, 2015). The latter is required to constrain the
development of robust statistical models that accurately predict
ENSO patterns based on stable isotopes. In addition, the relationship
between stable isotopes and ENSO can be affected by other factors
that are not directly related to the climate variation, such as changes
in land use and vegetation cover (Jasechko et al., 2013; Singh
et al., 2023). These factors can introduce noise and uncertainty into
the isotopic data, making it more difficult to identify the underlying
ENSO signal.

5 | CONCLUSIONS

Although ENSO-based predictions of rainfall deficits and drought con-
ditions have improved in recent years (Cai et al., 2021; Chattopadhyay
et al., 2019; Wohl et al., 2012), there are still challenges across the
humid tropics to sustaining long-term hydrometric records and accu-
rately predicting the timing and magnitude of these events. This study
demonstrates the strong teleconnection between ENSO phases, rain-
fall deficit/surplus and hydrological responses across an HDS in the
humid tropics of Mesoamerica. We show that by combining hydro-
metric, synoptic and isotopic information, temporal variations can be
identified in advance, allowing managers and policymakers to develop
strategies to diagnose and mitigate the impacts of extreme weather
events and promote ecosystem resilience across HDS. The case pre-
sented here constitutes an example of advances towards developing
science-based solutions to inform water resources management that
can be explored in other humid tropical regions.

Other factors, such as local weather patterns and land use change
(e.g., deforestation or urbanization), can also exacerbate rainfall
deficits and drought conditions. Therefore, there is a need to use
high-resolution Earth system models with water isotope physics, fore-
casting tools, paleoclimate reconstructions, and, importantly, a robust
observational hydrometric and isotopic record network. Local knowl-
edge and expertise are also critical to developing citizen awareness
and generating accurate and reliable predictions of Mesoamerican
rainfall patterns and water availability. Combining hydrometeorologi-
cal observations, modelling and water isotope ratios has the potential
to become a more reliable forecasting ENSO indicator. Such develop-
ments are particularly timely given current warming conditions, under
which the intensification of ENSO events has been projected (Cai
et al., 2020). Addressing current challenges and incorporating isotopic

information in operational forecasts will require continued investment

in observational data, open science data, models representing local
scale processes and interdisciplinary collaboration between climate

scientists, hydrologists, isotope geochemists and policymakers.
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