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e Regional Hydrology Lab, University of Montana, Missoula, USA 
f Water and Environmental Laboratory, Washington State University, Pullman, USA 
g Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany 
h Department of Geography, Humboldt University Berlin, Berlin, Germany   

A R T I C L E  I N F O

Key words: 
Ecohydrology 
Water partitioning 
Conceptual modelling 
Transpiration 
Tropics 

A B S T R A C T

Evaporation (E) and transpiration (Tr) are the key terrestrial water fluxes to the atmosphere and are highly 
sensitive to land cover change. These ecohydrological fluxes can be measured directly only at small scales, such 
as individual plants or under laboratory experiments. Modelling is needed to upscale E and Tr estimates to plot, 
hillslope and catchment scales. However, model-derived ecohydrological water partitioning of E and Tr can be 
ambiguous, particularly when models are trained using hydrometric data and soil moisture. To test the influence 
of different types of data (i.e., sap flux-derived Tr, Eddy Covariance-derived actual evapotranspiration (AET) and 
measured soil water (SW)) on model calibration and subsequent water partitioning, we developed the low- 
parameter plot scale ecohydrology model EcoHydroPlot applied to a data-rich experimental agroforestry plot 
in humid tropical Costa Rica. The model was able to simulate SW well when calibrated with any data type, but 
large differences emerged in the E and Tr flux partitioning. Using only hydrometric data for calibration resulted 
in parameter configurations that produced greater E over Tr fluxes (Tr/AET < 0.5). The opposite was seen for 
model calibration using Tr data (median Tr simulations with KGE > 0.6), resulting in Tr/AET ratios close to the 
observed ~0.9. Further, using all measurements simultaneously (including AET, SW and Tr) did not improve 
simulated water partitioning. We only found small differences between sun and shade locations with slightly 
greater average shaded coffee transpiration at the expense of lower upper SW, higher deeper SW and less 
groundwater recharge compared to sun exposed coffee. This work can inform measurement priorities for ap
plications with relatively simple conceptual ecohydrology models and emphasizes the importance of transpira
tion estimates for model calibration beyond tropical environments.   

Key points 

- Ecohydrology model simulates water partitioning in tropical
coffee plantation

- Water balance reapportionment was sensitive to calibration
targets

- Transpiration data needed in calibration to capture green water

contribution to total AET 

- Including all calibration targets increase model performance and
uncertainty

- Shaded coffee transpires more and recharges less water
compared to sun plot
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Data availability 

Data will be made available on request.   

1. Introduction 

The tropics have experienced accelerated change in land cover (e.g., 
Meli et al., 2017), modifying the partitioning of rainfall into evaporation 
(E) and transpiration (Tr), infiltration and groundwater recharge, as 
well as runoff dynamics (Grip et al., 2005). Large scale impacts include 
altered soil-vegetation-atmosphere feedbacks, such as reduced moisture 
recycling and other rainfall-producing mechanisms due to forest cover 
loss (te Wierik et al., 2021). However, quantifying how much land cover 
change impacts the hydrological cycle strongly depends on measure
ments from monitoring networks, which are declining in many places, 
particularly in the tropics (Wohl et al., 2012). Nonetheless, many mea
surement techniques used to estimate Tr (e.g., Eddy Covariance and sap 
flux) are based on point measurements and need upscaling to larger 
areas, which inevitably results in considerable assumptions and uncer
tainty (Ford et al., 2007). Despite these many uncertainties, larger scale 
remote sensing and modelling are usually the most appropriate methods 
to indirectly estimate plot and catchment scale ecohydrological water 
partitioning into “green” water losses (i.e., E and Tr) and “blue” water 
fluxes (i.e., groundwater recharge and runoff). In addition to ecohy
drological modelling, stable isotopes have also been used to analytically 
derive water balance components (Jasechko et al., 2013). However, 
stable isotope-based estimates of ecohydrological water partitioning 
often do not agree with those obtained from hydrological models and 
result in a wide, and climate-dependant, range of Tr/AET (Actual 
Evapotranspiration) ratios from 0.2 to close to 1 (Schlesinger and 
Jasechko, 2014). In general, ecohydrological modelling tends to pro
duce lower Tr/AET estimates with greater emphasis on E fluxes relative 
to Tr, particularly if compared to stable isotopes (Schlesinger and 
Jasechko, 2014). The latter arises from model parameter uncertainty 
and lacking ecohydrological data to constrain models. Studies in the 
tropics have shown the largest Tr fluxes worldwide, with stable 
isotope-based estimates reaching Tr/AET ratios close to 1, whereas hy
drological modelling has produced estimates closer to 0.5 (Arciniega 
et al., 2022). 

Differences in how ecohydrological models partition water are also 
related to inherent uncertainties and how simple or complex a soil- 
vegetation-atmosphere model should be (Franks et al., 1997). Many 
published ecohydrological models are distributed in space and 
process-based (e.g., EcH2O, RHESSys, STARR) and require a lot of data 
to drive them (Maneta and Silvermann, 2013; Tague and Band, 2004; 
van Huijgevoort et al., 2016, respectively). However, in most applica
tions detailed and spatially-distributed data of, in particular, vegetation 
and soil physical characteristics are often limited or unavailable, which 
is a reason simpler ecohydrological models are still popular. These 
simpler models are often very successful at capturing dominant pro
cesses and can be applied more widely to estimate the water “footprint” 
of different land uses and vegetation types (Stevenson et al., 2023). 
Additionally, there is still a need to understand effects of different 
calibration constraints on quantifying key processes and fluxes in eco
hydrological models (Kuppel et al., 2018; Douinot et al., 2019; Schrei
ner-McGraw et al., 2022). 

Current patterns of land use conversion in the humid tropics, coupled 
with projected climate change, create an urgent need for an evidence 
base to inform policy directed to more sustainable integration of land 
and water management (Griscom et al., 2017). Here, reliable ecohy
drological models to quantify water use by different land use types could 
provide such evidence-based information for decision-making (e.g., 
Smith et al., 2021). For example, enhanced understanding of the 
trade-offs between crop and timber production and water availability for 

other services (e.g., groundwater recharge, sustaining river flows and 
linked water quality) is crucial in better implementing ecohydrological 
goals into, for example, payment for ecosystem services schemes (Birkel 
et al., 2012). In particular, high value export crops (e.g., coffee, fruit) 
need to be considered due to their substantial contributions to national 
economies of tropical countries (Ovalle-Rivera et al., 2015). For 
example, possible decreased coffee productivity due to climate change is 
alarming (Pham et al., 2019) and likely related to more biodiversity loss 
(Philpott et al., 2008). Spatial shifts in Arabica coffee producing regions 
are also expected (Ovalle-Rivera et al., 2015) with concerns over 
seemingly less resistant Robusta coffee (Kath et al., 2020). In the context 
of climate change, shade coffee production of planted trees in between 
coffee hedgerows has since been seen as a viable alternative with hy
drological (in the context of reduced AET) and soil structural and 
biogeochemical benefits over coffee directly exposed to the sun partic
ularly in Costa Rica (Siles et al., 2010; Harmand et al., 2007). 

In this paper, we address the issue of simulating ecohydrological 
water partitioning with a relatively simple conceptual ecohydrological 
model set up at the plot-scale for the humid tropics applied to a well- 
instrumented agroforestry (sun coffee vs shade coffee covered by 
trees) experiment in eastern humid tropical Costa Rica, where mea
surements of most components of the hydrological cycle are available 
for calibration and validation. We tested the model with different cali
bration targets of measured soil water (SW), transpiration (Tr) and 
actual evapotranspiration (AET) and evaluated which data type results 
in the most plausible simulated ecohydrological water partitioning. We 
hypothesized that including more calibration targets would result not 
only in the most optimal model performance but also in the best parti
tioning of E and Tr fluxes. 

The specific objectives were to:  

(i) Set up a parsimonious ecohydrology model for simulation of 1D 
fluxes at the plot-scale in a tropical coffee plantation. 

(ii) Test different calibration targets and their impact on the ecohy
drological water partitioning using a flux mapping approach.  

(iii) Evaluate which type of data are most useful for calibrating the 
ecohydrology model focusing on water partitioning under con
trasting land use (e.g., coffee vs coffee under shade trees) in a 
context of land management. 

2. Revisiting the Mejias coffee-flux observatory 

The Mejias catchment (~0.9 km2) and a plot-scale experiment star
ted in 2008 as the Coffee-Flux agroforestry research project by CIRAD 
(Centre de coopération International en Recherche Agronomique pour le 
Developpément) and in collaboration with CATIE (Centro Agronómico 
Tropical de Investigación y Enseñanza) to assess, amongst many eco
hydrological issues, how shade trees would impact coffee production 
(Roupsard et al., 2016). The experiment was part of FLUXNET (Bal
docchi et al., 2001) and was based in an active coffee-producing farm in 
Aquiares near the city of Turrialba on the Caribbean slope of Costa Rica 
at an altitude of 1040m.a.s.l. (Fig. 1). This region is characterized by 
annual rainfall above 2000mm with little seasonality and virtually no 
thermal intra-annual oscillations (Fig. 2a, b, c, d). The mean annual 
temperature at the Mejias site is around 19.6◦C. The Mejias plot con
sisted of a meteorological tower (precipitation (P), radiation, tempera
ture (T), relative humidity (RH), wind speed) with Eddy Covariance 
measurements of gas exchanges estimating the complete energy balance 
and ecosystem productivity (Charbonnier et al., 2013). The research 
team instrumented soil profiles in sun-exposed and shaded areas with 
volumetric soil water content (SW) sensors to a total depth of 3.5m close 
to the tower. Shaded coffee (Coffea arabica L., dwarf var. Caturra) under 
Erythrina poepiggiana trees and sun exposed coffee plants were equipped 
with sap flux sensors (Dynamax) and manual leaf-area-index (LAI) 
measurements were made systematically in the sun and shade locations 
(Fig. 1). Erythrina poepiggiana was planted with a low density (7.4 trees 
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ha−1) and were left freely-growing, which resulted in tall (>20m) but 
sparse trees covering the entire plantation. Initially, Arabica coffee 
plants were established with a density of 6300 seedlings ha−1 and were 
intensively managed with pruning according to plant age and fertilizer 
application. The 1.6ha plot around the meteorological tower included 
14 trees that provided a canopy cover of up to 30% of the plot area. 

The soil characteristics correspond to loamy sands of volcanic 
(shallow intrusive volcanic rock) origin (Andosol) with high saturated 
hydraulic conductivity (>100m h−1) and high infiltration capacities 
(Benegas et al., 2014). The soils in the study area also exhibit a relatively 
high fraction of stones of a colluvial origin, likely from a large-scale 
paleo-landslide, mixed with volcanic flows, lahars, agglomerates and 
ashes. The soil characteristics of the study plot favour vertical hydro
logical fluxes coinciding with water balance measurements and model
ling, which found minor overland flow contributions (<4%) to 
streamflow in the Mejias catchment (Gomez-Delgado et al., 2011). 

3. Data and methods 

The data sets used here are extensively described in Gomez-Delgado 
et al. (2011), Charbonnier et al. (2013), Taugourdeau et al. (2014) and 
cover the study period from January 2010 until December 2013 as the 
most consistent. For all inputs we used hourly-averaged data from 
measurements conducted at 15-min intervals. Minor model input data 
gaps were linearly interpolated, but the period from 2010 to 2013 
showed a consistent set of data with less than 1% missing values. Gaps in 
AET, Tr and SW were generally not filled when used for model evalua
tion purposes. 

3.1. Model forcing and evaluation data 

3.1.1. Model forcing 
Precipitation, potential reference evapotranspiration (PET) and a 

continuous hourly time series of LAI were used to force the model. Gross 
P was measured with a tipping bucket gauge (0.2mm) mounted on the 
meteorological tower at 3m height along with all other meteorological 
measurements except the wind speed sensor which was mounted at 10m 
above the surface and orientated toward the study plot (Charbonnier 
et al., 2013). The meteorological variables were used to estimate PET 
with the FAO Penman-Monteith Equation (Allen et al., 1998). The 
hourly, cover-weighted LAI time series for sun (coffee) and shade (coffee 
shaded by trees) locations in m2 m−2 were linearly interpolated from 
weekly duplicate LAI2000 measurements (LI-COR, 1992) covering 14 
transects to match natural phenological dynamics related to climate and 
agricultural practice such as pruning and fertilizing coffee plants (Tau
gourdeau et al., 2014). The two LAI2000 instruments were matched 
prior to each measurement under diffuse light conditions according to 
the LI-COR standard protocol. Arabica coffee phenological cycles 
generally cover two years with a typical leaf lifespan of 1.5 years. The 
overall average measured LAI was 3.78 m2 m−2 with lower values during 
the drier months from January to April coinciding with pruning and 
higher LAI values over the wetter months from May to December also 
related to fertilizer application and harvest (Fig. 2i, j). Generally, the 
average interpolated LAI for shaded coffee is slightly lower (4.02 m2 

m−2) compared to the fully sun exposed coffee plants (4.2 m2 m−2) but 
exceeds sun LAI at the beginning of the rainy months in May. The shade 
providing Erythrina trees shed their leaves in drier and slightly cooler 

Fig. 1. The Mejias plot-scale ecohydrology experiment in eastern Costa Rica with the Eddy Covariance meteorological tower, sun and shade coffee monitoring 
locations of SW and LAI in the regional context of Central America. 

C. Birkel et al.                                                                                                                                                                                                                                   



Agricultural and Forest Meteorology 346 (2024) 109870

4

months and reached an LAI = 0 in mid-February synchronized with the 
coffee LAI minimum (Taugourdeau et al., 2014). 

3.1.2. Evaluation data 
The model evaluation used Eddy Covariance (EC) measured AET for 

the whole plot following the measurement and filtering procedure by 
Roupsard et al. (2006) from a tower elevation of 26m. The SW mea
surements used Campbell TDR probes at 10cm, 20cm, 50cm, and 90cm 
and were depth-integrated to 1m (STO). The SW measurements at 
150cm, 200cm, 290cm, and 330cm were integrated to 3.5m depth for 
modelling purposes (GW). The SW measurements were presented by 
Benegas et al., (2014) and we based the depth integration from 0 – 
100cm and 100 - 350cm on their rooting depth observations down to a 
depth of 3.5m with the highest root density in the first metre of soil. The 
sap flux probes (calibrated Dynamax devices using the method of Gra
nier et al., 1996) were installed in six coffee plants in the sun and seven 
shaded coffee plants and in two trees. The sap flux variability amongst 
measured plants was characterized as the standard deviation around the 

mean of 0.77±0.198 dm3 dm−2 h−1 for shade coffee plants and as 0.808 
±0.141 dm3 dm−2 h−1 for sun coffee plants over the measurement 
period of close to two years. Sap fluxes were converted into 
cover-weighted transpiration fluxes in mm h−1 using sapwood area 
measurements per plant (Leuning et al., 1995). The latter was then 
averaged to the sun and shade locations separately. The filtered AET 
measurements represent a whole plot estimate integrating over the 
coffee and shade tree plants in the study plot (see Charbonnier et al., 
2013 and Roupsard et al., 2006 for details on EC data processing). 

3.2. EcoHydroPlot model setup 

The EcoHydroPlot model is a relatively parsimonious conceptual, 
plot-scale model set up to simulate ecohydrological water partitioning of 
E, Tr, and groundwater recharge, similar to Stevenson et al. (2023) 
(Fig. 3). The model runs on an hourly time step and uses precipitation, 
PET as forcing data, and LAI as an indicator of interception (D), with 
interception increasing proportionally with LAI. The non-linear 

Fig. 2. (a, c, e, i, k, m) Hourly timeseries of forcing (rainfall, Leaf Area Index (LAI) and potential evapotranspiration (PET)) and observed data for evaluation (actual 
evapotranspiration (AET), soil water at 1m (STO) and soil water at 3.5m (GW)) of sun and shade locations at the Mejias plot from 2010 until 2014. b, d, f, h, j, l, n) 
mean monthly time series. Mean monthly transpiration time series for shadow and sun locations h) were averaged from available observations. 
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interception storage can lose water to the atmosphere via interception 
evaporation (Ei) at a rate given by PET if there is enough water avail
able. The LAI is also used to calculate the Surface Cover Fraction (SCF) of 
the canopy using Beer’s Law Eq. (1), which requires the calibration of a 
radiation extinction parameter (rE). 

SCF[i] = 1 − exp(rE LAI[i]) (1) 

The SCF and a calibrated interception threshold parameter (α) were 
used to calculate the maximum canopy interception storage (D; Eq. (2)) 
at each timestep (i). The SCF was also used to scale PET into a potential 
evaporation (Ep) and potential transpiration (Tp) component following 
Šimůnek et al. (2013) for an initial water partitioning. 

D[i] = (α LAI[i])
(

1 −

(

1
/ (

1 +

(
SCF[i] P[i]

α LAI[i]

))))

(2) 

We followed the premise that denser vegetation would transpire 
more water compared to less dense (< LAI) vegetation (Eqs. (3) and (4). 
Any depth of P in excess of D was routed to the upper soil compartment 
as throughfall (Th). Throughfall was summed to represent net precipi
tation (PN) after interception. For larger rain events > P90, we allowed a 
fraction of PN calculated with the calibrated parameter PFScale to directly 
reach the upper soil storage (STO) and subsequently the lower soil 
reservoir (GW). Such a preferential flow component was conceptualized 
based on the macropore rich soils and observed transient behaviour of 
the soil water (Fig. 2k, m). 

SCF[i] = 1 − exp(rE LAI[i])Tp[i] = SCF[i] PET[i] (3)  

Ep[i] = (1 − SCF[i]) PET[i] (4) 

Overland flow was not observed at the plot site and, therefore, not 
used in the model. Furthermore, the flat topography limited lateral flows 
above the groundwater table, and therefore, the model represents 
exclusively vertical water fluxes. From the upper soil (STO), water can 
return to the atmosphere in form of soil evaporation (Es) and transpi
ration (Trupper). Atmospheric water losses Es and Trupper are scaled using 
the calibration parameter Smax, which represents the maximum soil 
storage capacity (Eqs. (5) and (6)). 

TrUpper[i] = Tp[i]
(

STO[i]
Smax

)

(5)  

Es[i] = (Ep[i] − Ei[i])
(

STO[i]
Smax

)

(6) 

Percolation (Perc) nonlinearly recharges the deeper soil layer (GW) 
according to Eq. (7) using the calibration parameters ks1 and g1 (Col
lenteur et al., 2021). Hereby, the parameter g1 determines how 
nonlinear the percolation flux will be and resorts to the linear case for 
g1=1. 

Perc[i] = ks1
(

STO[i]
Smax

)g1

(7) 

The vegetation can also draw water for transpiration Trlower from the 
GW reservoir since roots were observed to a depth of 3m. The lower 
transpiration is scaled using a maximum groundwater storage capacity 
parameter GWmax Eq. (8). 

TrLower[i] =
(
Tp[i] − TrUpper[i]

)
(

GW[i]
GWmax

)

(8) 

Fig. 3. Schematic model concept of the plot-scale 1D conceptual EcoHydroPlot ecohydrology model with blue and green water partitioning. Calibrated parameters in 
Italics are related to each model compartment (Table 2). 
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The loss of water simulated from the deeper GW reservoir can 
therefore be considered representative of a nonlinear groundwater 
recharge (Gr) to the average water table at a depth of 5m using Eq. (9) 
with the calibrated parameters ks2 and g2. 

Gr[i] = ks2
(

GW[i]
GWmax

)g2

(9) 

The model was evaluated with data from measurements in the sun 
and shade of the experimental plot for comparison purposes (Fig. 2). 

We initially ran the model 100,000 times using a Latin Hypercube 
Monte Carlo parameter sampling scheme (Soetaert and Petzoldt, 2010) 
with the widest physically feasible parameter ranges to constrain the 
model parameter ranges prior to calibration using multi-objective 
optimization. The constrained initial parameter ranges for model cali
bration (Table 2) were based on the best-performing (highest perfor
mance scores) 500 parameter sets in terms of SW (STO + GW), AET and 
Tr model performance determined using the modified Kling-Gupta ef
ficiency (KGE) criterion (Kling et al., 2012). 

3.3. Model calibration, evaluation, and uncertainty 

The non-sorting genetic multi-objective calibration algorithm 
(NSGA2, Deb et al., 2002) was used with different calibration targets 
comparing model performance in relation to water partitioning. The 
calibration targets used measured SW, AET and Tr data in combination 
with the KGE criterion (Kling et al., 2012) and the mean absolute error 
(MAE). The calibration targets were applied to the shade and sun loca
tions with varied LAI model inputs in the following combinations: 

(i) Benchmark using all available targets for simultaneous calibra
tion: KGE for SW, AET and Tr (SW-AET-Tr)  

(ii) KGE for SW and AET (SW-AET)  
(iii) KGE for SW and Tr (SW-Tr)  
(iv) KGE for SW(SW)  
(v) KGE and MAE for wholeplot AET (AET)  

(vi) KGE and MAE for Tr (Tr) 

The NSGA2 algorithm was run with 500 parameter sets over 100 
parameter generation permutations. The best-performing (highest KGE 
and MAE scores) final 500 parameter sets were subsequently used for 
model simulation, performance assessment and ecohydrological water 
partitioning. Model simulations were additionally evaluated using cor
relation coefficients (CC) and the root mean squared error (RMSE) cri
terion (R Core Team, 2022). 

We conducted a parameter sensitivity ranking using LH–OAT (Latin 
Hypercube One-at-a-time; van Griensven et al., 2006) for the KGE per
formance criterion at the sun and shade locations gauging the impact of 
SW, AET and Tr on calibration and resulting flux simulations. 

3.4. Water partitioning and flux mapping 

The modelled fluxes were initially summed to annual values for 
water balance checks and in order to calculate water partitioning indices 
of Tr/AET and Tr/P. Simulated ecohydrological processes of Ei, Es, Tr 
and Gr were analysed using a flux mapping approach in form of ternary 
plots (Zhou et al., 2016; Khatami et al., 2019). This allowed us to 
visualize the relative contribution of each water loss simulated by the 
model compared to measured data of SW, AET and Tr using each cali
bration target. 

4. Results 

4.1. Plot-scale ecohydrological fluxes with a simple model 

The study period from 2010 to 2013 was characterized by varied 

climate conditions, including a wetter than normal 2010 (3316mm of 
annual rainfall) and a slightly drier than normal El Niño year with 
2112mm of rainfall in 2012–2013 (Table 1). The latter dry conditions 
were reflected in a marked SW recession at the end of 2012 and the 
beginning of 2013 down to a depth of 3.5m (Fig. 2). The first metre of 
soil was characterized by transient and dynamic responses to rainfall 
with a slightly more attenuated response at depth which was indepen
dent of the sun or shade locations. However, the sun exposed location 
resulted on average in a slightly lower observed SW compared to the 
shade location. The overall soil water dynamics, including the peaks and 
drying events, were matched by all the model versions calibrated with 
any type of data. Here, we only show the benchmark calibration results 
(Fig. 4). Shifted peak simulations compared to the measured data were 
most likely the product of untraceable data errors in P input and/or the 
SW series. All SW simulations resulting from the different calibration 
targets were above KGE>0.6. 

The AET and Tr simulations by all modelled calibration targets 
reproduced the observed diurnal cycle (Fig. 5 visualizes one exemplary 
month of hourly data). However, simulated differences emerged for 
different calibration targets that can be best visualized by the cumula
tive distributions for the whole simulation period in Fig. 5 with a wider 
spectrum for Tr simulations compared to AET independent of the sun or 
shade locations. Fine-scale details of small observed night-time Tr fluxes 
only at the shade location could not be reproduced by our simple model. 

Comparing model performance (KGE, CC and RMSE criteria) for 
measured vs. simulated AET and Tr amongst the different calibration 
targets of the retained 500 best parameter sets (see full distribution of 
the retained parameters in Figs. S1 and S2) resulted in almost all cases in 
the benchmark calibration (SW-AET-Tr) performing best (Fig. 6). The 
differences between sun exposed and shade locations were marginal for 
all calibration targets using AET particularly in terms of simulated dy
namics expressed by a correlation coefficient. However, the benchmark 
calibration also resulted in the greatest uncertainty, with the widest 
range of parameters and performance scores. Only the AET and Tr 
calibration targets resulted in less variable performance scores. Sur
prisingly, the AET and SW-AET calibration targets performed the worst 
and the Tr and SW-Tr the best. Using only SW data for calibration did not 
cause model failure in simulating water partitioning, though it 
decreased performance in comparison with other calibration schemes. 
The difference for sun exposed and shade locations was also greatest 
when using only SW data for calibration. 

The sensitivity analysis (Table 3) confirmed the expected parameter 
influence on model performance (KGE). Models calibrated with Tr were 
most sensitive to the two water partitioning parameters (rE, alpha) 
together with a soil water content rate parameter (ks2). The SW cali
bration preferred ks1, Smax and g1 soil water parameters and the AET 
calibration resulted in one water partitioning parameter (rE) being 
sensitive together with the soil water parameters ks2 and g1. 

4.2. Model calibration impact on ecohydrological water partitioning 

Analysis of simulated ecohydrological water partitioning for sun 

Table 1 
Observed catchment hydroclimatic (wholeplot P, PET, T, RH, and SW at sun and 
shade locations) summary statistics for the Mejias experimental plot and the 
period from 2010 to 2013.   

Unit Mean SD Min Max 

Mean annual P mm 2830 515 2112 3316 
Mean annual PET mm 1599 144 1420 1768 
M ean annual T ◦C 19.6 0.13 19.5 19.8 
Mean RH % 86.1 1.19 85 87.6 
Mean annual SW 0–1m 

(shade; sun) 
mm 314; 

340 
6.3; 6.2 305; 

331 
320; 
345 

Mean annual SW 
1–3.5m (shade; sun) 

mm 734; 
720 

21.8; 
6.0 

709; 
714 

762; 
725  
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exposed and shade locations was based on ternary plots of the Ei, Es and 
total Tr flux components as percentage contributions to total AET ac
cording to the different calibration targets (Fig. 7). Unsurprisingly, only 
the Tr calibration resulted in a constrained set of >70% transpiration 

estimates of total AET, closest to the measured Tr/AET ratio of 0.91 for 
the shade and 0.73 for the sun exposed location. The absolute numbers 
and water partitioning statistics can be found in Table 4. In contrast, the 
AET and SW-AET calibration targets consistently resulted in much lower 

Table 2 
Initial model parameter ranges used in multi-objective calibration and the resulting posterior parameter ranges retaining the best performing 500 parameter sets for 
water partitioning analysis. The full posterior parameter distributions are further shown in Figs. S1 and S2.   

Initial Parameter Ranges 

Calibration 
target 

rE 
(-) 

alpha (mm) Smax (mm) ks1 
(h−1) 

ks2 
(h−1) 

GWmax (mm) g1 
(-) 

g2 
(-) 

PFScale 

(-) 

Max -0.38 0.2 980 30 15 1470 4.8 5 0.5 
Min -0.1 0.09 610 12 5 1020 3 4 0.3  

Posterior parameter distributions with Median (10th and 90th percentile) 

SHADE:          
SW-AET-Tr -0.2 (-0.33; -0.11) 0.09 (0.09; 

0.09) 
759 (617; 
959) 

30 (30; 
30) 

14.8 (6.6; 15) 1358 (1082; 
1460) 

3.1 (3; 4.8) 4.1 (4; 5) 0.49 (0.27; 0.5) 

SW -0.37 (-0.38; 
-0.19) 

0.09 (0.09; 0.1) 695 (610; 
764) 

30 (30; 
30) 

5.1 (5; 5.4) 1020 (1020; 
1020) 

3.7 (3.1; 
4.8) 

5 (5; 5) 0.33 (0.26; 
0.46) 

AET -0.11 (-0.11; 
-0.10) 

0.2 (0.2; 0.2) 610 (610; 
610) 

30 (30; 
30) 

12 (10.8; 
14.8) 

1469 (1468; 
1470) 

3 (3; 3.1) 5 (5; 5) 0.37 (0.1; 0.5) 

Tr -0.38 (-0.38; 
-0.32) 

0.09 (0.09; 
0.09) 

980 (980; 
980) 

30 (30; 
30) 

11.3 (6.1; 15) 1421 (1307; 
1468) 

3 (3; 3) 4 (4; 4) 0.5 (0.5; 0.5) 

SW-AET -0.1 (-0.1; -0.1) 0.19 (0.12; 0.2) 793 (622; 
931) 

30 (30; 
30) 

15 (9.7; 15) 1465 (1465; 
1428) 

3.5 (3.1; 
4.6) 

4 (4; 4) 0.5 (0.27; 0.5) 

SW-Tr -0.22 (-0.38; 
-0.11) 

0.09 (0.09; 
0.12) 

757 (754; 
979) 

30 (30; 
30) 

5 (7.5; 5) 1064 (1023; 
1457) 

4.8 (3.4; 
4.8) 

5 (4; 5) 0.49 (0.48; 0.5) 

SUN:          
SW-AET-Tr -0.16 (-0.23; 

-0.11) 
0.09 (0.09; 
0.19) 

910 (630; 
972) 

30 (30; 
30) 

14.9 (14.3; 
15) 

1433 (1152; 
1469) 

3.1 (3; 4.8) 4.03 (4; 
5) 

0.5 (0.22; 0.5) 

SW -0.1 (-0.1; -0.1) 0.11 (0.11; 
0.11) 

980 (944; 
980) 

30 (30; 
30) 

15 (15; 15) 1408 (1363; 
1469) 

3.7 (3.1; 
4.6) 

5 (5; 5) 0.5 (0.5; 0.5) 

AET -0.1 (-0.11; -0.1) 0.2 (0.2; 0.2) 610 (610; 
610) 

30 (30; 
30) 

14.8 (13.4; 
15) 

1470 (1470; 
1470) 

3.1 (3; 3.1) 5 (5; 5) 0.43 (0.12; 0.5) 

Tr -0.25 (-0.28; 
-0.23) 

0.09 (0.09; 
0.09) 

980 (980; 
980) 

30 (30; 
30) 

15 (15; 15) 1470 (1470; 
1470) 

3 (3; 3) 4 (4; 4) 0.5 (0.5; 0.5) 

SW-AET -0.1 (-0.1; -0.1) 0.2 (0.09; 0.2) 926 (614; 
980) 

30 (30; 
30) 

15 (15; 15) 1467 (1034; 
1470) 

3.5 (3.1; 
4.6) 

4 (4; 5) 0.5 (0.3; 0.5) 

SW-Tr -0.25 (-0.28; 
-0.11) 

0.09 (0.09; 
0.09) 

980 (911; 
980) 

30 (30; 
30) 

15 (15; 15) 1467 (1031; 
1470) 

4.1 (3.1; 
4.8) 

4 (4; 4) 0.5 (0.5; 0.5)  

Fig. 4. Simulated versus observed hourly soil water at 0–1m (STO), soil water at 1–3.5m (GW) depth and the total soil water (SW = STO + GW) for the shade and sun 
exposed locations using the benchmark calibration target SW-AET-Tr obtained from the 500 highest scoring (best) simulations. 
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Tr/AET ratios of around 0.5. Including SW as a calibration target 
resulted in reasonable water partitioning simulations, but with a much 
wider range of Tr/AET ratios and more difficulty to identify the best 
solutions. Despite the best performance of the benchmark calibration, 
simulation of water partitioning resulted more uncertain and led us to 
reject our initial working hypothesis. 

Similarly, we separated out the simulated soil water losses as the 
total evaporation (Ei + Es), Tr and groundwater recharge flow Gr 
(aquifer recharge) in Fig. 8. Despite differently simulated Tr/AET frac
tions, the simulated fraction of Gr remained largely indifferent amongst 
calibration targets. Results suggested that Gr corresponds to 60–75% of 
the total soil water losses, and Tr corresponds to 10 – 30%, except for the 
results obtained with AET and SW-AET model calibrations, where Tr is 
~10% of the soil water losses. 

Additionally to Fig. 5, we arbitrarily selected a 24-hour period to 
show how the model simulated the diurnal variability with different 
calibration targets (Fig. 9) and calculated performance metrics (Table 5) 
for the median Tr simulation from the 500 retained best parameter sets 
of a calibration (2010) and validation period (2011). Simulations that 
involved transpiration as a target generally reproduced the diurnal 
variability with a good performance of KGE>0.6, CC>0.8 and 
RMSE<0.08 for both the sun and shade plots. The validation period 
resulted in better performance considering all metrics compared to the 
calibration and slightly better performance for the sun plot compared to 

the shade. Again, including transpiration as a calibration target 
improved the simulations (Fig. 9), which was also reflected in a large 
difference of performance (lowest performance for AET with KGE<0.3). 
The models reproduced the onset of daytime transpiration but failed to 
simulate small night-time transpiration fluxes measured for shaded 
coffee (Fig. 9). 

5. Discussion 

5.1. Can a simple model be used to reasonably partition ecohydrological 
fluxes? 

The EcoHydroPlot model could be considered as a relatively parsi
monious way of modelling water fluxes between the soil and the at
mosphere as mediated by vegetation, even with nine calibrated 
parameters (Collenteur et al., 2021). Reducing the number of calibrated 
parameters could further be achieved by linearizing one or more of the 
power-function type flux equations Eq. (7) and (9). However, soil and 
groundwater fluxes are usually best modelled with non-linear transfer 
functions as shown by Fenicia et al., (2006) since groundwater related 
vertical and lateral fluxes are intermittent pulses rather than constant 
flux rates. The latter was shown for the tropics in general (Jasechko 
et al., 2014) and Costa Rica specifically based on stable isotope data 
(Sanchez-Murillo and Birkel, 2016). Consequently, the calibrated 

Fig. 5. Hourly observed and simulated AET and Tr during August 2010 for shade and sun, and the corresponding cumulative probability distributions of simulations 
for the complete period from 2010 to 2013. The colour lines indicate the different calibration targets. Note that the Tr rates are scaled to the sun exposed and shade 
locations whereas the AET flux represents the whole plot. 
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power-function parameters g1 and g2 resulted in highly non-linear 
values always > 3 independent of the calibration target (Table 3 and 
Figs. S1 and S2). The non-linear relationship of soil storage and soil 
fluxes in simple spatially-aggregated models was also emphasized by 
Maneta et al. (2018). Furthermore, tropical high rainfall areas often 
result in larger plant-available soil water storages (if soil characteristics 

allow) compared to temperate regions (Gao et al., 2014). In the Mejias 
study plot, average soil moisture storage was measured at over 1000mm 
(Table 1) with roots observed to a depth of 3.5m (Defrenet et al., 2016). 
Even though root density is highest in the first metre of soil, such a 
relatively deep root profile is clearly influenced by the presence of the 
Erythrina shade trees modulating plant transpiration, which we tried to 
emulate with the model structure (Fig. 3). The presence of deeper roots 
also helps maintain high hydraulic conductivities and infiltrability 
(Benegas et al., 2014) due to macropores and soil pipes, a widespread 
phenomenon across the tropics as described by Chappell (2010). 
Therefore, preferential flow paths are non-linear in their response and 
should not be linearly parameterized within a model. 

Additionally, to the soil water fluxes, the ecohydrological water 
partitioning was based on a simplified interception module using LAI as 
the main indicator (Fig. 2) to discriminate amongst vegetation types and 
intra-annual vegetation dynamics. The model uses an interpolated 
continuous LAI time series input function based on weekly measure
ments as a surrogate for interception storage capacity. At higher LAI, 
more water can be efficiently intercepted by the vegetation and is sub
jected to canopy interception evaporation and throughfall similar to, for 
example, van Dijk and Bruijnzeel (2001). The interception routine here 

Fig. 6. Violin plots of model performance metrics (KGE, CC, RMSE) for measured vs. simulated actual evapotranspiration (AET) (a, c, e) and transpiration (Tr) (b, d, 
f) shade (blue) and sun exposed (yellow) plots using all calibration targets (SW, T, SW-AET, SW-Tr, and benchmark SW-AET-Tr). 

Table 3 
Parameter sensitivity ranking using LH–OAT for the KGE performance metric of 
the calibration targets SW (shade), wholeplot AET and Tr (shade) only. The first 
three most sensitive parameters are displayed in bold and italics.  

Parameter Rank (SW) Rank (AET) Rank (Tr) 

rE 0.083 0.49 0.59 
alpha 0.076 0.045 0.33 
ks1 0.11 0.1 0.012 
ks2 0 0.116 0.025 
Smax 0.34 0.008 0.0029 
g1 0.32 0.158 0.02 
g2 0 0.06 0.014 
GWmax 0 0.002 0.003 
PFscale 0.064 0.018 0.002  
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uses only two calibrated parameters and does not need further storage 
capacity or threshold parameters compared to, for example, the more 
complex Rutter interception model (Rutter et al., 1971) and others 
(Muzylo et al., 2009). Interestingly, all 15 reviewed interception models 
by Muzylo et al. (2009) used a formulation of Penman-Monteith to 
dimension PET. The utility of LAI as an indicator of ecohydrological 
water partitioning in the tropics was demonstrated by Taugourdeau 
et al. (2014), who showed that LAI is a direct indicator of coffee yield at 
the Mejias site, which was indirectly related to higher transpirations 
rates of shaded coffee and resulting higher productivity. For another 

example, Benyon and Doody (2004) showed a positive relationship of 
measured LAI with measured Tr rates in reforestation plots in tropical 
Australia. Large-scale AET assessments that documented a vegetation 
greening and an increasing AET trend over past decades also relied on 
LAI (Pascolini-Campbell et al., 2021), but Zhang et al. (2021) showed 
that LAI does not reflect any physiological negative feedbacks such as 
stomatal closure due to increased CO2. Nonetheless, such limitations 
need careful consideration at larger and long-term scales, but maybe less 
so for site-specific studies as studied here with an emphasis on model 
parsimony. 

Fig. 7. Ecohydrological flux mapping of partitioned green (transpiration) and blue (soil and interception evaporation) water using the retained best 500 simulations 
after calibration. 
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5.2. Which calibration targets provide the most information content? 

Our multi-objective calibration approach to assess the influence of 
different calibration targets goes back to Madsen (2000) and follows the 
idea of Crow et al., (2003) who used streamflow and radiometric tem
perature data to improve predictions of AET simulated by a land surface 
model. Much has happened since and here, the SW measurements pro
vided basic and necessary hydrological background data for model 
calibration with reasonable model performance for all calibration tar
gets of KGE > 0.6 (Fig. 4). Additionally, to SW as a calibration target, 
measured AET provided useful data to close the water balance (Fig. 5) 
but did not significantly influence ecohydrological water partitioning 
within the model (Table 4) and performed poorly simulating transpi
ration (Fig. 9, Table 5). The benefits of using AET data for model cali
bration was recently shown by Arciniega et al. (2022) for Costa Rica. 
However, their large-scale modelling used satellite ET estimates, which 
would not necessarily provide information at the desired smaller plot 
scale resulting in additional uncertainty (Franks et al., 1997). Therefore, 
using measured AET and Tr data for hydrological model calibration is 
still rather rare (except for Schreiner-McGraw et al. (2022) who used a 
much more complex Community Land Surface model), mainly due to the 
difficulty to upscale Tr from individual plants or stands to plot and 
catchment scales (Ford et al., 2007; Aparecido et al., 2016). At the 
Mejias plot, the sap-flux derived Tr measurements have also been vali
dated by Eddy-Covariance measurements and deemed reasonable by 
Vezy et al., (2018). 

Both the measured Tr data alone, and in combination with SW, as 
calibration targets resulted in the most robust ecohydrological water 
partitioning estimates (Figs. 7 and 8). The simple conceptual EcoHy
droPlot model was able to provide reasonable water flux and balance 
estimates for the humid tropical test plot at an hourly scale. If calibrated 
using data on Tr, the simulations also matched observed Tr/AET ratios 

of between 0.7 and 0.9 and Tr/P of 0.2 for the sun exposed and Tr/ 
P=0.27 for the shade locations (Table 4). In a cross-check comparison, 
such Tr/AET values were found for the study site using an isotope-based 
mass balance approach by Iraheta et al. (2021). Gomez-Delgado et al. 
(2011) showed relatively similar water partitioning ratios (Tr/P=0.2) 
for the Mejias catchment scale modelled for 2010. Their groundwater 
recharge estimates of Gr/P=0.67 also matched our findings of Gr/P=0.6 
to 0.75. Vezy et al., (2018) simulated a total AET of 870mm/yr for 2011 
closely matching observed values and our estimates with a 
physically-based, and much more complex energy balance model 
(MAESPA). Despite simulating a similar Tr/P=0.28, their Tr/AET of 
0.46 resulted lower with a relatively high total evaporation (Ei + Es) to 
AET ratio of 0.54 compared to our simulations. The EcoHydroPlot 
simulations for the shade plot were generally better (except for simu
lated transpiration due to night-time transpiration fluxes the model is 
unable to reproduce, Fig. 9) and even resulted in a reasonable Tr/AET 
ratio on one occasion with only SW as calibration target. However, the 
latter could not be reproduced for the sun exposed plot and might 
therefore be considered an outlier (Fig. 6). Based on our calibration 
results and rejection of the benchmark calibration including all targets, 
future monitoring efforts for similar research questions should prioritize 
inclusion of direct Tr measurements in form of sap flux and/or Eddy 
Covariance to enhance simulated ecohydrological water partitioning. 

5.3. Water use in tropical coffee plantations 

Early work on coffee transpiration in the tropics by Gutiérrez and 
Meinzer (1994) showed a tight regulation of wind and stomata dynamics 
to environmental variables. In southern Costa Rica, van Kanten and 
Vaast (2006) found increased Tr for shaded Arabica coffee compared to 
sun exposed coffee similar to our modelling and available measure
ments. The latter higher shade Tr rates compared to sun exposed loca
tions presumably reflect greater sapflow in shade trees and the 
suppression of Es by shading. Higher Tr was found to increase coffee 
productivity at the Mejias site by Taugourdeau et al. (2014) and Chin
chilla-Soto et al. (2021) who found greater shade coffee water use effi
ciencies at a coffee plantation in Central Costa Rica. Shaded coffee 
enhanced bean quality as found by Vaast et al. (2006). Even though not 
specifically tested, and a likely result of minor differences in LAI be
tween sun and shade location, we did not find increased groundwater 
losses or any significant hydrological differences (Fig. 8). Despite 
slightly lower upper soil storage at the shaded plot due to increased Tr 
compared to the sun exposed location, the high storage capacity of the 
soils can well compensate this vegetation influence of a generally 
energy-limited rather than water-limited environment. 

Coffee shading altogether could provide a successful measure against 
the concerns over climate change impacted reduced coffee productivity 
(Pham et al., 2019), since shading suppresses E and enhances water use 
efficiency at the study site. Our model could be used and transferred to 
other sites for impact assessments of a combined land cover and climate 
change. 

6. Conclusions and outlook 

We developed and tested the relatively parsimonious conceptual 
ecohydrology EcoHydroPlot model with detailed data from the Mejias 
Coffee-Flux agroforestry experimental site in humid tropical Costa Rica. 
Measured SW, AET and Tr were used as calibration targets in a multi- 
objective optimization calibration exercise – making use of this unique 
data set of ecohydrological flux measurements under different land uses 
in the tropics - to assess their influence on ecohydrological water par
titioning of simulated vs. observed water losses to the atmosphere (Ei, 
Es, Tr) and to the aquifer (Gr). Such combination of (i) measurements of 
ecohydrological fluxes under different, typical land uses in the tropics; 
(ii) use of these data within a multi-calibration modelling framework in 
a (iii) conceptual model for wider applicability to inform stakeholders is 

Table 4 
Summary of the mean annual water balance and simulated water partitioning 
metrics (P, AET, Tr/AET, Tr/P) derived from the 500 best simulations after 
calibration with different targets. *Metrics only used available data for observed 
(obs) vs. simulated omitting any incomplete pairs from gaps in AET and Tr 
measurements.  

Plot Target Variable Mean SD 25th 50th 75th  

Obs P* 2264 1342 2112 2858 3032 
Wholeplot Obs AET 869 71 818 859 910 
Shade Obs Tr-AET 0.91 0.04 0.90 0.91 0.92 
Shade SW Tr-AET 0.69 0.07 0.32 0.69 0.77 
Shade T Tr-AET 0.72 0.06 0.64 0.72 0.76 
Shade AET Tr-AET 0.38 0.00 0.34 0.38 0.39 
Shade SW-AET Tr-AET 0.33 0.06 0.29 0.33 0.37 
Shade SW-T Tr-AET 0.57 0.08 0.32 0.57 0.76 
Shade SW-AET-T Tr-AET 0.55 0.02 0.32 0.55 0.76 
Sun Obs Tr-AET 0.73 0.17 0.67 0.73 0.79 
Sun SW Tr-AET 0.37 0.01 0.33 0.37 0.40 
Sun T Tr-AET 0.66 0.01 0.62 0.66 0.69 
Sun AET Tr-AET 0.36 0.00 0.34 0.36 0.38 
Sun SW-AET Tr-AET 0.35 0.01 0.31 0.35 0.38 
Sun SW-T Tr-AET 0.58 0.01 0.35 0.58 0.69 
Sun SW-AET-T Tr-AET 0.50 0.01 0.32 0.50 0.69 
Shade Obs Tr-P 0.27 0.04 0.26 0.27 0.29 
Shade SW Tr-P 0.27 0.01 0.11 0.27 0.30 
Shade T Tr-P 0.24 0.01 0.21 0.24 0.27 
Shade AET Tr-P 0.10 0.02 0.09 0.10 0.11 
Shade SW-AET Tr-P 0.09 0.00 0.08 0.09 0.10 
Shade SW-T Tr-P 0.21 0.01 0.11 0.21 0.28 
Shade SW-AET-T Tr-P 0.18 0.03 0.08 0.18 0.30 
Sun Obs Tr-P 0.20 0.07 0.17 0.20 0.22 
Sun SW Tr-P 0.10 0.01 0.09 0.10 0.11 
Sun T Tr-P 0.19 0.02 0.17 0.19 0.21 
Sun AET Tr-P 0.09 0.01 0.08 0.09 0.10 
Sun SW-AET Tr-P 0.09 0.01 0.08 0.09 0.10 
Sun SW-T Tr-P 0.18 0.02 0.10 0.18 0.21 
Sun SW-AET-T Tr-P 0.14 0.02 0.08 0.14 0.21  
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– to our knowledge – a novel way forward to bridge the gap towards a 
science-based decision making. The consistency in water partitioning 
was assessed using a flux mapping approach that visualizes how 
different calibration targets pull the model towards green or blue water- 
dominated fluxes. The main outcome was that only including Tr as a 
calibration target resulted in matching Tr/AET ratios for sun exposed 
and shaded coffee locations with other targets such as SW pulling the 
model mostly towards simulating evaporation fluxes. We therefore 
rejected our initial hypothesis that including as many calibration targets 
as possible improves model representation of ecohydrological water 

partitioning. These findings emphasize the value of measured green 
water fluxes (such as Tr) for model calibration improving on simulated 
transpiration and water partitioning, which should be a key measure
ment included in all ecohydrology monitoring and modelling studies. 
Our simple model provides a useful and parsimonious tool to assess land 
cover change and its impact on green and blue water fluxes, which of 
course is not only applicable in tropical environments. 

Fig. 8. Ecohydrological flux mapping of total water losses of partitioned green (transpiration) and blue (total evaporation as the sum of soil and interception 
evaporation plus groundwater recharge Gr) water using the retained best 500 simulations after calibration. 
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Fig. 9. Comparison of observed versus simulated hourly median transpiration (Tr) for the tested calibration targets. The median of the simulated Tr was calculated 
from the best-performing 500 parameter sets after calibration and illustrated for an arbitrarily selected 24 hour calibration (2010) and validation (2011) period. 

Table 5 
Performance metrics (KGE, CC, RMSE) of the median hourly transpiration 
simulation using different calibration targets. The calibration and validation 
periods correspond to 2010 and 2011, respectively. The median simulation was 
derived from the retained 500 best-performing parameter sets after calibration 
(Table 2).    

Shade Sun 

Period Calibration 
target 

KGE CC RMSE KGE CC RMSE 

Calibration SW 0.59 0.86 0.075 0.53 0.81 0.052 
Tr 0.62 0.86 0.072 0.56 0.81 0.066 
AET 0.27 0.81 0.082 0.47 0.77 0.057 
SW-AET 0.33 0.83 0.077 0.53 0.81 0.052 
SW-Tr 0.59 0.86 0.075 0.56 0.82 0.066 
SW-AET-Tr 0.69 0.86 0.065 0.56 0.82 0.066 

Validation SW 0.64 0.80 0.076 0.25 0.82 0.091 
Tr 0.68 0.80 0.075 0.71 0.83 0.072 
AET 0.23 0.81 0.091 0.21 0.80 0.095 
SW-AET 0.11 0.77 0.101 0.24 0.82 0.092 
SW-Tr 0.63 0.80 0.076 0.72 0.83 0.071 
SW-AET-Tr 0.77 0.84 0.069 0.71 0.83 0.071  
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