Agricultural and Forest Meteorology 346 (2024) 109870

. . . . Agricultural
Contents lists available at ScienceDirect

an
Forest Meteorology

Agricultural and Forest Meteorology o G

o %

ELSEVIER journal homepage: www.elsevier.com/locate/agrformet

Importance of measured transpiration fluxes for modelled ecohydrological
partitioning in a tropical agroforestry system

Christian Birkel ®™“", Saul Arciniega-Esparza ‘, Marco P. Maneta®, Jan Boll/, Jamie
Lee Stevenson ”, Laura Benegas-Negri ¢, Dorthe Tetzlaff®", Chris Soulsby

@ Water and Global Change Observatory, Department of Geography, University of Costa Rica, San Jose, Costa Rica
b Northern Rivers Institute, School of Geosciences, Aberdeen, Scotland, United Kingdom

¢ Watershed, Water security and Soil Unit, CATIE, Turrialba, Costa Rica

4 Hydrogeology Group, Faculty of Engineering, Universidad Nacional Autoénoma de México, Mexico City, Mexico

€ Regional Hydrology Lab, University of Montana, Missoula, USA

f Water and Environmental Laboratory, Washington State University, Pullman, USA

8 Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany

1 Department of Geography, Humboldt University Berlin, Berlin, Germany

ARTICLE INFO ABSTRACT
Key words: Evaporation (E) and transpiration (Tr) are the key terrestrial water fluxes to the atmosphere and are highly
Ecohydrology sensitive to land cover change. These ecohydrological fluxes can be measured directly only at small scales, such

Water partitioning
Conceptual modelling
Transpiration

Tropics

as individual plants or under laboratory experiments. Modelling is needed to upscale E and Tr estimates to plot,
hillslope and catchment scales. However, model-derived ecohydrological water partitioning of E and Tr can be
ambiguous, particularly when models are trained using hydrometric data and soil moisture. To test the influence
of different types of data (i.e., sap flux-derived Tr, Eddy Covariance-derived actual evapotranspiration (AET) and
measured soil water (SW)) on model calibration and subsequent water partitioning, we developed the low-
parameter plot scale ecohydrology model EcoHydroPlot applied to a data-rich experimental agroforestry plot
in humid tropical Costa Rica. The model was able to simulate SW well when calibrated with any data type, but
large differences emerged in the E and Tr flux partitioning. Using only hydrometric data for calibration resulted
in parameter configurations that produced greater E over Tr fluxes (Tr/AET < 0.5). The opposite was seen for
model calibration using Tr data (median Tr simulations with KGE > 0.6), resulting in Tr/AET ratios close to the
observed ~0.9. Further, using all measurements simultaneously (including AET, SW and Tr) did not improve
simulated water partitioning. We only found small differences between sun and shade locations with slightly
greater average shaded coffee transpiration at the expense of lower upper SW, higher deeper SW and less
groundwater recharge compared to sun exposed coffee. This work can inform measurement priorities for ap-
plications with relatively simple conceptual ecohydrology models and emphasizes the importance of transpira-
tion estimates for model calibration beyond tropical environments.

contribution to total AET

Key points - Including all calibration targets increase model performance and
uncertainty

- Ecohydrology model simulates water partitioning in tropical - Shaded coffee transpires more and recharges less water
coffee plantation compared to sun plot

- Water balance reapportionment was sensitive to calibration
targets

- Transpiration data needed in calibration to capture green water
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Data availability

Data will be made available on request.

1. Introduction

The tropics have experienced accelerated change in land cover (e.g.,
Meli et al., 2017), modifying the partitioning of rainfall into evaporation
(E) and transpiration (Tr), infiltration and groundwater recharge, as
well as runoff dynamics (Grip et al., 2005). Large scale impacts include
altered soil-vegetation-atmosphere feedbacks, such as reduced moisture
recycling and other rainfall-producing mechanisms due to forest cover
loss (te Wierik et al., 2021). However, quantifying how much land cover
change impacts the hydrological cycle strongly depends on measure-
ments from monitoring networks, which are declining in many places,
particularly in the tropics (Wohl et al., 2012). Nonetheless, many mea-
surement techniques used to estimate Tr (e.g., Eddy Covariance and sap
flux) are based on point measurements and need upscaling to larger
areas, which inevitably results in considerable assumptions and uncer-
tainty (Ford et al., 2007). Despite these many uncertainties, larger scale
remote sensing and modelling are usually the most appropriate methods
to indirectly estimate plot and catchment scale ecohydrological water
partitioning into “green” water losses (i.e., E and Tr) and “blue” water
fluxes (i.e., groundwater recharge and runoff). In addition to ecohy-
drological modelling, stable isotopes have also been used to analytically
derive water balance components (Jasechko et al., 2013). However,
stable isotope-based estimates of ecohydrological water partitioning
often do not agree with those obtained from hydrological models and
result in a wide, and climate-dependant, range of Tr/AET (Actual
Evapotranspiration) ratios from 0.2 to close to 1 (Schlesinger and
Jasechko, 2014). In general, ecohydrological modelling tends to pro-
duce lower Tr/AET estimates with greater emphasis on E fluxes relative
to Tr, particularly if compared to stable isotopes (Schlesinger and
Jasechko, 2014). The latter arises from model parameter uncertainty
and lacking ecohydrological data to constrain models. Studies in the
tropics have shown the largest Tr fluxes worldwide, with stable
isotope-based estimates reaching Tr/AET ratios close to 1, whereas hy-
drological modelling has produced estimates closer to 0.5 (Arciniega
et al., 2022).

Differences in how ecohydrological models partition water are also
related to inherent uncertainties and how simple or complex a soil-
vegetation-atmosphere model should be (Franks et al., 1997). Many
published ecohydrological models are distributed in space and
process-based (e.g., EcH20, RHESSys, STARR) and require a lot of data
to drive them (Maneta and Silvermann, 2013; Tague and Band, 2004;
van Huijgevoort et al., 2016, respectively). However, in most applica-
tions detailed and spatially-distributed data of, in particular, vegetation
and soil physical characteristics are often limited or unavailable, which
is a reason simpler ecohydrological models are still popular. These
simpler models are often very successful at capturing dominant pro-
cesses and can be applied more widely to estimate the water “footprint”
of different land uses and vegetation types (Stevenson et al., 2023).
Additionally, there is still a need to understand effects of different
calibration constraints on quantifying key processes and fluxes in eco-
hydrological models (Kuppel et al., 2018; Douinot et al., 2019; Schrei-
ner-McGraw et al., 2022).

Current patterns of land use conversion in the humid tropics, coupled
with projected climate change, create an urgent need for an evidence
base to inform policy directed to more sustainable integration of land
and water management (Griscom et al., 2017). Here, reliable ecohy-
drological models to quantify water use by different land use types could
provide such evidence-based information for decision-making (e.g.,
Smith et al., 2021). For example, enhanced understanding of the
trade-offs between crop and timber production and water availability for

Agricultural and Forest Meteorology 346 (2024) 109870

other services (e.g., groundwater recharge, sustaining river flows and
linked water quality) is crucial in better implementing ecohydrological
goals into, for example, payment for ecosystem services schemes (Birkel
et al., 2012). In particular, high value export crops (e.g., coffee, fruit)
need to be considered due to their substantial contributions to national
economies of tropical countries (Ovalle-Rivera et al., 2015). For
example, possible decreased coffee productivity due to climate change is
alarming (Pham et al., 2019) and likely related to more biodiversity loss
(Philpott et al., 2008). Spatial shifts in Arabica coffee producing regions
are also expected (Ovalle-Rivera et al., 2015) with concerns over
seemingly less resistant Robusta coffee (Kath et al., 2020). In the context
of climate change, shade coffee production of planted trees in between
coffee hedgerows has since been seen as a viable alternative with hy-
drological (in the context of reduced AET) and soil structural and
biogeochemical benefits over coffee directly exposed to the sun partic-
ularly in Costa Rica (Siles et al., 2010; Harmand et al., 2007).

In this paper, we address the issue of simulating ecohydrological
water partitioning with a relatively simple conceptual ecohydrological
model set up at the plot-scale for the humid tropics applied to a well-
instrumented agroforestry (sun coffee vs shade coffee covered by
trees) experiment in eastern humid tropical Costa Rica, where mea-
surements of most components of the hydrological cycle are available
for calibration and validation. We tested the model with different cali-
bration targets of measured soil water (SW), transpiration (Tr) and
actual evapotranspiration (AET) and evaluated which data type results
in the most plausible simulated ecohydrological water partitioning. We
hypothesized that including more calibration targets would result not
only in the most optimal model performance but also in the best parti-
tioning of E and Tr fluxes.

The specific objectives were to:

(i) Set up a parsimonious ecohydrology model for simulation of 1D

fluxes at the plot-scale in a tropical coffee plantation.

(ii) Test different calibration targets and their impact on the ecohy-
drological water partitioning using a flux mapping approach.

(iii) Evaluate which type of data are most useful for calibrating the
ecohydrology model focusing on water partitioning under con-
trasting land use (e.g., coffee vs coffee under shade trees) in a
context of land management.

2. Revisiting the Mejias coffee-flux observatory

The Mejias catchment (~0.9 km?) and a plot-scale experiment star-
ted in 2008 as the Coffee-Flux agroforestry research project by CIRAD
(Centre de coopération International en Recherche Agronomique pour le
Developpément) and in collaboration with CATIE (Centro Agronémico
Tropical de Investigacion y Ensenanza) to assess, amongst many eco-
hydrological issues, how shade trees would impact coffee production
(Roupsard et al., 2016). The experiment was part of FLUXNET (Bal-
docchi et al., 2001) and was based in an active coffee-producing farm in
Aquiares near the city of Turrialba on the Caribbean slope of Costa Rica
at an altitude of 1040m.a.s.l. (Fig. 1). This region is characterized by
annual rainfall above 2000mm with little seasonality and virtually no
thermal intra-annual oscillations (Fig. 2a, b, ¢, d). The mean annual
temperature at the Mejias site is around 19.6°C. The Mejias plot con-
sisted of a meteorological tower (precipitation (P), radiation, tempera-
ture (T), relative humidity (RH), wind speed) with Eddy Covariance
measurements of gas exchanges estimating the complete energy balance
and ecosystem productivity (Charbonnier et al., 2013). The research
team instrumented soil profiles in sun-exposed and shaded areas with
volumetric soil water content (SW) sensors to a total depth of 3.5m close
to the tower. Shaded coffee (Coffea arabica L., dwarf var. Caturra) under
Erythrina poepiggiana trees and sun exposed coffee plants were equipped
with sap flux sensors (Dynamax) and manual leaf-area-index (LAI)
measurements were made systematically in the sun and shade locations
(Fig. 1). Erythrina poepiggiana was planted with a low density (7.4 trees
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Fig. 1. The Mejias plot-scale ecohydrology experiment in eastern Costa Rica with the Eddy Covariance meteorological tower, sun and shade coffee monitoring

locations of SW and LAI in the regional context of Central America.

ha™!) and were left freely-growing, which resulted in tall (>20m) but
sparse trees covering the entire plantation. Initially, Arabica coffee
plants were established with a density of 6300 seedlings ha~' and were
intensively managed with pruning according to plant age and fertilizer
application. The 1.6ha plot around the meteorological tower included
14 trees that provided a canopy cover of up to 30% of the plot area.
The soil characteristics correspond to loamy sands of volcanic
(shallow intrusive volcanic rock) origin (Andosol) with high saturated
hydraulic conductivity (>100m h™1) and high infiltration capacities
(Benegas et al., 2014). The soils in the study area also exhibit a relatively
high fraction of stones of a colluvial origin, likely from a large-scale
paleo-landslide, mixed with volcanic flows, lahars, agglomerates and
ashes. The soil characteristics of the study plot favour vertical hydro-
logical fluxes coinciding with water balance measurements and model-
ling, which found minor overland flow contributions (<4%) to
streamflow in the Mejias catchment (Gomez-Delgado et al., 2011).

3. Data and methods

The data sets used here are extensively described in Gomez-Delgado
et al. (2011), Charbonnier et al. (2013), Taugourdeau et al. (2014) and
cover the study period from January 2010 until December 2013 as the
most consistent. For all inputs we used hourly-averaged data from
measurements conducted at 15-min intervals. Minor model input data
gaps were linearly interpolated, but the period from 2010 to 2013
showed a consistent set of data with less than 1% missing values. Gaps in
AET, Tr and SW were generally not filled when used for model evalua-
tion purposes.

3.1. Model forcing and evaluation data

3.1.1. Model forcing

Precipitation, potential reference evapotranspiration (PET) and a
continuous hourly time series of LAI were used to force the model. Gross
P was measured with a tipping bucket gauge (0.2mm) mounted on the
meteorological tower at 3m height along with all other meteorological
measurements except the wind speed sensor which was mounted at 10m
above the surface and orientated toward the study plot (Charbonnier
et al., 2013). The meteorological variables were used to estimate PET
with the FAO Penman-Monteith Equation (Allen et al., 1998). The
hourly, cover-weighted LAI time series for sun (coffee) and shade (coffee
shaded by trees) locations in m? m~2 were linearly interpolated from
weekly duplicate LAI2000 measurements (LI-COR, 1992) covering 14
transects to match natural phenological dynamics related to climate and
agricultural practice such as pruning and fertilizing coffee plants (Tau-
gourdeau et al., 2014). The two LAI2000 instruments were matched
prior to each measurement under diffuse light conditions according to
the LI-COR standard protocol. Arabica coffee phenological cycles
generally cover two years with a typical leaf lifespan of 1.5 years. The
overall average measured LAI was 3.78 m? m~2 with lower values during
the drier months from January to April coinciding with pruning and
higher LAI values over the wetter months from May to December also
related to fertilizer application and harvest (Fig. 2i, j). Generally, the
average interpolated LAI for shaded coffee is slightly lower (4.02 m?
m~2) compared to the fully sun exposed coffee plants (4.2 m? m~2) but
exceeds sun LAI at the beginning of the rainy months in May. The shade
providing Erythrina trees shed their leaves in drier and slightly cooler
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Fig. 2. (a, ¢, e, i, k, m) Hourly timeseries of forcing (rainfall, Leaf Area Index (LAI) and potential evapotranspiration (PET)) and observed data for evaluation (actual
evapotranspiration (AET), soil water at 1m (STO) and soil water at 3.5m (GW)) of sun and shade locations at the Mejias plot from 2010 until 2014. b, d, f, h, j, I, n)
mean monthly time series. Mean monthly transpiration time series for shadow and sun locations h) were averaged from available observations.

months and reached an LAI = 0 in mid-February synchronized with the
coffee LAI minimum (Taugourdeau et al., 2014).

3.1.2. Evaluation data

The model evaluation used Eddy Covariance (EC) measured AET for
the whole plot following the measurement and filtering procedure by
Roupsard et al. (2006) from a tower elevation of 26m. The SW mea-
surements used Campbell TDR probes at 10cm, 20cm, 50cm, and 90cm
and were depth-integrated to 1m (STO). The SW measurements at
150cm, 200cm, 290cm, and 330cm were integrated to 3.5m depth for
modelling purposes (GW). The SW measurements were presented by
Benegas et al., (2014) and we based the depth integration from 0 —
100cm and 100 - 350cm on their rooting depth observations down to a
depth of 3.5m with the highest root density in the first metre of soil. The
sap flux probes (calibrated Dynamax devices using the method of Gra-
nier et al., 1996) were installed in six coffee plants in the sun and seven
shaded coffee plants and in two trees. The sap flux variability amongst
measured plants was characterized as the standard deviation around the

mean of 0.77+0.198 dm® dm 2 h ™! for shade coffee plants and as 0.808
+0.141 dm® dm™2 k™! for sun coffee plants over the measurement
period of close to two years. Sap fluxes were converted into
cover-weighted transpiration fluxes in mm h~! using sapwood area
measurements per plant (Leuning et al., 1995). The latter was then
averaged to the sun and shade locations separately. The filtered AET
measurements represent a whole plot estimate integrating over the
coffee and shade tree plants in the study plot (see Charbonnier et al.,
2013 and Roupsard et al., 2006 for details on EC data processing).

3.2. EcoHydroPlot model setup

The EcoHydroPlot model is a relatively parsimonious conceptual,
plot-scale model set up to simulate ecohydrological water partitioning of
E, Tr, and groundwater recharge, similar to Stevenson et al. (2023)
(Fig. 3). The model runs on an hourly time step and uses precipitation,
PET as forcing data, and LAI as an indicator of interception (D), with
interception increasing proportionally with LAI. The non-linear
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Fig. 3. Schematic model concept of the plot-scale 1D conceptual EcoHydroPlot ecohydrology model with blue and green water partitioning. Calibrated parameters in

Italics are related to each model compartment (Table 2).

interception storage can lose water to the atmosphere via interception
evaporation (Ei) at a rate given by PET if there is enough water avail-
able. The LAI is also used to calculate the Surface Cover Fraction (SCF) of
the canopy using Beer’s Law Eq. (1), which requires the calibration of a
radiation extinction parameter (rE).

SCF[i] = 1 —exp(rE LAI[i]) @

The SCF and a calibrated interception threshold parameter (@) were
used to calculate the maximum canopy interception storage (D; Eq. (2))
at each timestep (i). The SCF was also used to scale PET into a potential
evaporation (Ep) and potential transpiration (Tp) component following
Siminek et al. (2013) for an initial water partitioning.

D[i] = (a LAI[i]) (1 - (1 / (1+ (% )))) )

We followed the premise that denser vegetation would transpire
more water compared to less dense (< LAI) vegetation (Egs. (3) and (4).
Any depth of P in excess of D was routed to the upper soil compartment
as throughfall (Ty). Throughfall was summed to represent net precipi-
tation (PN) after interception. For larger rain events > P90, we allowed a
fraction of PN calculated with the calibrated parameter PFg,q to directly
reach the upper soil storage (STO) and subsequently the lower soil
reservoir (GW). Such a preferential flow component was conceptualized
based on the macropore rich soils and observed transient behaviour of
the soil water (Fig. 2k, m).

SCFli] = 1 —exp(rE LAI[i))T,[i] = SCFJi] PETYi] 3)

E,[i] = (1 — SCF[i]) PETJi) ©)]

Overland flow was not observed at the plot site and, therefore, not
used in the model. Furthermore, the flat topography limited lateral flows
above the groundwater table, and therefore, the model represents
exclusively vertical water fluxes. From the upper soil (STO), water can
return to the atmosphere in form of soil evaporation (Es) and transpi-
ration (Trypper). Atmospheric water losses Es and Trypper are scaled using
the calibration parameter Smax, which represents the maximum soil
storage capacity (Egs. (5) and (6)).

Trupperli] = Tpli] (S;:ZE!]) 6)
Bl = (el - i) (50) ©

Percolation (Perc) nonlinearly recharges the deeper soil layer (GW)
according to Eq. (7) using the calibration parameters ks1 and gI (Col-
lenteur et al., 2021). Hereby, the parameter gl determines how
nonlinear the percolation flux will be and resorts to the linear case for
gl=1.

Percli] = ksl (STO[i]) ! )

Smax

The vegetation can also draw water for transpiration Trjgye, from the
GW reservoir since roots were observed to a depth of 3m. The lower
transpiration is scaled using a maximum groundwater storage capacity
parameter GWmax Eq. (8).

(8

)

Tl = (5= Tl (
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The loss of water simulated from the deeper GW reservoir can
therefore be considered representative of a nonlinear groundwater
recharge (Gr) to the average water table at a depth of 5m using Eq. (9)
with the calibrated parameters ks2 and g2.

_ GW[i]\*

G, [i] = ks2 <GT,,M) 9)

The model was evaluated with data from measurements in the sun
and shade of the experimental plot for comparison purposes (Fig. 2).

We initially ran the model 100,000 times using a Latin Hypercube
Monte Carlo parameter sampling scheme (Soetaert and Petzoldt, 2010)
with the widest physically feasible parameter ranges to constrain the
model parameter ranges prior to calibration using multi-objective
optimization. The constrained initial parameter ranges for model cali-
bration (Table 2) were based on the best-performing (highest perfor-
mance scores) 500 parameter sets in terms of SW (STO + GW), AET and
Tr model performance determined using the modified Kling-Gupta ef-
ficiency (KGE) criterion (Kling et al., 2012).

3.3. Model calibration, evaluation, and uncertainty

The non-sorting genetic multi-objective calibration algorithm
(NSGA2, Deb et al., 2002) was used with different calibration targets
comparing model performance in relation to water partitioning. The
calibration targets used measured SW, AET and Tr data in combination
with the KGE criterion (Kling et al., 2012) and the mean absolute error
(MAE). The calibration targets were applied to the shade and sun loca-
tions with varied LAI model inputs in the following combinations:

(i) Benchmark using all available targets for simultaneous calibra-
tion: KGE for SW, AET and Tr (SW-AET-Tr)
(ii) KGE for SW and AET (SW-AET)
(iii) KGE for SW and Tr (SW-Tr)
(iv) KGE for SW(SW)
(v) KGE and MAE for wholeplot AET (AET)
(vi) KGE and MAE for Tr (Tr)

The NSGA2 algorithm was run with 500 parameter sets over 100
parameter generation permutations. The best-performing (highest KGE
and MAE scores) final 500 parameter sets were subsequently used for
model simulation, performance assessment and ecohydrological water
partitioning. Model simulations were additionally evaluated using cor-
relation coefficients (CC) and the root mean squared error (RMSE) cri-
terion (R Core Team, 2022).

We conducted a parameter sensitivity ranking using LH—OAT (Latin
Hypercube One-at-a-time; van Griensven et al., 2006) for the KGE per-
formance criterion at the sun and shade locations gauging the impact of
SW, AET and Tr on calibration and resulting flux simulations.

3.4. Water partitioning and flux mapping

The modelled fluxes were initially summed to annual values for
water balance checks and in order to calculate water partitioning indices
of Tr/AET and Tr/P. Simulated ecohydrological processes of Ei, Es, Tr
and G, were analysed using a flux mapping approach in form of ternary
plots (Zhou et al., 2016; Khatami et al., 2019). This allowed us to
visualize the relative contribution of each water loss simulated by the
model compared to measured data of SW, AET and Tr using each cali-
bration target.

4. Results
4.1. Plot-scale ecohydrological fluxes with a simple model

The study period from 2010 to 2013 was characterized by varied
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climate conditions, including a wetter than normal 2010 (3316mm of
annual rainfall) and a slightly drier than normal El Nino year with
2112mm of rainfall in 2012-2013 (Table 1). The latter dry conditions
were reflected in a marked SW recession at the end of 2012 and the
beginning of 2013 down to a depth of 3.5m (Fig. 2). The first metre of
soil was characterized by transient and dynamic responses to rainfall
with a slightly more attenuated response at depth which was indepen-
dent of the sun or shade locations. However, the sun exposed location
resulted on average in a slightly lower observed SW compared to the
shade location. The overall soil water dynamics, including the peaks and
drying events, were matched by all the model versions calibrated with
any type of data. Here, we only show the benchmark calibration results
(Fig. 4). Shifted peak simulations compared to the measured data were
most likely the product of untraceable data errors in P input and/or the
SW series. All SW simulations resulting from the different calibration
targets were above KGE>0.6.

The AET and Tr simulations by all modelled calibration targets
reproduced the observed diurnal cycle (Fig. 5 visualizes one exemplary
month of hourly data). However, simulated differences emerged for
different calibration targets that can be best visualized by the cumula-
tive distributions for the whole simulation period in Fig. 5 with a wider
spectrum for Tr simulations compared to AET independent of the sun or
shade locations. Fine-scale details of small observed night-time Tr fluxes
only at the shade location could not be reproduced by our simple model.

Comparing model performance (KGE, CC and RMSE criteria) for
measured vs. simulated AET and Tr amongst the different calibration
targets of the retained 500 best parameter sets (see full distribution of
the retained parameters in Figs. S1 and S2) resulted in almost all cases in
the benchmark calibration (SW-AET-Tr) performing best (Fig. 6). The
differences between sun exposed and shade locations were marginal for
all calibration targets using AET particularly in terms of simulated dy-
namics expressed by a correlation coefficient. However, the benchmark
calibration also resulted in the greatest uncertainty, with the widest
range of parameters and performance scores. Only the AET and Tr
calibration targets resulted in less variable performance scores. Sur-
prisingly, the AET and SW-AET calibration targets performed the worst
and the Tr and SW-Tr the best. Using only SW data for calibration did not
cause model failure in simulating water partitioning, though it
decreased performance in comparison with other calibration schemes.
The difference for sun exposed and shade locations was also greatest
when using only SW data for calibration.

The sensitivity analysis (Table 3) confirmed the expected parameter
influence on model performance (KGE). Models calibrated with Tr were
most sensitive to the two water partitioning parameters (rE, alpha)
together with a soil water content rate parameter (ks2). The SW cali-
bration preferred ks1, Smax and g1 soil water parameters and the AET
calibration resulted in one water partitioning parameter (rE) being
sensitive together with the soil water parameters ks2 and g1.

4.2. Model calibration impact on ecohydrological water partitioning

Analysis of simulated ecohydrological water partitioning for sun

Table 1

Observed catchment hydroclimatic (wholeplot P, PET, T, RH, and SW at sun and
shade locations) summary statistics for the Mejias experimental plot and the
period from 2010 to 2013.

Unit  Mean SD Min Max
Mean annual P mm 2830 515 2112 3316
Mean annual PET mm 1599 144 1420 1768
M ean annual T °C 19.6 0.13 19.5 19.8
Mean RH % 86.1 1.19 85 87.6
Mean annual SW 0-1m mm 314; 6.3; 6.2 305; 320;
(shade; sun) 340 331 345
Mean annual SW mm 734; 21.8; 709; 762;
1-3.5m (shade; sun) 720 6.0 714 725




C. Birkel et al.

Table 2

Agricultural and Forest Meteorology 346 (2024) 109870

Initial model parameter ranges used in multi-objective calibration and the resulting posterior parameter ranges retaining the best performing 500 parameter sets for
water partitioning analysis. The full posterior parameter distributions are further shown in Figs. S1 and S2.

Initial Parameter Ranges

Calibration rE alpha (mm) Smax (mm) ksl ks2 GWpax (mm) gl g2 PFscale
target o () () ©) o )
Max -0.38 0.2 980 30 15 1470 4.8 5 0.5
Min -0.1 0.09 610 12 5 1020 3 4 0.3
Posterior parameter distributions with Median (10th and 90th percentile)
SHADE:
SW-AET-Tr -0.2 (-0.33;-0.11)  0.09 (0.09; 759 (617; 30 (30; 14.8 (6.6; 15) 1358 (1082; 3.1(3;4.8) 4.1 (4;5) 0.49 (0.27; 0.5)
0.09) 959) 30) 1460)
Sw -0.37 (-0.38; 0.09 (0.09; 0.1) 695 (610; 30 (305 5.1 (5; 5.4) 1020 (10205 3.7 (3.1; 5(5;5) 0.33 (0.26;
-0.19) 764) 30) 1020) 4.8) 0.46)
AET -0.11 (-0.11; 0.2 (0.2; 0.2) 610 (610; 30 (30; 12 (10.8; 1469 (1468; 3(3;3.1) 5(5; 5) 0.37 (0.1; 0.5)
-0.10) 610) 30) 14.8) 1470)
Tr -0.38 (-0.38; 0.09 (0.09; 980 (980; 30 (30; 11.3(6.1; 15) 1421 (1307; 3(3;3) 444 0.5 (0.5; 0.5)
-0.32) 0.09) 980) 30) 1468)
SW-AET -0.1 (-0.1; -0.1) 0.19 (0.12; 0.2) 793 (622; 30 (30; 15 (9.7; 15) 1465 (1465; 3.5(3.1; 4(4;4) 0.5 (0.27; 0.5)
931) 30) 1428) 4.6)
SW-Tr -0.22 (-0.38; 0.09 (0.09; 757 (754; 30 (30; 5(7.5; 5) 1064 (1023; 4.8 (3.4; 5(4; 5) 0.49 (0.48; 0.5)
-0.11) 0.12) 979) 30) 1457) 4.8)
SUN:
SW-AET-Tr -0.16 (-0.23; 0.09 (0.09; 910 (630; 30 (30; 14.9 (14.3; 1433 (1152; 3.1(3;4.8) 4.03 (4 0.5 (0.22; 0.5)
-0.11) 0.19) 972) 30) 15) 1469) 5)
SW -0.1 (-0.1; -0.1) 0.11 (0.11; 980 (944; 30 (30; 15 (15; 15) 1408 (1363; 3.7 (3.1; 5(5; 5) 0.5 (0.5; 0.5)
0.11) 980) 30) 1469) 4.6)
AET -0.1 (-0.11; -0.1) 0.2 (0.2; 0.2) 610 (610; 30 (30; 14.8 (13.4; 1470 (1470; 3.1(3;3.1) 5(5; 5) 0.43 (0.12; 0.5)
610) 30) 15) 1470)
Tr -0.25 (-0.28; 0.09 (0.09; 980 (980; 30 (30; 15 (15; 15) 1470 (1470; 3(3;3) 444 0.5 (0.5; 0.5)
-0.23) 0.09) 980) 30) 1470)
SW-AET -0.1 (-0.1; -0.1) 0.2 (0.09; 0.2) 926 (614; 30 (30; 15 (15; 15) 1467 (1034; 3.5(@3.1; 4(4;5) 0.5 (0.3; 0.5)
980) 30) 1470) 4.6)
SW-Tr -0.25 (-0.28; 0.09 (0.09; 980 (911; 30 (30; 15 (15; 15) 1467 (1031; 4.1(3.1; 444 0.5 (0.5; 0.5)
-0.11) 0.09) 980) 30) 1470) 4.8)
*Observed & Simulations * Observed Simulations
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Fig. 4. Simulated versus observed hourly soil water at 0-1m (STO), soil water at 1-3.5m (GW) depth and the total soil water (SW = STO + GW) for the shade and sun
exposed locations using the benchmark calibration target SW-AET-Tr obtained from the 500 highest scoring (best) simulations.

estimates of total AET, closest to the measured Tr/AET ratio of 0.91 for
the shade and 0.73 for the sun exposed location. The absolute numbers
and water partitioning statistics can be found in Table 4. In contrast, the
AET and SW-AET calibration targets consistently resulted in much lower

exposed and shade locations was based on ternary plots of the Ei, Es and
total Tr flux components as percentage contributions to total AET ac-
cording to the different calibration targets (Fig. 7). Unsurprisingly, only
the Tr calibration resulted in a constrained set of >70% transpiration
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Fig. 5. Hourly observed and simulated AET and Tr during August 2010 for shade and sun, and the corresponding cumulative probability distributions of simulations
for the complete period from 2010 to 2013. The colour lines indicate the different calibration targets. Note that the Tr rates are scaled to the sun exposed and shade

locations whereas the AET flux represents the whole plot.

Tr/AET ratios of around 0.5. Including SW as a calibration target
resulted in reasonable water partitioning simulations, but with a much
wider range of Tr/AET ratios and more difficulty to identify the best
solutions. Despite the best performance of the benchmark calibration,
simulation of water partitioning resulted more uncertain and led us to
reject our initial working hypothesis.

Similarly, we separated out the simulated soil water losses as the
total evaporation (Ei + Es), Tr and groundwater recharge flow Gr
(aquifer recharge) in Fig. 8. Despite differently simulated Tr/AET frac-
tions, the simulated fraction of Gr remained largely indifferent amongst
calibration targets. Results suggested that Gr corresponds to 60-75% of
the total soil water losses, and Tr corresponds to 10 — 30%, except for the
results obtained with AET and SW-AET model calibrations, where Tr is
~10% of the soil water losses.

Additionally to Fig. 5, we arbitrarily selected a 24-hour period to
show how the model simulated the diurnal variability with different
calibration targets (Fig. 9) and calculated performance metrics (Table 5)
for the median Tr simulation from the 500 retained best parameter sets
of a calibration (2010) and validation period (2011). Simulations that
involved transpiration as a target generally reproduced the diurnal
variability with a good performance of KGE>0.6, CC>0.8 and
RMSE<0.08 for both the sun and shade plots. The validation period
resulted in better performance considering all metrics compared to the
calibration and slightly better performance for the sun plot compared to

the shade. Again, including transpiration as a calibration target
improved the simulations (Fig. 9), which was also reflected in a large
difference of performance (lowest performance for AET with KGE<O0.3).
The models reproduced the onset of daytime transpiration but failed to
simulate small night-time transpiration fluxes measured for shaded
coffee (Fig. 9).

5. Discussion

5.1. Can a simple model be used to reasonably partition ecohydrological
fluxes?

The EcoHydroPlot model could be considered as a relatively parsi-
monious way of modelling water fluxes between the soil and the at-
mosphere as mediated by vegetation, even with nine calibrated
parameters (Collenteur et al., 2021). Reducing the number of calibrated
parameters could further be achieved by linearizing one or more of the
power-function type flux equations Eq. (7) and (9). However, soil and
groundwater fluxes are usually best modelled with non-linear transfer
functions as shown by Fenicia et al., (2006) since groundwater related
vertical and lateral fluxes are intermittent pulses rather than constant
flux rates. The latter was shown for the tropics in general (Jasechko
et al., 2014) and Costa Rica specifically based on stable isotope data
(Sanchez-Murillo and Birkel, 2016). Consequently, the calibrated



C. Birkel et al.

0.8 1
0.6
0.4 1

g

Hl Shade
3 Sun

KGE - AET

0.2 1

0.0 +— T

AET  SW-AET  SW-Tr SW-AET-Tr

Calibration scheme

0.86

0.84 -

0.82 A

0.80 1

CC - AET

0.78 1

—— O

T R -

0.76 1

0.74

T T

Tr AET  SW-AET SW-Tr SW-AET-Tr

Calibration scheme

ol

T T

SW Tr

0.17 A
0.16 1
0.15 A
0.14 1

0.13 1

RMSE - AET

0.12 A
0.11 A

0.101 e

AET  SW-AET
Calibration scheme

SW Tr SW-, AET Tr

CC-Tr

RMSE - Tr

KGE - Tr

Agricultural and Forest Meteorology 346 (2024) 109870

vhod W

AET  SW-AET
Calibration scheme

A

SW Tr SW-, AET Tr

0.8 1 o

v

0.6 1

B

02

b)

0.0 4 .
SW Tr

SW-Tr SW-AET-Tr

0.86

0.84 -
-

++"’Ii
d)

Tr

0.82 A

0.80

0.78 1

0.76 1

0.74 A

AET  SW-AET
Calibration scheme

A

T T

SwW Tr

0.10

0.09 A

0.08 A

0.07 1

0.06 1

AET  SW-AET  SW-Tr SW-AET-Tr

Calibration scheme
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Table 3

Parameter sensitivity ranking using LH—OAT for the KGE performance metric of
the calibration targets SW (shade), wholeplot AET and Tr (shade) only. The first
three most sensitive parameters are displayed in bold and italics.

Parameter Rank (SW) Rank (AET) Rank (Tr)
TE 0.083 0.49 0.59
alpha 0.076 0.045 0.33

ks1 0.11 0.1 0.012
ks2 0 0.116 0.025
Smax 0.34 0.008 0.0029
g1 0.32 0.158 0.02

82 0 0.06 0.014
GWmax 0 0.002 0.003
PFscale 0.064 0.018 0.002

power-function parameters gl and g2 resulted in highly non-linear
values always > 3 independent of the calibration target (Table 3 and
Figs. S1 and S2). The non-linear relationship of soil storage and soil
fluxes in simple spatially-aggregated models was also emphasized by
Maneta et al. (2018). Furthermore, tropical high rainfall areas often
result in larger plant-available soil water storages (if soil characteristics

allow) compared to temperate regions (Gao et al., 2014). In the Mejias
study plot, average soil moisture storage was measured at over 1000mm
(Table 1) with roots observed to a depth of 3.5m (Defrenet et al., 2016).
Even though root density is highest in the first metre of soil, such a
relatively deep root profile is clearly influenced by the presence of the
Erythrina shade trees modulating plant transpiration, which we tried to
emulate with the model structure (Fig. 3). The presence of deeper roots
also helps maintain high hydraulic conductivities and infiltrability
(Benegas et al., 2014) due to macropores and soil pipes, a widespread
phenomenon across the tropics as described by Chappell (2010).
Therefore, preferential flow paths are non-linear in their response and
should not be linearly parameterized within a model.

Additionally, to the soil water fluxes, the ecohydrological water
partitioning was based on a simplified interception module using LAI as
the main indicator (Fig. 2) to discriminate amongst vegetation types and
intra-annual vegetation dynamics. The model uses an interpolated
continuous LAI time series input function based on weekly measure-
ments as a surrogate for interception storage capacity. At higher LAI,
more water can be efficiently intercepted by the vegetation and is sub-
jected to canopy interception evaporation and throughfall similar to, for
example, van Dijk and Bruijnzeel (2001). The interception routine here
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Fig. 7. Ecohydrological flux mapping of partitioned green (transpiration) and blue (soil and interception evaporation) water using the retained best 500 simulations

after calibration.

uses only two calibrated parameters and does not need further storage
capacity or threshold parameters compared to, for example, the more
complex Rutter interception model (Rutter et al., 1971) and others
(Muzylo et al., 2009). Interestingly, all 15 reviewed interception models
by Muzylo et al. (2009) used a formulation of Penman-Monteith to
dimension PET. The utility of LAI as an indicator of ecohydrological
water partitioning in the tropics was demonstrated by Taugourdeau
et al. (2014), who showed that LAI is a direct indicator of coffee yield at
the Mejias site, which was indirectly related to higher transpirations
rates of shaded coffee and resulting higher productivity. For another
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example, Benyon and Doody (2004) showed a positive relationship of
measured LAI with measured Tr rates in reforestation plots in tropical
Australia. Large-scale AET assessments that documented a vegetation
greening and an increasing AET trend over past decades also relied on
LAI (Pascolini-Campbell et al., 2021), but Zhang et al. (2021) showed
that LAI does not reflect any physiological negative feedbacks such as
stomatal closure due to increased COs. Nonetheless, such limitations
need careful consideration at larger and long-term scales, but maybe less
so for site-specific studies as studied here with an emphasis on model
parsimony.
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Table 4

Summary of the mean annual water balance and simulated water partitioning
metrics (P, AET, Tr/AET, Tr/P) derived from the 500 best simulations after
calibration with different targets. *Metrics only used available data for observed
(obs) vs. simulated omitting any incomplete pairs from gaps in AET and Tr
measurements.

Plot Target Variable Mean SD 25th 50th 75th
Obs p* 2264 1342 2112 2858 3032
Wholeplot ~ Obs AET 869 71 818 859 910
Shade Obs Tr-AET 0.91 0.04 0.90 0.91 0.92
Shade Sw Tr-AET 0.69 0.07 0.32 0.69 0.77
Shade T Tr-AET 0.72 0.06 0.64 0.72 0.76
Shade AET Tr-AET 0.38 0.00 0.34 0.38 0.39
Shade SW-AET Tr-AET 0.33 0.06 0.29 0.33 0.37
Shade SW-T Tr-AET 0.57 0.08 0.32 0.57 0.76
Shade SW-AET-T  Tr-AET 0.55 0.02 0.32 0.55 0.76
Sun Obs Tr-AET 0.73 0.17 0.67 0.73 0.79
Sun SwW Tr-AET 0.37 0.01 0.33 0.37 0.40
Sun T Tr-AET 0.66 0.01 0.62 0.66 0.69
Sun AET Tr-AET 0.36 0.00 0.34 0.36 0.38
Sun SW-AET Tr-AET 0.35 0.01 0.31 0.35 0.38
Sun SW-T Tr-AET 0.58 0.01 0.35 0.58 0.69
Sun SW-AET-T Tr-AET 0.50 0.01 0.32 0.50 0.69
Shade Obs Tr-P 0.27 0.04 0.26 0.27 0.29
Shade Sw Tr-P 0.27 0.01 0.11 0.27 0.30
Shade T Tr-P 0.24 0.01 0.21 0.24 0.27
Shade AET Tr-P 0.10 0.02 0.09 0.10 0.11
Shade SW-AET Tr-P 0.09 0.00 0.08 0.09 0.10
Shade SW-T Tr-P 0.21 0.01 0.11 0.21 0.28
Shade SW-AET-T Tr-P 0.18 0.03 0.08 0.18 0.30
Sun Obs Tr-P 0.20 0.07 0.17 0.20 0.22
Sun Sw Tr-P 0.10 0.01 0.09 0.10 0.11
Sun T Tr-P 0.19 0.02 0.17 0.19 0.21
Sun AET Tr-P 0.09 0.01 0.08 0.09 0.10
Sun SW-AET Tr-P 0.09 0.01 0.08 0.09 0.10
Sun SW-T Tr-P 0.18 0.02 0.10 0.18 0.21
Sun SW-AET-T Tr-P 0.14 0.02 0.08 0.14 0.21

5.2. Which calibration targets provide the most information content?

Our multi-objective calibration approach to assess the influence of
different calibration targets goes back to Madsen (2000) and follows the
idea of Crow et al., (2003) who used streamflow and radiometric tem-
perature data to improve predictions of AET simulated by a land surface
model. Much has happened since and here, the SW measurements pro-
vided basic and necessary hydrological background data for model
calibration with reasonable model performance for all calibration tar-
gets of KGE > 0.6 (Fig. 4). Additionally, to SW as a calibration target,
measured AET provided useful data to close the water balance (Fig. 5)
but did not significantly influence ecohydrological water partitioning
within the model (Table 4) and performed poorly simulating transpi-
ration (Fig. 9, Table 5). The benefits of using AET data for model cali-
bration was recently shown by Arciniega et al. (2022) for Costa Rica.
However, their large-scale modelling used satellite ET estimates, which
would not necessarily provide information at the desired smaller plot
scale resulting in additional uncertainty (Franks et al., 1997). Therefore,
using measured AET and Tr data for hydrological model calibration is
still rather rare (except for Schreiner-McGraw et al. (2022) who used a
much more complex Community Land Surface model), mainly due to the
difficulty to upscale Tr from individual plants or stands to plot and
catchment scales (Ford et al., 2007; Aparecido et al., 2016). At the
Mejias plot, the sap-flux derived Tr measurements have also been vali-
dated by Eddy-Covariance measurements and deemed reasonable by
Vezy et al., (2018).

Both the measured Tr data alone, and in combination with SW, as
calibration targets resulted in the most robust ecohydrological water
partitioning estimates (Figs. 7 and 8). The simple conceptual EcoHy-
droPlot model was able to provide reasonable water flux and balance
estimates for the humid tropical test plot at an hourly scale. If calibrated
using data on Tr, the simulations also matched observed Tr/AET ratios
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of between 0.7 and 0.9 and Tr/P of 0.2 for the sun exposed and Tr/
P=0.27 for the shade locations (Table 4). In a cross-check comparison,
such Tr/AET values were found for the study site using an isotope-based
mass balance approach by Iraheta et al. (2021). Gomez-Delgado et al.
(2011) showed relatively similar water partitioning ratios (Tr/P=0.2)
for the Mejias catchment scale modelled for 2010. Their groundwater
recharge estimates of Gr/P=0.67 also matched our findings of Gr/P=0.6
to 0.75. Vezy et al., (2018) simulated a total AET of 870mm/yr for 2011
closely matching observed values and our estimates with a
physically-based, and much more complex energy balance model
(MAESPA). Despite simulating a similar Tr/P=0.28, their Tr/AET of
0.46 resulted lower with a relatively high total evaporation (Ei + Es) to
AET ratio of 0.54 compared to our simulations. The EcoHydroPlot
simulations for the shade plot were generally better (except for simu-
lated transpiration due to night-time transpiration fluxes the model is
unable to reproduce, Fig. 9) and even resulted in a reasonable Tr/AET
ratio on one occasion with only SW as calibration target. However, the
latter could not be reproduced for the sun exposed plot and might
therefore be considered an outlier (Fig. 6). Based on our calibration
results and rejection of the benchmark calibration including all targets,
future monitoring efforts for similar research questions should prioritize
inclusion of direct Tr measurements in form of sap flux and/or Eddy
Covariance to enhance simulated ecohydrological water partitioning.

5.3. Water use in tropical coffee plantations

Early work on coffee transpiration in the tropics by Gutiérrez and
Meinzer (1994) showed a tight regulation of wind and stomata dynamics
to environmental variables. In southern Costa Rica, van Kanten and
Vaast (2006) found increased Tr for shaded Arabica coffee compared to
sun exposed coffee similar to our modelling and available measure-
ments. The latter higher shade Tr rates compared to sun exposed loca-
tions presumably reflect greater sapflow in shade trees and the
suppression of Es by shading. Higher Tr was found to increase coffee
productivity at the Mejias site by Taugourdeau et al. (2014) and Chin-
chilla-Soto et al. (2021) who found greater shade coffee water use effi-
ciencies at a coffee plantation in Central Costa Rica. Shaded coffee
enhanced bean quality as found by Vaast et al. (2006). Even though not
specifically tested, and a likely result of minor differences in LAI be-
tween sun and shade location, we did not find increased groundwater
losses or any significant hydrological differences (Fig. 8). Despite
slightly lower upper soil storage at the shaded plot due to increased Tr
compared to the sun exposed location, the high storage capacity of the
soils can well compensate this vegetation influence of a generally
energy-limited rather than water-limited environment.

Coffee shading altogether could provide a successful measure against
the concerns over climate change impacted reduced coffee productivity
(Pham et al., 2019), since shading suppresses E and enhances water use
efficiency at the study site. Our model could be used and transferred to
other sites for impact assessments of a combined land cover and climate
change.

6. Conclusions and outlook

We developed and tested the relatively parsimonious conceptual
ecohydrology EcoHydroPlot model with detailed data from the Mejias
Coffee-Flux agroforestry experimental site in humid tropical Costa Rica.
Measured SW, AET and Tr were used as calibration targets in a multi-
objective optimization calibration exercise — making use of this unique
data set of ecohydrological flux measurements under different land uses
in the tropics - to assess their influence on ecohydrological water par-
titioning of simulated vs. observed water losses to the atmosphere (Ei,
Es, Tr) and to the aquifer (Gr). Such combination of (i) measurements of
ecohydrological fluxes under different, typical land uses in the tropics;
(ii) use of these data within a multi-calibration modelling framework in
a (iii) conceptual model for wider applicability to inform stakeholders is
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Fig. 8. Ecohydrological flux mapping of total water losses of partitioned green (transpiration) and blue (total evaporation as the sum of soil and interception
evaporation plus groundwater recharge Gr) water using the retained best 500 simulations after calibration.

— to our knowledge — a novel way forward to bridge the gap towards a
science-based decision making. The consistency in water partitioning
was assessed using a flux mapping approach that visualizes how
different calibration targets pull the model towards green or blue water-
dominated fluxes. The main outcome was that only including Tr as a
calibration target resulted in matching Tr/AET ratios for sun exposed
and shaded coffee locations with other targets such as SW pulling the
model mostly towards simulating evaporation fluxes. We therefore
rejected our initial hypothesis that including as many calibration targets
as possible improves model representation of ecohydrological water
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partitioning. These findings emphasize the value of measured green
water fluxes (such as Tr) for model calibration improving on simulated
transpiration and water partitioning, which should be a key measure-
ment included in all ecohydrology monitoring and modelling studies.
Our simple model provides a useful and parsimonious tool to assess land
cover change and its impact on green and blue water fluxes, which of
course is not only applicable in tropical environments.
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Fig. 9. Comparison of observed versus simulated hourly median transpiration (Tr) for the tested calibration targets. The median of the simulated Tr was calculated
from the best-performing 500 parameter sets after calibration and illustrated for an arbitrarily selected 24 hour calibration (2010) and validation (2011) period.

Table 5

Performance metrics (KGE, CC, RMSE) of the median hourly transpiration
simulation using different calibration targets. The calibration and validation
periods correspond to 2010 and 2011, respectively. The median simulation was
derived from the retained 500 best-performing parameter sets after calibration
(Table 2).

Shade Sun

Period Calibration KGE CC RMSE KGE CC RMSE
target

Calibration SW 0.59 0.86 0.075 0.53 0.81 0.052
Tr 0.62 0.86 0.072 0.56 0.81 0.066
AET 0.27 0.81 0.082 0.47 0.77 0.057
SW-AET 0.33 0.83 0.077 0.53 0.81 0.052
SW-Tr 0.59 0.86 0.075 0.56 0.82 0.066
SW-AET-Tr 0.69 0.86 0.065 0.56 0.82 0.066

Validation SW 0.64 0.80 0.076 0.25 0.82 0.091
Tr 0.68 0.80 0.075 0.71 0.83 0.072
AET 0.23 0.81 0.091 0.21 0.80 0.095
SW-AET 0.11 0.77 0.101 0.24 0.82  0.092
SW-Tr 0.63 0.80 0.076 0.72 0.83 0.071
SW-AET-Tr 0.77 0.84 0.069 0.71 0.83 0.071
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