
1.  Introduction
Due to the current resolution limitations of general circulation models (GCMs), many crucial subgrid-scale 
(SGS) physical processes remain unresolved and are instead represented through parameterization. The conven-
tional physics-based parameterizations are based on simplified theories, which introduce significant uncertainties 
in climate modeling (e.g., Richter et al., 2022). Recently, machine learning (ML) techniques, particularly deep 
neural networks (NNs), have emerged as novel tools for developing parameterizations. Different strategies exist 
for training these ML-based parameterizations. In the common offline learning approach, the learnable param-
eters of NNs (i.e., weights and biases) are trained using stochastic gradient descent through backpropagation to 
find a nonlinear mapping between the resolved and SGS processes. However, this approach demands an extensive 
training data set that includes the true SGS terms obtained from high-fidelity sources such as high-resolution 
observations and/or simulations, which are typically scarce. To add to the challenge, the true SGS terms must be 
properly extracted from these sources, which can be sensitive to separation methods, as well as the filtering and 
coarse-graining operations (Grooms et al., 2021; Sun, Hassanzadeh, et al., 2023).

Abstract  There are different strategies for training neural networks (NNs) as subgrid-scale 
parameterizations. Here, we use a 1D model of the quasi-biennial oscillation (QBO) and gravity wave (GW) 
parameterizations as testbeds. A 12-layer convolutional NN that predicts GW forcings for given wind profiles, 
when trained offline in a big-data regime (100-year), produces realistic QBOs once coupled to the 1D model. 
In contrast, offline training of this NN in a small-data regime (18-month) yields unrealistic QBOs. However, 
online re-training of just two layers of this NN using ensemble Kalman inversion and only time-averaged QBO 
statistics leads to parameterizations that yield realistic QBOs. Fourier analysis of these three NNs' kernels 
suggests why/how re-training works and reveals that these NNs primarily learn low-pass, high-pass, and a 
combination of band-pass filters, potentially related to the local and non-local dynamics in GW propagation 
and dissipation. These findings/strategies generally apply to data-driven parameterizations of other climate 
processes.

Plain Language Summary  Due to computational limits, climate models estimate (i.e., 
parameterize) small-scale physical processes, such as atmospheric gravity waves (GWs), since they occur on 
scales smaller than the models' grid size. Recently, machine learning techniques, especially neural networks 
(NNs), have emerged as promising tools for learning these parameterizations from data. Offline and online 
learning are among the main strategies for training these NN-based parameterizations. Offline learning, 
while straightforward, requires extensive, high-quality data from small-scale processes, which are scarce. 
Alternatively, online learning only needs time or space-averaged data based on large-scale processes, which are 
more accessible. However, online learning can be computationally expensive. Here, we explore various learning 
strategies using an NN-based GW parameterization, within a simple model of the quasi-biennial oscillation 
(QBO), an important quasi-periodic wind pattern in the tropics. When supplied with a large 100-year data set, 
the offline-trained NN accurately replicates wind behaviors once coupled to the QBO model. Yet, when limited 
to an 18-month training data set (which is more realistic), its performance degrades. Interestingly, by online 
re-training specific parts of this NN using only time-averaged QBO statistics, its accuracy is restored. We term 
this approach an “offline-online” learning strategy. Our findings also benefit parameterization efforts for other 
climate processes.
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Alternatively, learning SGS parameterization can be approached as an “online task,” which allows learning from 
partial observations or statistics. However, learning from statistics requires performing long-term simulations 
during training, making the learning process challenging (Schneider et  al.,  2023). For online learning, vari-
ous methods such as reinforcement learning (Mojgani et al., 2023; Novati et al., 2021), differentiable program-
ming (Frezat et al., 2022; Gelbrecht et al., 2023), and ensemble Kalman inversion (EKI) (Iglesias et al., 2013; 
Lopez-Gomez et al., 2022) can be used. Here, we use EKI, a gradient-free algorithm (Kovachki & Stuart, 2019), 
which is ideal for GCMs where computing derivatives can be challenging.

Atmospheric gravity waves (GWs) are among the physical processes that are not fully resolved in the current 
GCMs as they span scales of O(1) to O(1,000) km. GWs play a crucial role in the transport of energy and momen-
tum through the atmosphere (Fritts & Alexander, 2003). With decades of developments, GW parameterization 
(GWP) is now a critical component of GCMs for reproducing realistic atmospheric circulation mean and variabil-
ity (Kruse et al., 2023). For instance, GCMs require skillful GWPs to naturally produce the quasi-biennial oscil-
lation (QBO) (Richter et al., 2020), which is characterized by the downward propagation of successive westerly 
and easterly winds with an average period of ∼28 months (Baldwin et al., 2001). The QBO is the primary mode 
of interannual variability in the tropical stratosphere with links to subseasonal-to-seasonal forecast skills (Anstey 
et al., 2022). GWs are believed to contribute significantly to the forcing of the QBO (Ern et al., 2014; Kawatani 
et al., 2010; Kim & Chun, 2015; Pahlavan et al., 2021; Richter et al., 2014).

Recently, ML has been used to emulate or calibrate existing physics-based GWP schemes (Chantry et al., 2021; 
Espinosa et al., 2022; Hardiman et al., 2023; Mansfield & Sheshadri, 2022; Sun, Pahlavan, et al., 2023), or to esti-
mate the GWs variability or structure from high-resolution reanalysis data (Amiramjadi et al., 2023; Matsuoka 
et al., 2020). In contrast to the emulation of an existing scheme, the task of developing new GWP schemes from 
high-resolution data sets and coupling such new schemes to GCMs is much more ambitious and challenging, and 
the data sets needed for such work have just started to emerge (Sun, Hassanzadeh, et al., 2023).

In this study, we use a conceptual 1D model of the QBO and GWP as testbeds to explore various learning strate-
gies and challenges arising from the scarcity of high-resolution training data to inform future studies with GCMs. 
We show that a 12-layer convolutional neural network (CNN)-based GWP, when trained offline in a big-data 
regime spanning 100 years, generates accurate QBOs once coupled to the 1D model. However, offline training 
the CNN in a small-data regime covering only 18 consecutive months yields unrealistic QBOs. This small-data 
regime represents the common situations with limited availability of high-quality SGS data for training. Remark-
ably, by selectively online re-training only two layers of this CNN with EKI and using only time-averaged QBO 
statistics, we obtain GWPs that reproduce realistic QBOs. We refer to this approach as “offline-online” learning. 
We also use the Spectral Analysis of Regression Kernels and Activations (SpArK) framework (introduced in 
Subel et al. (2023)) to provide physically interpretable insights into what these three CNNs learn. While this study 
primarily addresses GWP, the findings are expected to be applicable broadly to data-driven parameterizations of 
other climate processes.

2.  Methods
2.1.  1D-QBO Model

The 1D-QBO model represents a 1D model of the tropical stratosphere (Holton & Lindzen, 1972; Plumb, 1977). 
With a source of parameterized waves at its lower boundary, the model is a minimal configuration that represents 
the wave-mean flow interaction. In this study, the 1D-QBO is structured as a forced advection-diffusion model:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜔𝜔

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝜅𝜅

𝜕𝜕2𝑢𝑢

𝜕𝜕𝜕𝜕2
= 𝐺𝐺(𝑢𝑢) + 𝜂𝜂(𝑡𝑡)� (1)

with zonal wind u(t, z) as a function of time t and height z, upwelling ω = 0, diffusivity κ = 0.3 m 2 s −1, and GW 
drag G. By setting ω = 0, we exclude vertical advection for simplicity. η is a stochastic forcing, which represents 
the missing physics within the 1D model, and its importance is further detailed in Supporting Information S1.

Following Plumb (1977), the model is driven by two vertically propagating GWs with zonal phase speeds (c1, 
c2) = (−30, +30) m s −1. As these waves propagate upward, they dissipate and force the mean flow toward their 
phase speed. The vertical group velocity of these waves depends non-linearly on the difference between their 
phase speed and the mean flow, becoming smaller when the zonal wind is close to its phase speed, and reaching 

 19448007, 2024, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L106324 by U
niversity O

f C
hicago Library, W

iley O
nline Library on [03/12/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Geophysical Research Letters

PAHLAVAN ET AL.

10.1029/2023GL106324

3 of 11

zero at a critical level where u = c. With constant dissipation, slower ascent results in more dissipation per unit 
height.

Figure 1a shows sample profiles of GW drag (GWD) and zonal wind, illustrating the downward propagation of 
a QBO westerly phase from the upper boundary. Note the concentration of GWD over a shallow vertical extent 

Figure 1.  (a) Sample profiles of the true GWD (G) and zonal wind (u), spaced 150 days apart. Also shown is the a priori 
(offline) predicted GWD from convolutional neural networks (CNNs) that predict G as a function of u, and are trained either 
in the big-data regime (CNN-BD) or in the small-data regime (CNN-SD). (b) Time-height section of zonal wind of the true 
quasi-biennial oscillation in the 1D model (see Methods). Note the time axis break, such as only the first and last 10 years of 
the simulation are shown. The a priori performances of CNN-BD, and CNN-SD are shown in panels (c, d). (c) Probability 
density function (PDF) of the true and predicted G by CNN-BD. (d) As in (c), but for G predicted by CNN-SD. In panels 
(c, d), the insets show scatter plots representing the tails of the PDFs, identified as the top 1% of magnitudes. The x-axis is 
normalized by the standard deviation. In these panels, R 2 is the squared of the Pearson correlation coefficients between true 
and predicted GWD. Relative error is defined as |G − GCNN|/|G|, where |.| denotes the average of absolute values over all 
model levels.
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where the eastward wave (c = 30 m s −1) reaches its critical level. At this layer, the wave breaks and transfers its 
momentum to the mean flow, causing the GWD at higher levels to become zero.

More details on the model configuration are provided in Supporting Information S1. This setup yields an oscil-
lation with a period (τ) of 28.0 ± 0.7 months, and an amplitude (σ) of 21 ± 0.3 m s −1 at the 25 km altitude 
(Figure 1b). The standard deviations of the period and amplitude are based on ∼430 QBO cycles in a 1000-year 
simulation. This simulation is our “truth” and is used to evaluate the performance of CNN-based GWP. Using 
the same setup, we produce an independent 100-year data set specifically for training and validation purposes.

2.2.  CNN-Based GWP

We explore various learning strategies by emulating the GWD, G(u) in Equation 1, using a CNN, denoted as 
GCNN(u, θ), with θ being the learnable parameters of the CNN. This CNN consists of 12 sequential 1D convo-
lutional layers. Each hidden layer has 15 channels, each with 15 kernels with a size of 5, resulting in ∼11,600 
learnable parameters. The activation function is hyperbolic tangent (tanh). Training a CNN means learning the 
parameters θ, either offline or online, as detailed below.

2.3.  Offline Learning

Offline learning seeks to find the optimal θ values by matching GCNN and the true G profiles for a given profile 
of u(t, z), which is achieved by minimizing the following loss:

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =
1

𝑛𝑛

𝑛𝑛∑

𝑖𝑖=1

‖𝐺𝐺(𝑢𝑢𝑖𝑖) − 𝐺𝐺CNN(𝑢𝑢𝑖𝑖, 𝜃𝜃)‖22� (2)

where n is the number of training samples and ‖.‖2 is the L2 norm. We train the CNN offline under two distinct data 
regimes: (a) big-data, denoted as CNN-BD, which uses 100 years of sequential data, representing an ideal scenario 
with ample data, and (b) small-data (CNN-SD), which includes only 18 consecutive months of data, representing a 
more realistic scenario given the cost associated with, for instance, GW-resolving global simulations. Further insights 
on using a more strategically sampled 18 months, instead of a continuous span, are detailed in the Discussion section.

2.4.  Online Learning

In online learning, we learn the parameters θ by using time-averaged statistics of the QBO, and minimizing the 
following loss:

 ������ =
‖

‖

‖

‖


(

Ψ(�, �(�))
)

−
(

Ψ
(

�, �CNN(�, �)
)

)

‖

‖

‖

‖

2

Γ
� (3)

where ‖.‖Γ is the Mahalanobis norm, Γ denotes the variance of the system's internal noise, and Ψ is the forward 
model, the numerical solver of the 1D-QBO model in this case, 𝐴𝐴  is the observational map, which encapsulates 
all averaging and post-processing operations necessary to derive the desired statistics from an observable field, 
zonal wind u in this case. See Lopez-Gomez et al. (2022) for more details.

Various optimization methods can be used to minimize 𝐴𝐴 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 . As highlighted earlier, we employ EKI, which has 
been increasingly used for parameter estimation in recent climate studies (Cleary et al., 2021; Dunbar et al., 2022; 
Lopez-Gomez et al., 2022). Briefly, as an iterative method to solve inverse problems, EKI starts with an ensemble 
of model parameters θ drawn from a prior distribution. As the iterations proceed, these parameters are updated 
based on the discrepancies between statistics simulated with the model and the true statistics, usually obtained 
from observations, reanalysis, or high-resolution simulations. Once the algorithm converges, the optimal param-
eter values are then the ensemble mean of the last iteration.

The 1D model is very sensitive to the changes in GWD profiles, and for some sets of parameters, simulations 
become physically or numerically unstable, preventing the EKI algorithm from converging. We address these 
model failures following the methodology proposed in Lopez-Gomez et al. (2022).

For the online training of the CNN using EKI, denoted as CNN-EKI, our setup includes 200 ensemble members, 
10 iterations, and 85 statistics, derived from a 10-year span of zonal wind u from our true QBO simulation, as 
defined earlier. We run each of the ensemble members for 15 years, then calculate the desired statistics from the 
last 10 years of those runs. The EKI's efficacy can be notably impacted by these choices, with poor selections 
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potentially causing instabilities, underscoring the challenges associated with online learning. Section 3.2 offers 
further details on the statistics and prior distributions used in this study.

3.  Results
3.1.  Offline Learning in the Big and Small-Data Regimes

We begin by evaluating the a priori (offline) performances of the CNN-BD and CNN-SD. Figure  1a shows 
sample GWD profiles predicted by these two CNNs, compared with the true GWD profiles. Both CNNs capture 
the general structure of the true GWD. However, GCNN−BD aligns perfectly with the true GWD profiles, while 
GCNN−SD exhibits some discrepancies, especially in representing the peaks.

Figure 1c compares the probability density function (PDF) of GCNN−BD with that of the truth. The outstanding a 
priori performance is evident from their overlap, further highlighted by a mere 3% relative error (RE). In contrast, 
the a priori performance of the CNN-SD, shown in Figure 1d, clearly diminishes, evidenced by the increase in the 
RE to 32%. Furthermore, a pronounced decline in R 2 can be observed at the tails, decreasing from 0.99 to 0.14. 
These findings are in line with expectations. When abundant training data are provided, deep NNs such as our 
CNN can be effectively trained offline and demonstrate accurate a priori performance. Conversely, with limited 
data, the accuracy decreases, especially when predicting rare (but large) events at the tails. It is noteworthy that in 
the context of the small-data regime, our extensive experiments with smaller CNNs and other NN architectures 
with fewer parameters did not yield successful results (not shown).

In the a posteriori (online) evaluations, we replace G(u) with GCNN(u, θ) and run the model for 1,000 years. 
Figure 2a shows the a posteriori performance of the CNN-BD, demonstrating a QBO whose structure, period, 
and amplitude closely match that of the true QBO. In contrast, Figure 2b reveals that the QBO simulated with the 
CNN-SD becomes unrealistic after the initial QBO cycles, with intensified westerly phases and diminished east-
erly phases. The PDFs of GWD and zonal wind are presented in Figures 2c and 2d. The indistinguishable overlap 
between the PDFs of truth and the CNN-BD underscores its outstanding a posteriori performance. In contrast, the 
PDFs for the CNN-SD demonstrate a significant deviation from those of the truth.

This specific unrealistic behavior of the CNN-SD is a result of the specific 18-month segment used for training. When 
we choose a different 18-month segment, the QBO exhibits other unrealistic deviations. The key takeaway, however, 
is that an 18-month sequential data set is not adequate to achieve accurate a posteriori QBO in the 1D model. Notably, 
Espinosa et al. (2022) achieved stable a posteriori QBO by training their ML-based emulator of the physics-based 
GWP using only 12 months of data, which were dominated by the westerly phase of the QBO. However, their use 
of global data suggests that the emulator might have learned from regions with easterly winds outside the tropical 
stratosphere. This is consistent with the findings of Chantry et al. (2021) and Hardiman et al. (2023), who similarly 
achieved stable a posteriori QBO using one and 2.5 years of global data, respectively. It should also be noted that in 
the more complex 3D climate models, the QBO is further constrained by other dynamics, such as meridional circu-
lations and tropical upwelling, compared to its representation in the 1D model (Hardiman et al., 2023).

Our results so far indicate that the CNN-BD shows outstanding a priori and a posteriori performances. In contrast, 
the CNN-SD yields unstable a posteriori QBO and, given the appropriate metrics (e.g., PDF tails), a poor a priori 
performance too. This finding prompts one of the central questions of this study: Is it possible to use online learn-
ing to improve the CNN-SD and rectify this unrealistic QBO behavior? Note that the terms small- and big-data 
regimes in our context refer to the number of G snapshots available for offline learning. For online learning in 
the small-data regime, we assume that we have access to the time-averaged statistics of the true QBO but have 
limited snapshots of G.

In the context of online learning, one approach might be to train a CNN from scratch (i.e., from random initializa-
tion of θ) using methods like EKI, and the QBO statistics as the targets. However, as we discuss below, the priors 
(initialization of θ) are critical for the convergence of online learning methods, and poor priors, such as random 
ones, can lead to failed learning. Another approach, that we pursue here, is to use the parameters of the CNN-SD 
as priors. We will refer to this as the “offline-online” learning approach, as further elaborated below.

3.2.  Offline-Online Learning in the Small-Data Regime

A critical question in using statistics for parameter estimation, as in the EKI method, is determining whether the 
targeted statistics are adequate to constrain the learnable parameters, which could be high-dimensional. Here, we 
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began by using the common targets for QBO, the period and amplitude, as our time-averaged statistics. However, 
we found that various unrealistic oscillations can misleadingly mimic the true QBO's period and amplitude, 
including an upward propagating QBO, suggesting non-uniqueness of the parameters and under-constrained opti-
mization. To address this, we expanded our targeted statistics to include cross-covariances between various QBO 
levels, aiming to better capture its downward propagation. This led us to use an extensive list of 85 statistics (see 
Supporting Information S1).

As discussed above, another key element of EKI, and other online learning methods, is the prior distributions, with 
their choice having a significant influence on EKI's performance. Good priors can notably reduce the number of 
iterations and potentially the ensemble size. Conversely, poor priors can result in unsuccessful learning. Particu-
larly, we are unable to online train a CNN from a random initialization of its weights and biases: over 95% of the 
ensemble members fail at each iteration, preventing the EKI algorithm from converging. Consequently, we use 
the weights and biases from CNN-SD as our priors. These serve as the mean values for unconstrained Gaussian 
priors with a standard deviation of 0.01, given that their magnitude is around O(10 −1).

Through further trial-and-error experiments, we discovered that it is unnecessary to online re-train every layer 
of the CNN-SD to achieve a stable QBO. By online re-training of only the shallowest and deepest hidden layers 
of the CNN-SD (i.e., layers 2 and 11), we obtain results that are on par with full re-training. Consequently, we 
confine our subsequent discussions to these findings. By re-training only two layers, we engage a significantly 

Figure 2.  (a) The a posteriori (online) performance of the convolutional neural network (CNN)-BD. The quasi-biennial 
oscillation (QBO) remains stable for 1,000 years, with its period and amplitude closely matching the true QBO. (b) As in (a), 
but for the CNN-SD. The QBO is unrealistic. (c) Probability density functions of the true and a posteriori predicted GWD 
(G). (d) As in (c), but for zonal wind (u).
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reduced parameter set, simplifying the analysis and enhancing interpretability, which we discuss in the next 
section. It is noteworthy that Subel et al. (2023) offers more structured strategies for determining the optimal 
layers for re-training in the context of transfer learning.

During the online re-training process, the EKI error decreases sharply in the first iteration (See also Figure S2 
in Supporting Information S1). Subsequent iterations further reduce the mismatch between the statistics of the 
model (1D-QBO with CNN-based GWP) and the true QBO statistics. The ensemble mean of the parameters from 
the last iteration is then considered as the optimal parameter set for the CNN, referred to as CNN-EKI.

The a posteriori performance of the CNN-EKI is illustrated in Figure 3. Panel (a) shows an accurate QBO with 
period and amplitude closely agreeing with those of the true QBO. Figures 3b and 3c show the PDFs of GWD 
and zonal wind before and after the online re-training, with a comparison to the truth. The zonal wind's PDF 
demonstrates a significant improvement, closely aligning with the true QBO, albeit with minor deviations. This 
is despite the smaller improvement in the PDF of CNN-EKI's GWD, which better matches the PDF of the truth, 
but still deviates at the tails beyond four standard deviations. This could be expected, considering that we only use 
the statistics of zonal wind for online re-training, which does not necessarily constrain the PDF of GWD. In other 
words, the values of GWD beyond four standard deviations, which occur orders of magnitude less frequently than 
GWD values within two standard deviations, do not heavily influence the QBO period, amplitude, and its overall 
structure. Also, note that improvement in a posteriori performance without any improvement to the a priori one 
(or even its degradation) is a common feature of online learning, as reported in several past studies (Gelbrecht 
et al., 2023).

3.3.  Explainable Learning Using SpArK

Next, we use the SpArK framework (Subel et al., 2023) to gain insights into the inner workings of the CNNs 
and connect them to the underlying physics of the GW propagation. Briefly, Subel et al. (2023) applied Fourier 
transformation and convolution theorem to the governing equations of CNNs. They showed that the kernels of 
CNNs used for SGS closure modeling of turbulent flows, while appearing meaningless in the physical space, 
are meaningful spectral filters in the Fourier domain, comprising low-, high-, band-pass, and Gabor filters. They 
further demonstrated that examining changes in the spectra of the kernels before and after re-training can explain 
the physics learned during transfer learning.

Figure 3.  (a) The a posteriori performance of the convolutional neural network (CNN) after online re-training the CNN-SD, 
referred to as CNN-EKI. (b) Probability density functions of the true and a posteriori predicted GWD (G), before and after 
online re-training. (c) As in (b), but for zonal wind (u).
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We start by extending each CNN kernel, originally of size 5 (doing convolution on activations of size 37), to 
match the size of the activations by zero-padding, resulting in kernels of size 37 (activation is the output of a 
layer after applying filters and non-linearity). We then simply transfer them into a spectral space using a Fourier 
transform. Upon close inspection of the Fourier spectra of kernels, it becomes evident that they are a combination 
of low-, high-, and band-pass filters. The similarity across the spectra of many kernels allows us to meaning-
fully categorize them by their dominant wavenumber (k*), that is, the wavenumber where the spectrum peaks in 
magnitude.

The spectra of kernels for the four most frequent wavenumbers are shown in Figure 4. The dominant spectra have 
k* = 0 (low-pass filters), followed by k* = 18 (high-pass filters). k* = 5 and k* = 13 come next, each represent-
ing band-pass filters. While Figure 4 showcases the composited kernels from layers 2 and 11, similar patterns 
are observed across other layers. Collectively, these four wavenumbers account for ∼65% of all the kernels, with 
k* = 0 and k* = 18 together constituting ∼45% of the total. The frequent appearance of low- and high-pass filters, 
and to some degree, band-pass filters, might be connected to the dynamics of GW propagation and dissipation. 
On one hand, the GWD at a given level depends on the local zonal wind conditions. As discussed earlier, a wave 
propagates upward more slowly when the local wind is close to its phase speed, leading to increased dissipation. 
This dissipation is especially pronounced near the critical level, highlighting the essential role of local dynamics. 

Figure 4.  The sum of the Fourier spectra of kernels for the four most frequent wavenumber peaks k* for (a) layer 2 and, (b) 
layer 11 for the three convolutional neural network (CNNs). The frequency of each kernel within its respective layer and for 
each of the three CNNs is indicated in the top left corner of each panel.

 19448007, 2024, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L106324 by U
niversity O

f C
hicago Library, W

iley O
nline Library on [03/12/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Geophysical Research Letters

PAHLAVAN ET AL.

10.1029/2023GL106324

9 of 11

On the other hand, the cumulative wind profile below a given level significantly impacts the GWD, underscor-
ing the relevance of non-local dynamics. For any GWP scheme, capturing both local and non-local dynamics is 
necessary to be able to generate a spontaneous QBO (Campbell & Shepherd, 2005).

The prevalence of low-pass filters aligns well with the need to capture non-local dynamics, as these filters extract 
large scales and perform averaging. On the other hand, high-pass filters capture more local dynamics by extract-
ing smaller scales. The band-pass filters, which resemble wavelets, extract specific scales, local in space. That 
said, the presence of layers and non-linearity further influence the output of each kernel, obscuring further under-
standing of the role of each kernel in connecting the profiles of the input (zonal winds) to the output (GWDs). 
Still, the understanding that emerges from SpArK can enable future work to exploit some of the novel mathe-
matical tools from the deep learning community, in particular, those that leverage wavelet-analysis of NNs (Ha 
et al., 2021; Mallat, 2016). Finally, it should be highlighted that in this study, we focus on the Fourier spectra, and 
categorize the kernels based on k*. A deeper analysis of both real and imaginary parts of the Fourier transforma-
tion of kernels and activations, as well as metrics beyond frequency, will be needed to gain further insight into 
how the NNs represent the GW dynamics.

While the full explainability of each NN remains a challenge, SpArK offers more insight into how an NN changes 
after online re-training. As shown in Figure 4, while these four wavenumbers retain their dominance in CNN-SD, 
their frequency deviates from those observed in CNN-BD. Yet, following online re-training, the frequency 
of these kernels aligns more closely with those in CNN-BD. This suggests a transformation of kernels from 
poten tially ineffective wavenumbers to more efficient filters. This kind of analysis can provide insights into the 
calibration processes of ML-based parameterizations.

4.  Discussion and Summary
The results presented in this study provide a proof-of-concept for the “offline-online” learning approach 
based on the parameterization of GWs in the computationally affordable 1D-QBO model. However, learning 
from time-averaged statistics necessitates long model simulations during training. Moreover, in complex and 
high-dimensional parameter spaces, EKI and similar optimization methods require large ensembles and more 
iterations to achieve an accurate estimate of the optimal parameters. Collectively, these factors can increase the 
computational cost, and when the forward model is expensive, as is the case for GCMs, the overall cost of EKI 
can become unfeasible (while here we focus on EKI, it should be noted that other online learning methods such as 
reinforcement learning suffer from the same challenges). Therefore, efficient strategies are needed to reduce the 
ensemble size and iterations. For EKI, techniques such as localization, inflation, and regularization are proposed 
in other studies for these situations (Huang et al., 2022; Iglesias, 2015, 2016; Iglesias & Yang, 2021; Lee, 2021; 
Tong & Morzfeld, 2022).

A common guideline for EKI suggests starting with ensemble numbers that are 10 times the count of parameters. 
However, a notable observation from this study is that the number of required ensemble members for EKI algo-
rithm to converge does not directly correlate with the number of parameters of the CNN. In our experiments with 
CNNs containing approximately 1,000, 5,000, and 10,000 parameters, we consistently needed only 200 ensemble 
members for successful EKI convergence. A simple, yet untested, hypothesis is that increasing the number of 
parameters might not necessarily expand the dimensions of the parameter space, given the over-parameterized 
nature of NNs. This finding suggests the possibility of using a manageable ensemble size for online training of 
deep NNs using EKI, when coupled to GCMs.

We find that a consecutive 18-month span is inadequate for offline training of a CNN-based GWP in this 1D 
model. This is expected since this duration does not cover even a full QBO cycle. Alternatively, we can select 
72 weeks, spaced a month apart, covering nearly three QBO cycles, while still being an 18-month-long data set. 
Offline training the CNN using this strategically sampled small-data regime, denoted as CNN-S3D, yields nota-
bly improved results compared to the CNN-SD (Figure S3 in Supporting Information S1). The a priori perfor-
mance sees the R 2 value rise from 0.9 to 0.98, but more importantly, at the tails of the GWD PDF, a significant 
enhancement from 0.14 to 0.7. This results in an a posteriori accurate QBO.

This experiment highlights the importance of strategic sampling. Rather than continuous runs, commonly seen 
in current high-resolution modeling efforts (e.g., Satoh et al., 2019; Wedi et al., 2020), a more effective approach 
might be to create a library of shorter runs, sampling different regimes/phases important for a given physical 
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process. These runs would provide a diverse sampling of various climate and weather conditions without addi-
tional computational cost, an approach echoed in Shen et al. (2022), and Sun, Hassanzadeh, et al. (2023).

The process of calibration, upon which the “offline-online” learning strategy is suggested, is an essential element 
in the simulation of complex systems and is central to climate model development (Balaji et al., 2022). In this 
study, we primarily focus on the necessity of online re-training in the context of the small-data regime. However, 
it is essential to highlight that online re-training is probably indispensable when incorporating any data-driven 
parameterization scheme into the numerical models. This necessity arises from the fundamental differences (e.g., 
in numerics) between base models, like high-resolution simulations that supply the training data, and the target 
models, such as operational GCMs. Additionally, potential misalignments between a priori metrics and a posteri-
ori performances further emphasize this need. While our focus in this study is on GWP, the findings can also be 
applied to other SGS modeling efforts.

Data Availability Statement
We use version 1.0.0 of open source software EnsembleKalmanProcesses.jl (Dunbar et al., 2022) for EKI analy-
sis, accessible at Dunbar et al. (2023). The code for the 1D-QBO model and the specifically modified EKI soft-
ware used in this study can be accessed at Pahlavan (2023b). The data are available at Pahlavan (2023a).
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