CO16_Artl7_Lai ARjats.cls November 16, 2024

"G ANNUAL
f\ ¥ REVIEWS

Annu. Rev. Condens. Matter Phys. 2025. 16:343-65

The Annual Review of Condensed Matter Physics is
online at conmatphys.annualreviews.org

https://doi.org/10.1146/annurev-conmatphys-
043024-114758

Copyright © 2025 by the author(s).
All rights reserved

13:26

Annual Review of Condensed Matter Physics

Ching-Yao Lai,! Pedram Hassanzadeh,?
Aditi Sheshadri,®> Maike Sonnewald,*
Raffaele Ferrari,’ and Venkatramani Balaji¢

IDepartment of Geophysics, Stanford University, Stanford, California, USA;
email: cyaolai@stanford.edu

2Department of Geophysical Sciences and Committee on Computational and Applied
Mathematics, University of Chicago, Chicago, Illinois, USA

3Department of Earth System Science, Stanford University, Stanford, California, USA
*Department of Computer Science, University of California, Davis, California, USA

’Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of
Technology, Cambridge, Massachusetts, USA

6Schmidt Sciences, New York, NY, USA

Keywords

climate, physics-informed machine learning, machine learning-informed
physics, equation discovery, parameterization, emulator

Abstract

We discuss the emerging advances and opportunities at the intersection of
machine learning (ML) and climate physics, highlighting the use of ML
techniques, including supervised, unsupervised, and equation discovery, to
accelerate climate knowledge discoveries and simulations. We delineate two
distinct yet complementary aspects: (#) ML for climate physics and (b)) ML
for climate simulations. Although physics-free ML-based models, such as
ML-based weather forecasting, have demonstrated success when data are
abundant and stationary, the physics knowledge and interpretability of ML
models become crucial in the small-data/nonstationary regime to ensure
generalizability. Given the absence of observations, the long-term future cli-
mate falls into the small-data regime. Therefore, ML for climate physics
holds a critical role in addressing the challenges of ML for climate simu-
lations. We emphasize the need for collaboration among climate physics,
ML theory, and numerical analysis to achieve reliable ML-based models for
climate applications.
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Model:

a representation of a
system to make
predictions; can be
physics-based,
ML-based, or coupled

Neural network
(NN): function
approximators
parameterized by
function operations
and parameters y, that
are optimized to
minimize specified
cost functions £

Simulation:
physics-based models
solved numerically

Emulator: a subset of
models that fit the
data, bypassing solving
physics-based
equations
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1. INTRODUCTION

Machine learning (ML) has led to breakthroughs in various areas, from playing Go to text gener-
ated with large language models (LLM) and, more recently, to weather forecasting (1-5). Different
from Go and LLM, the language scientists use to understand and simulate weather and climate has
been equations rooted in fundamental physics. Physics-based equations, often differential equa-
tions, are essential to simulate systems where direct observations are limited and noisy—even
more so for projections of future climates where data are altogether unavailable (Figure 1). Re-
cently, ML has emerged as an alternative tool for predictive modeling as well as improving the
understanding of climate physics (Figure 2). For instance, physics-free ML models such as neural
networks (NNs), which are universal approximators of functions (12) and operators (13), trained
on data from observations or physics-based simulations have demonstrated a remarkable ability
to perform accurate nowcasting (14) with lead time of a few hours, weather prediction (15) with
lead times of several days, and El Nifio forecast with lead times of a year (16). It remains an open
question if some of the strategies and success in these short-time predictions can be applied to im-
prove climate projections, i.e., to estimate changes in the statistics of weather events (e.g., return
periods of heat waves or tropical cyclones) in the next decades, centuries, and beyond.

1.1. Weather Versus Climate: Nonstationarity

The success story of ML for prediction (Section 3.2) has been primarily showcased in weather
forecasting (17). Followed by initial attempts started in 2019 (e.g., 18-24), by 2022-2023 ML
weather models (often called emulators; Section 3.2) achieve, at a fraction of the computational
cost, similar or better forecast skills than state-of-the-art physics-based weather prediction models
(e.g., 1-5, 25). This success has generated excitement about using ML to improve climate projec-
tions as well. Yet, climate projections involve major additional challenges (26, 27). In weather
forecasting, we have a constant stream of real-time and historical data for training ML-based em-
ulators (Jower right of Figure 1a) to make predictions for a few weeks, where the statistics can
be assumed to be stationary. In climate, we are often interested in predicting the climate’s forced
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Conceptual diagram of ML applications in climate sciences with respect to the availability of existing physics-based equations,
availability of data, and interpretability. We explain different components of this figure throughout this article. (#) Existing
physics-based equations and data are two sources of information used for training ML models. () More physics-based equations are
not necessarily more interpretable, e.g., existing numerical weather predictions. However, equation discovery usually comes with
regularization techniques to find the simplest set of equations capturing the dominant behavior of the system, enhancing
interpretability. Abbreviation: ML, machine learning.
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Figure 2 (Figure appears on preceding page)

An overview of the areas in which ML has played a role in uncovering climate physics and advancing climate simulations. Panels ¢, f; b,
and j adapted with permission from Reference 6 (CC BY 4.0), Reference 7 (CC BY 4.0), Reference 8 (CC BY 4.0), and Reference 9
(CC BY 4.0), respectively. Panel 7 adapted from Reference 4; copyright 2023 AAAS. Abbreviations: ACE, AI2 Climate Emulator (10,
11); CNN, convolutional neural network; EKI, ensemble Kalman inversion; LES, large eddy simulation; ML, machine learning;

NN, neural network; PC, principal component; PCA, principal component analysis; SGS, subgrid-scale; SINDy, sparse identification of
nonlinear dynamics; UQ, uncertainty quantification.

ML-based
emulators: emulators
that fit the data with
ML models (e.g., deep
neural networks),
bypassing solving
physics-based
equations

Nonstationarity:
systems with
time-evolving
statistical properties,
so that a limited time
series is not
representative of the
past or the future

Subgrid-scale (SGS)
parameterization:

a model to
parameterize the
relationship between
the resolved states as a
function of the
unresolved (subgrid)
state
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response to changes in greenhouse gases in the atmosphere, leading to nonstationarity (28), e.g.,
climate with different mean and variability. ML models are not suited to predict the behavior
of a system substantially different from the one they have been trained on. Yet we simply do
not have observational data for the future (i.e., lower left corner in Figure 1a) to train and vali-
date future predictions; this is an issue for both ML and physics-based models but one expects
the fundamental laws of physics to hold in the future as well. We summarize the nonstation-
ary challenge and potential solutions, such as incorporating physics constraints, in Section 4.2.
Furthermore, the long-term prediction of future climate involves the interactions between the
atmosphere, ocean, cryosphere, land, and biosphere, which make the problem more challenging
than short-term weather forecast.

1.2. Challenges in Understanding and Simulating Climate

The climate system consists of interacting processes that span orders of magnitude in spatial (from
microns to planetary) and temporal (from seconds to centuries) scales. Simulating the climate
system to resolve all these scales is computationally challenging. Due to its multiscale nature,
representing physics in the underresolved scales (e.g., cloud microphysics, turbulence) in low-
resolution climate simulations—referred to as subgrid-scale (SGS) parameterization—has been
a central goal for climate scientists. ML has emerged as a promising alternative to SGS pa-
rameterization due to its ability to perform equation discovery and its desirable properties as
universal function approximators, which do not require prior assumptions about the functional
forms of the parameterization. We summarize recent advances of ML in SGS parameterization in
Section 3.1 as well as its major challenges, such as interpretability in Section 4.1 (lower right corner
of Figure 1b) and uncertainty quantification (UQ) in Section 4.3. Without understanding what
the ML model actually learns and the reasoning behind it, we cannot deduce when the ML model
will generalize well to future climates. One approach to improve interpretability is discovering
the closed-form equations that capture the data (Section 2.2.4.3; upper side of Figure 1b). Equa-
tions have long been the language for physicists to develop understandings of the systems they
govern. With the emergence of ML, ways to comprehend and extract knowledge from ML-based
models are new areas of research. Several methods developed to understand what the ML model
itself learns are detailed in Section 4.3.

We organize this article by focusing on two distinct goals through which ML is reshaping cli-
mate science: (#) ML for climate physics and () ML for climate simulations. The former focuses
on utilizing the increasing availability of data from the Earth system to extract understandings, in-
cluding knowledge discovery (Section 2.1) and data-driven model discovery (Section 2.2). The lat-
ter discusses recent advances in accelerating simulations, including data-driven parameterization
(Section 3.1) and climate emulators (Section 3.2). Section 3.3 discusses methods used to
add physical constraints to ML models. For inverse problems with sparse data (upper left of
Figure 14) in the small-data regime including physical constraints is necessary to generalize pre-
diction where data do not exist. Finally, the future climate also falls in the small-data regime, as
no future observations exist. Along with an incomplete understanding of the physics of future
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climate, it lies at the bottom left of Figure 14, making it the most challenging among others in
Figure 1a. Thus, predicting climate is not merely about accelerating simulation but essentially re-
quires generating more physical knowledge than currently available, moving toward the tractable
upper left regime of Figure 14. While training ML models to make accurate predictions faster
than physics-based simulations, making previously challenging tasks computationally tractable,
is an achievement, the ability to simulate does not equate to improved physical understanding
(29). We stress that accurate and fast simulations or predictions are not sufficient; deeper physical
understanding of the climate is necessary to address the climate modeling challenges.

2. MACHINE LEARNING FOR CLIMATE PHYSICS

The increase in availability of data, from both observations and high-fidelity simulations, is a
key driver for new physical insights. Below, we introduce two emerging trends of research using
ML to improve our understanding of the climate physics using data: (#) Data-informed knowl-
edge discovery, e.g., identifying patterns and dynamical regimes in high-dimensional, complex
observations and simulations and (b) discovering data-informed predictive models.

2.1. Data-Informed Knowledge Discovery

Knowledge discovery (e.g., Figure 2a—c), such as identifying coherent patterns of dynamical sig-
nificance in spatiotemporal data, has long been a fundamental process for making discoveries in
climate science. A classical example in atmospheric science is the identification of what we now call
the El Nifio Southern Oscillation (ENSO) by Walker in 1928 (30). Stationed in India during the
British occupation, Walker employed an army of Indian clerks to conduct principal component
analysis (PCA) by hand on all available data, decomposing it into orthogonal modes that revealed
coherent structures associated with ENSO. Today, we have access to vast amounts of data, both ob-
servational and computational. Advanced ML techniques emerge as powerful pattern recognition
tools that computationally scale well with increasing volumes of data. Off-the-shelf tools widely
adopted in climate sciences include supervised learning methods [e.g., random forest, Gaussian
process regression (GPR), and NN] and unsupervised learning methods such as autoencoders and
clustering algorithms (e.g., k-means, self-organizing maps). Several of the above tools have been
used in climate science for decades, long before deep learning took off.

2.1.1. Dimensionality reduction. Climate data often involve high-dimensional, nonlinearly
correlated, spatial and temporal variables, such as temperature, pressure, and precipitation, across
large geographical regions and long time periods. Dimensionality reduction has long been used for
transforming high-dimensional climate data into a lower-dimensional space, which might be more
amenable to physical interpretation and to develop reduced-order predictive models. PCA, also
known as empirical orthogonal function (EOF), is one of the commonly used linear techniques for
dimensionality reduction (Figure 24). Reducing decades of observational data into a few modes
of variability, such as ENSO, has facilitated understanding of the underlying dynamics and even
the robust detection and interpretation of the anthropogenic climate-change footprint (31, 32).
However, traditional techniques such as PCA/EOF have major limitations, such as the lack of a
dynamical meaning of the discovered modes and the linearity (33) (see also Supplemental Text,
Section II).

ML techniques have the potential to address the linearity limitation. For example, autoen-
coders, a type of NN with high-dimensional input and output layers and a lower-dimension latent
space, are powerful tools for dimensionality reduction. A single-layer autoencoder using linear ac-
tivation functions is equivalent to PCA. In contrast, deep autoencoders with nonlinear activation
functions have more expressive power in capturing the low-dimensional representation of the
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high-dimensional input (34, 35), and their applications to climate science have started to emerge.
Shamekh et al. (36), interpreting the latent space of an autoencoder, developed of a new metric for
cloud and precipitation organization, enabling the development of a parameterization for moist
convection.

Markov models that describe the transition probability from one state to another are being ap-
plied to study the evolution of the climate system in a reduced space, possibly based on a PCA/EOF
projection (37, 38). Latent variable models have also shown promise in numerical model analy-
sis and predictive skill. For example, Wang et al. (39) improved ENSO prediction skill by using
kernel analog forecasting [related to the Koopman operators (40), a mathematical technique to
transform a nonlinear dynamical system into a linear one in a higher-dimensional space.].

2.1.2. Finding patterns in climate data. The task of finding patterns in climate data extends
far beyond dimensionality reduction and is a fruitful area that still has much to be explored. For
example, unsupervised methods like clustering (Figure 25) have been used to identify the balance
between terms of the equations governing simulation data and to discover global ocean dynamical
regions as parsimonious representations of the governing equations (6) (Figure 2c¢).

Data from actual observations can often inspire new knowledge about climate systems (41).
Supervised methods facilitate the utilization of vast amounts of satellite observations, such as re-
constructing a pan-Arctic dataset of sea ice thickness during periods when data are unavailable
(42), revealing the strong nonlinear interactions with ocean eddies (43), reconstructing ocean sur-
face kinematics with sea-surface height measurements (7), and detecting icebergs to understand
their contribution to the freshwater budget (44). Extracting information from remote-sensing data
can fill missing gaps required to inform physics-based models. For example, the identification of
ice fractures (underresolved in simulations) is needed to constrain parameters for modeling ice
dynamics (45, 46). Some of the above tasks have long been done manually and often subjectively
by scientists. ML offers an efficient alternative that can be easily scaled up to all available data that
may be intractable otherwise and can be made easily accessible, reproducible, and transparent via
open-source software. That said, the design of the loss functions is still subjective.

2.2. Data-Informed Model Discovery

Apart from distilling knowledge from data, physicists have been developing predictive models to
describe observations for centuries. The utility of a model, if it accurately represents the obser-
vations, lies in its ability to make predictions when the data are unavailable, such as projections
about the future. The crux of climate physics is creating trustworthy future predictions, and deter-
mining how to construct a model that faithfully describes the data are essential. It’s worth noting
that in traditional physical sciences, a model often takes the form of mathematical equations. In
modern ML literature, a model can refer to functional operations (e.g., NNs) that parameterize
relationships between specified input and output variables. For clarity, in this section, use of the
term model discovery means the discovery of mathematical equations.

Here, we broadly classify three different ML approaches that have been used for finding mod-
els to describe climate data: parametric, state, and structural estimations (Figure 2). We use a
dynamical-system example of the following form to illustrate the differences:

%z(t) = £(2(1),0), 1.

where z(¢) € R” represents the states vector of the system that evolves with time 7 € R, and its
evolution is dictated by the mathematical expression of the dynamics f and the model parameters
0 (see the sidebar titled The Lorenz 63 System for an example).

Lai et al.
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THE LORENZ 63 SYSTEM

The Lorenz 63 system (47), a simplified mathematical model for atmospheric convection, is described by the
following set of ordinary differential equations:

d d d
ax:a(y—x), ay:x(b—z)—y, FE=Y %

where the model parameters 6 = [a, b, c] are constants, and z(t) = [x(z), y(¢), z(t)] are the time-evolving states.

2.2.1. Parametric estimation #. Given a discrete dataset of states measured at discrete times t;,
ie., {x(t), (%), @)} |, parametric estimation refers to predicting the free parameters 8 = [, 4, ]
when the functional form of the mathematical model f(z(t), 6) is known. See Figure 2d.

2.2.2. State estimation z. State estimation involves predicting the state variables z(¢) given the
mathematical model £(z(z), #), model parameters 8, and data {x(%;), y(#), 2(t;)}Y . Estimating states
is particularly useful for data interpolation when the available data are sparse in time or space, for
data denoising, or for inversion when the predicted state is not measurable (e.g., Figure 2f) and,
thus, completely unavailable in the data library, e.g., predicting z(¢) with data of {x(%;),y#:)}Y,.

2.2.3. Structural estimation f. This is also referred to as equation discovery, reconstructing
the complete mathematical expression of f(z(¢), #), including the free parameters @ = [4, b, ] given
only the discrete data {x(t;), y(#;), 2(t;)}Y.,. The determination of the model f(z(t),6) fully relies
on the data; therefore, dense data are often needed to guarantee the success of the algorithms.

Beyond these three categories, an emerging data-driven approach involves replacing f with an
ML-based emulator. In this approach, instead of using equations, the dynamics f are represented
by black-box ML models, as detailed in Section 3.2.

2.2.4. Algorithms and examples. In this section, we list a few examples that demonstrate how
ML has influenced data-driven model discovery within the three categories described above; en-
semble Kalman inversion (EKI) for parameter 6 estimation, physics-informed machine learning
(PIML) for state z estimation, and equation discovery for structural f(z,6) estimation.

2.2.4.1. Ensemble Kalman inversion. Here, we focus on one family of methods, EKI, as an
example, as it is increasingly used in climate science. EKI (48) is a well-developed parameter es-
timation technique in the climate modeling community and has been used in various contexts
such as convection, turbulence, and clouds (49-51), gravity waves (52), and ocean convection
(53). EKI is a derivative-free (48) optimization method for parametric estimation 6, based on
ensemble Kalman filtering (EnKF) (54), which is used for estimating states z(¢) in numerical
weather prediction (NWP) (55) given noisy observations. EKI (56) attempts to find a distribu-
tion of model parameters @ that can describe time-averaged statistics of a truth, which could be
from observational data or simulations, removing dependence on state variables by utilizing long
integrations. EKI optimizes for macrophysical climate statistics (e.g., derived by averaging over
many occurrences of the event of interest).

Quantification of parametric uncertainty is important as it illustrates how perturbations of
parameters 0 that we want to estimate would translate to the predictions of 2. As shown in
Figure 2e, though an optimal value of #* minimizing the cost function only captures one pre-
diction z(#*), a range of 6 could yield wide-ranging predictions (e.g., covering extreme events).
Running ensembles of forward physics-based simulations f(6) with a range of 6 for climate models
to quantify these uncertainties propagated by parameter uncertainty is currently computationally
infeasible. To address this challenge, the calibrate-emulate-sample (CES) approach (49, 50) trained
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INVERSE PROBLEM AND DATA ASSIMILATION

The problems of estimating parameters 6 and states z of a model f(z, ) falls under the umbrella of inverse problems

(60). The importance of parametric and state estimations lies in the fact that direct observations of model parameters

and states are often unavailable, yet they are crucial for simulating and predicting both the weather and climate

accurately. Various inverse problems arise in weather and climate, such as estimating parameters in climate models
or determining initial conditions for improved weather forecasting. Data assimilation (61) refers to the process of

combining observational data with numerical models. The synergies between data assimilation and ML have been

increasingly recognized (62-64), including using ML to correct model error in data assimilation (65) and emulation

of a dynamical system (66).

a GPR (Gaussian process regression) as a cheap method to emulate the prediction of interest z as a
function of 6. Sampling the GPR emulator with Markov chain Monte Carlo enables substantially
faster UQ (uncertainty quantification) of the predictions z resulting from the plausible range of 6.
GPR has also been used directly for calibrating parameters with UQ in Earth system models (57).

2.2.4.2. Physics-informed neural networks (PINNs). The use of PINNs (58, 59) for planetary-
scale geophysical flow problems has started to emerge in the past few years. Introduced by Raissi
etal. (58),a PINN is a differentiable solver for partial differential equations (PDEs) that is particu-
larly useful for inverse problems involving sparse-data inference, superresolution, data denoising,
and state estimation g in data assimilation (see the sidebar titled Inverse Problem and Data As-
similation). Unlike classical ML in which the cost function typically only involves data, PINN
encodes physics-based equations directly in the cost function (Figure 34).

Throughout the training iterations, the optimizer identifies the best ML-parameterized states
z = NN(x,t, y) that are consistent with both the data and the governing equations. In the small-
data regime, without evaluating the NN-parameterized z against known physical laws (such as
conservation of mass, momentum, and energy), the ML predictions can be physically inconsis-
tent and nonextrapolatable beyond the available observational data (e.g., deviation from truth in
Figure 2g). In contrast, by incorporating PDEs, PINNS can achieve both physics-informed data
interpolation and extrapolation, as demonstrated by the examples in Figure 3, which cannot be
achieved by ML models trained with observational data alone.

Figure 3b,c demonstrate the applications of PINNs on observations, ranging from estimat-
ing the initial conditions z(x,# = 0) of hurricanes for subsequent forecasts (67) to inferring the
nonmeasurable viscosity structure z(x) of Antarctic ice shelves (68). Both examples fall within
the small-data regime in the upper left corner of Figure 14, where incorporating knowledge of
PDEs becomes crucial for solving the inverse problems; the PINN-reconstructed wind field z(x, #)
(Figure 3b) involves only sparse observations of wind velocity itself as training data, obtained from
measurements by hurricane hunter planes and dropsondes. The PINN prediction of ice viscosity
is achieved without any observations of viscosity in the training data (Figure 3c); it relies solely
on equations and other observable states (velocity and thickness fields) as training data. Thus,
both examples involve substantial extrapolation beyond the sparse observational data, i.e., limited
velocity data and no viscosity data.

As long as the same data and physics-based equations are used to solve the inverse problem, the
predictions generated by properly trained PINNSs are as trustworthy as those produced by estab-
lished data assimilation methods. Due to PINN’s leverage of a graphics processing unit (GPU) and
differentiable modeling to infer accurate initial conditions without ensembles of forward model-
ing, as used in ensemble-based data assimilation methods (67) (see Supplemental Text, Section I

Lai et al.
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for a brief comparison), PINNs require fewer computational resources to construct hurricane ini-
tial conditions with similar accuracy as the ensemble-based data assimilation methods (69). That
being said, established data assimilation methods are supported by several mature theories, which
are relatively lacking for PINN methods. Although several models used in climate predictions are
not easily differentiable without substantial engineering efforts, the development of differentiable
solvers for atmospheric dynamics (70) demonstrates promises. Differentiable ice-flow solver and
emulator have also recently emerged as new tools for forward and inverse ice-flow modeling (71).

2.2.4.3. Equation discovery. Existing equations f(z,0) describing the numerous processes in
the climate system, particularly the SGS processes, are far from complete. Equation discovery,
which outputs equations that are most consistent with data, has been used to tackle this prob-
lem. Inspired by earlier symbolic regression algorithms for distilling physical laws from data (72),
sparse identification of nonlinear dynamics (SINDy) (73) has emerged as a widely used method
for discovering f(z, ) from data of the states z(¢). It demonstrates the power of sparse regres-
sion for learning the most relevant terms in the prescribed function library that describes the
data. To learn the correct f(z,8), SINDy requires sampled data of both z(¢) and dz(t)/dt. For
many climate problems these state measurements are sparse and noisy, or entirely unavailable.
Schneider et al. (74) showed that time-averaged statistics of the states z(¢), which are available for
the climate system, can be sufficient to recover both the functional form of f(z,#) and the noise
level of the data using sparse regression combined with EKI. Sparse EKI is robust to noisy data
and was successfully implemented to recover the Lorenz 96 equations (74). Other approaches for
equation discovery from data assimilation increments (75, 76) and from partial observations (77),
motivated by climate problems, have been proposed too.

Arguably the most successful example of the application of equation discovery for climate
physics so far has been the learning of an ocean mesoscale SGS parameterization (78). Trained on
high-resolution simulation data, Zanna & Bolton (78) showed that Bayesian linear sparse regres-
sion with relevance vector machines identifies relevant terms in the prescribed function library to
discover the closed-form equations of T1(z) (defined in Figure 2) for eddy momentum and temper-
ature forcing. The closed-form equation is consistent with an analytically derivable physics-based
model (79, 80). As discussed later in Section 3.1, SGS parameterizations (Figure 2) are essential for
improving the accuracy of computationally feasible low-resolution climate simulations. Although
black-box NNs have also shown promise for developing data-driven SGS parameterizations
(Section 3.1), the significant interest in equation discovery stems from their better generalization
to future climates and their interpretability (upper side of Figure 1b).

Inspired by early work on symbolic regression (72, 81), the symbolic genetic algorithm (82) was
developed to discover PDEs without the need to predetermine a function library. It uses a binary
tree to parameterize common mathematical operations (e.g., addition, multiplication, derivative,
division) and finds the correct operations such that the discovered equation matches the data.
In climate applications, genetic algorithms have been used for finding equations for cloud cover
parameterization (83) and ocean parameterization (84).

3. MACHINE LEARNING FOR CLIMATE SIMULATIONS

We discuss two major directions leveraging ML methods to improve the accuracy of climate
simulations: (#) SGS parameterization, aimed at developing more accurate climate models via
better representation of small-scale (expensive to resolve) physical processes, and (#) emulators,
aimed at generating large ensembles of simulations (or directly, the statistics) at a fraction of
the computational cost of a physics-based climate simulation. These two approaches are briefly
discussed below.
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UNCERTAINTIES IN CLIMATE PROJECTIONS

Climate projections are affected by three sources of uncertainty (86): (#) model uncertainty (also known as struc-

tural error), (b) internal variability uncertainty (e.g., the signal-to-noise ratio problem), and (¢) scenario uncertainty

(related to how much greenhouse gases will be released in the future). Reducing model uncertainty requires devel-

oping more accurate climate models (e.g., improving parameterization or increasing resolutions), whereas reducing
the internal variability uncertainty and scenario uncertainty requires computationally efficient climate models that

can generate long, large ensembles of simulations and explore different scenarios.

3.1. Subgrid-Scale Parameterization

There are two reasons climate models require SGS parameterization to achieve simulations on
relevant century-long timescales: (#) the process of interest varies on length scales or timescales
smaller than a climate model’s resolution, and () equations to describe the process are not known.
SGS parameterizations estimate the effect of these unresolved processes on the resolved scales.
Developing SGS parameterizations for climate modeling, but also for high-resolution simulations
in limited domain, has been an active area of research since the pioneering work of Smagorinsky
(85) on the first climate models in the early 1960s. Still, the approximations made in formulat-
ing these parameterizations remain a leading cause of model uncertainty (also known as structural
error; see the sidebar titled Uncertainties in Climate Projections). ML presents a potentially excit-
ing path forward in improving these SGS parameterizations or developing new ones. The general
idea is to use observations or high-resolution simulations to learn a data-driven representation or
closed-form equation of the SGS term IT (defined in Figure 2). Examples of the latter approach
were discussed in Section 2.2.4; below, we mainly focus on approaches based on NN (Figure 2j).

Studies have demonstrated the ability of ML algorithms such as NN to learn ML-based pa-
rameterizations as a supervised learning task, NN (g, y) = I1(2), for prototypes of geophysical
turbulence (e.g., 78, 87), ocean turbulence (e.g., 88, 89), moist convection and clouds (e.g., 90-96),
and atmospheric gravity waves (e.g., 97-99). Some of these examples have achieved stable simu-
lations that are more accurate than simulations with traditional physics-based parameterizations
(e.g.,78,87,93,95). However, though promising, this approach faces a number of challenges. Some
are common among other ML applications to climate (e.g., interpretability, extrapolation) and are
discussed in Section 4. Challenges specific to SGS parameterization via supervised learning include
availability of suitable high-resolution training data from numerical studies or observational cam-
paigns, as well as issues with accuracy and stability once these ML-based SGS parameterizations
are coupled [e.g., with atmosphere (93, 100) and ocean models (78)].

This discussion of SGS parameterization for climate models would not be complete if we
did not emphasize the distinct challenges compared to its use in weather forecasting. In weather
forecasting, the objective is to predict a specific trajectory based on initial conditions, necessitat-
ing accurate and detailed prediction of SGS physics. Conversely, climate studies aim to predict
changes in the system’s average behavior over decades. Thus, it is sufficient to predict the SGS
statistics rather than all its specific features. This shift requires novel ML approaches optimized
to capture emergent statistics rather than detailed information from training data in supervised
learning. This poses challenges, as long term observations of climate statistics are limited and
the simulations coupled with ML-based SGS parameterizations need to be stable for a long
enough timescale to learn the climate statistics from the training data. Despite these challenges,
a few studies have made progress in producing stable and accurate simulations of simple climate
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prototypes using NNs trained with differentiable modeling (101) and EKI (100) that target
the evolution of the climate variables in response to the SGS processes rather than training on
the SGS processes themselves. Recently, Google Research has made strides in this direction by
developing an atmospheric model’s dynamical core that learns SGS physics statistics directly
from reanalysis data (70). Yet, numerical stability and satisfaction of global energy conservation
constraints remain a challenge. Unlike in the weather literature, training from direct observations
(102) has not been attempted yet, possibly because of the sparsity of global datasets with long
enough timescales to capture climate statistics.

An additional challenge is how to address the interactions between different SGS processes,
for example, between SGS parameterizations of ocean and atmosphere boundary layer turbu-
lence that interact through air-sea fluxes. Training is typically done on subcomponents of the full
climate system because it is not computationally feasible to run global climate simulations
that fully resolve all SGS processes and their interactions. Concurrent observations of differ-
ent SGS processes are also limited. As a result, interactions among a number of individually
trained/calibrated data-driven parameterizations can lead to inaccurate or even unstable global
simulations. This is an area in need of practical advancements.

3.2. Climate Emulators

“Emulator” refers to several types of tools in the climate science literature. In general, an emula-
tor is trained to mimic the data, from physics-based simulations or observations, to substantially
reduce the computational cost of producing new climate predictions, e.g., for other climate
conditions within the distribution of the training data.

Emulators can be used to interpolate the projections from expensive climate simulations,
making their projections among different emission scenarios accessible without rerunning the
simulations. Earlier use of ML for emulators followed the successful approach of traditional
pattern-scaling emulators (103, 104), which, for example, predict the change in statistics of vari-
ables of interest (e.g., regional annual-mean surface temperature or the return period of extreme
events ata later time) given a small set of inputs (e.g., year, greenhouse gas forcing, global mean sur-
face temperature). Using ML techniques (e.g., GPR, NN), emulators such as ClimateBench (105)
have been employed to estimate the climate impacts of anthropogenic emissions annually up
to 2100. However, it remains to be demonstrated that their skill is superior to that of pattern-
scaling emulators, i.e., emulators that regress regional temperature on global mean temperature
or cumulative emissions.

Although the aforementioned emulators can predict aggregated statistics within an often large
window of length scales and timescales, another type of emulator has emerged in recent years
with the aim of predicting the evolution of the climate system at fine spatiotemporal scales. These
spatiotemporal emulators leverage the success of ML-based weather forecast models, which are
physics free and trained solely on reanalysis data (106) (spanning 1979-present; see the sidebar
titled Reanalysis). Recent ML-based weather forecast models [e.g., FourCastNet (2), Pangu (3),
GraphCast (4)] are time-stepping algorithms that solve the initial value problem of predicting
the state z(t) of the global atmosphere forward in time (from #; to #;4, then from #;;; to t;,,
and so on; Figure 2i). They exhibit comparable or even better skill than the best physics-based
weather prediction models for lead times of up to around 10 days (4). However, weather and
climate predictions are different problems. The former is an initial value problem, whereas the
latter is more akin to a boundary value problem in the sense that the focus is on how external
boundary conditions impact the system over longer periods of time.

Lai et al.
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REANALYSIS

Reanalysis, sometimes referred to as maps without gaps, refers to a method of using a physical model to assimilate
disparate observational data streams into a combined multivariate dataset uniform in space and time. The model
fills in the data-poor regions and ensures physical consistency between variables. The output is often referred to
as reanalysis data; however, it is important to keep in mind that these data are not observations but outputs of a
forecast model. In fact, reanalysis products from different weather centers usually differ among themselves, and this
spread can be taken as a measure of uncertainty in observations and understanding.

For climate predictions, atmospheric spatiotemporal emulators are built to solve boundary
value problems that integrate the global atmospheric state given external forcings (e.g., radia-
tive forcing) and time-evolving boundary conditions (e.g., sea-surface and land temperature) for
decades or centuries. The AI2 Climate Emulator (ACE) (10, 11) is a promising example of such
a spatiotemporal emulator trained on physics-based simulations. Similar work on oceanic spa-
tiotemporal emulators (107, 108) suggests that coupled climate emulators might start to emerge
as well.

ML spatiotemporal emulators have shown even more promise in simulating components of the
climate system whose physics are less well understood. For the cryosphere, deep learning-based
emulators for seasonal sea ice prediction have been found to outperform state-of-the-art physics-
based dynamical models in terms of forecast accuracy (109-111), with a lead time of a few months.
Some of these sea ice emulators capture atmospheric-ice-ocean interactions by training with ap-
propriate climate variables (109, 111). Because these emulators were trained directly on sea ice ob-
servational data, they learn the atmospheric-ice-ocean interactions that are incompletely param-
eterized in the physics-based dynamical models, thereby correcting the model’s structural error.

3.3. Physics-Informed Machine Learning (PIML)

Despite ML ability to emulate weather (Section 3.2) and parameterize SGS processes when
trained on high-resolution simulations or observations (Section 3.1), there is no guarantee that its
predictions are physically sound (e.g., conservation of mass, energy). This physical inconsistency is
problematic and makes long-term climate projections using ML-based emulators and ML-based
parameterizations not trustworthy (Figure 2g, left panel; see the sidebar titled Challenges and
Opportunities of ML-Based Emulators). Incorporating physics constraints such as conservation
laws, symmetries, and more broadly, equivariances (defined below), has been shown to alleviate
a number of challenges such as instabilities and learning in the small-data regime—Kashinath
etal. (114) review earlier work in PIML for weather and climate modeling.

3.3.1. Conservation laws. Various methods exist for incorporating conservation laws into ML
models, such as embedding them in the loss function [e.g., PINNs (58); Section 2.2.4.2] or other
components of the ML architecture. For instance, Beucler et al. (115) demonstrated that conserv-
ing quantities like mass and energy can be enforced as hard constraints within the NN architecture.
Their architecture-constrained NN, trained as an SGS parameterization of moist convection,
significantly improved simulated climate.

3.3.2. Symmetries and equivariances. Incorporating symmetries and equivariances has also
shown advantages, particularly in the small-data regime. For a variable x, the nonlinear function
g is equivariant under transformation A if Ag(x) = g(Ax). For example, by incorporating various
symmetries (e.g., scale equivariance, rotational equivariance) into convolutional neural networks
(CNNs) trained on turbulence data from previous time steps, the CNNs generalize well to future
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CHALLENGES AND OPPORTUNITIES OF MACHINE LEARNING-BASED

EMULATORS

Emulators can address the climate response to a particular emission scenario and internal variability uncertainty

(defined in the sidebar titled Uncertainties in Climate Projections). However, emulators are at best as accurate as the

data they are trained on, which may still contain model uncertainty; this may be partially overcome by training with
data from very high-resolution yet very expensive simulations, such as the emerging global 1-km climate simulations.

Nonetheless, major questions about the stability and physical consistency of the trained spatiotemporal emulators

need to be addressed. For example, ML weather forecast models have been shown to produce unstable or unphysical

atmospheric circulations beyond 10 days, poorly represent small-scale processes (15, 112), and fail to reproduce the

chaotic behavior of weather (113). Potential solutions to address these challenges include incorporating physical
constraints into ML models (Section 3.3) and developing a deeper understanding of the different sources of error
in these models (Sections 4.1 and 4.2).

Spectral bias: neural

networks’ tendency to
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certain frequencies of
the training data
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of the ML model from
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optimization, and
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time steps (8) (Figure 2b). Enforcing rotational equivariance through Capsule NN, CNNs, or
customized latent spaces has improved ML-based predictions of large-scale weather patterns (116)
and turbulent flows (8, 117).

3.3.3. Spectrum information. Including information about the Fourier spectrum of geophys-
ical turbulence in the loss function has been shown to aid in learning small scales and reducing
spectral bias, thereby improving the stability and physical consistency of ML-based emulators
(112). See Section 4.1 for further discussions.

4. CHALLENGES AND PROMISES
4.1. Quantifying Uncertainties of Machine Learning Models

Broadly speaking, there are two sources of error in ML-based models: errors in the training data
and the epistemic uncertainty for the ML model. The errors in data can stem from sparsity and
measurement noise, which are particularly relevant for observations, or from errors in simulation
data, which can arise from numerical errors and inaccurate physics-based equations. The epis-
temic uncertainty of the ML model arises from different sources, such as model architecture and
hyperparameters (118). Some ML techniques, such as GPR, provide rigorous estimates of uncer-
tainty (see, e.g., References 26 and 105 for climate applications). However, for deep learning, UQ
(uncertainty quantification) is more complicated and the subject of extensive research (for recent
review papers in the context of scientific applications see References 118 and 119).

Understanding the sources of errors in ML models can improve their stability, physical con-
sistency, and reliability. For example, in simulations coupled with ML-based parameterization,
errors from the ML model are propagated into the simulations and vice versa, potentially lead-
ing to instabilities and nonphysical behavior. Similarly, errors in a spatiotemporal emulator can
accumulate and destabilize the emulation. Because we cannot directly estimate accuracy during
inference (as we do not have access to the ground truth), the best approach is to estimate the un-
certainty of the ML model’s output, as this uncertainty may be indicative of its accuracy. Here, we
provide examples from climate science for UQ of NN, and we also discuss two impactful sources
of epistemic uncertainties related to representation error (e.g., spectral bias) and data imbalance
(e.g., rare extreme events).

4.1.1. Quantifying epistemic uncertainty. A variety of techniques from the ML literature
have been employed for UQ of NNs in climate applications. For instance, deep ensembles (24,

Lai et al.
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120-122) and Bayesian NNs (24, 123) are used to assess the mean and spread of predictions as
well as the faithfulness of the NN optimization. In Reference 124, these two methodologies were
combined to reveal the consequences of architecture choice, as determined by UQ and the ability . L
. . . . Climate-invariant
to approximate the physical system. Other techniques, such as variational autoencoders, dropout, 4. . . =
and abstention, have also been explored (123, 125-127). See References 128 and 123 for detailed  machine learning that

discussions. utilizes relationships
that stay the same

4.1.2. Spectral bias. Another example of epistemic error in ML models affecting climate appli-  across different

cations is the spectral bias (129) (or frequency principle; 130). Namely, NNs learn to represent the Chmate? to .impr ove

large scales much more easily than small scales, which can pose challenges for multiscale climate generalization

problems. Figure 44 shows the spectrum of the one-time-step (~6 or 12 h) prediction of upper-

level wind from a few state-of-the-art ML weather emulators. Although the predictions exhibit the

correct spectrum for up to zonal Fourier wave numbers of ~30 (scales of 40,000 km to 500 km),

smaller scales (from 500 km to 25 km) are poorly learned. It’s noteworthy that these predictions

all boast around ~99% accuracy based on anomaly pattern correlation. These errors in small

scales grow to larger scales after 10 days. Eventually, these predictions either blow up or become

unphysical (112). The same behavior is observed in simpler tasks such as reconstruction of at-

mospheric boundary layer turbulence (Figure 45), time-stepping prediction for quasigeostrophic

(QG) turbulence (Figure 4c¢) and its reconstruction (Figure 4d), or even a simple 1D function

(Figure 4f). Promising solutions include Fourier regularization of the loss function (Figure 4c,

modified from Reference 112) and random Fourier features (134, 135) (Figure 4d, modified from

Reference 76). Superposing small NNs (132, 133) via the multistage NN also improves spectral

bias substantially compared with vanilla NNs (Figure 4e, modified from Reference 132).

4.1.3. Rare extreme events. Another example of epistemic error relates to rare events (e.g.,
heat waves, hurricanes, ice-shelf collapse, ocean circulation collapse). Predicting these rare events
is crucial, but they are often underrepresented or entirely absent from the training set, lead-
ing to significant data imbalance. Addressing data imbalance and improving the learning of rare
events is an active area of research. Common approaches such as resampling (136, 137), using
weighted loss function (123, 138), and learning the causal relationship that drives the rare behav-
ior (124) have shown promise. Innovative approaches, such as combining ML-based emulators
with mathematical tools for rare events (139, 140), may enable the learning of the rarest events.

4.2. Nonstationarity: Out-of-Distribution Error of Machine Learning Models

Climate change is inherently nonstationary (28): The mean state and its variability change over
time. This poses a major challenge for applications of ML models to climate-change projections.
For instance, ML-based models trained on data from the current climate may not perform well for
a warmer future climate with higher greenhouse gas concentrations. Studies have already demon-
strated unstable or unphysical simulations resulting from NN’ inability to extrapolate beyond its
training data (93, 141, 142). The nonstationary problem raises new questions: How can we ensure
that the prediction task is within the distribution of the training data? How do we ensure that the
ML model leverages information that is climate-invariant? Would a hybrid approach, coupling
physics- and ML-based models, improve long-term climate simulations?

Examples of strategies for dealing with nonstationarity and out-of-distribution generaliza-
tion include (#) incorporating physical knowledge (142) and (§) transfer learning (87, 141). As an
example of incorporating physical knowledge, the recently proposed climate-invariant machine
learning (142) learns the mapping between variables of interests that is universal across climates.
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The spectral bias of neural networks (129, 130) can be widely observed in climate applications and can cause
major challenges such as instabilities. (#) State-of-the-art ML-based weather emulator predictions after one
time step (based on results from Reference 112, courtesy of Qiang Sun). () Atmospheric boundary layer
turbulence reconstruction (131). (¢,d) QG turbulence prediction after one time step (112) (data provided by
Ashesh Chattopadhyay) or reconstruction (based on results from Reference 76, data provided by Rambod
Mojgani). (¢) Reconstruction of a 2D flow field (132) using the multistage NN (133). (f) Reconstruction of a
1D function with sharp peaks, difficult to fit with vanilla NNs (data provided by Yongji Wang). Panels 4, 5,
and e adapted with permission from Reference 112 (CC BY 4.0), Reference 131 (CC BY 4.0), and
Reference 132 (CC BY 4.0), respectively. Panels ¢ and 4 adapted with permission from Reference 76

(CC BY 4.0). Abbreviations: 1D, one-dimensional; 2D, two-dimensional; Al, artificial intelligence;

ERAS, the 5th generation ECMWEF atmospheric reanalysis of the global climate; ML, machine learning;
NN, neural network; QG, quasigeostrophic; RFF, random Fourier feature.

This study showed promising offline results of data-driven parameterization of moist convection
across a range of cold to warm climates once temperature, relative humidity, and latent heating
were properly transformed. This approach leverages physical insights of climate. The main chal-
lenge is finding the appropriate transformations, which are easier to find for thermodynamics but
harder to find for dynamics (e.g., wind).
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Transfer learning, which is a common framework in ML for addressing out-of-distribution
generalization, involves training an ML model for a given system (e.g., the current climate) and
then retraining it with a much smaller amount of data from a new system (e.g., a warmer cli-
mate). The retrained ML model could then perform better for the new system. Several studies
have demonstrated the potential of transfer learning to address significant changes in parame-
ters 6 (e.g., a 100-times increase in Reynolds number in geophysical turbulence) or forcing (87,
141). The key challenge with transfer learning is obtaining reliable data for retraining. In climate-
change prediction, we must rely on simulations, as observations from the future are unavailable.
Libraries of high-resolution global and regional simulations that strategically sample from a range
of climates are emerging, providing a valuable source of training and retraining data (143-145).
However, the range of scenarios typically explored with Earth system models is typically restricted
to plausible future scenarios. As ML techniques become more mainstream in climate studies, it
will be important to simulate a wider range of future climates to expand the range of training data,
especially in extreme regimes.

4.3. Understanding What Machine Learning is Learning

Understanding what an ML model has learned, and how and why;, is essential for climate applica-
tions, especially to gain trust of and further improve such models. The use of explainable artificial
intelligence (XAI) techniques from the ML community for climate applications has gained pop-
ularity in recent years (e.g., 120, 146-148). For review papers featuring XAl in climate science,
see References 149-152. A core strategy for many XAl techniques is to identify which parts of the
inputs of an NN (e.g., regions of the atmosphere or ocean) are used to predict a specific output.
For example, Toms et al. (153) illustrated XAI could infer scientifically meaningful information re-
garding climate patterns known as El Nifio events. In Labe & Barnes (154), XAl was used to assist
model comparisons of the Arctic. XAl is also often used to determine whether the ML has gained
skill through detecting meaningful patterns in the training data, instead of spurious correlations.
Sonnewald et al. (120) used XAI within an ensemble of NNs to determine their ML model’s ac-
curacy (Figure 54,b) by assessing conformance with theory. The ML model’s task was to predict
ocean physical regimes, i.e., dominant balances between terms in the equation governing the flow.
Similar equation-determining frameworks are in References 24, 121, and 124.

Standard techniques for analyzing physical systems can also be applied to understand NNs.
For example, Fourier analysis has provided insight into NNs’ learning process (129, 130). In
the context of data-driven modeling of geophysical turbulence (141), Fourier analyses of CNNs
revealed what they have learned. The convolution kernels (with over 1 million learnable param-
eters) were shown to fall into just a few classes: low- and high-pass filters, and Gabor wavelets
(Figure 5¢). These findings align well with prior work that used wavelets for turbulence model-
ing (155), and even more so with theoretical ML studies on the need for such spectral filters for
learning multiscale, localized data (156, 157). More recent work has found this approach useful
in interpreting deep NN in climate applications by examining concepts from physics and ML
together (100, 112).

5. SUMMARY AND OUTLOOK

Numerous scientific discoveries and rigorous understandings have been prompted by first iden-
tifying empirical relationships. We summarized in Section 2.1 how ML can facilitate this, for
example, by accelerating the search for patterns in climate data that can be used to derive physical
understandings. We also summarized in Section 2.2 the promises ML has brought to find closed-
form equations for poorly understood climate processes. In many aspects of the climate system,
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Understanding what ML learns. Panels # and 4 illustrate how the THOR method ensures the input data necessary for the ML model to
demonstrate its learning of physics is present (120). (2, top) Training an NN to predict sections of the ocean dominated by different
balances in equation terms describing the flow (colors in output) using related surface fields (e.g., wind). (a, bottom) Looking backward
using XAI to see where in the input the NN saw as relevant (b/ue, not relevant; red, relevant). (b)) For the pink section in the North
Adlantic, only two equation terms are relevant (red boxes), and relevances show conformance in two maps below, e.g., where the
mountain range (closed black lines) in depth (H) gives negative relevance. (c) The two leftmost panels show examples of the state z and
SGS term IT (defined in Figure 2) from two setups of geophysical turbulence, separated by the dotted line, that differs in forcing scale
and dynamics. The right-side panels show examples of the Fourier spectra of convolutional kernels of NN trained as ML-based SGS
parameterizations NN (2, y) = I1. The Fourier analysis shows the emergence of low-pass, high-pass, and band-pass Gabor filters (141).
Panels # and b adapted with permission from Reference 120 (CC BY 4.0). Panel ¢ adapted with permission from Reference 141

(CC BY 4.0). Abbreviations: ML, machine learning; NN, neural network; QG, quasigeostrophic; SGS, subgrid-scale; SSH, sea surface
height; THOR, Tracking global Heating with Ocean Regimes; XAI, explainable artificial intelligence.

we do not yet have accurate process-level models to describe the system (e.g., sea ice rheology and
cloud microphysics). The increasing amount of observational data offers exciting opportunities
for both equation and knowledge discovery to improve the fundamental understanding of climate
physics.

However, ML can be used as tools to improve simulations. ML models can be coupled with
traditional physics-based models and used to parameterize processes for which closed-form
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equations are not yet available (Section 3.1). ML has led to breakthroughs in weather forecasting,
which was a task not widely expected to be possible a couple of years ago. We discussed the
challenges scientists need to overcome when moving forward from weather forecasting to climate
prediction (Sections 3.2 and 4).

ML is advancing rapidly, and new techniques and concepts that have shown great promise in
other fields are now being quickly adopted in climate science. Notable examples, as of this writ-
ing, include diffusion models (e.g., citenprice2023gencast,bassetti2023diffesm,finn2024towards),
LLM:s (e.g., 160), and foundation models (see, e.g., Reference 161 for a discussion of their design
and implementation and Reference 162 for a downstream task involving gravity waves). Progress
in climate modeling could greatly benefit from collaborations among the ML, climate sciences,
and mathematics communities. For example, the numerical analysis of differential equations and
the advent of digital computers played a key role in starting the field of numerical weather and
climate prediction (163). Developing similar rigorous tools, by closely combining methods from
climate physics, ML theory, and numerical analysis, can potentially help with building stable,
accurate, and trustworthy ML-based models.
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