
TrafficAdaptor: An Adaptive Obfuscation Strategy for Vehicle
Location Privacy Against Traffic Flow Aware Attacks

∗Chenxi Qiu, †Li Yan, ‡Anna Squicciarini, �Juanjuan Zhao, ⊥Chengzhong Xu, ‡Primal Pappachan
∗Department of Computer Science and Engineering, University of North Texas, USA

†Department of Electronic and Information Engineering, Xi’an Jiaotong University, P. R. China
‡College of Information Science and Technology, The Pennsylvania State University, USA

�Shenzhen Institute of Advanced Technology, P. R. China
⊥Department of Computer Science, University of Macau, P. R. China

ABSTRACT

One of the most popular location privacy-preserving mechanisms

applied in location-based services (LBS) is location obfuscation,

where mobile users are allowed to report obfuscated locations in-

stead of their real locations to services. Many existing obfuscation

approaches consider mobile users that can move freely over a re-

gion. However, this is inadequate for protecting the location privacy

of vehicles, as their mobility is restricted by external factors, such as

road networks and traffic flows. This auxiliary information about

external factors helps an attacker to shrink the search range of

vehicles’ locations, increasing the risk of location exposure.

In this paper, we propose a vehicle traffic flow aware attack

that leverages public traffic flow information to recover a vehicle’s

real location from obfuscated location. As a countermeasure, we

then develop an adaptive strategy to obfuscate a vehicle’s location

by a “fake” trajectory that follows a realistic traffic flow. The fake

trajectory is designed to not only hide the vehicle’s real location but

also guarantee the quality of service (QoS) of LBS. Our experimental

results demonstrate that 1) the new threat model can accurately

track vehicles’ real locations, which have been obfuscated by two

state-of-the-art algorithms, and 2) the proposed obfuscationmethod

can effectively protect vehicles’ location privacy under the new

threat model without compromising QoS.

CCS CONCEPTS

• Security and privacy → Privacy protections; • Theory of

computation → Adversary models.

KEYWORDS

location privacy, location obfuscation, traffic flow

ACM Reference Format:
∗Chenxi Qiu, †Li Yan, ‡Anna Squicciarini, �Juanjuan Zhao, ⊥Chengzhong

Xu, ‡Primal Pappachan. 2022. TrafficAdaptor: An Adaptive Obfuscation

Strategy for Vehicle Location Privacy Against Traffic Flow Aware Attacks.

In The 30th International Conference on Advances in Geographic Information

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9529-8/22/11. . . $15.00
https://doi.org/10.1145/3557915.3560938

Systems (SIGSPATIAL ’22), November 1–4, 2022, Seattle, WA, USA. ACM, New

York, NY, USA, 10 pages. https://doi.org/10.1145/3557915.3560938

1 INTRODUCTION

With ubiquitous wireless connectivity and continued advances in

positioning technologies in mobile/on-board devices, vehicles have

been increasingly participating in a variety of location-based ser-

vices (LBS). Examples range from real-time navigation (e.g., Waze

[30]), journalism and crisis response (MediaQ [20]) to commercial

transportation systems (e.g., Uber-like platforms [22]). In most LBS

applications, a vehicle’s location is essential information for the

server to provide services such as task assignment and navigation.

Vehicles report their locations to the centralized servers at frequent

or even regular intervals, raising potential privacy issues. Privacy

risks are not only limited to whereabouts of the vehicles, but may

also relate to some other sensitive information such as drivers’

home/working address, and financial status [27].

Location privacy issues of LBS have been widely acknowledged

in the recent years [1, 9, 11, 13, 22–24, 28, 30, 35]. A large body of

recent work has focused and developed protection mechanisms

by way of location obfuscation [1, 9, 22, 24, 30], wherein which

mobile users are allowed to report obfuscated locations instead of

true locations to servers. Compared with traditional cryptographic

techniques [13], obfuscation has been acknowledged to be more

suitable for mobile LBS due to its 1) low computational demand for

mobile devices [22], 2) high effectiveness in protecting data privacy

from server-side eavesdropping [30], and 3) high accessibility for

various service providers [1].

Despite these merits, most existing location obfuscation ap-

proaches are still designed against simple threat models, where mo-

bile users can move freely in a dimensional (2D) plane [1, 9, 24, 30].

Clearly, a vehicle’s mobility is restricted by the road network topol-

ogy and existing traffic regulations, or traffic flow [33]. Thus, the

aforementioned assumptions are unrealistic and cannot adequately

protect the privacy of vehicles operating in a real road network.

Given the pervasiveness of geo-location and mobility services, an

attacker can access public traffic flow information with minimal

effort, and use this as auxiliary information to increase the accuracy

of location tracking.

In this paper, we formalize the above privacy risks by developing

a new threat model, namely Traffic Flow Aware (TFA) Inference At-

tack. Under TFA, an attacker uses publicly available vehicle traffic

flow information to recover a target vehicle’s real locations from its

reported (obfuscated) locations. From the perspective of an attacker,

the vehicle’s mobility can be modeled by a hidden Markov model

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3557915.3560938&domain=pdf&date_stamp=2022-11-22

SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA ∗Chenxi Qiu, †Li Yan, ‡Anna Squicciarini, �Juanjuan Zhao, ⊥Chengzhong Xu, ‡Primal Pappachan

“ ” trajectory
by obfuscated locations

A

B

C

D
E

F
G

Figure 1: Location tracking using traffic flow information.

(HMM). In each round, the vehicle’s actual and obfuscated locations

are considered as a hidden state and an observable state, respectively.

The HMM transition matrix, which can be learnt using the traffic

flow information, describes the probabilities of the vehicle traveling

between the locations over the map. Given the HMM matrix, the

vehicle’s real locations can be estimated with a high accuracy using

well-developed hidden state inference algorithms (e.g., the Viterbi

algorithm [10]). Figure 1 shows an example on how a traffic flow

aware attacker can accurately determine a taxicab’s locations (in

Shenzhen mobility trace dataset [18]) even when the taxicab’s lo-

cation has been obfuscated with a state-of-the-art obfuscation algo-

rithm [9]. When a vehicle obfuscates its location independently the

trajectory looks “impossible” as the transition between the many

adjacent reported locations in the trajectory is improbable (see

the trajectory {𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹,𝐺} in Figure 1). This, unfortunately,

helps an attacker eliminate unlikely trajectories and increases their

probability of accurately tracking vehicle’s real location.

Based on this threat model, we design an advanced traffic-aware

obfuscation strategy, called FTraj, in which the traffic flow data is

taken in account when obfuscating vehicle’s real location. Partic-

ularly, instead of obfuscating the vehicle’s locations at different

rounds independently, a vehicle uses FTraj to generate multiple

“fake” trajectories by following traffic flow data, and then randomly

selects a fake trajectory and reports its current location as required.

This makes it harder for attackers to track the vehicle’s location as

they cannot eliminate the reported location as impossible.

Besides hiding the real locations, the generated fake trajectory

guarantees high QoS, i.e., its deviation from the vehicle’s real lo-

cations is kept within a certain accuracy range. Note that this is

a non-trivial guarantee to offer, since a vehicle’s route is undeter-

mined. For instance, a fake trajectory originally close to the vehicle

may inevitably deviate far away from the vehicle due to restrictions

imposed by real time traffic flows. As a solution, we let vehicles

maintain a pool of candidate trajectories, and hence the vehicle can

select a trajectory from the pool that achieves high QoS and privacy.

The trajectory pool is updated using a form of natural selection, i.e.,

in each round, some candidate trajectories with high privacy guar-

antees and high QoS survive, while other trajectories die off and are

removed from the pool. After the vehicle reports the fake location

in the current round, new candidate trajectories will be generated in

the following round by starting from the current reported location.

With respect to performance, simulation results based on Shen-

zhen taxi trajectory records [18] show that: (1) Given vehicles’

locations obfuscated by the two state-of-the-art obfuscation meth-

ods [22, 24], the new inference algorithm TFA can accurately track

vehicles’ locations, and on average, and its expected inference error

(EIE, reflecting the location privacy level) is 87.28% lower and 62.65%

lower than that of the classic Bayesian inference attacks [22, 35] and

temporal correlation aware attacks [8, 19], respectively. (2) Our new

Obfuscation function

Collected
obfuscated location

Taxi Bus…

Vehicle side

Server side

input

Traffic flow information
Location
inference

attack

output

Obfuscation
function

generation

Information disclosed to
adversary

Estimation
&prediction

download

input input

Estimation
&prediction

Obfuscation matrix

0.1 0 .6 0 .1 0.2
0.2 0.3 0.4 0.1
0.2 0 .1 0 .4 0.3
0.1 0 .2 0 .4 0.3

s 1

s 2

s 3

s 4

Input Output
(real

location)
(obfuscated location

probability distribution)

s 1 s 2 s 3 s 4

(a) (b)

Figure 2: Location obfuscation framework.

obfuscation strategy, FTraj, can effectively protect vehicles’ loca-

tion privacy under the attack of TFA, e.g., its EIE is at least 558.34%

higher than the two classic obfuscation algorithms in [22, 24].

Our contributions can be summarized as follows:

1) We develop a realistic location inference attack algorithm, TFA,

which relies on contextual vehicle traffic flow information to accu-

rately recover vehicles’ real locations from obfuscated locations.

2) We develop an attack resistant location obfuscation strategy,

FTraj, that obfuscates vehicles’ locations via fake trajectories fol-

lowing realistic vehicle traffic flows.

3) We carry out a large set of experiments based on a real-world

dataset to test the performance of our strategies. Empirical results

demonstrate i) high accuracy of TFA in tracking vehicles of which

locations have been obfuscated with state-of-the-art methods, and

ii) effectiveness of FTraj in protecting vehicles’ location privacy

under the attack of TFA.

The rest of the paper is organized as follows: The next section

provides some preliminaries. Section 3 introduces our new threat

model and Section 4 describes the obfuscation algorithm. Section 5

evaluates the performance of our algorithm. Section 6 presents the

related work. Finally, Section 7 makes a conclusion.

2 PRELIMINARIES

In Section 2.1, we first introduce our reference location obfuscation

framework. In Section 2.2 we present the main notions of privacy

and quality loss for single location obfuscation.

2.1 Location Obfuscation

Figure 2(a) shows a general location obfuscation framework [1, 9,

22, 24, 30]. We focus on LBS wherein vehicles need to physically

move to target locations to complete their assigned services [23, 34].

In these settings, vehicles need to report their current locations to

the server before being assigned any service/task. We assume that

the server, albeit robust, may suffer from a passive attack where

attackers can eavesdrop on vehicles’ reported locations breached by

the server [1, 9, 24, 30].

As a solution, before reporting the location to the server, each

privacy-aware vehicle needs to conceal its actual location, via an

obfuscation function. The obfuscation function takes the vehicle’s

current true location as input, and returns the probability distri-

bution of the obfuscated location, based on which the vehicle can

select an obfuscated location to report. Considering that the server

will use the vehicle’s obfuscated location to assign a service, in paral-

lel to protecting vehicles’ location privacy, the obfuscation function

also aims to limit service quality loss (QL) caused by obfuscation.

TrafficAdaptor: An Adaptive Obfuscation Strategy for Vehicle Location Privacy Against Traffic Flow Aware Attacks SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA

For the sake of computational tractability, many prior works

[1, 9, 22–24, 30] discretize users’ location range to a finite set of 𝐾
locationsS = {𝑠1, ..., 𝑠𝐾 }. Here, to discretize vehicles’ location range
in the road network, we partition roads to a finite number of road

segments. We create a connectionwhen a road intersects, furcates, or

joins with other roads. These connections divide the road network

into a set of edges, which only connect with other edges at their

endpoints. Each edge can be further partitioned into road segments

with the same length 𝛿1. We assume that attackers aim to identify

in which segment the vehicle is located. For simplicity, we use the

term “location” instead of “road segment” in the following part.

After location discretization, the obfuscation function can be

represented as a stochastic matrix Z = {𝑧𝑘,𝑙 }𝐾×𝐾 , namely obfusca-

tion matrix, where each 𝑧𝑘,𝑙 denotes the probability of taking 𝑠𝑙 as
the obfuscated location given the actual location 𝑠𝑘 . Then, given an

exact location 𝑠𝑘 as input, the obfuscation function returns a vector

[𝑧𝑘,1, ..., 𝑧𝑘,𝐾], where each 𝑧𝑘,𝑙 (𝑙 = 1, ..., 𝐾) specifies the probability
of selecting 𝑠𝑙 as the obfuscated location. Figure 2(b) gives an exam-

ple of obfuscation matrix, where a vehicle’s possible locations are

{𝑠1, 𝑠2, 𝑠3, 𝑠4}. Then, the obfuscation function can be represented as

a (4 × 4)-matrix. Suppose that the vehicle’s actual location is 𝑠2, as
indicated by the matrix in Figure 2(b), the probabilities that this

vehicle selects 𝑠1, 𝑠2, 𝑠3, and 𝑠4 as the obfuscated locations are 0.2,

0.3, 0.4, and 0.1, respectively.

Even though vehicles’ location range have been discretized, the

obfuscation matrix is still computationally intensive to derive, and

beyond the capability of mobile devices at the vehicle-side. For in-

stance, in [22, 23], the obfuscation matrix calculation involves com-

puting millions of decision variables. Therefore, like many existing

works [1, 9, 22, 24, 30], we adopt a remote computing framework,

where the server first generates/updates the obfuscation matrix

periodically, and then each vehicle downloads the function to ob-

fuscate its current location in the coming report [22, 30]. Note that,

although the server takes charge of calculating the obfuscation

matrix, it cannot obtain vehicles’ exact locations since each vehicle

selects its obfuscated location in a probabilistic manner [9, 30].

2.2 Criteria of Privacy and Quality Loss for
Single Location Obfuscation

2.2.1 Geo-Indistinguishability (GI). GI corresponds to a general-

ized version of the well-known concept of differential privacy [1, 9].

Differential privacy originally targets publishing aggregate queries

with low sensitivity, i.e., changes of a single individual have a rel-

ative small impact on the outcome, while GI generalizes this defini-

tion to location privacy by requiring that a small change of a single

user’s location won’t affect the distribution of his/her reported

location too much.

From the attacker’s perspective, we can describe the vehicle’s

actual and reported locations as two random variables 𝑋 and 𝑌 . GI
in the road network is formally defined as 2.1 [22]:

Definition 2.1. A obfuscationmatrixZ satisfies 𝜖-GI if∀𝑠𝑖 , 𝑠 𝑗 , 𝑠𝑘 ∈

S, 𝑧𝑖,𝑘
𝑧 𝑗,𝑘

≤ 𝑒𝜖𝑑 (𝑠𝑖 ,𝑠 𝑗) . (1)

1Some segments may be shorter than 𝛿 . As 𝛿 is small enough, their impact would be
minimal, so we don’t consider these segments.

where 𝜖 is called the privacy budget, used to quantify how much the

user’s actual location is disclosed according to the reported location

and 𝑑 (𝑠𝑖 , 𝑠 𝑗) represents the distance from 𝑠𝑖 to 𝑠 𝑗 .

Here, higher 𝜖 implies more information disclosed and a lower

privacy level achieved. 𝑑 can be Hamming distance, Euclidean dis-

tance [1, 35], or traveling distance in the road network [22, 23]. Like

[22, 23], we consider 𝑑 as traveling distance in the road network.

Limitation ofGI for protecting vehicle location privacy. Most

current GI-based obfuscation algorithms still focus on single loca-

tion obfuscation [1, 22, 23, 32, 35]. While, when a vehicle applies

GI-based obfuscation separately in each round, the transition be-

tween its adjacent reported locations look “impossible” in the vehi-

cle traffic flows (e.g. the route {𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹,𝐺} in Figure 1). This,

unfortunately, helps attackers shrink the search range of vehicles’ true

locations when attackers have the traffic flow information.
2.2.2 Expected Inference Error (EIE). EIE of an obfuscated location

𝑠𝑙 , also known as the unconditional expected privacy [23, 24], is

defined by

EIE (𝑠𝑙) =
∑
𝑠
∑
𝑘 𝑓𝑋 |𝑌=𝑠𝑙 (𝑠𝑘) ℎ𝑋̂ |𝑌=𝑠𝑙

(𝑠)𝑑𝑠,𝑠𝑘 , (2)

where ℎ𝑋̂ |𝑌=𝑠𝑙
(𝑠) represents the probability that the attacker esti-

mates 𝑠 as the vehicle’s location given the vehicle’s reported location
is 𝑠𝑙 . EIE essentially describes the expected distortion from the esti-

mated location 𝑠 to the actual location 𝑠𝑘 , where higher EIE implies

higher privacy level achieved.

2.2.3 Quality loss (QL). Sincewe focus on the LBSwherein vehicles

need to physically present at target locations, quality loss highly

depends on the accuracy of traveling cost (distance) estimation.

Therefore, we define quality loss as the expected estimation error

of traveling cost derived by obfuscated locations. We assume that

the distribution of the target’s location Pr
(
𝑄 = 𝑠𝑞

)
is given (𝑠𝑞 ∈ S).

Then, given the vehicle’s true location 𝑠𝑖 , the quality loss caused

by the obfuscated location 𝑠 𝑗 is can be calculated by [22]:

QL
(
𝑠 𝑗
)
=
∑
𝑠𝑞 ∈S Pr

(
𝑄 = 𝑠𝑞

) ��C (
𝑠𝑖 , 𝑠𝑞

)
− C

(
𝑠 𝑗 , 𝑠𝑞

) �� (3)

where C(𝑠, 𝑠𝑞) denotes the traveling cost from 𝑠 to 𝑠𝑞 . Then, the
expected quality loss caused by an obfuscationmatrixZ is calculated

by averaging the quality loss of all obfuscated locations 𝑠 𝑗 and real

locations 𝑠𝑖 , i.e.,

QL (Z) =
∑
𝑠𝑖 ,𝑠 𝑗 ∈S Pr (𝑋 = 𝑠𝑖) 𝑧𝑖, 𝑗QL

(
𝑠 𝑗
)
. (4)

3 TRAFFIC FLOW AWARE INFERENCE
ATTACKS

In this section, we introduce our new threat model and the Traffic

Flow Aware (TFA) attack. Table 1 lists the main notations used

throughout this paper.

When a vehicle reports its obfuscated location to the server, its

true location is hidden from the attacker. However, attackers can

still coordinate an inference attack, e.g., Bayesian inference models

[22, 23, 30]. We make the following assumptions about the types of

information that can be accessed by attackers when coordinating

an inference attack:

Assumption 1: The obfuscationmatrix is transparent to attack-

ers [1, 9, 22–24, 30].

SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA ∗Chenxi Qiu, †Li Yan, ‡Anna Squicciarini, �Juanjuan Zhao, ⊥Chengzhong Xu, ‡Primal Pappachan

Table 1: Main notations and their descriptions

Symbol Description

S Location set S = {𝑠1, ..., 𝑠𝐾 }

𝑡𝑛 Time slot of 𝑛th location report

Z𝑡𝑛 Obfuscation matrix at time slot 𝑡𝑛
𝑧𝑡𝑛𝑖,𝑗 Probability of taking 𝑠 𝑗 as the obfuscated location given the

true location 𝑠𝑖 at 𝑡𝑛
𝑋 𝑡 Random variable: vehicle’s true location at 𝑡
𝑌 𝑡 Random variable: vehicle’s obfuscated location at 𝑡

	s
[𝑡1,𝑡𝑛]
𝑜 Observed locations

{
𝑠𝑡1𝑜 , ..., 𝑠𝑡𝑛𝑜

}
at 𝑡1, ..., 𝑡𝑛

	s
[𝑡1,𝑡𝑛]
𝑟 Real locations

{
𝑠𝑡1𝑟 , ..., 𝑠𝑡𝑛𝑟

}
at 𝑡1, ..., 𝑡𝑛

P𝑡,𝑡
′

Vehicle’s transition matrix from round 𝑡 to 𝑡 ′

𝑝𝑡,𝑡
′

𝑖,𝑗 Vehicle’s transition probability from 𝑠𝑖 to 𝑠 𝑗 from round 𝑡 to 𝑡 ′

… …

Observable states (obfuscated location)

Hidden States (true location)

Transition
probability …

Emission probability (obfuscation matrix)

Figure 3: Hidden Markov Model.

Assumption 2: The traffic flow information in the target re-

gion can be accessed by attackers [33, 36].

For modeling purposes, we discretize time in time slots {1, 2, ...}.
We consider the case that a vehicle reports its locations 𝑁 times

during its trip, where the report time slots are {𝑡1, ..., 𝑡𝑛, ..., 𝑡𝑁 }.

Note that the interval between adjacent report time slots may differ.

We let Z𝑡𝑛 =
{
𝑧𝑡𝑛𝑖, 𝑗

}
𝐾×𝐾

represent the obfuscation matrix at 𝑡𝑛

(𝑛 = 1, ..., 𝑁), where each 𝑧𝑡𝑛𝑖, 𝑗 denotes the probability of selecting

location 𝑠 𝑗 as the obfuscated location given the true location 𝑠𝑖 at

𝑡𝑛 . We let 𝑠𝑡𝑛𝑟 and 𝑠𝑡𝑛𝑜 denote the vehicle’s reported location and real

location at time 𝑡𝑛 . The sequence of the vehicle’s first 𝑛 reported

locations and the corresponding real locations are represented by

	s
[𝑡1,𝑡𝑛]
𝑜 =

{
𝑠𝑡1𝑜 , ..., 𝑠𝑡𝑛𝑜

}
and 	s

[𝑡1,𝑡𝑛]
𝑟 =

{
𝑠𝑡1𝑟 , ..., 𝑠𝑡𝑛𝑟

}
, respectively.

3.1 Hidden Markov Model

From the attacker’s perspective, vehicles’ reported (obfuscated)

locations are observable, while the vehicles’ true locations are hid-

den. Nevertheless, the vehicle’s obfuscated location is related to

its true location by following a probability distribution determined

by the obfuscation matrix Z𝑡𝑛 , which is also visible to the attacker

(Assumption 1). On the other hand, due to the constraints of the

vehicle traffic flows, the vehicle’s true locations in adjacent rounds

are spatially correlated. That is, the vehicle’s location in each round

is dependent on its location in the last round.

Accordingly, a hidden Markov model (HMM) offers the attacker a

straightforward model to characterize the aforementioned vehicles’

mobility features. As Figure 3 shows, we use two random variables

𝑋 𝑡 and 𝑌 𝑡 to denote the vehicle’s actual and reported locations

at time slot 𝑡 , where 𝑋 𝑡 and 𝑌 𝑡 are considered as its hidden and

observable states, respectively, and𝑋 𝑡 is assumed to follow aMarkov

process, i.e., 𝑋 𝑡 only depends on 𝑋 𝑡−1.

Figure 4: Heat map of the estimated transition probabilities

between the road segments in Shenzhen.

The parameters of a HMM are of two types, transition probabil-

ities and emission probabilities:

1) Emission probabilities describe the conditional distribution of

obfuscated location 𝑌 𝑡𝑛 given the vehicle’s true location 𝑋 𝑡𝑛 . Note

that the emission probabilities are visible by the attacker, since each

Pr
(
𝑌 𝑡𝑛 = 𝑠 𝑗

��𝑋 𝑡𝑛 = 𝑠𝑖
)
= 𝑧𝑡𝑛𝑖, 𝑗 is essentially an entry of the obfusca-

tion matrix Z𝑡𝑛 .

2) Transition probabilities describe the conditional distribution

of vehicle’s true location at 𝑡 , 𝑋 𝑡 , given the vehicle’s true location

at 𝑡 − 1, 𝑋 𝑡−1. We let the transition matrix P𝑡−1,𝑡 =
{
𝑝𝑡−1,𝑡𝑖, 𝑗

}
𝐾×𝐾

include the transition probabilities between the vehicle’s hidden

states from time 𝑡 − 1 to 𝑡 , where 𝑝𝑡−1,𝑡𝑖, 𝑗 = Pr
(
𝑋 𝑡 = 𝑠 𝑗 |𝑋

𝑡−1 = 𝑠𝑖
)
.

As introduced in Section 3.2, the transition matrix can be learned

via the vehicle traffic flow information, which is available to the

attacker (Assumption 2).

3.2 Transition Matrix Learning

The attacker can learn the transition matrices of vehicles in HMM

from vehicle traffic flow information. Specifically, attackers can ob-

tain traffic data using floating vehicle data, both historic, in the form

of trajectory datasets [33], and real-time, in the form of continuous

data streams [36]. Traffic datasets usually record the vehicles’ coor-

dinates along with timestamps, where time is (or can be) discretized

into slots (e.g., seconds [18]). The attacker can then calculate the

vehicle’s transition probability from location 𝑠𝑖 to location 𝑠 𝑗 during
the time slot 𝑡 by

𝑝𝑡−1,𝑡𝑖, 𝑗 =
of vehicles from 𝑠𝑖 to 𝑠 𝑗 from 𝑡 − 1 to 𝑡

of vehicles in 𝑠𝑖 at time 𝑡 − 1
. (5)

In Figure 4, we show an example of a heat map of the transi-

tion probabilities between adjacent road segments. The heat map is

created using a historical traffic flow dataset from Shenzhen [18]).

Note that vehicles typically do not report their locations in each

time point. Given that the vehicle𝑛th and (𝑛+1)th reports are at time

slots 𝑡𝑛 and 𝑡𝑛+1, respectively, the corresponding transition matrix

for the adjacent reports 𝑠𝑡𝑛𝑜 and 𝑠𝑡𝑛+1𝑜 , P𝑡𝑛,𝑡𝑛+1 , is calculated by

P𝑡𝑛,𝑡𝑛+1 =
∏𝑡𝑛+1−1

𝑡=𝑡𝑛 P𝑡,𝑡+1 . (6)

3.3 Location Tracking via TFA

Given the emission probabilities (obfuscation matrices Z𝑡𝑛), the

transmission probabilities P𝑡1,𝑡2 , ..., P𝑡𝑛−1,𝑡𝑛 , and the observed se-

quence 	s
[𝑡1,𝑡𝑛]
𝑜 , the task of the attacker is to derive the maximum

likelihood estimate of the vehicle’s real trajectory 	s
[𝑡1,𝑡𝑛]
𝑟 .

To infer a vehicle’s real trajectory 	s
[𝑡1,𝑡𝑛]
𝑟 , the attacker can use

a hidden state sequence inference algorithm, such as the Viterbi

TrafficAdaptor: An Adaptive Obfuscation Strategy for Vehicle Location Privacy Against Traffic Flow Aware Attacks SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA

algorithm [10]. Viterbi provides an efficient way of finding the

hidden state sequence with the maximum posterior given the ob-

servable states in HMM2. Given the observed location sequence

	s
[𝑡1,𝑡𝑛]
𝑜 =

{
𝑠𝑡1𝑜 , ..., 𝑠𝑡𝑛𝑜

}
, the Viterbi algorithm uses a dynamic pro-

gramming approach to find the most likely real location sequence

	s
[𝑡1,𝑡𝑛]
𝑟 =

{
𝑠𝑡1𝑟 , ..., 𝑠𝑡𝑛𝑟

}
, namely the Viterbi path. We let 𝑣𝑡𝑛𝑗 represent

the probability that the vehicle’s 𝑛th hidden state is at 𝑠 𝑗 given the

first 𝑛−1 observations
{
𝑠𝑡1𝑜 , ..., 𝑠𝑡𝑛−1𝑜

}
, and passing through the most

probable state sequence 	s, i.e.,

𝑣𝑡𝑛𝑗 = max
	s∈S𝑛−1

Pr

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
{
𝑋 𝑡1 ...𝑋 𝑡𝑛−1

}
= 	s, 𝑋 𝑡𝑛 = 𝑠 𝑗︸�������������������������������︷︷�������������������������������︸

hidden states

���������
{
𝑌 𝑡1 ...𝑌 𝑡𝑛−1

}
= 	s

[𝑡1,𝑡𝑛−1]
𝑜︸����������������������������︷︷����������������������������︸

observations

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
(7)

The value of each cell 𝑣𝑡𝑛𝑗 in iteration 𝑛 is computed recursively

based on the cells calculated in iteration 𝑛 − 1: 𝑣𝑡𝑛−11 , ..., 𝑣𝑡𝑛−1𝐾 :

𝑣𝑡𝑛𝑗 = max
𝑠𝑘 ∈S

𝑣𝑡𝑛−1
𝑘

𝑝𝑡𝑛−1,𝑡𝑛
𝑘,𝑗

𝑧 𝑗,𝑜𝑡𝑛 . (8)

Finally, the Viterbi path, or the estimated real trajectory, can be

retrieved by saving back pointers that remember which state was

used in Equ. (8).

We evaluate the ability of TFA in tracking vehciles’ locations

in Section 5.1. The experimental results show that TFA can track

vehicles’ locations more accurately compared with the current state

of art inference algorithm such as the optimal inference algorithms

[23, 35] and temporal correlation aware inference algorithms [7].

4 LOCATION PRIVACY PROTECTION VIA
FAKE TRAJECTORIES

In this section, we introduce a new location obfuscation strategy,

called FTraj, to ensure that the generated obfuscated locations fol-

low realistic vehicle traffic flows. The basic idea of FTraj is to let the

vehicle generate fake trajectories that follow realistic traffic flows

when the vehicle is driving. Then, the vehicle report the current

locations of fake trajectories when requested. Since the reported

locations are from trajectories following realistic traffic flows, they

are hard to be eliminated by TFA.

Note that to limit quality loss, fake trajectories are required to be

within a certain range of the vehicle’s real locations in each time slot.

Such a requirement, however, is hard to satisfy if an insufficient

number of fake trajectories is maintained, considering that the

vehicle’s mobility might be unpredictable (i.e., before the vehicle is

assigned a task, its future route is undetermined). For example, a

fake trajectory originally close to the vehicle may inevitably deviate

far away from the vehicle after the time slot 𝑡 . As a solution, we let
the vehicle maintain a sufficiently large pool of fake trajectories,

and select one to report when requested. Before introducing the

details of the algorithm, we first give the formal definition of fake

trajectory in Definition 4.1:

Definition 4.1. Given a time interval [𝑡𝑎, 𝑡𝑏] and the correspond-
ing learned transition matrices P𝑡𝑎,𝑡𝑎+1 , ..., P𝑡𝑏−1,𝑡𝑏 , a fake trajectory

2Note that other algorithms or simpler heuristic may be used by an attacker. Viterbi is
seen as a standard and sound approach for this type of reverse engineering, as such it
can be considered as the worst case scenario algorithm.

Table 2: Main notations and definitions in Section 4.

Symbol Description

	s
[𝑡𝑎,𝑡]
𝑓

A fake trajectory during the time interval [𝑡𝑎, 𝑡]

𝑠𝑡𝑓 Location of 	s
[𝑡𝑎,𝑡𝑏]
𝑓

at time 𝑡

F[𝑡𝑎,𝑡] Set of fake trajectories during time interval [𝑡𝑎, 𝑡]

O
[𝑡𝑎,𝑡−1]
𝑓𝑖

Offsprings of the fake trajectory 	s
[𝑡𝑎,𝑡−1]
𝑓𝑖

𝑀 The maximum number of fake trajectories in the pool

Γ Predetermined constant to limit quality loss caused by

each location in fake trajectory

time

New fake
trajectories after

Candidate locations

Figure 5: Basic idea of FTraj.

	s
[𝑡𝑎,𝑡𝑏]
𝑓

is a sequence of locations 	s
[𝑡𝑎,𝑡𝑏]
𝑓

=
{
𝑠𝑡𝑎
𝑓
, 𝑠𝑡𝑎+1
𝑓

, ..., 𝑠𝑡𝑏
𝑓

}
such

that 1) each location 𝑠𝑡
𝑓
is generated at each time slot 𝑡 (𝑡 = 𝑡𝑎 , 𝑡𝑎 + 1,

..., 𝑡𝑏), and 2) and the transition from each 𝑠𝑡−1
𝑓

to 𝑠𝑡
𝑓
follows a realistic

traffic flow, i.e., the transition probability from 𝑠𝑡−1
𝑓

to 𝑠𝑡
𝑓
, denoted by

𝑝𝑡−1,𝑡
𝑠𝑡−1
𝑓

,𝑠𝑡
𝑓

(𝑡 = 𝑡𝑎, 𝑡𝑎 + 1, ..., 𝑡𝑏 − 1), is non-zero.

Table 2 lists the additional notations used in this section.

4.1 Fake Trajectory Pool

When the vehicle starts its trip, the vehicle selects a single location

as the starting point of all the fake trajectories. Like [23, 30], the

location is selected in a probabilistic manner via an obfuscation

matrix Z1, generated by the server and downloaded by the vehicle.

Subsequently, the vehicle needs to generate/update a fake tra-

jectory pool during each consecutive location reports. As opposed

to the obfuscation matrix calculated by the server, fake trajectory

pools are generated at the vehicle side using local traffic flow infor-

mation. Figure 5 gives a brief idea: Suppose that the last time the

vehicle reports its obfuscated location 𝑠𝑡𝑎
𝑓

is at time 𝑡𝑎 . After 𝑡𝑎 , the

vehicle generates and maintains the fake trajectories {1, 2, 3}, all of
which start from 𝑠𝑡𝑎

𝑓
and follow realistic routes. At the next report

time 𝑡𝑏 , the current locations of all the fake trajectories are the

candidate locations, from which the vehicle randomly select one to

report. In this example, the vehicle selects trajectory 2, and reports

its current location 𝑠𝑡𝑏
𝑓

to the server. After 𝑡𝑏 , the vehicle clears

the existing fake trajectories in the pool and generates a pool of

new fake trajectories which all start from 𝑠𝑡𝑏
𝑓
, until the next report.

As the vehicle applies the same strategy during each consecutive

report, without losing the generality, next we only consider the

fake trajectory generation/update during [𝑡𝑎, 𝑡𝑏].

Pool update. The pool is updated using an algorithm inspired by

natural selection principles: In each round, trajectories within a

certain distance from the current real location will survive and

generate a set of new trajectories for the following round, while

SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA ∗Chenxi Qiu, †Li Yan, ‡Anna Squicciarini, �Juanjuan Zhao, ⊥Chengzhong Xu, ‡Primal Pappachan

other trajectories will die off and be removed from the candidate

pool (see the example in Figure 6). Specifically, in each time slot,

the pool update is composed of reproduction and elimination:

S1. Reproduction (see Figure 6(a)). We let F [𝑡𝑎,𝑡] denote the fake

trajectory pool during [𝑡𝑎, 𝑡] (𝑡𝑎 ≤ 𝑡 ≤ 𝑡𝑏). For each fake tra-

jectory 	s
[𝑡𝑎,𝑡−1]
𝑓

=
{
𝑠𝑡𝑎
𝑓
, ..., 𝑠𝑡−1

𝑓

}
∈ F [𝑡𝑎,𝑡−1] , the vehicle extends

	s
[𝑡𝑎,𝑡−1]
𝑓

by adding a new location 𝑠𝑡
𝑓
that is reachable by 𝑠𝑡−1

𝑓
, i.e.,

𝑝𝑡−1,𝑡
𝑠𝑡−1
𝑓

,𝑠𝑡
𝑓

> 0. Here, in each time slot 𝑡 , we assume that the transition

matrix P𝑡−1,𝑡 is available to the vehicle3. In the transition matrix,

the vehicle only needs to retrieve the transition probabilities from

𝑠𝑡−1
𝑓

(the last location in the fake trajectory 	s𝑓 [𝑡𝑎,𝑡−1]) to all other

locations 𝑠1, ..., 𝑠𝐾 , denoted by

[
𝑝𝑡−1,𝑡
𝑠𝑡−1
𝑓

,𝑠1
, ..., 𝑝𝑡−1,𝑡

𝑠𝑡−1
𝑓

,𝑠𝐾

]
. Moreover, we

enforce a constraint to limit the QL caused by each 𝑠𝑡
𝑓
:

QL
(
𝑠𝑡𝑓

)
≤ Γ, (QL (·) is define in Equ. (3)) (9)

where Γ is a predetermined constant. Trajectories with the current

locations not satisfying Equ (9) will not be considered even it is not

the time slot to report the location, since the pool can only maintain

a limited number of candidate trajectories and trajectories already

deviated far away from the real trajectory is less likely to generate

high QoS in the future.

The newly generated fake trajectory 	s
[𝑡𝑎,𝑡]
𝑓

=
{
𝑠𝑡𝑎
𝑓
, ..., 𝑠𝑡

𝑓

}
is

called an offspring of 	s
[𝑡𝑎,𝑡−1]
𝑓

. Given the transition matrix P𝑡−1,𝑡

and the constant Γ, we can find the set of possible locations to

generate an offspring of 	s
[𝑡𝑎,𝑡−1]
𝑓

,

R
(
	s
[𝑡𝑎,𝑡−1]
𝑓

)
=
{
𝑠 𝑗 ∈ S

���𝑝𝑡−1,𝑡
𝑓 𝑡−1, 𝑗

> 0, QL
(
𝑠 𝑗
)
≤ Γ

}
. (10)

S2. Elimination (see Figure 6(b)). Due to tractability limitations,

the vehicle may not add all the locations in R
(
	s
[𝑡𝑎,𝑡−1]
𝑓

)
to the

current fake trajectories; as the number of fake trajectories might

increase exponentially over time. Therefore, after adding the loca-

tions to the existing fake trajectories, the vehicle needs to remove

fake trajectories with low privacy guarantees (measured by EIE in

Equ. (2)) and high quality loss. Specifically, we define the fitness

value of the current location 𝑠𝑙
𝑓
of the fake trajectory 	s

[𝑡𝑎,𝑡]
𝑓

Fit
(
𝑠𝑙
𝑓

)
= 𝛼eEIE

(
𝑠𝑡
𝑓

)
− 𝛼qQL

(
𝑠𝑡
𝑓

)
, (11)

to evaluate both EIE and quality loss caused by its current location

𝑠𝑡
𝑓
, where 𝛼e and 𝛼q denote the weights of EIE and quality loss in

the fitness value, respectively. The vehicle only maintains the fake

trajectories with top𝑀 fitness values in the pool, where𝑀 is the

pool capacity. The trajectory pool at each time 𝑡 can be represented

by
F [𝑡𝑎,𝑡] =

{
	s
[𝑡𝑎,𝑡]
𝑓1

, ..., 	s
[𝑡𝑎,𝑡]
𝑓𝑀

}
, (12)

where each 	s
[𝑡𝑎,𝑡]
𝑓𝑖

=
{
𝑠𝑡𝑎
𝑓𝑖
, ..., 𝑠𝑡

𝑓𝑖

}
(𝑖 = 1, ..., 𝑀).

3The vehicle can obtain the transition matrix either by using historical data [33], or
by downloading it from the server.

4.2 Pool Update Algorithm

In each time slot 𝑡 , we let the vehicle store the location information

of each fake trajectory 	s
[𝑡𝑎,𝑡]
𝑓𝑖

as a node or triple, Figure 6(c) shows:(
𝑠𝑡
𝑓𝑖
, 𝑠𝑡−1
𝑓𝑖

, Fit
(
𝑠𝑡
𝑓𝑖

))
, including (i) 	s

[𝑡𝑎,𝑡]
𝑓𝑖

’s current location 𝑠𝑡
𝑓𝑖
, (ii) its

previous location 𝑠𝑡−1
𝑓𝑖

, and (iii) its fitness value Fit
(
𝑠𝑡
𝑓𝑖

)
. The nodes

of different trajectories at round 𝑡 are stored in amin heap q𝑡 , which

is efficient in finding the top𝑀 elements from a set [5]. q𝑡 has two

features: (F1) the top node of q𝑡 has the minimum fitness value;

(F2) two types of operations can be conducted on q𝑡 : push (i.e., to

insert a new node to q𝑡) and pop (i.e., to remove the top node from

q𝑡). The time complexity of both types of operations is 𝑂 (log𝑀).

Both pop and push operations won’t change feature F1 of q𝑡 .

Algorithm 1 shows the pseudo code of the pool update: q𝑡 is

initialized by empty (line 1). If it is the first time slot after that

the vehicle reports the location, i.e., 𝑡 = 𝑡𝑎 + 1 (line 2), FTraj ran-

domly picks up𝑀 locations around the current true location: 𝑠𝑡𝑎
𝑓1
,

..., 𝑠𝑡𝑎
𝑓𝑀

(line 3), calculates their fitness values Fit
(
𝑠𝑡𝑎
𝑓1

)
, ..., Fit

(
𝑠𝑡𝑎
𝑓𝑀

)
,

and pushes the corresponding nodes
(
𝑠𝑡𝑎
𝑓𝑖
, 𝜙, Fit

(
𝑠𝑡𝑎
𝑓𝑖

))
(𝑖 = 1, ..., 𝑀)

sequentially onto q𝑡𝑎 (line 4 – 6).

After the first time slot, the candidate pool F [𝑡𝑎,𝑡] is updated

from F [𝑡𝑎,𝑡−1] via two steps: reproduction and elimination:

S1. Reproduction (line 8–12). Using the transition matrix, the

vehicle extends each candidate trajectory 	s
[𝑡𝑎,𝑡−1]
𝑓𝑖

∈ F [𝑡𝑎,𝑡−1] to

each of the locations in R
(
	s
[𝑡𝑎,𝑡−1]
𝑓𝑖

)
, i.e., the set of locations that

can be reached by 	s
[𝑡𝑎,𝑡−1]
𝑓𝑖

. We can then obtain the set of 	s
[𝑡𝑎,𝑡−1]
𝑓𝑖

’s

offsprings):

O
[𝑡𝑎,𝑡−1]
𝑓𝑖

=
{{
	s
[𝑡𝑎,𝑡−1]
𝑓𝑖

, 𝑠 𝑗
} ���𝑠 𝑗 ∈ R

(
	s
[𝑡𝑎,𝑡−1]
𝑓𝑖

) }
. (13)

S2. Elimination (line 13–22). Reproduction generates a set of new

fake trajectories F ′[𝑡𝑎,𝑡] = ∪𝑀
𝑖=1O

[𝑡𝑎,𝑡−1]
𝑓𝑖

. To eliminate the the

trajectories with low fitness values, the vehicle ranks all the trajec-

tories in F ′[𝑡𝑎,𝑡] by their fitness values (defined by Equ. (11)) and

only keeps the top𝑀 ones.

Specifically, for each location 𝑠 𝑗 ∈ R
(
	s
[𝑡𝑎,𝑡−1]
𝑓𝑖

)
, FTraj calculates

its fitness value Fit
(
𝑠 𝑗
)
(line 16). The first 𝑀 nodes are pushed

directly onto q𝑡 (line 18). Once q𝑡 reaches its capacity, i.e., |q𝑡 | = 𝑀 ,

FTraj first checks whether the top node in q𝑡 has higher fitness

value than the new node 𝑞𝑡new with Fit
(
𝑠 𝑗
)
(line 20): If NO, 𝑞𝑡new

won’t be pushed onto q𝑡 , since 𝑞𝑡new has a lower fitness value than

any of the 𝑀 nodes in q𝑡 ; otherwise, 𝑞𝑡top will be popped off and

𝑞𝑡new =

(
𝑠𝑓 𝑡−1

𝑗′
, 𝑠 𝑗 , Fit

(
𝑠 𝑗
))

will be pushed onto q𝑡 . 𝑞𝑡top cannot be

one of the 𝑀 highest nodes, since 𝑞𝑡top has a lower fitness value

than 𝑞𝑡new’s and the other𝑀 − 1 nodes in q𝑡 (based on feature F1).

Time complexity. Suppose that there are 𝑈 locations in each

R
(
	s
[𝑡𝑎,𝑡−1]
𝑓𝑖

)
. To obtain q𝑡 , it takes up to 𝑈𝑀 push/pop operations,

which amounts to 𝑂 (𝑈𝑀 log𝑀) operations. As both𝑀 and𝑈 are

not large in practical (𝑀 = 100 and𝑈 ≤ 300 in the experiment in

Section 5), such a computation load is acceptable to mobile devices

like smartphones.

TrafficAdaptor: An Adaptive Obfuscation Strategy for Vehicle Location Privacy Against Traffic Flow Aware Attacks SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA

s13

s11
s1

s16

s15

s5

s12
s14

s7

(s13, ,0.2)
(s16, ,0.5)
(s12, ,0.1)

(s1,s11,0.8)
(s5,s15,0.9)
(s7,s14,1.1)

(s2,s1,4.1)

(s4,s1,2.5)
(s3,s1,1.7)

(s6,s5,3.4)

(s8,s7,4.2)

(s9,s7,1.6)

…

(c) Min heap implementation

time slot t-1 time slot t

s13

s11
s1 s2

s3s4

s16

s15

s5
s6

s12
s14

s7
s8s9

(a) Production

s13

s11
s1 s2

s16

s15

s5
s6

s12
s14

s8s7

(b) Elimination

(s2,s1,4.1)
(s6,s5,3.4)

(s8,s7,4.2)

time slot t

(s4,s1,2.5)
(s3,s1,1.7)
(s9,s7,1.6)

qt-1 qt qt

Eliminated

Figure 6: Example of fake trajectorymaintenance: In round 𝑡 , there
are three fake trajectories 	s𝑓1 = {𝑠12, 𝑠14, 𝑠7 }, 	s𝑓2 = {𝑠13, 𝑠11, 𝑠1 }, and
	s𝑓3 = {𝑠16, 𝑠15, 𝑠5 }.
(a) Reproduction: 	s𝑓2 has three possible locations to move to: 𝑠2, 𝑠3,
and 𝑠4, and hence 	s𝑓2 has three offsprings: {	s𝑓2 , 𝑠2 }, {	s𝑓2 , 𝑠3 }, and
{	s𝑓2 , 𝑠4 }. Similarly, 	s𝑓1 has two offsprings: {	s𝑓1 , 𝑠8 } and {	s𝑓1 , 𝑠9 }; 	s𝑓3
has one offspring: {	s𝑓3 , 𝑠6 }.
(b) Elimination: Among the 6 offsprings generated at time slot 𝑡𝑛 ,
3 offsprings with lower fitness values {	s𝑓1 , 𝑠9 }, {	s𝑓2 , 𝑠3 }, and {	s𝑓2 , 𝑠4 }
are eliminated from the pool.

4.3 Obfuscated Location Selection
At time slot 𝑡 , we use S𝑡

can denote the set of current locations of

the fake trajectories in the vehicles’ trajectory pool, including the

vehicle’s real location, i.e.,

S𝑡
can =

{
𝑠𝑡𝑓𝑖 ∈ S

���	s[𝑡𝑎,𝑡]𝑓𝑖
∈ F [𝑡𝑎,𝑡]

}
∪ 𝑠𝑡𝑟 (14)

When the vehicle reports the location at 𝑡𝑏 , it randomly selects

one of the locations in S
𝑡𝑏
can as the obfuscated location to report.

The first objective of location selection is to satisfy 𝜖-GI (Defini-
tion 2.1), i.e., the attacker’s perspective, any pair of locations in

S
𝑡𝑏
can are hard to be distinguished given the vehicle’s reported lo-

cations. We let the decision variable 𝑧𝑖, 𝑗 (𝑠𝑖 , 𝑠 𝑗 ∈ S
𝑡𝑏
can) represent

the probability of selecting location 𝑠 𝑗 given the real location 𝑠𝑖
and let Z =

{
𝑧𝑖, 𝑗

}
(𝑀+1)×(𝑀+1) represent the location obfuscation

matrix. According to Definition 2.1, for each pair of 𝑠𝑖 , 𝑠 𝑗 ∈ S
𝑡𝑏
can,

the 𝜖-GI constraint 𝑧𝑖,𝑘 ≤ 𝑒𝜖𝑑 (𝑠𝑖 ,𝑠 𝑗)𝑧 𝑗,𝑘 needs to be satisfied for

each obfuscated location 𝑠𝑘 ∈ S
𝑡𝑏
can.

Besides GI, the location obfuscation matrix Z aims to achieve the

highest expected fitness value, calculated by
∑
𝑖, 𝑗 Pr (𝑋 = 𝑠𝑖) 𝑧𝑖, 𝑗Fit

(
𝑠 𝑗
)
.

Finally, the derivation of the optimal Z can be formulated as a linear

programming (LP) problem:

max
∑
𝑖, 𝑗

Pr (𝑋 = 𝑠𝑖) 𝑧𝑖, 𝑗Fit
(
𝑠 𝑗
)

(15)

s.t. 𝑧𝑖,𝑘 ≤ 𝑒𝜖𝑑 (𝑠𝑖 ,𝑠 𝑗)𝑧 𝑗,𝑘 ,∀𝑖, 𝑗, 𝑘 . (16)

𝑀∑
𝑘=1

𝑧𝑖,𝑘 = 1,∀𝑖, 0 ≤ 𝑧𝑖,𝑘 ≤ 1,∀𝑖, 𝑘 . (17)

where Equ. (16) represents the GI constraints, and Equ. (17) in-

dicates that, for each real trajectory 	s
[𝑡𝑎,𝑡]
𝑓𝑖

, the sum probability

of selecting all candidate locations in S𝑡
can is equal to 1 [25]. The

problem formulated by Equ. (15)-(17) can be solved using the LP

standard algorithms, like the simplex method or the interior point

algorithm [15].

Algorithm 1: Fake trajectory pool update.

Input :𝑡 , q1, ..., q𝑡−1, 𝑠𝑡𝑎
𝑓

Output :q𝑡

1 q𝑡 is initialized by empty;

2 if 𝑡 = 𝑡𝑎 + 1 then

3 Randomly pick up𝑀 locations around 𝑠𝑡𝑎
𝑓
: 𝑠𝑡𝑎

𝑓1
, ..., 𝑠𝑡𝑎

𝑓𝑀
;

4 for each 𝑠𝑡𝑎
𝑓𝑖

(𝑖 = 1, ..., 𝑀) do

5 Calculate 𝑠𝑡𝑎
𝑓𝑖
’s fitness value Fit

(
𝑠𝑡𝑎
𝑓𝑖

)
using Equ. (11);

6 q𝑡 .push(
(
𝑠𝑡𝑎
𝑓𝑖
, 𝜙, Fit

(
𝑠𝑡𝑎
𝑓𝑖

))
);

7 else
8 // S1: Reproduction

9 for each
(
𝑠𝑡𝑓𝑖

, 𝑠𝑡−1𝑓𝑖′
, Fit

(
𝑠𝑡𝑓𝑖

))
in q𝑡−1 do

10 Initialize the location set R
(
	s
[𝑡𝑎,𝑡−1]
𝑓𝑖

)
by an empty set;

11 for each 𝑠 𝑗 ∈ S with 𝑝𝑡−1,𝑡
𝑓 𝑡−1𝑖 ,𝑗

> 0 do

12 Add 𝑠 𝑗 to R
(
	s
[𝑡𝑎,𝑡−1]
𝑓𝑖

)
;

13 // S2: Elimination

14 for each
(
𝑠𝑡𝑓𝑖

, 𝑠𝑡−1𝑓𝑖′
, Fit

(
𝑠𝑡𝑓𝑖

))
in q𝑡−1 do

15 for ∀𝑠 𝑗 ∈ R
(
	s
[𝑡𝑎,𝑡−1]
𝑓𝑖

)
do

16 Calculate 𝑠 𝑗 ’s fitness value Fit
(
𝑠 𝑗
)
using Equ. (11);

17 if
��q𝑡 �� < 𝑀 then

18 q𝑡 .push(

(
𝑠𝑡−1𝑓𝑗′

, 𝑠 𝑗 , Fit
(
𝑠 𝑗
))
);

19 else
20 if q𝑡 .top() has higher fitness value than Fit

(
𝑠 𝑗
)
then

21 q𝑡 .pop();

22 q𝑡 .push(𝑠𝑡−1𝑓𝑗′
, 𝑠 𝑗 , Fit

(
𝑠 𝑗
)
);

23 return q𝑡 ;

5 EXPERIMENTAL VALIDATION

In this section, we evaluate the performance of the Traffic Flow

Aware (TFA) inference attack in Section 5.1 and our new location

obfuscation algorithm (FTraj) in Section 5.24. We carry out an exten-

sive evaluation using a real dataset, containing the GPS records of

around 28,000 vehicles. The benchmarks in our experiment, includ-

ing both inference attacks and obfuscation algorithms, are listed

as follows:

A) Inference attack algorithm. In Section 5.1, we compare our

inference attack algorithm with the following two benchmarks:

(i) Bayesian inference attack (Bayes) [22, 35]. According to the vehi-

cle’s reported locations, Bayes first derives the posterior of a target

vehicle’s real location via Bayes’ theorem. It then estimates the

vehicle’s real location by finding the location 𝑠 ∈ S that minimizes

the EIE, i.e.,

𝑠 = argmin𝑠𝑟 ∈S
∑
𝑠𝑘 ∈S Pr

(
𝑌 𝑡𝑛 = 𝑠𝑘 |𝑋

𝑡𝑛 = 𝑠𝑙
)
𝑑 (𝑠𝑟 , 𝑠𝑘). (18)

(ii) Temporal Correlation Aware (TCA) inference attack [7], where

4The research artifacts are available to download from [29].

SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA ∗Chenxi Qiu, †Li Yan, ‡Anna Squicciarini, topJuanjuan Zhao, ⊥Chengzhong Xu, ‡Primal Pappachan

dependencies between vehicles’ reported locations at consecutive

time points are considered. TCA assumes that vehicles’ mobility

follows a Markov process, but without using the vehicle traffic

flow information. We let TCA estimate the vehicles’ locations using

HMM, where the transition matrix of the Markov chain is learnt

based on the vehicles’ reported locations using the maximum like-

lihood estimation.

B) Obfuscation algorithms. In Section 5.2, we compare our lo-

cation obfuscation algorithm with the following state-of the-art

algorithms, both of which obfuscate vehicles’ locations indepen-

dently per round:

(i) Planar Laplacian noise (Laplace) [1], where the obfuscation prob-

abilities are calculated by Pr
(
𝑌 𝑡𝑛 = 𝑠 𝑗 |𝑋

𝑡𝑛 = 𝑠𝑖
)
∝ 𝑒−𝜖

𝑑 (𝑠𝑗 ,𝑠𝑖)

𝐿max . Here,

𝜖 is the privacy budget defined in Equ. (1), i.e., higher 𝜖 implies

more information to be disclosed. 𝐿max is the maximum distance

between any two locations in the target region.

(ii) LP based Obfuscation (LPO) [22], which follows a linear pro-

gramming framework. The objective is to minimize the quality loss

of a single vehicle with the 𝜖-GI constraints being satisfied (defined
in Equ. (1)). LPO, as compared to Laplace model, also accounts for

network-constrained mobility features.

We measure the following two metrics:

(i) Privacy level, measured by EIE (Equ. (2)).

(ii) Quality loss (estimation error of traveling distance), defined as the

expected distortion of estimated traveling distance by the server

(Equ. (4)). Here, we assume the tasks are uniformly distributed over

the location set S.

Dataset. The dataset used for our experiments includes themobility

records of vehicles from Jan 1, 2015 to Dec 31, 2015, including:

(1) Taxicab Dataset, which records the status (e.g., timestamp, GPS

position, velocity, occupancy) of 15,610 taxicabs.

(2) Dada Car Dataset, provided by the Dada Car corporation (a cus-

tomized transit service similar to UberPool). It records the status

(e.g., timestamp, position, velocity) of 12,386 customized transit

service vehicles.

(3) Road Map. The road map of Shenzhen is obtained from Open-

StreetMap [21]. According to the municipal information of Shen-

zhen [18], we use a bounding boxwith coordinate (𝑙𝑎𝑡 = 22.4450, 𝑙𝑜𝑛 =
113.7130) as the south-west corner, and coordinate (𝑙𝑎𝑡 = 22.8844, 𝑙𝑜𝑛 =
114.5270) as the north-east corner, which covers an area of around

2,926km2, to crop the road map data.

We utilized a 117 TB Hadoop Distributed File System (HDFS)

[2] on a cluster consisting of 51 nodes to efficiently manage these

datasets. Each node is equipped with 28 cores and 64 GB RAM. All

data processing and analysis is accomplishedwith Apache Spark [3],

which is a fast in-memory cluster computing system, deployed over

the Hadoop cluster.

5.1 Trajectory Inference Algorithms
We first test the accuracy of our trajectory inference algorithm TFA.

In what follows, we set the parameters 𝜖 = 100/km, Γ = 1𝑘𝑚, and

𝑀 = 100 in TFA. Using the vehicles’ historical traffic records in

Shenzhen [18], we can train the HMM transition matrices of TFA

over time by Equ. (5). Figure 4 shows a heat map of the transition

probabilities between the adjacent road segments in Shenzhen.

We pick up 42 taxicab traces from the dataset and consider them

as the trajectories of the target vehicles. Figure 7(a)(b) compare the

10 20 30 40
Trace Index

0

0.05

0.1

0.15

0.2

0.25

0.3

EI
E

(k
m

)

TFA
TCA
Bayes

FTA
TCA

Bay
es

(a) Obfuscated by Laplace

10 20 30 40
Trace Index

0

0.05

0.1

0.15

0.2

0.25

0.3

EI
E

(k
m

)

TFA
TCA
Bayes

TFA
TCA

Baye
s

(b) Obfuscated by LPO

Figure 7: Comparison of EIE between TFA, TCA, and Bayes.

EIE of TFA, TCA, and Bayes when the vehicles’ locations are obfus-

cated by Laplace and LPO, respectively. Without loss of generality,

we sort the vehicle traces according to the EIE achieved by Bayes

on the left side of the figure. On the right side, we show the box plot

(variability) of the three algorithms’ EIE. From both Figure 7(a)(b),

we can find that TFA, as a traffic flow aware inference attack, has

significant higher inference accuracy than Bayes and TCA. When

applying Laplace and LPO for location obfuscation, the EIE of TFA

is 87.97% and 86.58% lower than that of Bayes’, and 58.45% and

66.85% lower than that of TCA, respectively. Compared with Bayes,

TFA can eliminate more “impossible trajectories” by considering

the temporal correlation of vehicles’ consecutive reported locations.

Although both TFA and TCA consider the dependency of vehicles’

reported locations, TFA additionally considers the restrictions of

traffic flows on vehicles’ mobility. Therefore, TFA can achieve lower

EIE by further shrinking the searching range of the vehicle’s real

trajectory. Our results, as shown, also demonstrate that classic lo-

cation obfuscation methods, like Laplace and LPO, are insufficient

to protect vehicles’ location privacy from the inference attack.

Next, we measure how 𝜖 impacts the EIE of TFA, TCA, and Bayes.

Recall that the privacy level in 𝜖-GI is quantified by the parameter 𝜖 .
The results are reported in Figure 8(a)(b), where 𝜖 is changed from 50

to 100. The target vehicles’ locations are obfuscated by Laplace and

LPO in Figure 8(a)(b), respectively. Not surprisingly, EIE decreases

with the increase of 𝜖 in both figures, since higher 𝜖 allows less

deviation from obfuscated locations to real locations. However, the

impact of 𝜖 on TFA and TCA is not as significant as it is on Bayes,

i.e. when an obfuscated location has a higher deviation from the

real location, it has less correlation with the last reported location,

and hence it is more likely to be eliminated by both TFA and TCA.

5.2 Location Obfuscation Algorithms

We now test the performance of our obfuscation algorithm FTraj

in terms of both privacy and quality loss, by comparing it with

two benchmarks: Laplace and LPO. We use our own TFA as the

inference algorithm to estimate vehicles’ locations.

Figure 9(a) compares the EIE of the three obfuscation algorithms

in the 42 taxicab traces. Without loss of generality, we sort the ve-

hicle traces according to the EIE achieved by FTraj on the left side

of the figure. On the right side, we show the box plot (variability)

of the three algorithms’ EIE. The figure demonstrates that FTraj

outperforms Laplace and LPO in terms of EIE: On average, the EIE

of FTraj is 560.55% and 558.34% higher than that of Laplace and LPO,

respectively. As introduced in Section 4, FTraj can offer stronger

privacy guarantees (EIE) because it obfuscates vehicles’ locations

via fake trajectories that follow realistic traffic flows. Hence, the

TrafficAdaptor: An Adaptive Obfuscation Strategy for Vehicle Location Privacy Against Traffic Flow Aware Attacks SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA

0.05

0.1

0.1
0.15
0.2

EI
E

(k
m

)

50 55 60 65 70 75 80 85 90 95 10
0

0.2
0.3
0.4

Bayes

FA

TCA

(a) Obfuscated by Laplace

0.02
0.04
0.06
0.08

0.1
0.15
0.2

EI
E

(k
m

)

50 55 60 65 70 75 80 85 90 95 10
0

0.2
0.3
0.4

Bayes

TCA

T A

(b) Obfuscated by LPO

Figure 8: EIE of TFA, TCA, and Bayes with different 𝜖.

10 20 30 40

Trace index

0

0.05

0.1

0.15

0.2

EI
E

(k
m

)

FTraj
Laplace
LPO

FTraj
Laplace

LPO

(a) Expected inference error (EIE)

10 20 30 40

Trace index

0

0.2

0.4

0.6

0.8

Qo
S

los
s (

km
)

FTraj
Laplace
LPO

FTraj
Laplace

LPO

(b) Quality loss

Figure 9: Comparison of different obfuscation algorithms.
*Vehicle trace indices are sorted by the quality loss caused by FTraj.

0 20 40 60
of reports

0

0.2

0.4

0.6

EI
 (k

m
)

0 20 40 60 80 0 20 40 60

(a) FTraj (b) Laplace
of reports # of reports

(c) LPO

Corr = -0.2534Corr = -0.2611Corr = -0.0256

Figure 10: Comparison of the correlation between EIE and

report frequency.

obfuscated locations generated by FTraj are hard to distinguish

from the vehicles’ real locations by TFA. Figure 9(b) compares the

quality loss of the three algorithms. As shown, Laplace > FTraj ≈

LPO in terms of quality loss. On average, the quality loss caused

by FTraj is 28.94% lower than the quality loss of Laplace, and 9.47%

higher than that of LPO. Laplace has higher quality loss than both

FTraj and LPO as it simply considers users’ mobility on a 2D plane,

in which the sensitivity of quality loss to location obfuscation is

different than in a road network. Due to the restriction of the road

network, a small location deviation on the 2D plane may lead to

a significant difference in estimated traveling distance over roads

(e.g., when a vehicle has to take a detour to reach a nearby desti-

nation). Therefore, obfuscated locations generated by Laplace are

more likely to generate a high traveling cost. Although LPO has a

slightly lower quality loss than FTraj, LPO minimizes quality loss

at the expense of privacy (EIE), as demonstrated in Figure 9(a).

We note that in the dataset, the number of vehicles’ location

reports in any given time interval varies across different traces, as

vehicles report their locations with different frequencies. Therefore,

it is interesting to check how the report frequency impacts the EIE

when FTraj, Laplace, and LPO are applied to obfuscate vehicles’

locations. Figure 10(a)(b)(c) depicts the correlation between EIE

and the report frequency when vehicles’ locations are obfuscated

by the three algorithms. The figure indicates that (1) the EIE of

both Laplace and LPO is negatively correlated with the vehicles’

report frequency, while (2) no significant correlation can be found

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

 (km)

0.1

0.2

0.3

0.4

EI
E

(k
m

)

(a) Varying Γ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

 (km)

0.15

0.2

0.25

0.3

Q
oS

 lo
ss

 (k
m

)

(b) Varying Γ

Figure 11: EIE of FTraj given different Γ.

between FTraj’s EIE and report frequency. Observation (1) stems

from the fact that when the report frequency is higher, the hidden

states of adjacent reports are more likely to be closely correlated,

and accordingly the attacker is more likely to recover the vehicles’

real locations (hidden states) by eliminating unlikely obfuscated

locations. As for (2), as fake trajectories generated by FTraj follow

realistic traffic flows, the attacker cannot eliminate obfuscated lo-

cations no matter how closely each pair of adjacent locations in

fake trajectories is correlated. As such, the privacy level achieved

by our approach will not degrade even when vehicles report their

locations frequently.

Finally, we evaluate the impact of the parameter Γ on both EIE

and quality loss, where Γ is a constant to limit the quality loss

(defined in Equ. (9)). Figure 11(a)(b) show the change of EIE and

quality loss with Γ increased from 0.1km to 1.0km, respectively.

The figure implies that both EIE and quality loss of FTraj increase

with the increase of Γ. This is because that higher Γ allows more

space to select obfuscated locations for each vehicle, leading to a

higher privacy level. By contrast, higher Γ introduces errors to the

vehicles’ reported locations, which may cause higher quality loss.

Therefore, it is important to consider the trade off between these

metrics, and balance them according to the users’ preference.

6 RELATEDWORK

Sporadic location privacy. The discussion of location privacy

criteria can date back to almost two decades ago, when Gruteser and

Grunwald [14] first introduced the notion of location 𝑘-anonymity

based on Sweeney’s well-known concept of 𝑘-anonymity for data

privacy [26]. This notion has been extended to obfuscate location by

means of 𝑙-diversity, i.e., a user’s location cannot be distinguished

with other 𝑙−1 locations [35]. However, 𝑙-diversity is hard to achieve
in many applications as it assumes dummy locations are equally

likely to be the real location from the attacker’s view [1].

In recent years, two practical privacy notions have been proposed

based on statistical quantification of attack resilience, e.g., EIE [24],

andGI [1]. On the basis of EIE and GI, a large body of location obfus-

cation strategies have been proposed to achieve either of these two

privacy criteria (e.g., [1, 24, 30]) or their combination [35]. As loca-

tion obfuscation inevitably introduce errors to users’ reported loca-

tions, leading to quality loss in LBS, a key issue has been discussed

in those works is how to trade-off QoS and privacy. Many existing

works follow a global optimization framework: given the privacy

(measured by EIE/GI) or QoS constraints, an optimization model

is formulated to maximize QoS or privacy respectively [9, 24, 30].

Different with our work, the above approaches based EIE and GI

are still based on isolated obfuscated location with no consideration

of spatiotemporal correlation between obfuscated locations.

SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA ∗Chenxi Qiu, †Li Yan, ‡Anna Squicciarini, topJuanjuan Zhao, ⊥Chengzhong Xu, ‡Primal Pappachan

Spatiotemporal Location Privacy. A variety of privacy protec-

tion location inference algorithms have been proposed to date.

These algorithms focus on spatiotemporal correlation of users’ re-

ported locations, either from a single user at different time points

(e.g., trajectory) [4, 7, 8, 16, 19, 32] or from multiple users [6, 17].

Many of those works are based on the assumption that users’ mo-

bility follows a Markov process [8, 19], i.e., users’ current locations

depend on the locations attained in the previous round. For instance,

Liao et. al [19] applied a hierarchical Markov model to learn and

infer amobile user’s trajectory based on the places and temporal pat-

terns the user visited. Given uncertain locations of moving objects,

Emrich et. al [8] proposed a modified matrix computation method

to compute the probability of a user appearing in certain region

during certain time period. Recently, research works closer to ours

have proposed privacy criteria and solutions that account for statis-

tical features of users’ location data [6, 7, 12, 31]. For example, under

the assumption that attackers use Markov models to describe users’

mobility, Cao et al. [7] defined a criterion to quantify the privacy

level that existing methods can achieve. Cao et al. [6] extended the

notion of DP to a new criteria to protect spatiotemporal event privacy

and provided a framework to calculate the privacy loss of a given lo-

cation privacy protection mechanism. By counting for the temporal

correlations in location data, Xiao et al. [31] proposed a new defini-

tion, called 𝛿-location set based DP, and presented a planar isotropic
mechanism for location obfuscation. While elegant, all these formu-

lations are designed for general moving objects and yet do not con-

sider vehicles’ mobility constraints. In practice, vehicles are bound

by traffic regulations and road traffic. Therefore, they fall short in

regard to their applicability in vehicles’ location privacy protection.

7 CONCLUSIONS
In this paper, we demonstrated how popular obfuscation models fail

to protect against traffic aware attacks.We developed a new location

inference attack, namely TFA, that leverages traffic information to

accurately recover vehicles’ trajectories from their obfuscated loca-

tions. As a countermeasure, we proposed a robust location obfusca-

tion algorithm, called FTraj, that protects against context-aware lo-

cation inference attacks. Trace-driven simulation results show that

(1) the current obfuscation algorithms are insufficient to address the

vulnerability of vehicles when TFA is applied, and (2) FTraj can ef-

fectively protect vehicles’ location privacy under the attack of TFA.

We envision several promising directions to continue this re-

search. First, our current work accounts only for a single vehicle,

without considering the temporal correlations between multiple

vehicles. Also, our framework can be extended to general LBS ap-

plications, where service utilities can be defined in different ways.

Finally, we will consider different threat models where the informa-

tion disclosed to attackers is in different formats (e.g., smartphones’

accelerometer and gyroscope).

8 ACKNOWLEDGEMENTS
This work was partly supported by U.S. NSF grants CNS-2029881,

CNS-2029976, National Natural Science Foundation of China

(No.62103325), Shaanxi High-level Talent Program (No.2021QCYRC4-

26), and Industrial application research project of Shenzhen for

undertaking the national key project of China (No.

CJGJZD20210408091600002).

REFERENCES
[1] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi. 2013.

Geo-indistinguishability: Differential Privacy for Location-based Systems. In
Proc. of ACM CCS. 901–914.

[2] Apache Hadoop 2.7.3 2022. hadoop.apache.org. Accessed: 2022-06-01.
[3] Apache Spark 1.5.2 2022. spark.apache.org. Accessed: 2022-06-01.
[4] Qasim Arain and et al. 2018. Location Monitoring Approach: Multiple Mix-Zones

with Location Privacy Protection Based on Traffic Flow over Road Networks.
Multimedia Tools Appl. 77, 5 (mar 2018), 5563–5607.

[5] Harsh Bhasin. 2015. Algorithms: Design and Analysis. Oxford Univ Press.
[6] Y. Cao, Y. Xiao, L. Xiong, and L. Bai. 2019. PriSTE: From Location Privacy to

Spatiotemporal Event Privacy. In Proc. of IEEE ICDE. 1606–1609.
[7] Y. Cao, M. Yoshikawa, Y. Xiao, and L. Xiong. 2017. Quantifying Differential

Privacy under Temporal Correlations. In Proc. of IEEE ICDE. 821–832.
[8] T. Emrich, H. Kriegel, N. Mamoulis, M. Renz, and A. Zufle. 2012. Querying

Uncertain Spatio-Temporal Data. In Proc. of IEEE ICDE. 354–365.
[9] K. Fawaz and K. G. Shin. 2014. Location Privacy Protection for Smartphone Users.

In Proc. of ACM CCS (Scottsdale, Arizona, USA). 239–250.
[10] G. D. Forney. 1973. The viterbi algorithm. Proc. of the IEEE 61, 3 (1973), 268–278.
[11] B. Gedik and L. Liu. 2005. Location Privacy in Mobile Systems: A Personalized

Anonymization Model. In Proc. of IEEE ICDCS. 620–629.
[12] G. Ghinita, M. L. Damiani, C. Silvestri, and E. Bertino. 2009. Preventing Velocity-

Based Linkage Attacks in Location-Aware Applications. In Proc. of ACM SIGSPA-
TIAL. 246–255.

[13] G. Ghinita and et al. 2008. Private Queries in Location Based Services: Anonymiz-
ers Are Not Necessary. In Proc. of ACM SIGMOD. 121–132.

[14] M. Gruteser and D. Grunwald. 2003. Anonymous Usage of Location-Based
Services Through Spatial and Temporal Cloaking. In Proc. of ACM MobiSys.

[15] Frederick S. Hillier. 2008. Linear and Nonlinear Programming. Stanford University.
[16] Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, and W. Ma. 2008. Mining User Similarity

Based on Location History. In Proc. of SIGSPATIAL. Article 34, 10 pages.
[17] W. Li, H. Chen, W. Ku, and X. Qin. 2017. Scalable Spatiotemporal Crowdsourcing

for Smart Cities Based on Particle Filtering. In Proc. of ACM SIGSPATIAL.
[18] Yanhua Li and et al. 2015. Growing the Charging Station Network for Electric

Vehicles with Trajectory Data Analytics. In Proc. of ICDE.
[19] L. Liao, D. J. Patterson, D. Fox, and H. Kautz. 2007. Learning and inferring

transportation routines. Artificial Intelligence 171, 5 (2007), 311 – 331.
[20] MediaQ 2022. MediaQ. https://imsc.usc.edu/platforms/mediaq/. Accessed:

2022-06-01.
[21] OpenStreetMap 2022. https://www.openstreetmap.org/. Accessed: 2022-06-01.
[22] C. Qiu and et al. 2020. Location Privacy Protection in Vehicle-Based Spatial

Crowdsourcing via Geo-Indistinguishability. IEEE TMC (2020), 1–1.
[23] C. Qiu and et al. 2020. Time-Efficient Geo-Obfuscation to ProtectWorker Location

Privacy over Road Networks in Spatial Crowdsourcing. In Proc. of ACM CIKM.
[24] R. Shokri, G. Theodorakopoulos, C. Troncoso, J. Hubaux, and J. L. Boudec. 2012.

Protecting Location Privacy: Optimal Strategy Against Localization Attacks. In
Proc. of ACM CCS. 617–627.

[25] Daniel W. Stroock. 2010. Probability Theory: An Analytic View (2nd ed.). Cam-
bridge University Press.

[26] L. Sweeney. 2002. Achieving K-anonymity Privacy Protection Using General-
ization and Suppression. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10, 5
(2002).

[27] H. To, G. Ghinita, L. Fan, and C. Shahabi. 2017. Differentially Private Location
Protection for Worker Datasets in Spatial Crowdsourcing. IEEE TMC (2017),
934–949.

[28] H. To, G. Ghinita, and C. Shahabi. 2014. A Framework for Protecting Worker
Location Privacy in Spatial Crowdsourcing. VLDB Endow. 7, 10 (June 2014).

[29] Vehicle traffic flow aware attack 2022. https://github.com/chenxiq1986/vehicle-
traffic-flow-aware-attack. Accessed: 2022-06-01.

[30] L. Wang, D. Yang, X. Han, T. Wang, D. Zhang, and X. Ma. 2017. Location Privacy-
Preserving Task Allocation for Mobile Crowdsensing with Differential Geo-
Obfuscation. In Proc. of ACM WWW. 627–636.

[31] Y. Xiao and L. Xiong. 2015. Protecting Locations with Differential Privacy under
Temporal Correlations. In Proc. of CCS. 1298–1309. https://doi.org/10.1145/
2810103.2813640

[32] F. Xu, Z. Tu, Y. Li, P. Zhang, X. Fu, and D. Jin. 2017. Trajectory Recovery From
Ash: User Privacy Is NOT Preserved in Aggregated Mobility Data. In Proc. of
ACM WWW. 1241–1250.

[33] L. Yan, H. Shen, J. Zhao, C. Xu, F. Luo, and C. Qiu. 2017. CatCharger: Deploying
wireless charging lanes in a metropolitan road network through categorization
and clustering of vehicle traffic. In Proc. of IEEE INFOCOM. 1–9.

[34] Yelp 2022. https://www.yelp.com/. Accessed: 2022-06-01.
[35] L. Yu, L. Liu, and C. Pu. 2017. Dynamic Differential Location Privacy with

Personalized Error Bounds. In Proc. of IEEE NDSS.
[36] Y. Zhu, Z. Li, H. Zhu, M. Li, and Q. Zhang. 2013. A Compressive Sensing Approach

to Urban Traffic Estimation with Probe Vehicles. IEEE TMC 12 (11 2013), 2289–
2302. https://doi.org/10.1109/TMC.2012.205

