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ABSTRACT

One of the most popular location privacy-preserving mechanisms
applied in location-based services (LBS) is location obfuscation,
where mobile users are allowed to report obfuscated locations in-
stead of their real locations to services. Many existing obfuscation
approaches consider mobile users that can move freely over a re-
gion. However, this is inadequate for protecting the location privacy
of vehicles, as their mobility is restricted by external factors, such as
road networks and traffic flows. This auxiliary information about
external factors helps an attacker to shrink the search range of
vehicles’ locations, increasing the risk of location exposure.

In this paper, we propose a vehicle traffic flow aware attack
that leverages public traffic flow information to recover a vehicle’s
real location from obfuscated location. As a countermeasure, we
then develop an adaptive strategy to obfuscate a vehicle’s location
by a “fake” trajectory that follows a realistic traffic flow. The fake
trajectory is designed to not only hide the vehicle’s real location but
also guarantee the quality of service (QoS) of LBS. Our experimental
results demonstrate that 1) the new threat model can accurately
track vehicles’ real locations, which have been obfuscated by two
state-of-the-art algorithms, and 2) the proposed obfuscation method
can effectively protect vehicles’ location privacy under the new
threat model without compromising QoS.
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1 INTRODUCTION

With ubiquitous wireless connectivity and continued advances in
positioning technologies in mobile/on-board devices, vehicles have
been increasingly participating in a variety of location-based ser-
vices (LBS). Examples range from real-time navigation (e.g., Waze
[30]), journalism and crisis response (MediaQ [20]) to commercial
transportation systems (e.g., Uber-like platforms [22]). In most LBS
applications, a vehicle’s location is essential information for the
server to provide services such as task assignment and navigation.
Vehicles report their locations to the centralized servers at frequent
or even regular intervals, raising potential privacy issues. Privacy
risks are not only limited to whereabouts of the vehicles, but may
also relate to some other sensitive information such as drivers’
home/working address, and financial status [27].

Location privacy issues of LBS have been widely acknowledged
in the recent years [1, 9, 11, 13, 22-24, 28, 30, 35]. A large body of
recent work has focused and developed protection mechanisms
by way of location obfuscation [1, 9, 22, 24, 30], wherein which
mobile users are allowed to report obfuscated locations instead of
true locations to servers. Compared with traditional cryptographic
techniques [13], obfuscation has been acknowledged to be more
suitable for mobile LBS due to its 1) low computational demand for
mobile devices [22], 2) high effectiveness in protecting data privacy
from server-side eavesdropping [30], and 3) high accessibility for
various service providers [1].

Despite these merits, most existing location obfuscation ap-
proaches are still designed against simple threat models, where mo-
bile users can move freely in a dimensional (2D) plane [1, 9, 24, 30].
Clearly, a vehicle’s mobility is restricted by the road network topol-
ogy and existing traffic regulations, or traffic flow [33]. Thus, the
aforementioned assumptions are unrealistic and cannot adequately
protect the privacy of vehicles operating in a real road network.
Given the pervasiveness of geo-location and mobility services, an
attacker can access public traffic flow information with minimal
effort, and use this as auxiliary information to increase the accuracy
of location tracking.

In this paper, we formalize the above privacy risks by developing
a new threat model, namely Traffic Flow Aware (TFA) Inference At-
tack. Under TFA, an attacker uses publicly available vehicle traffic
flow information to recover a target vehicle’s real locations from its
reported (obfuscated) locations. From the perspective of an attacker,
the vehicle’s mobility can be modeled by a hidden Markov model
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Figure 1: Location tracking using traffic flow information.

(HMM). In each round, the vehicle’s actual and obfuscated locations
are considered as a hidden state and an observable state, respectively.
The HMM transition matrix, which can be learnt using the traffic
flow information, describes the probabilities of the vehicle traveling
between the locations over the map. Given the HMM matrix, the
vehicle’s real locations can be estimated with a high accuracy using
well-developed hidden state inference algorithms (e.g., the Viterbi
algorithm [10]). Figure 1 shows an example on how a traffic flow
aware attacker can accurately determine a taxicab’s locations (in
Shenzhen mobility trace dataset [18]) even when the taxicab’s lo-
cation has been obfuscated with a state-of-the-art obfuscation algo-
rithm [9]. When a vehicle obfuscates its location independently the
trajectory looks “impossible” as the transition between the many
adjacent reported locations in the trajectory is improbable (see
the trajectory {A, B, C, D, E, F, G} in Figure 1). This, unfortunately,
helps an attacker eliminate unlikely trajectories and increases their
probability of accurately tracking vehicle’s real location.

Based on this threat model, we design an advanced traffic-aware
obfuscation strategy, called FTraj, in which the traffic flow data is
taken in account when obfuscating vehicle’s real location. Partic-
ularly, instead of obfuscating the vehicle’s locations at different
rounds independently, a vehicle uses FTraj to generate multiple
“fake” trajectories by following traffic flow data, and then randomly
selects a fake trajectory and reports its current location as required.
This makes it harder for attackers to track the vehicle’s location as
they cannot eliminate the reported location as impossible.

Besides hiding the real locations, the generated fake trajectory
guarantees high QoS, i.e., its deviation from the vehicle’s real lo-
cations is kept within a certain accuracy range. Note that this is
a non-trivial guarantee to offer, since a vehicle’s route is undeter-
mined. For instance, a fake trajectory originally close to the vehicle
may inevitably deviate far away from the vehicle due to restrictions
imposed by real time traffic flows. As a solution, we let vehicles
maintain a pool of candidate trajectories, and hence the vehicle can
select a trajectory from the pool that achieves high QoS and privacy.
The trajectory pool is updated using a form of natural selection, i.e.,
in each round, some candidate trajectories with high privacy guar-
antees and high QoS survive, while other trajectories die off and are
removed from the pool. After the vehicle reports the fake location
in the current round, new candidate trajectories will be generated in
the following round by starting from the current reported location.

With respect to performance, simulation results based on Shen-
zhen taxi trajectory records [18] show that: (1) Given vehicles’
locations obfuscated by the two state-of-the-art obfuscation meth-
ods [22, 24], the new inference algorithm TFA can accurately track
vehicles’ locations, and on average, and its expected inference error
(EIE, reflecting the location privacy level) is 87.28% lower and 62.65%
lower than that of the classic Bayesian inference attacks [22, 35] and
temporal correlation aware attacks [8, 19], respectively. (2) Our new
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Figure 2: Location obfuscation framework.

obfuscation strategy, FTraj, can effectively protect vehicles’ loca-
tion privacy under the attack of TFA, e.g., its EIE is at least 558.34%
higher than the two classic obfuscation algorithms in [22, 24].

Our contributions can be summarized as follows:

1) We develop a realistic location inference attack algorithm, TFA,
which relies on contextual vehicle traffic flow information to accu-
rately recover vehicles’ real locations from obfuscated locations.
2) We develop an attack resistant location obfuscation strategy,
FTraj, that obfuscates vehicles’ locations via fake trajectories fol-
lowing realistic vehicle traffic flows.

3) We carry out a large set of experiments based on a real-world
dataset to test the performance of our strategies. Empirical results
demonstrate i) high accuracy of TFA in tracking vehicles of which
locations have been obfuscated with state-of-the-art methods, and
ii) effectiveness of FTraj in protecting vehicles’ location privacy
under the attack of TFA.

The rest of the paper is organized as follows: The next section
provides some preliminaries. Section 3 introduces our new threat
model and Section 4 describes the obfuscation algorithm. Section 5
evaluates the performance of our algorithm. Section 6 presents the
related work. Finally, Section 7 makes a conclusion.

2 PRELIMINARIES

In Section 2.1, we first introduce our reference location obfuscation
framework. In Section 2.2 we present the main notions of privacy
and quality loss for single location obfuscation.

2.1 Location Obfuscation

Figure 2(a) shows a general location obfuscation framework [1, 9,
22, 24, 30]. We focus on LBS wherein vehicles need to physically
move to target locations to complete their assigned services [23, 34].
In these settings, vehicles need to report their current locations to
the server before being assigned any service/task. We assume that
the server, albeit robust, may suffer from a passive attack where
attackers can eavesdrop on vehicles’ reported locations breached by
the server (1, 9, 24, 30].

As a solution, before reporting the location to the server, each
privacy-aware vehicle needs to conceal its actual location, via an
obfuscation function. The obfuscation function takes the vehicle’s
current true location as input, and returns the probability distri-
bution of the obfuscated location, based on which the vehicle can
select an obfuscated location to report. Considering that the server
will use the vehicle’s obfuscated location to assign a service, in paral-
lel to protecting vehicles’ location privacy, the obfuscation function
also aims to limit service quality loss (QL) caused by obfuscation.
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For the sake of computational tractability, many prior works
[1,9, 22-24, 30] discretize users’ location range to a finite set of K
locations S = {sy, ..., sg }. Here, to discretize vehicles’ location range
in the road network, we partition roads to a finite number of road
segments. We create a connection when a road intersects, furcates, or
joins with other roads. These connections divide the road network
into a set of edges, which only connect with other edges at their
endpoints. Each edge can be further partitioned into road segments
with the same length §!. We assume that attackers aim to identify
in which segment the vehicle is located. For simplicity, we use the
term “location” instead of “road segment” in the following part.

After location discretization, the obfuscation function can be
represented as a stochastic matrix Z = {zj ; } kxk, namely obfusca-
tion matrix, where each zj ; denotes the probability of taking s; as
the obfuscated location given the actual location si.. Then, given an
exact location s as input, the obfuscation function returns a vector
[2k 15 - 2k Kk |, Where each z ; (I = 1, ..., K) specifies the probability
of selecting s; as the obfuscated location. Figure 2(b) gives an exam-
ple of obfuscation matrix, where a vehicle’s possible locations are
{51, 82, 53, s4}. Then, the obfuscation function can be represented as
a (4 X 4)-matrix. Suppose that the vehicle’s actual location is sz, as
indicated by the matrix in Figure 2(b), the probabilities that this
vehicle selects s1, s2, s3, and s4 as the obfuscated locations are 0.2,
0.3, 0.4, and 0.1, respectively.

Even though vehicles’ location range have been discretized, the
obfuscation matrix is still computationally intensive to derive, and
beyond the capability of mobile devices at the vehicle-side. For in-
stance, in [22, 23], the obfuscation matrix calculation involves com-
puting millions of decision variables. Therefore, like many existing
works [1, 9, 22, 24, 30], we adopt a remote computing framework,
where the server first generates/updates the obfuscation matrix
periodically, and then each vehicle downloads the function to ob-
fuscate its current location in the coming report [22, 30]. Note that,
although the server takes charge of calculating the obfuscation
matrix, it cannot obtain vehicles’ exact locations since each vehicle
selects its obfuscated location in a probabilistic manner [9, 30].

2.2 Criteria of Privacy and Quality Loss for
Single Location Obfuscation

2.2.1  Geo-Indistinguishability (GI). GI corresponds to a general-
ized version of the well-known concept of differential privacy [1, 9].
Differential privacy originally targets publishing aggregate queries
with low sensitivity, i.e., changes of a single individual have a rel-
ative small impact on the outcome, while GI generalizes this defini-
tion to location privacy by requiring that a small change of a single
user’s location won'’t affect the distribution of his/her reported
location too much.

From the attacker’s perspective, we can describe the vehicle’s
actual and reported locations as two random variables X and Y. GI
in the road network is formally defined as 2.1 [22]:

Definition 2.1. A obfuscation matrixZ satisfies e-Gl if Vs;, s}, . €
S, 7
ik < eed(si,sj-) ) (1)

Zj,k

!Some segments may be shorter than 8. As § is small enough, their impact would be
minimal, so we don’t consider these segments.
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where € is called the privacy budget, used to quantify how much the
user’s actual location is disclosed according to the reported location
and d(s;, sj) represents the distance from s; to sj.

Here, higher € implies more information disclosed and a lower
privacy level achieved. d can be Hamming distance, Euclidean dis-
tance [1, 35], or traveling distance in the road network [22, 23]. Like
[22, 23], we consider d as traveling distance in the road network.

Limitation of GI for protecting vehicle location privacy. Most
current GI-based obfuscation algorithms still focus on single loca-
tion obfuscation [1, 22, 23, 32, 35]. While, when a vehicle applies
GI-based obfuscation separately in each round, the transition be-
tween its adjacent reported locations look “impossible” in the vehi-
cle traffic flows (e.g. the route {A, B,C, D, E, F, G} in Figure 1). This,
unfortunately, helps attackers shrink the search range of vehicles’ true
locations when attackers have the traffic flow information.

2.2.2  Expected Inference Error (EIE). EIE of an obfuscated location
s;, also known as the unconditional expected privacy [23, 24], is
defined by

EIE (s;) = 25 2k fx|v=s; (k) g )y=s, s> (2)

where hy l(§) represents the probability that the attacker esti-

X|Y=s,
mates § as the vehicle’s location given the vehicle’s reported location
is s;. EIE essentially describes the expected distortion from the esti-
mated location § to the actual location s, where higher EIE implies

higher privacy level achieved.

2.2.3  Quality loss (QL). Since we focus on the LBS wherein vehicles
need to physically present at target locations, quality loss highly
depends on the accuracy of traveling cost (distance) estimation.
Therefore, we define quality loss as the expected estimation error
of traveling cost derived by obfuscated locations. We assume that
the distribution of the target’s location Pr (Q = s¢) is given (sq € S).
Then, given the vehicle’s true location s;, the quality loss caused
by the obfuscated location s; is can be calculated by [22]:

QL (s) = X, es Pr (Q = 5q) [C (s1.59) = C (s5.59)| ®)
where C(s,sq) denotes the traveling cost from s to sq. Then, the
expected quality loss caused by an obfuscation matrix Z is calculated

by averaging the quality loss of all obfuscated locations s; and real
locations s;, i.e.,

QL(Z) = Xy, 5 e Pr (X = s1) i, jQL (s;) - )

3 TRAFFIC FLOW AWARE INFERENCE
ATTACKS

In this section, we introduce our new threat model and the Traffic
Flow Aware (TFA) attack. Table 1 lists the main notations used
throughout this paper.

When a vehicle reports its obfuscated location to the server, its
true location is hidden from the attacker. However, attackers can
still coordinate an inference attack, e.g., Bayesian inference models
[22, 23, 30]. We make the following assumptions about the types of
information that can be accessed by attackers when coordinating
an inference attack:

Assumption 1: The obfuscation matrix is transparent to attack-
ers [1, 9, 22-24, 30].
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Table 1: Main notations and their descriptions

Symbol  Description

S Location set S = {s1,...,sg }
th Time slot of n™ location report
Zin Obfuscation matrix at time slot ¢,
zf’; Probability of taking s; as the obfuscated location given the
true location s; at
X!t Random variable: vehicle’s true location at ¢
y?t Random variable: vehicle’s obfuscated location at ¢
E([,tl’t"J Observed locations {sf,l, sf,"} at ¢y, ..., tn
§£t1’t"1 Real locations {s?, sf"} atty, ..., tn
pit’ Vehicle’s transition matrix from round ¢ to ¢’
’
pf]t Vehicle’s transition probability from s; to s; from round ¢ to ¢’

Observable states (obfuscated location)

Emission probability (obfuscation matrix) |

Transition
probabilty *é»

pPtn-vtntl

Xt X0t2 [ | Xt

Hidden States (true location)

Figure 3: Hidden Markov Model.

Assumption 2: The traffic flow information in the target re-
gion can be accessed by attackers [33, 36].

For modeling purposes, we discretize time in time slots {1, 2, ...}.
We consider the case that a vehicle reports its locations N times
during its trip, where the report time slots are {t1,..., tn, ..., IN}-
Note that the interval between adjacent report time slots may differ.

We let Zin = {zf'}}K © represent the obfuscation matrix at ¢,
> X

(n =1,..,N), where each zf’; denotes the probability of selecting

location s; as the obfuscated location given the true location s; at

tn. We let sﬁ" and sé" denote the vehicle’s reported location and real

location at time t,. The sequence of the vehicle’s first n reported

locations and the corresponding real locations are represented by

<[titn] t t S[t,tn] t t .
So T =480, e Sotpand s, U = 15,0, s, respectively.

3.1 Hidden Markov Model

From the attacker’s perspective, vehicles’ reported (obfuscated)
locations are observable, while the vehicles’ true locations are hid-
den. Nevertheless, the vehicle’s obfuscated location is related to
its true location by following a probability distribution determined
by the obfuscation matrix Z*», which is also visible to the attacker
(Assumption 1). On the other hand, due to the constraints of the
vehicle traffic flows, the vehicle’s true locations in adjacent rounds
are spatially correlated. That is, the vehicle’s location in each round
is dependent on its location in the last round.

Accordingly, a hidden Markov model (HMM) offers the attacker a
straightforward model to characterize the aforementioned vehicles’
mobility features. As Figure 3 shows, we use two random variables
X! and Y? to denote the vehicle’s actual and reported locations
at time slot ¢, where X! and Y! are considered as its hidden and
observable states, respectively, and X ! is assumed to follow a Markov
process, i.e., X! only depends on X1,

*Chenxi Qiu, TLi Yan, ¥Anna Squicciarini, " Juanjuan Zhao, * Chengzhong Xu, *Primal Pappachan

22.851
22.80 {<
st O
22701
22,651
22,601
22,551

22,501

0

1138 1139 1140 1141 1142 1143 1144 1145

Figure 4: Heat map of the estimated transition probabilities
between the road segments in Shenzhen.

The parameters of a HMM are of two types, transition probabil-
ities and emission probabilities:
1) Emission probabilities describe the conditional distribution of
obfuscated location Y? given the vehicle’s true location X', Note
that the emission probabilities are visible by the attacker, since each
Pr (Y = Slet” =s) = zf’; is essentially an entry of the obfusca-
tion matrix Z'.
2) Transition probabilities describe the conditional distribution
of vehicle’s true location at ¢, X*, given the vehicle’s true location

at t — 1, X*~1. We let the transition matrix P*~1# = {p;}l’t}K "
include the transition probabilities between the vehicle’s hiddﬁ:n
states from time ¢t — 1 to t, where pl.t,;l’t =Pr (Xt =s;j |Xt_1 = si).
As introduced in Section 3.2, the transition matrix can be learned
via the vehicle traffic flow information, which is available to the

attacker (Assumption 2).

3.2 Transition Matrix Learning

The attacker can learn the transition matrices of vehicles in HMM
from vehicle traffic flow information. Specifically, attackers can ob-
tain traffic data using floating vehicle data, both historic, in the form
of trajectory datasets [33], and real-time, in the form of continuous
data streams [36]. Traffic datasets usually record the vehicles’ coor-
dinates along with timestamps, where time is (or can be) discretized
into slots (e.g., seconds [18]). The attacker can then calculate the
vehicle’s transition probability from location s; to location s; during
the time slot ¢ by

(-1 #ofvehicles froms; tosj fromt—1tot

N . 5
LJ # of vehicles in s; at time t — 1 )

In Figure 4, we show an example of a heat map of the transi-
tion probabilities between adjacent road segments. The heat map is
created using a historical traffic flow dataset from Shenzhen [18]).

Note that vehicles typically do not report their locations in each
time point. Given that the vehicle n'M and (n+1)™ reports are at time
slots t,, and tp41, respectively, the corresponding transition matrix
for the adjacent reports s and si*!, Ptwin+1 s calculated by

Ptnstn+1 — H;T;_l Pt’t+1, (6)
—tn

3.3 Location Tracking via TFA

Given the emission probabilities (obfuscation matrices Z"), the

transmission probabilities Pivtz | Pin-vin and the observed se-

"[tl,tn]

quence s, , the task of the attacker is to derive the maximum

likelihood estimate of the vehicle’s real trajectory §£tl’t"].

To infer a vehicle’s real trajectory §£t1’t"], the attacker can use

a hidden state sequence inference algorithm, such as the Viterbi
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algorithm [10]. Viterbi provides an efficient way of finding the
hidden state sequence with the maximum posterior given the ob-
servable states in HMM?. Given the observed location sequence

§£t1’t”] = {sf,‘, ...sbm 1 the Viterbi algorithm uses a dynamic pro-

gramming approach to find the most likely real location sequence

§£“’f"1 = {sﬁl, si” } namely the Viterbi path. We let U;." represent

the probability that the vehicle’s ' hidden state is at s j given the

tn-1

first n— 1 observations {sf,l, v So } and passing through the most

probable state sequence §, i.e.,

U;." = max Pri{X". X1} =3 X" =5;| {y2. .y} :§£t1’t"'1]

sesn-1
hidden states observations
, (7)
The value of each cell v i in iteration n is computed recursively
based on the cells calculated in iteration n — 1: vi"’l, v;é”:
tn _ th1 tn-1sln
vt = Sn;gg 0P 2ot (8)

Finally, the Viterbi path, or the estimated real trajectory, can be
retrieved by saving back pointers that remember which state was
used in Equ. (8).

We evaluate the ability of TFA in tracking vehciles’ locations
in Section 5.1. The experimental results show that TFA can track
vehicles’ locations more accurately compared with the current state
of art inference algorithm such as the optimal inference algorithms
[23, 35] and temporal correlation aware inference algorithms [7].

4 LOCATION PRIVACY PROTECTION VIA
FAKE TRAJECTORIES

In this section, we introduce a new location obfuscation strategy,
called FTraj, to ensure that the generated obfuscated locations fol-
low realistic vehicle traffic flows. The basic idea of FTraj is to let the
vehicle generate fake trajectories that follow realistic traffic flows
when the vehicle is driving. Then, the vehicle report the current
locations of fake trajectories when requested. Since the reported
locations are from trajectories following realistic traffic flows, they
are hard to be eliminated by TFA.

Note that to limit quality loss, fake trajectories are required to be
within a certain range of the vehicle’s real locations in each time slot.
Such a requirement, however, is hard to satisfy if an insufficient
number of fake trajectories is maintained, considering that the
vehicle’s mobility might be unpredictable (i.e., before the vehicle is
assigned a task, its future route is undetermined). For example, a
fake trajectory originally close to the vehicle may inevitably deviate
far away from the vehicle after the time slot t. As a solution, we let
the vehicle maintain a sufficiently large pool of fake trajectories,
and select one to report when requested. Before introducing the
details of the algorithm, we first give the formal definition of fake
trajectory in Definition 4.1:

Definition 4.1. Given a time interval [t4, t,] and the correspond-
ing learned transition matrices Plartart  Pb=LIb g fake trajectory

ZNote that other algorithms or simpler heuristic may be used by an attacker. Viterbi is
seen as a standard and sound approach for this type of reverse engineering, as such it
can be considered as the worst case scenario algorithm.
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Table 2: Main notations and definitions in Section 4.

Symbol Description

§ltat] A fake trajectory during the time interval [#4, ]

s} Location of _s'jlf“’tbj at time ¢

Fliat] Set of fake trajectories during time interval [, ¢]
O}:“’t_l] Offsprings of the fake trajectory _s'][cit"’t_l]

M The maximum number of fake trajectories in the pool
r Predetermined constant to limit quality loss caused by

each location in fake trajectory

New fake
trajectories after t;,

time

Figure 5: Basic idea of FTraj.

. o [tat ta o+l
is a sequence of locations s][c“ bl 2 { a5 s ”} such

sf,sf s Sp

that 1) each location s} is generated at each time slot t (t =tg, tq + 1,

g}ta:tb]

.., 1p), and 2) and the transition from each s}_l to s} follows a realistic

traffic flow, i.e., the transition probability from s}’l to s}, denoted by
t-1,t

ps}*l’s}

Table 2 lists the additional notations used in this section.

(t =tg tq+1,.... 1 — 1), is non-zero.

4.1 Fake Trajectory Pool

When the vehicle starts its trip, the vehicle selects a single location
as the starting point of all the fake trajectories. Like [23, 30], the
location is selected in a probabilistic manner via an obfuscation
matrix Z!, generated by the server and downloaded by the vehicle.

Subsequently, the vehicle needs to generate/update a fake tra-
Jjectory pool during each consecutive location reports. As opposed
to the obfuscation matrix calculated by the server, fake trajectory
pools are generated at the vehicle side using local traffic flow infor-
mation. Figure 5 gives a brief idea: Suppose that the last time the
vehicle reports its obfuscated location sfa is at time tq. After tg, the

vehicle generates and maintains the fake trajectories {1, 2, 3}, all of
which start from s’ and follow realistic routes. At the next report
time t3, the current locations of all the fake trajectories are the
candidate locations, from which the vehicle randomly select one to
report. In this example, the vehicle selects trajectory 2, and reports
its current location s? to the server. After t,, the vehicle clears
the existing fake trajectories in the pool and generates a pool of
new fake trajectories which all start from s}b , until the next report.
As the vehicle applies the same strategy during each consecutive
report, without losing the generality, next we only consider the
fake trajectory generation/update during [tg, tp].

Pool update. The pool is updated using an algorithm inspired by
natural selection principles: In each round, trajectories within a
certain distance from the current real location will survive and
generate a set of new trajectories for the following round, while
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other trajectories will die off and be removed from the candidate
pool (see the example in Figure 6). Specifically, in each time slot,
the pool update is composed of reproduction and elimination:

S1. Reproduction (see Figure 6(a)). We let Flta:t] denote the fake
trajectory pool during [tg,t] (ta < t < t3). For each fake tra-

jectory sj[f“ A1) {s}“ s}_l} € T[t“’t_lj, the vehicle extends
*][f“’tfl] by adding a new location s} that is reachable by s}_l, ie,

ptt 1] t > 0.Here, in each time slot ¢, we assume that the transition
matrlx P!~Lt is available to the vehicle3. In the transition matrix,
the vehicle only needs to retrieve the transition probabilities from
s}_l (the last location in the fake trajectory gf[ta,t—ll) to all other

t-1,t t=1,t

locations s, ..., Sk, denoted by [p g p , i . Moreover, we

enforce a constraint to limit the QL caused by each Sp

oL (s}) <T, (QL(-) is define in Equ. (3)) ©)

where I is a predetermined constant. Trajectories with the current
locations not satisfying Equ (9) will not be considered even it is not
the time slot to report the location, since the pool can only maintain
a limited number of candidate trajectories and trajectories already
deviated far away from the real trajectory is less likely to generate
high QoS in the future.

The newly generated fake trajectory sjl[“ - {s}“ s}} is
3lta

called an offspring of s Sy =11 Given the transition matrix P*~b¢

and the constant T, we can find the set of possible locations to

generate an offspring of gj[rta,t—l] )

R (E}""’HJ) = {s,— € S)p}tllt >0, QL (s5) < 1“} (10)

$2. Elimination (see Figure 6(b)). Due to tractability limitations,
Slta.t— 1])
to the

current fake trajectories; as the number of fake trajectories might
increase exponentially over time. Therefore, after adding the loca-
tions to the existing fake trajectories, the vehicle needs to remove
fake trajectories with low privacy guarantees (measured by EIE in
Equ. (2)) and high quality loss Specifically, we define the fitness
value of the current location s’. of the fake trajectory s][f“ I

f
Fit (s}) - EIE (s}) - QL (s}) , (11)

to evaluate both EIE and quality loss caused by its current location
st., where ae and aq denote the weights of EIE and quality loss in

the vehicle may not add all the locations in R (s

the fitness value, respectively. The vehicle only maintains the fake
trajectories with top M fitness values in the pool, where M is the
pool capacity. The trajectory pool at each time ¢ can be represented

by
ltat] {gj[rf“’”, 31[;;’” } , (12)
"[ta’[] — ta
where each s = {sﬁ , ﬁ} (i=1,..,M).

3The vehicle can obtain the transition matrix either by using historical data [33], or
by downloading it from the server.

*Chenxi Qiu, TLi Yan, ¥Anna Squicciarini, " Juanjuan Zhao, * Chengzhong Xu, *Primal Pappachan

4.2 Pool Update Algorithm

In each time slot ¢, we let the vehicle store the location information

of each fake trajectory E}_t"’t] as a node or triple, Figure 6(c) shows:

t—1

togt=1 : s 2liat]s
( Sp S, ,Fit ( f)) including (i) s s current location s’ o (ii) its
previous location s 4 , and (iii) its fitness value Fit (s

f,- ) The nodes
of different trajectories at round ¢ are stored in a min heap q*, which
is efficient in finding the top M elements from a set [5]. q* has two
features: (F1) the top node of q’ has the minimum fitness value;
(F2) two types of operations can be conducted on q’: push (i.e., to
insert a new node to q’) and pop (i.e., to remove the top node from
q"). The time complexity of both types of operations is O(log M).
Both pop and push operations won’t change feature F1 of q.
Algorithm 1 shows the pseudo code of the pool update: q’ is
initialized by empty (line 1). If it is the first time slot after that
the vehicle reports the location, i.e., t = t; + 1 (line 2), FTraj ran-
domly picks up M locations around the current true location: s}?,

ta . . . tq : tq
S (line 3), calculates their fitness values Fit (sﬁ ) ..., Fit (sfM )

and pushes the corresponding nodes (sjté_’, ¢, Fit (s}:})) (i=1,...,M)
sequentially onto q’* (line 4 - 6).

After the first time slot, the candidate pool Fltat] jg updated
from 7 [%t=1] via two steps: reproduction and elimination:
S$1. Reproduction (line 8-12). Using the transition matrix, the
vehicle extends each candidate trajectory ‘][Clt“ 1l g Fltat-1l 4o

each of the locations in R ( ][f“ A= 1]) i.e., the set of locations that

can be reached by sj[p =11 We can then obtain the set of sj[f“ i1l

offsprings):
[tat=1] _ [[3ltat=1] ) 2ltat-1]

Ofi {{Sf,- ,s]} SJER(ﬁ )} (13)

$2. Elimination (line 13-22). Reproduction generates a set of new

t] _ UM O[ta t-1]

fake trajectories Flta . To eliminate the the

trajectories with low fitness values the vehicle ranks all the trajec-
tories in F”ltat] by their fitness values (defined by Equ. (11)) and
only keeps the top M ones.

>[tg,t—1]
S,

its fitness value Fit (s;) (line 16). The first M nodes are pushed

directly onto q’ (line 18). Once q’ reaches its capacity, i.e., |q’| = M
FTraj first checks whether the top node in q’ has higher fitness
value than the new node g/, with Fit (s;) (line 20): If NO, g/,
won’t be pushed onto q’, since ¢,.,, has a lower fitness value than
any of the M nodes in q’; otherwise, qﬁop will be popped off and

Specifically, for each location s; € R ( ) FTraj calculates

ey = (sfH, sj, Fit (Sj)) will be pushed onto q’. qttop cannot be
Iz

one of the M highest nodes, since qttOp has a lower fitness value
than ¢!.,,’s and the other M — 1 nodes in q’ (based on feature F1).
Time complexity. Suppose that there are U locations in each
R (Ej[ga’t_l]). To obtain q’, it takes up to UM push/pop operations,
which amounts to O(UM log M) operations. As both M and U are
not large in practical (M = 100 and U < 300 in the experiment in
Section 5), such a computation load is acceptable to mobile devices
like smartphones.
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(c) Min heap implementation

Figure 6: Example of fake trajectory maintenance: In round ¢, there
are three fake trajectories S5, = {s12,514,57}, 8, = {513, 511,51}, and
gfg = {516, 515, 55 }-

(a) Reproduction: §f2 has three possible locations to move to: sy, s3,
and s, and hence Sf, has three offsprings: {35.s,}, {§f2,53 }, and
{853, 54}. Similarly, S5 has two offsprings: {sSg;,ss} and {S5,50}; 55
has one offspring: {37, s¢}.

(b) Elimination: Among the 6 offsprings generated at time slot ¢,
3 offsprings with lower fitness values {57, 59}, {S,53}, and {Sp, 54}
are eliminated from the pool.

4.3 Obfuscated Location Selection

At time slot ¢, we use SZ,,, denote the set of current locations of
the fake trajectories in the vehicles’ trajectory pool, including the
vehicle’s real location, i.e.,

St = {s}i €S

§J[Cf“’” e Fliat] } ust (14)

When the vehicle reports the location at #, it randomly selects
one of the locations in Sé’;n as the obfuscated location to report.
The first objective of location selection is to satisfy e-GI (Defini-
tion 2.1), i.e., the attacker’s perspective, any pair of locations in
Sé;’n are hard to be distinguished given the vehicle’s reported lo-
cations. We let the decision variable z; j (s;,s; € Séfa’n) represent
the probability of selecting location s; given the real location s;
and let Z = {ZU}(M+1)><(M+1) represent the location obfuscation

matrix. According to Definition 2.1, for each pair of s;,s; € Sﬁgn,
the e-GI constraint z; . < eEd(si’sJ')zj,k needs to be satisfied for

each obfuscated location sg € Sctgn.
Besides GI, the location obfuscation matrix Z aims to achieve the

highest expected fitness value, calculated by 3’; ; Pr (X = s;) z;, jFit (sj)-

Finally, the derivation of the optimal Z can be formulated as a linear
programming (LP) problem:

max Z Pr (X =s;) z,jFit (s}) (15)
Lj

s.t. Zij < eed(si’sf)zj,k,\?'i, k. (16)
M

Dz =1Yi 0< 7 < LVik. (17)

k=1
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where Equ. (16) represents the GI constraints, and Equ. (17) in-

dicates that, for each real trajectory E}t“’t], the sum probability

of selecting all candidate locations in SY,, is equal to 1 [25]. The
problem formulated by Equ. (15)-(17) can be solved using the LP
standard algorithms, like the simplex method or the interior point

algorithm [15].

Algorithm 1: Fake trajectory pool update.

-1  la

Input :£,q', .. q° s
Output :q°
1 q’ is initialized by empty;

2 if t =t, + 1then

. . tq, ta ta .
3 Randomly pick up M locations around SFSE e Spl
4 for each s;‘_’ @i=1,...,M)do
1
5 Calculate s;‘_z ’s fitness value Fit (s}_“) using Equ. (11);
1 1
t ta : ta .
6 q .push((sfi,¢,F1t(sﬁ ))),
7 else
8 // S1: Reproduction
t o1 pir (ot ) i qt—1
9 for each (sfi,sfi, ’Flt(sfi)) inq’~ do
10 Initialize the location set R (5}?“’#1]) by an empty set;
1
11 for eachsj € S withp};l_’{ > 0do
L
=>lta.t-11Y),
12 L AddsjtoR(sfl_a )
13 // S2: Elimination
t -1 pir (of ) iy qf-1
14 fo'eaCh(sfi’Sfi,’Flt(sﬁ)) inq’~" do
15 for Vs; € R (‘s’}'_‘a'kl]) do
1
16 Calculate s;’s fitness value Fit (s;) using Equ. (11);
17 if |qt| < M then
18 q".push( st__,l,Sj,Fit (sj)));
J
19 else
20 if q*.top() has higher fitness value than Fit (s;) then
21 q"-pop();
22 qt.push(s}}l, sj, Fit (s;));

23 return q;

5 EXPERIMENTAL VALIDATION

In this section, we evaluate the performance of the Traffic Flow
Aware (TFA) inference attack in Section 5.1 and our new location
obfuscation algorithm (FTraj) in Section 5.2%. We carry out an exten-
sive evaluation using a real dataset, containing the GPS records of
around 28,000 vehicles. The benchmarks in our experiment, includ-
ing both inference attacks and obfuscation algorithms, are listed
as follows:

A) Inference attack algorithm. In Section 5.1, we compare our
inference attack algorithm with the following two benchmarks:
(i) Bayesian inference attack (Bayes) [22, 35]. According to the vehi-
cle’s reported locations, Bayes first derives the posterior of a target
vehicle’s real location via Bayes’ theorem. It then estimates the
vehicle’s real location by finding the location § € S that minimizes
the EIE, i.e.,

§ =argming g X, es Pr (Y = sp| X! = s;) d(sp,s5).  (18)
(if) Temporal Correlation Aware (TCA) inference attack [7], where

4The research artifacts are available to download from [29].
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dependencies between vehicles’ reported locations at consecutive
time points are considered. TCA assumes that vehicles’ mobility
follows a Markov process, but without using the vehicle traffic
flow information. We let TCA estimate the vehicles’ locations using
HMM, where the transition matrix of the Markov chain is learnt
based on the vehicles’ reported locations using the maximum like-
lihood estimation.
B) Obfuscation algorithms. In Section 5.2, we compare our lo-
cation obfuscation algorithm with the following state-of the-art
algorithms, both of which obfuscate vehicles’ locations indepen-
dently per round:
(i) Planar Laplacian noise (Laplace) [1], where the obfuscation prob-
d(sjs)
abilities are calculated by Pr (Y = s;|X'n =5;) oc ™ © Lo Here,
€ is the privacy budget defined in Equ. (1), i.e,, higher ¢ implies
more information to be disclosed. Liyax is the maximum distance
between any two locations in the target region.
(if) LP based Obfuscation (LPO) [22], which follows a linear pro-
gramming framework. The objective is to minimize the quality loss
of a single vehicle with the e-GI constraints being satisfied (defined
in Equ. (1)). LPO, as compared to Laplace model, also accounts for
network-constrained mobility features.

We measure the following two metrics:
(i) Privacy level, measured by EIE (Equ. (2)).
(ii) Quality loss (estimation error of traveling distance), defined as the
expected distortion of estimated traveling distance by the server
(Equ. (4)). Here, we assume the tasks are uniformly distributed over
the location set S.
Dataset. The dataset used for our experiments includes the mobility
records of vehicles from Jan 1, 2015 to Dec 31, 2015, including:
(1) Taxicab Dataset, which records the status (e.g., timestamp, GPS
position, velocity, occupancy) of 15,610 taxicabs.
(2) Dada Car Dataset, provided by the Dada Car corporation (a cus-
tomized transit service similar to UberPool). It records the status
(e.g., timestamp, position, velocity) of 12,386 customized transit
service vehicles.
(3) Road Map. The road map of Shenzhen is obtained from Open-
StreetMap [21]. According to the municipal information of Shen-

zhen [18], we use a bounding box with coordinate (lat = 22.4450, lon =
113.7130) as the south-west corner, and coordinate (lat = 22.8844, lon =

114.5270) as the north-east corner, which covers an area of around
2,926km?, to crop the road map data.

We utilized a 117 TB Hadoop Distributed File System (HDFS)
[2] on a cluster consisting of 51 nodes to efficiently manage these
datasets. Each node is equipped with 28 cores and 64 GB RAM. All
data processing and analysis is accomplished with Apache Spark [3],
which is a fast in-memory cluster computing system, deployed over
the Hadoop cluster.

5.1 Trajectory Inference Algorithms

We first test the accuracy of our trajectory inference algorithm TFA.
In what follows, we set the parameters € = 100/km, I' = 1km, and
M = 100 in TFA. Using the vehicles’ historical traffic records in
Shenzhen [18], we can train the HMM transition matrices of TFA
over time by Equ. (5). Figure 4 shows a heat map of the transition
probabilities between the adjacent road segments in Shenzhen.

We pick up 42 taxicab traces from the dataset and consider them
as the trajectories of the target vehicles. Figure 7(a)(b) compare the
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Figure 7: Comparison of EIE between TFA, TCA, and Bayes.
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EIE of TFA, TCA, and Bayes when the vehicles’ locations are obfus-
cated by Laplace and LPO, respectively. Without loss of generality,
we sort the vehicle traces according to the EIE achieved by Bayes
on the left side of the figure. On the right side, we show the box plot
(variability) of the three algorithms’ EIE. From both Figure 7(a)(b),
we can find that TFA, as a traffic flow aware inference attack, has
significant higher inference accuracy than Bayes and TCA. When
applying Laplace and LPO for location obfuscation, the EIE of TFA
is 87.97% and 86.58% lower than that of Bayes’, and 58.45% and
66.85% lower than that of TCA, respectively. Compared with Bayes,
TFA can eliminate more “impossible trajectories” by considering
the temporal correlation of vehicles’ consecutive reported locations.
Although both TFA and TCA consider the dependency of vehicles’
reported locations, TFA additionally considers the restrictions of
traffic flows on vehicles’ mobility. Therefore, TFA can achieve lower
EIE by further shrinking the searching range of the vehicle’s real
trajectory. Our results, as shown, also demonstrate that classic lo-
cation obfuscation methods, like Laplace and LPO, are insufficient
to protect vehicles’ location privacy from the inference attack.
Next, we measure how € impacts the EIE of TFA, TCA, and Bayes.
Recall that the privacy level in e-Gl is quantified by the parameter €.
The results are reported in Figure 8(a)(b), where € is changed from 50
to 100. The target vehicles’ locations are obfuscated by Laplace and
LPO in Figure 8(a)(b), respectively. Not surprisingly, EIE decreases
with the increase of € in both figures, since higher € allows less
deviation from obfuscated locations to real locations. However, the
impact of € on TFA and TCA is not as significant as it is on Bayes,
i.e. when an obfuscated location has a higher deviation from the
real location, it has less correlation with the last reported location,
and hence it is more likely to be eliminated by both TFA and TCA.

5.2 Location Obfuscation Algorithms

We now test the performance of our obfuscation algorithm FTraj
in terms of both privacy and quality loss, by comparing it with
two benchmarks: Laplace and LPO. We use our own TFA as the
inference algorithm to estimate vehicles’ locations.

Figure 9(a) compares the EIE of the three obfuscation algorithms
in the 42 taxicab traces. Without loss of generality, we sort the ve-
hicle traces according to the EIE achieved by FTraj on the left side
of the figure. On the right side, we show the box plot (variability)
of the three algorithms’ EIE. The figure demonstrates that FTraj
outperforms Laplace and LPO in terms of EIE: On average, the EIE
of FTraj is 560.55% and 558.34% higher than that of Laplace and LPO,
respectively. As introduced in Section 4, FTraj can offer stronger
privacy guarantees (EIE) because it obfuscates vehicles’ locations
via fake trajectories that follow realistic traffic flows. Hence, the
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Figure 9: Comparison of different obfuscation algorithms.
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Figure 10: Comparison of the correlation between EIE and
report frequency.

obfuscated locations generated by FTraj are hard to distinguish
from the vehicles’ real locations by TFA. Figure 9(b) compares the
quality loss of the three algorithms. As shown, Laplace > FTraj ~
LPO in terms of quality loss. On average, the quality loss caused
by FTraj is 28.94% lower than the quality loss of Laplace, and 9.47%
higher than that of LPO. Laplace has higher quality loss than both
FTraj and LPO as it simply considers users’ mobility on a 2D plane,
in which the sensitivity of quality loss to location obfuscation is
different than in a road network. Due to the restriction of the road
network, a small location deviation on the 2D plane may lead to
a significant difference in estimated traveling distance over roads
(e.g., when a vehicle has to take a detour to reach a nearby desti-
nation). Therefore, obfuscated locations generated by Laplace are
more likely to generate a high traveling cost. Although LPO has a
slightly lower quality loss than FTraj, LPO minimizes quality loss
at the expense of privacy (EIE), as demonstrated in Figure 9(a).
We note that in the dataset, the number of vehicles’ location
reports in any given time interval varies across different traces, as
vehicles report their locations with different frequencies. Therefore,
it is interesting to check how the report frequency impacts the EIE
when FTraj, Laplace, and LPO are applied to obfuscate vehicles’
locations. Figure 10(a)(b)(c) depicts the correlation between EIE
and the report frequency when vehicles’ locations are obfuscated
by the three algorithms. The figure indicates that (1) the EIE of
both Laplace and LPO is negatively correlated with the vehicles’
report frequency, while (2) no significant correlation can be found
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Figure 11: EIE of FTraj given different I'.

between FTraj’s EIE and report frequency. Observation (1) stems
from the fact that when the report frequency is higher, the hidden
states of adjacent reports are more likely to be closely correlated,
and accordingly the attacker is more likely to recover the vehicles’
real locations (hidden states) by eliminating unlikely obfuscated
locations. As for (2), as fake trajectories generated by FTraj follow
realistic traffic flows, the attacker cannot eliminate obfuscated lo-
cations no matter how closely each pair of adjacent locations in
fake trajectories is correlated. As such, the privacy level achieved
by our approach will not degrade even when vehicles report their
locations frequently.

Finally, we evaluate the impact of the parameter I' on both EIE
and quality loss, where T is a constant to limit the quality loss
(defined in Equ. (9)). Figure 11(a)(b) show the change of EIE and
quality loss with T" increased from 0.1km to 1.0km, respectively.
The figure implies that both EIE and quality loss of FTraj increase
with the increase of T'. This is because that higher I" allows more
space to select obfuscated locations for each vehicle, leading to a
higher privacy level. By contrast, higher I' introduces errors to the
vehicles’ reported locations, which may cause higher quality loss.
Therefore, it is important to consider the trade off between these
metrics, and balance them according to the users’ preference.

6 RELATED WORK

Sporadic location privacy. The discussion of location privacy
criteria can date back to almost two decades ago, when Gruteser and
Grunwald [14] first introduced the notion of location k-anonymity
based on Sweeney’s well-known concept of k-anonymity for data
privacy [26]. This notion has been extended to obfuscate location by
means of [-diversity, i.e., a user’s location cannot be distinguished
with other [—1 locations [35]. However, [-diversity is hard to achieve
in many applications as it assumes dummy locations are equally
likely to be the real location from the attacker’s view [1].

In recent years, two practical privacy notions have been proposed
based on statistical quantification of attack resilience, e.g., EIE [24],
and GI [1]. On the basis of EIE and GI, a large body of location obfus-
cation strategies have been proposed to achieve either of these two
privacy criteria (e.g., [1, 24, 30]) or their combination [35]. As loca-
tion obfuscation inevitably introduce errors to users’ reported loca-
tions, leading to quality loss in LBS, a key issue has been discussed
in those works is how to trade-off QoS and privacy. Many existing
works follow a global optimization framework: given the privacy
(measured by EIE/GI) or QoS constraints, an optimization model
is formulated to maximize QoS or privacy respectively [9, 24, 30].

Different with our work, the above approaches based EIE and GI
are still based on isolated obfuscated location with no consideration
of spatiotemporal correlation between obfuscated locations.
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Spatiotemporal Location Privacy. A variety of privacy protec-
tion location inference algorithms have been proposed to date.
These algorithms focus on spatiotemporal correlation of users’ re-
ported locations, either from a single user at different time points
(e.g., trajectory) [4, 7, 8, 16, 19, 32] or from multiple users [6, 17].
Many of those works are based on the assumption that users’ mo-
bility follows a Markov process [8, 19], i.e., users’ current locations
depend on the locations attained in the previous round. For instance,
Liao et. al [19] applied a hierarchical Markov model to learn and
infer a mobile user’s trajectory based on the places and temporal pat-
terns the user visited. Given uncertain locations of moving objects,
Emrich et. al [8] proposed a modified matrix computation method
to compute the probability of a user appearing in certain region
during certain time period. Recently, research works closer to ours
have proposed privacy criteria and solutions that account for statis-
tical features of users’ location data [6, 7, 12, 31]. For example, under
the assumption that attackers use Markov models to describe users’
mobility, Cao et al. [7] defined a criterion to quantify the privacy
level that existing methods can achieve. Cao et al. [6] extended the
notion of DP to a new criteria to protect spatiotemporal event privacy
and provided a framework to calculate the privacy loss of a given lo-
cation privacy protection mechanism. By counting for the temporal
correlations in location data, Xiao et al. [31] proposed a new defini-
tion, called §-location set based DP, and presented a planar isotropic
mechanism for location obfuscation. While elegant, all these formu-
lations are designed for general moving objects and yet do not con-
sider vehicles’ mobility constraints. In practice, vehicles are bound
by traffic regulations and road traffic. Therefore, they fall short in
regard to their applicability in vehicles’ location privacy protection.

7 CONCLUSIONS
In this paper, we demonstrated how popular obfuscation models fail
to protect against traffic aware attacks. We developed a new location
inference attack, namely TFA, that leverages traffic information to
accurately recover vehicles’ trajectories from their obfuscated loca-
tions. As a countermeasure, we proposed a robust location obfusca-
tion algorithm, called FTraj, that protects against context-aware lo-
cation inference attacks. Trace-driven simulation results show that
(1) the current obfuscation algorithms are insufficient to address the
vulnerability of vehicles when TFA is applied, and (2) FTraj can ef-
fectively protect vehicles’ location privacy under the attack of TFA.
We envision several promising directions to continue this re-
search. First, our current work accounts only for a single vehicle,
without considering the temporal correlations between multiple
vehicles. Also, our framework can be extended to general LBS ap-
plications, where service utilities can be defined in different ways.
Finally, we will consider different threat models where the informa-
tion disclosed to attackers is in different formats (e.g., smartphones’
accelerometer and gyroscope).
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