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A B S T R A C T

As the building sector contributes approximately three-quarters of the U.S. electricity load, analyzing buildings’
energy consumption patterns and establishing their effective operational strategy become of great importance.
To achieve those goals, a physics-based building energy model (BEM), which can simulate a building’s energy
demand under various weather conditions and operational scenarios, has been developed. To obtain accurate
simulation outputs, it is necessary to calibrate some parameters required for the BEM’s pre-configuration.
The BEM calibration is usually accomplished by matching the simulated energy use with the measured one.
However, even with the efforts to calibrate the BEM at best, a systematic discrepancy between the two
quantities is often observed, preventing the precise estimation of the energy demand. Such discrepancy is
referred to as bias in this study. We present a new calibration approach that models the discrepancy to
correct the relationship between the simulated and measured energy use. We show that our bias correction
can improve predictive performance. Additionally, we observe the heterogeneous variance in the electricity
loads, especially in the afternoon hours, which often reduces prediction accuracy and increases uncertainty. To
address this issue, we incorporate heterogeneous weights into the least squares loss function. To implement the
bias-correction procedure with the weighted least squares formulation, we propose a newly devised iteratively
reweighted least squares algorithm. The effectiveness of the proposed calibration methodology is evaluated
with a real-world dataset collected from a residential building in Texas.
1. Introduction

As the building sector accounts for approximately 40% of the pri-
mary energy use and 72% of electricity loads in the U.S. [1], it becomes
vital to analyze the energy consumption patterns of buildings and
improve their energy efficiency. In response, physics-based building
energy models (BEMs) have been developed, which are capable of
simulating a building’s energy consumption, including electricity and
gas or steam energy, by maneuvering various conditions of heating,
ventilation, and cooling (HVAC), lighting, and plug and process loads
under various weather conditions, operational schedules, and building
geometry. Another usage of the BEMs includes, but not limited to,
HVAC system design and operation, retrofit analysis, and architectural
design. Among several BEMs (or building energy simulation engines),
the U.S. Department of Energy’s National Renewable Energy Labora-
tories developed a simulator, called EnergyPlus [2], which has gained
uch popularity in evaluating a building’s energy performance in the
iterature [3].
However, several studies report a considerable discrepancy between

imulated and actual energy use, raising concerns about the model’s
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reliability in the building sector [4,5]. Due to the advances in smart
metering and industrial internet of things (IIoT) technologies, this
discrepancy becomes more evident [3]. Several reasons for the discrep-
ancy have been discussed in prior studies [6–8]. Assuming that building
specifications are sufficiently detailed and data accuracy is guaranteed,
that is, data sources and measurement techniques are reliable, the
discrepancy could result from (i) parameter uncertainty arising from
the fact that the initial (or default) values of simulation parameters in
BEM descriptions would not accurately reflect the underlying physics,
and (ii) model inadequacy caused by simplifications and abstractions
of a real building’s energy systems. Thus, the calibration procedure
for reducing the discrepancy between the simulated energy consump-
tion and actual observations, along with suitable uncertainty analysis,
is essential to enhancing model reliability. The International Energy
Agency’s Energy in Buildings and Communities (IEA-EBC) Annex 53
also discussed the importance of model calibration and uncertainty
quantification to obtain a credible BEM [9].

Model calibration is usually accomplished by adjusting simulation
parameters so that the simulated values of energy consumption are
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closely aligned with the actual observations. It is also known as param-
eter calibration in the literature [10–12], aiming to capture a target
building’s real physical dynamics. Once calibrated, the parameters are
not only useful for the accurate simulation of energy use but also enable
us to infer information about the states in the building’s energy system
and their physical implications.

Even with the efforts to calibrate the BEM parameters as accurately
as possible, a systematic discrepancy between the two series of simu-
lated and actual energy consumption often exists. This discrepancy is
referred to as bias in this study. The bias may exhibit a distinct pattern,
such as a daily cycle [13], which needs to be taken into consideration
in the calibration procedure. Statistical approaches that account for the
bias have been discussed in the Bayesian calibration literature [14].
In fact, Bayesian calibration has been widely used with its uncertainty
quantification capabilities in the building energy literature [15,16].
Despite its popularity, one of its biggest drawbacks is the high compu-
tational cost, particularly when dealing with high-resolution data, such
as hourly and sub-hourly data. Thus, its application has been limited
to low-resolution aggregated data such as weekly [17], monthly [18–
22], or annual [23] data. This might also be a common practice
since electricity and gas or steam data were usually obtained from
utility providers, who typically provided aggregated monthly data [3].
Unfortunately, the low-resolution data may lose useful information in
data aggregation.

To alleviate the computational burden, [19] suggested a lightweight
Bayesian calibration approach that employs a linear regression emula-
tor. Menberg et al. [24] applied Hamiltonian Monte Carlo to enhance
posterior estimation efficiency. In spite of these advancements, compu-
tational demands still remain a hurdle in Bayesian calibration, limiting
its practicality to small-size datasets. For instance, [12] reported that it
took several days to calibrate multiple BEM parameters with weekly
data using the lightweight Bayesian approach and that, despite the
long computation time, the calibration results were not informative,
presumably due to the information loss during data aggregation.

Recently, advances in smart metering and IIoT technologies enable
us to access high-resolution data with high precision. This big data
stream brings us the opportunity to implement optimization-based
methods for calibration. Jeong et al. [12] presented a BEM calibra-
tion method that utilizes a gradient-based optimization technique with
hourly data. Chakrabarty et al. [8] applied Bayesian optimization (BO)
with relatively large-size datasets for the BEM calibration. However,
these studies did not consider the bias in their procedure, possibly
leading to an incomplete relationship between the simulated and actual
energy consumption.

Additionally, we note that the heterogeneous variance in the elec-
tricity loads is particularly pronounced in the afternoon in the case
study considered in this article. Although there is a general electricity
consumption pattern in the afternoon, the specific hour-by-hour elec-
tricity loads show very varied patterns each day (see more details in
Section 3). Such heteroskedasticity is a violation of the typical constant
variance assumption in the literature, which could reduce prediction
accuracy and increase estimation uncertainty. However, no studies in
the BEM calibration literature account for the heterogeneous variance.
To address this issue, we introduce heterogeneous weights within the
least squares loss function between the two time series, leading to the
weighted least squares (WLS) formulation.

To address these challenges, this study presents a new calibration
approach that models the bias to correct the relationship between the
simulated and measured energy use and, at the same time, introduces
heterogeneous weights within the loss function between the two time
series of simulated and actual ones in order to mitigate heteroskedas-
ticity. To calibrate the BEM parameters and estimate other model
parameters in an integrative framework, we propose a newly devised
iteratively reweighted least squares (IRLS) algorithm. To the best of
our knowledge, this is the first research to present the IRLS method in
2

conjunction with the bias-correction procedure in the BEM calibration. f
We summarize our contributions as follows. First, in order to cal-
ibrate the BEM parameters and align the BEM outputs with actual
electricity use, we provide a new modeling approach that debiases the
BEM outputs while accounting for the heterogeneous variance. Second,
we present a new procedure to estimate the BEM and other model
parameters integratively. Third, utilizing the fact that the calibrated
parameter values become maximum likelihood (ML) estimates, we
quantify the estimation uncertainties and construct asymptotically valid
confidence intervals for the BEM parameters. Lastly, we conduct a
case study using a real-world electricity consumption dataset collected
from a residential building in Texas to evaluate the effectiveness of the
proposed calibration methodology.

Notably, our case study demonstrates that the proposed method,
when compared to other alternatives, significantly improves predic-
tion accuracy for the electricity demands while simultaneously re-
ducing the uncertainties of the calibrated parameters, satisfying the
industry guidelines and protocol. Moreover, our uncertainty quantifi-
cation procedure results in constructing narrower confidence intervals,
i.e., smaller uncertainties, compared to alternative methods. The rest of
this paper is organized as follows. Section 2 introduces a linear linkage
model that assumes no bias in the model. Section 3 formulates a cali-
ration problem that debiases the BEM outputs, provides an approach
o mitigate heteroskedasticity, and designs a new bias-correction algo-
ithm for parameter calibration within the IRLS framework. Section 4
emonstrates the superiority of our proposed approach through the
eal-world BEM calibration case study for a residential building in
exas. Section 5 provides concluding remarks.

. A linear linkage model without bias assumption

Before discussing our proposed approach, we first present the widely
sed linear linkage model and its limitations. Let 𝐱𝑡 ∈ R𝑀x denote
vector of 𝑀x physically observable input variables for the BEM,
uch as dry-bulb temperature, wind speed, solar radiation, and relative
umidity, collected in a building’s surrounding area at time 𝑡 for all 𝑡 =
,… , 𝑇 , where 𝑇 is the number of historical time-series observations.
et 𝜽 ∈ R𝑃𝜃 denote a vector of calibration parameters where the
ange of the 𝑖th parameter is [𝑎𝑖, 𝑏𝑖] with 𝑎𝑖 and 𝑏𝑖 known constants
or all 𝑖 = 1,… , 𝑃𝜃 , implying that the domain of 𝜽 is a hyperrectangle
∶=

∏𝑃𝜃
𝑖=1[𝑎𝑖, 𝑏𝑖]. The parameters we consider in this study are those

elated to envelop (e.g., solar transmittance), zone (e.g., air flow rate),
nd HVAC (e.g., cooling coefficient of performance and component
apacity), but one can select others according to the calibration goal
nd scenario. Let 𝑦(𝐱𝑡) denote a real-valued noisy field observation for
n input 𝐱𝑡, such as the measurement of energy consumption, including
as or electricity use, within the building. In this study, we consider the
ourly electricity consumption. Let 𝜂(𝐱𝑡;𝜽) denote a real-valued output
rom the BEM, such as the energy consumption value simulated by the
EM. We consider the deterministic computer model that generates a
ixed output given 𝐱𝑡.
This study aims to align 𝜂(𝐱𝑡;𝜽) with 𝑦(𝐱𝑡) reasonably well to ac-

urately predict electricity consumption through the BEM simulation.
o do this, the unknown parameters 𝜽 should be properly estimated
sing operational data. Let us first consider that a simulator precisely
epresents the underlying physical process when the true (or correct)
arameters are used. This type of computer model is called a perfect
omputer model in the literature [25]. To connect field observations
ith the computer model outputs, a linear linkage model has been
roposed in the literature [26] as follows:

(𝐱𝑡) = 𝜂(𝐱𝑡;𝜽) + 𝜖𝑡, ∀𝑡 = 1,… , 𝑇 , (1)

here an observation error 𝜖𝑡 is assumed to be an independent and
dentically distributed (iid) random variable that follows a normal
istribution with mean zero and variance 𝜎2, concisely, 𝜖𝑡

iid∼ 𝑁(0, 𝜎2).
Let 𝜽∗ denote the correct parameter values. Mathematically, a per-

∗
ect computer model implies that 𝐸[𝑦(𝐱𝑡)] = 𝜂(𝐱𝑡;𝜽 ) holds for all 𝑡. In
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Fig. 1. Comparison between the actual electricity consumption and BEM simulation outputs.
Fig. 2. Plots of residuals 𝑅(𝐱𝑡) = 𝑦(𝐱𝑡) − 𝜂(𝐱𝑡; 𝜽̂) against hour index.
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ther words, there is no bias and the BEM simulator generates unbiased
esults over time when 𝜽 is correctly estimated. Under this unbiasedness
ssumption, the calibration problem is to identify the estimator 𝜽̂ that
inimizes the difference between 𝑦(𝐱𝑡) and 𝜂(𝐱𝑡;𝜽) for all 𝑡 [12]. The
ifference can be quantified by some difference measures, among which
he following mean squared error (MSE) is widely employed.

min
𝜽∈𝜣

1
𝑇

𝑇
∑

𝑡=1
(𝑦(𝐱𝑡) − 𝜂(𝐱𝑡;𝜽))2. (2)

When a small number of field observations are available and/or
the computer model is expensive to run, surrogate-based approaches,
such as Bayesian calibration [26] and 𝐿2 calibration [25], have been
used in the literature to accommodate scarce data. They typically pre-
specify design points 𝐱𝑡 and 𝜽 and estimate the true process 𝜁 (𝐱𝑡), where
𝑦(𝐱𝑡) = 𝜁 (𝐱𝑡)+𝜖𝑡, and/or 𝜂(𝐱𝑡;𝜽) using those design points. They are par-
ticularly useful when there is a limited amount of available data [11].
3

Recently, some limitations of these surrogate-based approaches are c
discussed when a sufficient number of field observations are available
and computer models are relatively cheap to run, and new approaches
are proposed using the nonlinear optimization techniques [10–12,27].
They do not pre-design the input data, but generate them on the fly as
they learn. Their methods are especially useful when data generation
from the computer model is not computationally intensive, e.g., when
each simulation run takes in the range of seconds.

However, the ‘‘no-bias’’ assumption in the linkage model (1) could
e restrictive and thus often violated in real-world applications. Take
he BEM calibration problem for a residential building in Texas as an
xample (see more details in Section 4). We use the data collected
uring the first 20 days of July in 2014 as a training set to calibrate the
EM parameters. We use BO for minimizing the loss function in (2).
e choose BO, because it is intended to find the global minimum of
he loss function when data is generated from a black-box computer
odel [28,29], such as the BEM. More details about BO will be dis-

ussed in Section 3.3. After calibrating 𝜽, we check whether the bias
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Fig. 3. ACFs of residuals 𝑅(𝐱𝑡) = 𝑦(𝐱𝑡) − 𝜂(𝐱𝑡; 𝜽̂).

Fig. 4. ACFs of model residuals 𝑟(𝐱𝑡) = 𝑦(𝐱𝑡) − 𝜂(𝐱𝑡; 𝜽̂) − 𝛿(𝐱𝑡; 𝜷̂).

etween 𝑦(𝐱𝑡) and 𝜂(𝐱𝑡; 𝜽̂) exists and if it exists, how the bias pattern
looks like.

Figs. 1(a) and (b) depict the actual and simulated electricity con-
sumption patterns at each hour index 𝑡 = 1,… , 480 and every 24 h
from 1 a.m. to midnight each day, respectively. Although the simulated
electricity consumption pattern 𝜂(𝐱𝑡; 𝜽̂) mimics the actual pattern 𝑦(𝐱𝑡)
relatively well, some discrepancies are still observed between the two
patterns. To examine discrepancies more specifically, we calculate
residuals and plot them at each 𝑡. Let 𝑅(𝐱𝑡) denote the residual as
𝑅(𝐱𝑡) = 𝑦(𝐱𝑡)−𝜂(𝐱𝑡; 𝜽̂) at time 𝑡. Fig. 2(a) clearly displays a cyclic residual
pattern from 𝑡 = 1 to 480. The residuals at a 24 h interval, which
are shown in Fig. 2(b), present the ‘‘positive-negative-positive’’ pattern
with the ‘‘decrease-increase-slightly decrease-increase’’ behavior from
1 a.m. to midnight. In general, the residual 𝑅(𝐱𝑡) tends to be positive,
i.e., 𝑦(𝐱𝑡) > 𝜂(𝐱𝑡; 𝜽̂), during 1 a.m. to 6 a.m. and 6 p.m. to midnight,
as depicted in the blue box plots in Fig. 2(c), indicating that the BEM
underestimates actual electricity demands. On the contrary, it tends
to overestimate actual electricity demands from 7 a.m. to 5 p.m. as
shown in the red box plots in Fig. 2(c). From the observations, it
becomes evident that certain daily patterns persist over time. It shows
that there is a systematic bias inherent in the BEM simulator, implying
that 𝐸[𝑦(𝐱𝑡)] ≠ 𝜂(𝐱𝑡;𝜽∗) for some 𝑡.

Furthermore, the autocorrelation functions (ACFs) of the residuals
in Fig. 3 confirm that severe temporal correlation exists within the
residual time series {𝑅(𝐱𝑡)}𝑇𝑡=1. Note that the ACF values that fall
beyond the two horizontal dotted boundaries indicate correlated resid-
uals. In Fig. 3, we observe several ACF values beyond the boundaries,
implying that the residuals are correlated with one another. Thus, the
‘‘independent’’ assumption in the linkage model (1), which is one of the
core assumptions about the errors in 𝜖𝑡

iid∼ 𝑁(0, 𝜎2), is violated.
Accordingly, since 𝜖𝑡’s are not independent, the problem formu-

lation in (2) has limitations. It implies that its optimizer 𝜽̂ is no
4
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longer the ML estimate in a statistical sense, thus one cannot use
the asymptotic properties of the ML estimator (see Section 3.4) when
quantifying uncertainties for the calibrated parameters 𝜽̂. To address
these limitations, a bias-corrected calibration approach that adjusts the
systematic discrepancy is needed. We will subsequently discuss the
bias-correction procedure in more detail in the next section.

3. Methodology: bias-corrected iteratively reweighted least
squares method

This section formulates the BEM calibration problem that explicitly
models the bias. We also introduce heterogeneous weights into a loss
function to mitigate heteroskedasticity. Specifically, Section 3.1 ana-
lyzes the bias pattern present in the BEM and discusses how to capture
it using a time-series model. Section 3.2 examines heteroskedasticity in
the electricity loads and formulates weighted least squares using the
heterogeneous weights. Then we propose a new algorithm for the iter-
ative refinement of weights, employing the IRLS method in Section 3.3.
n Section 3.4, we show how to construct confidence intervals for the
alibrated parameters. Section 3.5 discusses potential extensions to
oth bias correction and heterogeneous variance reduction approaches.

.1. Debiasing the BEM outputs

Suppose 𝛿(𝐱𝑡) denotes a systematic discrepancy between 𝑦(𝐱𝑡) and
(𝐱𝑡;𝜽) for all 𝑡. We consider the extended form of the linear linkage
odel that incorporates 𝛿(𝐱𝑡) into the previously discussed linkage
odel (1) as follows [14]:

(𝐱𝑡) = 𝜂(𝐱𝑡;𝜽) + 𝛿(𝐱𝑡) + 𝜖𝑡, ∀𝑡 = 1,… , 𝑇 , (3)

here 𝜖𝑡
iid∼ 𝑁(0, 𝜎2) holds. Later, we will see that the error assumption

egarding the identical distribution (or constant variance 𝜎2) does not
old in the BEM calibration. Instead, 𝜖𝑡

ind∼ 𝑁(0, 𝜎2𝑡 ) is a more valid
ssumption, where ‘‘ind’’ means ‘‘independently distributed’’. We will
ddress how to characterize the varying variance 𝜎2𝑡 in Section 3.2.
When field observations and computer model outputs are scarce,

ayesian calibration [14] suggests modeling 𝜂(𝐱𝑡;𝜽) and 𝛿(𝐱𝑡) using
urrogates, typically Gaussian processes (GPs), at the pre-designed
nputs 𝐱𝑡 and 𝜽. It places a prior distribution on each parameter and
xplores the posteriors using Markov chain Monte Carlo (MCMC). The
lear benefit of employing this Bayesian approach is to offer uncer-
ainty quantification capabilities in the Bayesian inference framework.
owever, its application is usually restricted to a small amount of
ata with low-dimensional parameters due to the MCMC procedure’s
eavy computational overhead, as discussed in Section 1. It has been
hown that with a large-size dataset, a frequentist approach is more
seful [11,12]. However, to the best of our knowledge, the frequentist
pproach does not take the bias into account as in the formulation (3).
In this study, our goal is to make 𝜂(𝐱𝑡;𝜽) + 𝛿(𝐱𝑡) resemble 𝑦(𝐱𝑡) with

he judiciously modeled bias term 𝛿(𝐱𝑡), so that it accurately represents
he electricity demands, along with improved uncertainty quantifi-
ation capabilities. We now introduce a new modeling approach to
epresent the biases {𝛿(𝐱𝑡)}𝑇𝑡=1 using the time-series residuals {𝑅(𝐱𝑡)}

𝑇
𝑡=1,

n order to capture the daily cyclic (or periodic) pattern and address the
emporal correlation, through the following equation.

(𝐱𝑡) = 𝛿(𝐱𝑡) + 𝜖𝑡, ∀𝑡 = 1,… , 𝑇 , (4)

here 𝜖𝑡
iid∼ 𝑁(0, 𝜎2) or 𝜖𝑡

ind∼ 𝑁(0, 𝜎2𝑡 ).
In general, there are a few major modeling approaches that can

e considered for a time series: parametric, semiparametric, and non-
arametric approaches. The family of parametric models includes the
sual time-series models such as autoregressive integrated moving
verage (ARIMA) [30], whereas the semiparametric and nonparametric
pproaches contain a relatively wide range of models such as GPs [31],
plines [32,33], neural networks including long short-term memory
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Fig. 5. Plots of model residuals 𝑟(𝐱𝑡) = 𝑦(𝐱𝑡) − 𝜂(𝐱𝑡; 𝜽̂) − 𝛿(𝐱𝑡; 𝜷̂) against hour index.
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etworks [34], etc. In this study, we utilize the parametric approach
because the pattern we wish to capture is relatively consistent over
time, and thus, this type of model can be easily generalized to new
data that exhibit a similar pattern to the training data.

Among the family of ARIMA models, we employ the multiplicative
seasonal autoregressive integrated moving average (SARIMA) model of
a period of 24, denoted by ARIMA(𝑝, 𝑑, 𝑞) × (𝑃 ,𝐷,𝑄)24, since the time
series {𝑅(𝐱𝑡)}𝑇𝑡=1 exhibit daily periodicity and nonstationarity, e.g., the
mean value function 𝜇𝑡 of the residuals is not constant and depends on
time 𝑡, as previously shown in Fig. 2. Here, the model parameters 𝑝, 𝑑,
and 𝑞 are non-negative integers, with 𝑝 being the order (i.e., number
of time lags) of the autoregressive (AR) model, 𝑑 being the degree
of differencing, and 𝑞 being the order of the moving average (MA)
model. The uppercase letters 𝑃 , 𝐷, and 𝑄 follow a similar analogy with
respect to the seasonal components. Then ARIMA(𝑝, 𝑑, 𝑞)× (𝑃 ,𝐷,𝑄)24 is
expressed by

𝛷(𝐵24)𝜙(𝐵)∇𝐷24∇
𝑑𝑅𝑡 = 𝛼 + 𝛹 (𝐵24)𝜓(𝐵)𝜖𝑡, ∀𝑡 = 1,… , 𝑇 , (5)

where 𝛼 is a scalar and 𝑅𝑡 ∶= 𝑅(𝐱𝑡). Here, 𝜙(𝐵) and 𝜓(𝐵) are, respec-
tively, the ordinary AR and MA operators of order 𝑝 and 𝑞, defined by

𝜙(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵
2 −⋯ − 𝜙𝑝𝐵𝑝,

𝜓(𝐵) = 1 + 𝜓1𝐵 + 𝜓2𝐵
2 +⋯ + 𝜓𝑞𝐵𝑞 ,

(6)

and 𝛷(𝐵24) and 𝛹 (𝐵24) are the seasonal AR and MA operators of order
𝑃 and 𝑄, described by

𝛷(𝐵24) = 1 −𝛷1𝐵
24 −𝛷2𝐵

48 −⋯ −𝛷𝑃𝐵24𝑃 ,

𝛹 (𝐵24) = 1 + 𝛹1𝐵
24 + 𝛹2𝐵

48 +⋯ + 𝛹𝑄𝐵24𝑄,
(7)

respectively. Additionally, ∇𝑑 = (1 − 𝐵)𝑑 and ∇𝐷24 = (1 − 𝐵24)𝐷 are
the ordinary and seasonal difference operators, respectively, where 𝐵
denotes the backshift operator exemplified by 𝐵𝑅𝑡 = 𝑅𝑡−1.

The combination of the model parameters (𝑝, 𝑑, 𝑞) and (𝑃 ,𝐷,𝑄)
5

can be determined using the information criteria, such as AIC [35] (
and BIC [36]. We can find the model order that provides the lowest
AIC or BIC criterion among the fitted SARIMA models. Both AIC and
BIC suggest assessing the goodness of fit for the time-series model by
balancing the fitting error with the model complexity represented by
the number of parameters in the model. The distinction between the
two criteria lies in the extent to which they penalize model complexity.
Specifically, AIC is less stringent in penalizing model complexity, often
leading to the selection of a larger-order model compared to BIC [30].
That is, AIC may be preferred when aiming for a more flexible model
and when there is a belief that a more complex model could capture
important patterns in the data, while BIC generally tends to favor more
parsimonious models. There is some debate surrounding the compara-
tive advantages of these two criteria, yet both AIC and BIC have been
widely employed in the literature without specific preference [37]. In
ur implementation with 10 experiments (Note: Section 4 will discuss
implementation settings in more detail), the same SARIMA model is
selected by both AIC and BIC in five out of ten training sets. The re-
maining five scenarios exhibit minimal discrepancies, with a maximum
of one model degree. For example, BIC selects ARIMA(1, 0, 0)×(0, 1, 1)24
in some experiments, when AIC favors ARIMA(1, 0, 1) × (0, 1, 1)24. Even
though we use AIC for model selection, one can also employ BIC when
seeking to select a more parsimonious model.

One could identify the degrees of difference operators that provide a
relatively stationary series, followed by finding the appropriate orders
for AR and MA components to fit the resulting residual series. Thus,
the bias model for 𝛿(𝐱𝑡) will eventually be 𝛿(𝐱𝑡; 𝜷̂) = 𝑅̂(𝐱𝑡; 𝜷̂) by ex-
licitly specifying the estimated model parameters 𝜷̂ = (𝛼̂, 𝝓̂, 𝝍̂ , 𝜱̂, 𝜳̂ ),
where 𝝓̂ = (𝜙1,… , 𝜙̂𝑝), 𝝍̂ = (𝜓̂1,… , 𝜓̂𝑞), 𝜱̂ = (𝛷̂1,… , 𝛷̂𝑃 ), and
𝜳̂ = (𝛹̂1,… , 𝛹̂𝑄). In this example of our case study, we select the
ARIMA(1, 0, 0)× (1, 0, 1)24 model for {𝑅(𝐱𝑡)}𝑇𝑡=1, because (𝑝, 𝑑, 𝑞)=(1, 0, 0)
and (𝑃 ,𝐷,𝑄)=(1, 0, 1) give the lowest AIC value among the different
SARIMA models. With 𝛼 = 0, 𝜙1 = 𝜙, 𝛷1 = 𝛷, and 𝜓1 = 𝜓 , the
ime-series model for {𝑅(𝐱𝑡)}𝑇𝑡=1 becomes

1 −𝛷𝐵24)(1 − 𝜙𝐵)𝑅 = (1 + 𝛹𝐵24)𝜖 , (8)
𝑡 𝑡
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or equivalently, in difference equation form,

𝑅𝑡 = 𝜙𝑅𝑡−1 +𝛷𝑅𝑡−24 − 𝜙𝛷𝑅𝑡−25 + 𝜖𝑡 + 𝛹𝜖𝑡−24. (9)

Hence, the resulting bias model for 𝛿(𝐱𝑡) becomes 𝛿(𝐱𝑡; 𝜷̂) = 𝑅̂(𝐱𝑡; 𝜷̂)
ith 𝜷̂ = (𝜙̂, 𝛷̂, 𝛹̂ ).
With the observed bias pattern in the BEM simulator, which is

aptured by 𝛿(𝐱𝑡; 𝜷̂), we consider the following new loss function to
alibrate the BEM parameters 𝜽 and, at the same time, estimate 𝜷.

min
(𝜽,𝜷)∈𝜣×𝜴

1
𝑇

𝑇
∑

𝑡=1
(𝑦(𝐱𝑡) − 𝜂(𝐱𝑡;𝜽) − 𝛿(𝐱𝑡; 𝜷))2. (10)

Fig. 4 shows the ACFs with this new formulation. The temporal
correlation is significantly reduced by the bias-correction procedure,
and model residuals (see the definition in Section 3.2) appear to
be uncorrelated because the values of ACFs are within the dotted
boundaries.

3.2. Handling heteroskedasticity

Let us call 𝑟(𝐱𝑡) = 𝑦(𝐱𝑡)−𝜂(𝐱𝑡; 𝜽̂)−𝛿(𝐱𝑡; 𝜷̂) as the model residual (recall
that we denote 𝑅(𝐱𝑡) = 𝑦(𝐱𝑡) − 𝜂(𝐱𝑡; 𝜽̂) as the residual to differentiate
ith the model residual). While the new loss function in (10) helps
ebias the BEM outputs and address the temporal correlation, Fig. 5
or Fig. 6) still indicates that the model residual (or squared model
esidual) exhibits the heterogeneous variance over time 𝑡. In particular,
he box plots in Figs. 5(c) and 6(c) describe the large variance of both
odel and squared model residuals at 2 to 5 p.m., 7 to 8 p.m., and
0 p.m., indicated by the wide interquartile ranges of the red box
lots. That is, the model residual generally shows a large variance
rom 2 p.m. to 10 p.m., when occupants’ behavior is typically stochas-
ic [38,39]. It implies that the assumption of the constant error variance
n 𝜖𝑡

iid∼ 𝑁(0, 𝜎2) in (3) is violated. More specifically, 𝑉 𝑎𝑟(𝜖𝑡) is not
onstant, i.e., 𝑉 𝑎𝑟(𝜖 ) ≠ 𝜎2. In other words, the model residual time
6

𝑡

eries {𝑟(𝐱𝑡)}𝑇𝑡=1 shows heteroskedasticity over time 𝑡 so they are not
dentically distributed.
Therefore, we can conclude that 𝜖𝑡’s independently follow a normal

istribution with mean 0 and variance 𝜎2𝑡 , meaning that variances vary
ver time 𝑡, denoted by 𝜖𝑡

ind∼ 𝑁(0, 𝜎2𝑡 ). It should be noted that when the
ariance shows heteroskedasticity, the estimates 𝜽̂ as a solution to (10)
re no longer ML estimates and thus no longer enjoy ML properties,
uch as asymptotic normality. We will discuss how to address the
eteroskedasticity issue in the subsequent discussion.

.2.1. Mitigating heteroskedasticity with weights
With a heterogeneous random error 𝜖𝑡

ind∼ 𝑁(0, 𝜎2𝑡 ), where 𝜎2𝑡 varies
ver time 𝑡, the regression model (3) can be extended as

(𝐱𝑡)
ind∼ 𝑁

(

𝜂(𝐱𝑡;𝜽) + 𝛿(𝐱𝑡; 𝜷), 𝜎2𝑡
)

. (11)

Since 𝑦(𝐱𝑡) independently follows the normal distribution for 𝑡 =
1,… , 𝑇 , the likelihood function is as follows:

(𝜽, 𝜷|𝑦(𝐱1∶𝑇 )) =
𝑇
∏

𝑡=1

1
√

2𝜋𝜎2𝑡

exp

[

−
(𝑦(𝐱𝑡) − 𝜂(𝐱𝑡;𝜽) − 𝛿(𝐱𝑡; 𝜷))2

2𝜎2𝑡

]

. (12)

Let us take the logarithm on both side in (12). Then we have the
following log-likelihood function.

𝓁(𝜽, 𝜷|𝑦(𝐱1∶𝑇 ))

= log

[ 𝑇
∏

𝑡=1

1
√

2𝜋𝜎2𝑡

exp

[

−
(𝑦(𝐱𝑡) − 𝜂(𝐱𝑡;𝜽) − 𝛿(𝐱𝑡; 𝜷))2

2𝜎2𝑡

]]

= log

[ 𝑇
∏

𝑡=1
(2𝜋)−

1
2 (𝜎2𝑡 )

− 1
2 exp

[

−
(𝑦(𝐱𝑡) − 𝜂(𝐱𝑡;𝜽) − 𝛿(𝐱𝑡; 𝜷))2

2𝜎2𝑡

]]

= −𝑇 log 2𝜋 − 1
𝑇
∑

log 𝜎2𝑡 −
1

𝑇
∑ (𝑦(𝐱𝑡) − 𝜂(𝐱𝑡;𝜽) − 𝛿(𝐱𝑡; 𝜷))2

2
.

(13)
2 2 𝑡=1 2 𝑡=1 𝜎𝑡
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Assuming that 𝜎2𝑡 is known, the first two terms of the last equation
n (13) are constant. Thus, maximizing the function (13) with respect
o 𝜽 and 𝜷 is equivalent to minimizing the last term in (13), leading to
inimizing the following WLS loss function.

min
(𝜽,𝜷)∈𝜣×𝜴

𝐹 (𝜽, 𝜷) ∶= 1
𝑇

𝑇
∑

𝑡=1
𝑤𝑡(𝑦(𝐱𝑡) − 𝜂(𝐱𝑡;𝜽) − 𝛿(𝐱𝑡; 𝜷))2, (14)

where 𝑤𝑡 = 1∕𝜎2𝑡 . One can refer to [37,40,41] for more details. By
solving this WLS problem, we can get the estimates 𝜽̂ for the calibrated
parameter values.

The WLS loss function in (14) has important implications when
heteroskedasticity is observed, as in Figs. 5(b) and (c). The WLS assigns
different degrees of importance, or weights, to each data point. This is
achieved by putting bigger weights when the variance of the model
residuals is small, that is, when the uncertainty is small, because the
points are close to the true mean. On the contrary, the WLS assigns
smaller weights when the variance is large as points could largely
deviate from the mean.

The challenge is that the true variance 𝜎2𝑡 is unknown in practice.
Therefore, we need to estimate 𝜎2𝑡 , which we will discuss further in the
next section within the context of the BEM calibration.

3.2.2. Estimating weights
With the model residual 𝑟(𝐱𝑡) = 𝑦(𝐱𝑡) − 𝜂(𝐱𝑡; 𝜽̂) − 𝛿(𝐱𝑡; 𝜷̂), let 𝑠(𝐱𝑡)

denote the squared model residual, i.e., 𝑠(𝐱𝑡) = {𝑟(𝐱𝑡)}2 for all 𝑡 =
1,… , 𝑇 . In Figs. 6(b) and (c), {𝑠(𝐱𝑡)}𝑇𝑡=1 mainly fluctuates from 2 p.m.
to 10 p.m. on a daily basis. Suppose we have 𝐷 days of training data to
calibrate the BEM parameters. To represent the heterogeneous variance
pattern over time in a day, we split the time-series data of 𝐷 days into
𝐷 segments by 24 h from 1 a.m. to midnight. Then we re-organize
them with redefined time stamps 𝑡′ = 1,… , 24 in order. Thus, we have
newly indexed 𝐷 day-longitudinal data of 24𝐷 data points (i.e., 24 h
× 𝐷 days), denoted by ′ = {(𝑡′, 𝑠𝑗 (𝑡′))}

𝑡′=24,𝑗=𝐷
𝑡′=1,𝑗=1 . Note that 𝑡′ denotes a

specific hour of each day. In this demonstration, we set 𝐷 = 20.
Utilizing the fact that 𝐸[𝑠𝑗 (𝑡′)] = 𝜎2𝑡′ , we can fit a regression model

with ′ to estimate the variance function 𝜎2𝑡 . If the pattern of 𝑠𝑗 (𝑡′) over
𝑡′ = 1,… , 24 is relatively simple, a parametric model can be employed,
similar to the bias model discussed in Section 3.1. Otherwise, either
a semiparametric model or a nonparametric model can be employed,
especially when the pattern is not simple and thus specifying its func-
tional form a priori is not desirable. Here, we employ a semiparametric
model because of its flexibility. In our implementation, we specifically
utilize smoothing spline [32,33]. Let 𝜑(𝑡′) denote the function we wish
to estimate, i.e., 𝜑(𝑡′) = 𝐸[𝑠𝑗 (𝑡′)] for all 𝑡′ and 𝑗. We can obtain its
estimate by solving the following minimization problem.

𝜑̂ = argmin
𝜑

24
∑

𝑡′=1

𝐷
∑

𝑗=1
(𝑠𝑗 (𝑡′) − 𝜑(𝑡′))2 + 𝜆∫ (𝜑′′(𝑢))2𝑑𝑢, (15)

where 𝜆 is a smoothing parameter. When 𝜆 is small, 𝜑̂ will be wiggly,
whereas with large 𝜆, 𝜑̂ will be smooth, approaching to the least
squares line fit. We can choose 𝜆 using cross-validation or generalized
cross-validation [32].

The solution to (15) can be expressed by an explicit, finite-
dimensional, and unique minimizer which is a natural cubic spline with
knots at each 𝑡′ for 𝑡′ = 1,… , 24 as follows:

𝜑̂(𝑡′) =
24
∑

𝑡′=1
𝑁𝑡′ (𝑡′)𝛾𝑡′ , (16)

where 𝑁𝑡′ (𝑡′) is a 24-dimensional set of basis functions for representing
the family of natural splines and 𝛾𝑡′ is the model parameters to be
estimated. With this model 𝜑̂(𝑡′), we estimate the variance function 𝜎2𝑡
by 𝜎̂2𝑡 = (𝜑̂(𝑡′),… , 𝜑̂(𝑡′)) for 𝑡 = 1,… , 24𝐷, by stacking the 𝐷 time series
𝜑̂(𝑡′) for 𝑡′ = 1,… , 24 in order. Then the weights 𝑤𝑡 in (14) can be
replaced by 𝑤 = 1∕𝜎̂2 to obtain the WLS estimate 𝜽̂.
7

𝑡 𝑡
3.3. Parameter estimation through iterative refinement of weights

As we have seen thus far, the estimate 𝜎̂2𝑡 depends on the initially
estimated 𝜽̂ and 𝜷̂ with the regression function 𝜂(𝐱𝑡; 𝜽̂) + 𝛿(𝐱𝑡; 𝜷̂) for
𝑡 = 1,… , 𝑇 . However, considering heteroskedasticity within the WLS
formulation can also change both estimates 𝜽̂ and 𝜷̂, consequently
affecting the regression function. This observation suggests an iterative
estimation approach, where we cyclically estimate 𝜽, 𝜷, and {𝜎2𝑡 }

𝑇
𝑡=1,

each of which improves the other. Specifically, at 𝑘th iteration, we
estimate 𝜽𝑘+1 and 𝜷𝑘+1. Then, given 𝜽𝑘+1 and 𝜷𝑘+1, we obtain an
estimate for the variance function {(𝜎𝑘+1𝑡 )2}𝑇𝑡=1. In the next iteration,
we re-estimate 𝜽𝑘+2 and 𝜷𝑘+2 and get the updated regression function
𝜂(𝐱𝑡;𝜽𝑘+2)+𝛿(𝐱𝑡; 𝜷𝑘+2) by using WLS with the weights inversely propor-
tional to the previously estimated variance, i.e., 𝑤𝑘+1𝑡 = 1∕(𝜎𝑘+1𝑡 )2 for
all 𝑡. As this re-estimation generally alters the other estimates, it also
affects the residuals.

This iterative procedure continues until the change in either con-
secutive parameter values or loss function values becomes sufficiently
small, or the available computational budget, e.g., number of sim-
ulations, is exhausted. Algorithm 1 summarizes the IRLS procedure
for parameter calibration with the bias-correction component. We call
Algorithm 1 the bias-corrected iteratively reweighted least squares
method, abbreviated by ‘‘deBias-IRLS’’ hereafter.

Algorithm 1 Bias-Corrected Iteratively Reweighted Least Squares
Method for Parameter Calibration (deBias-IRLS)
1: Input: field data 𝑇 = {𝐱𝑡, 𝑦(𝐱𝑡)}𝑇𝑡=1.
2: Initialize the model bias 𝛿(𝐱𝑡; 𝜷1) = 0 and 𝑤1

𝑡 = 1, ∀𝑡 = 1,… , 𝑇 .
3: for 𝑘 = 1, 2,… , 𝐾max do
4: Step 1 (update 𝜽):
5: Given 𝛿(𝐱𝑡; 𝜷𝑘), perform BO using Algorithm 2 to obtain the

(𝑘 + 1)th iterate of parameters 𝜽𝑘+1, i.e.,

𝜽𝑘+1 ← argmin
𝜽∈𝜣

𝐹 (𝜽, 𝜷𝑘,𝒘𝑘) ∶= 1
𝑇

𝑇
∑

𝑡=1
𝑤𝑘𝑡 (𝑦(𝐱𝑡) − 𝜂(𝐱𝑡;𝜽) − 𝛿(𝐱𝑡; 𝜷

𝑘))2.

(17)

6: Calculate the residual as 𝑅𝑘+1𝑡 ∶= 𝑅𝑘+1(𝐱𝑡) = 𝑦(𝐱𝑡)− 𝜂(𝐱𝑡;𝜽𝑘+1), ∀𝑡.

7: Step 2 (update 𝜷):
8: Given 𝜂(𝐱𝑡;𝜽𝑘+1), fit a time-series model 𝛿(⋅) to {𝑅𝑘+1𝑡 }𝑇𝑡=1 to

obtain 𝜷𝑘+1, i.e.,

𝜷𝑘+1 ← argmin
𝜷∈𝜴

𝐹 (𝜽𝑘+1, 𝜷,𝒘𝑘) ∶= 1
𝑇

𝑇
∑

𝑡=1
𝑤𝑘𝑡 (𝑦(𝐱𝑡)−𝜂(𝐱𝑡;𝜽

𝑘+1)−𝛿(𝐱𝑡; 𝜷))2.

(18)

9: Calculate the model residual as 𝑟𝑘+1𝑡 ∶= 𝑟𝑘+1(𝐱𝑡) = 𝑦(𝐱𝑡) −
𝜂(𝐱𝑡;𝜽𝑘+1) − 𝛿(𝐱𝑡; 𝜷𝑘+1), ∀𝑡.

0: Step 3 (update 𝒘):
11: Fit a regression model {(𝜎𝑘+1𝑡 )2}𝑇𝑡=1 on {(𝑟𝑘+1𝑡 )2}𝑇𝑡=1 to get

𝑤𝑘+1𝑡 = 1
(𝜎𝑘+1𝑡 )2

, ∀𝑡. (19)

If a termination condition holds, then break the loop.
2: end for
3: Output: calibrated parameters 𝜽̂ = 𝜽𝑘, bias model 𝛿(𝐱𝑡; 𝜷̂) =
𝛿(𝐱𝑡; 𝜷𝑘), and weights 𝑤̂𝑡 = 𝑤𝑘𝑡 with 𝜎̂2𝑡 = (𝜎𝑘𝑡 )

2 , ∀𝑡.

In Step 1 of Algorithm 1, we employ BO to get 𝜽𝑘+1. Note that BO
is completely different method from Bayesian calibration. For Bayesian
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calibration, one can refer to Section 2, 3.1, and 4.1. We choose BO
due to its strong capability to handle a black-box and derivative-free
optimization problem, even though other optimization techniques such
as gradient descent and second-order optimization methods can also
be used with gradient approximation. We briefly explain the concept
of BO here. One can find more thorough discussions in [28,29]. BO
is a global optimization method to minimize the loss function 𝐹 (⋅),
which is (i) expensive-to-evaluate, (ii) black-box, and (iii) derivative-
free. BO works well in our setting, because evaluating the value of 𝜂(⋅)
n 𝐹 (⋅) by running the BEM is not instantaneous. It takes approximately
–2 min for one year-long BEM simulation. Moreover, 𝜂(⋅) lacks an
xplicit expression due to intricate mathematical functions within the
imulator, precluding the availability of first- and second-derivative
nformation in general. Thus, we believe that BO, as an optimization
ool, is an adequate choice for the BEM parameter calibration.
Specifically, BO starts with constructing a GP for 𝐹 (⋅) with an initial

pace-filling design of 𝑁0 points (or parameter settings in our problem
ontext) such as Latin hypercube design (LHD) [42], maximin distance
esign [43], and maximin LHD [44]. Given the GP, an acquisition func-
ion (⋅), such as the expected improvement (EI) [43,45], upper/lower
onfidence bounds [46], and knowledge gradient [47], is maximized
o find the next design point by striking a balance between exploration
nd exploitation. Then 𝐹 (⋅) is evaluated at this design point, and the GP
s updated accordingly. This procedure continues until the algorithm
onverges or reaches the maximum simulation budget 𝑁max. Finally,
e get the minimizer 𝜽min that shows the lowest loss function value
hus far. In our implementation, we utilize the maximin LHD for the
pace-filling design and the EI for the acquisition function. The EI is
efined as EI(𝜽|) = 𝐸[max(𝐹 (𝜽) − 𝐹 (𝜽min), 0)] with all available data
, which can be evaluated using the closed-form solution [43]. We
mplement our procedure with the statistical software R [48]. Among
everal GP and BO packages available in R, we use DiceKriging and
iceOptim [49] due to their wide popularity. We summarize the BO
rocedure in Algorithm 2.

Algorithm 2 Bayesian Optimization (BO)
1: Input: 𝑁0, 𝑁max (> 𝑁0), and an acquisition function (⋅).
2: Evaluate 𝐹 (⋅) at 𝑁0 points of 𝜽, generated by a space-filling ex-
perimental design. Obtain the initial points 𝑁0

= {𝜽𝑛, 𝐹 (𝜽𝑛)}
𝑁0
𝑛=1.

3: Place an initial GP prior on 𝐹 (⋅) with 𝑁0
by estimating the GP

hyperparameters.
4: for 𝑛 = 𝑁0 + 1,… , 𝑁max do
5: Obtain 𝜽𝑛 = argmax𝜽∈𝜣 (𝜽|𝑛−1).
6: Evaluate 𝐹 (⋅) at 𝜽𝑛 and set 𝑛 = 𝑛−1 ∪ (𝜽𝑛, 𝐹 (𝜽𝑛)).
7: Update the GP posterior with (𝜽𝑛,𝐹 (𝜽𝑛)).
8: end for
9: Output: the point with the lowest 𝐹 (𝜽), i.e., 𝜽min.

Additionally, it is worth noting that since the regression function
onsists of two terms, 𝜂(𝐱𝑡; 𝜽̂) and 𝛿(𝐱𝑡; 𝜷̂), performing many iterations
poses the risk of potentially losing some important aspects of the
pattern that should be captured by the computer model 𝜂(⋅). In fact,
there is a possibility that this pattern could be assimilated into the
bias term 𝛿(⋅), which is undesirable, because 𝛿(⋅) should serve as a
supplementary term to correct the possible bias. This aligns with the
identifiability issue between 𝜂(𝐱𝑡; 𝜽̂) and 𝛿(𝐱𝑡; 𝜷̂), and we admit that our
roposed method does not address this identifiability issue. Devising
procedure that uniquely estimates 𝜂(𝐱𝑡; 𝜽̂) and 𝛿(𝐱𝑡; 𝜷̂) is beyond the

scope of this study. However, considering the importance of 𝜂(⋅) over
𝛿(⋅), the practical remedy is to terminate the iterative procedure within
a small number of iterations, e.g., 𝐾 = 5.
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max t
3.4. Uncertainty quantification

In this section, we discuss how to quantify the uncertainties of the
calibrated parameters 𝜽̂ by constructing the confidence intervals (CIs)
for 𝜽 [12,50,51]. Let us standardize 𝑦(𝐱𝑡) in (11) to follow the standard
normal distribution 𝑁(0, 12). Then we have

𝑍𝑡 =
𝑦(𝐱𝑡) − 𝜂(𝐱𝑡;𝜽) − 𝛿(𝐱𝑡; 𝜷)

𝜎𝑡
iid∼ 𝑁(0, 12). (20)

The standardization in (20) is useful because the ML estimates
𝜽̂ML with iid observations possess compelling theoretical properties, in-
cluding consistency, asymptotic normality, and efficiency. Consistency
means that 𝜽̂ML converges in probability to the true parameters 𝜽true
as 𝑇 → ∞, denoted by 𝜽̂ML

𝑝
⟶ 𝜽true. Further, asymptotic normality

indicates that the estimator
√

𝑇 (𝜽̂ML − 𝜽true) converges in distribution
to a (multivariate) normal distribution 𝑁(𝟎, 𝐼(𝜽true)−1) as 𝑇 → ∞,
r concisely,

√

𝑇 (𝜽̂ML − 𝜽true)
𝑑

⟶ 𝑁(𝟎, 𝐼(𝜽true)−1), where 𝐼(𝜽true) is
n expected Fisher information matrix. Also, it is known that 𝜽̂ML
is asymptotically efficient, that is, 𝜽̂ML attains its Cramér–Rao lower
ound for large samples 𝑇 [40].
For uncertainty quantification, we use the ML estimator’s asymp-

otic properties to construct CIs for the parameters [12]. Consider the
xpected Fisher information matrix represented by

(𝜽true) = 𝐸
[

𝜕𝓁1(𝜽|𝑦(𝐱))
𝜕𝜽

] [

𝜕𝓁1(𝜽|𝑦(𝐱))
𝜕𝜽

]⊺
|

|

|

|

|𝜽=𝜽true

, (21)

where 𝓁1(𝜽|𝑦(𝐱)) is a log-likelihood function for a single observation
𝑦(𝐱) at 𝐱. With 𝐱 = 𝐱𝑡, the log-likelihood function 𝓁1

(

𝜽|𝑦(𝐱𝑡)
)

is

𝓁1(𝜽|𝑦(𝐱𝑡)) = −1
2
log 2𝜋 − 1

2𝜎2𝑡
(𝑦(𝐱) − 𝜂(𝐱𝑡;𝜽) − 𝛿(𝐱𝑡; 𝜷))2, ∀𝑡 = 1,… , 𝑇 ,

(22)

assuming that we know {𝜎2𝑡 }
𝑇
𝑡=1 and 𝜷. In practice, we can replace these

two quantities with their estimates {𝜎̂2𝑡 }𝑇𝑡=1 and 𝜷̂, respectively.
The expected Fisher information matrix in (21) can be approximated

y its empirical counterpart,

(𝜽̂ML) ≈
1
𝑇

𝑇
∑

𝑡=1

[

𝜕𝓁1(𝜽|𝑦(𝐱𝑡))
𝜕𝜽

] [

𝜕𝓁1(𝜽|𝑦(𝐱𝑡))
𝜕𝜽

]⊺
|

|

|

|

|𝜽=𝜽̂ML

. (23)

Here, the black-box nature of 𝜂(⋅) does not allow us to analytically
obtain the first-order partial derivatives of 𝓁1(𝜽|𝑦(𝐱𝑡)). Instead, we use
the central finite difference [52] to numerically attain them as follows:

𝜕𝓁1(𝜽|𝑦(𝐱𝑡))
𝜕𝜃𝑖

≈
𝓁1(𝜽 + ℎ𝒆𝑖|𝑦(𝐱𝑡)) − 𝓁1(𝜽 − ℎ𝒆𝑖|𝑦(𝐱𝑡))

2ℎ
, (24)

or 𝑖 = 1,… , 𝑃𝜃 , where ℎ > 0 is small number such as 10−8 and 𝒆𝑖 is a
𝜃 × 1 vector with its 𝑖th element being one and others zero. Then we
an obtain the asymptotic 100(1 − 𝛼)% Wald CI for each component of
̂ML as follows:

̂ML,𝑖 ± 𝑧1−𝛼∕2
1

√

𝑇

√

𝐼−1𝑖𝑖 (𝜽̂ML), (25)

for 𝑖 = 1,… , 𝑃𝜃 , where 𝜃̂ML,𝑖 is the 𝑖th component of 𝜽̂ML, 𝑧1−𝛼∕2 is a
critical value of the standard normal distribution, and 𝐼−1𝑖𝑖 (⋅) denotes
he 𝑖th diagonal entry of the inverse of the Fisher information matrix
(⋅).

.5. Extension of deBias-IRLS

The proposed approach is flexible in capturing the bias when the
ias displays a unique temporal pattern throughout a day. It is worth
oting that the bias pattern does not need to be cyclical in our ap-
roach. Let us consider a case where the building energy model effec-
ively identifies and tracks the daily periodic pattern in energy use and
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thus, the residual 𝑅(𝐱𝑡) = 𝑦(𝐱𝑡) − 𝜂(𝐱𝑡; 𝜽̂) does not present a consistent
periodic pattern. Nevertheless, the SARIMA model in our proposed
method remains valid even under this condition. This is because the
model can be simplified to an ARIMA model through the elimination
of the periodic components with (𝑃 ,𝐷,𝑄) = (0, 0, 0) (Note: refer to
Section 3.1 for notations in SARIMA).

Furthermore, the proposed approach can be employed for either
heterogeneous or homogeneous variance patterns. Take, for instance, a
scenario where the variance of electricity loads and the associated bias
pattern are relatively homogeneous. Under this condition, the proposed
methodology retains its applicability because WLS naturally reduces to
ordinary least squares with identical weight values involved.

Despite its flexibility, our proposed methodology needs careful pre-
liminary analysis. It operates on the presumption that the bias displays
a distinct temporal pattern over a day, thereby making a time-series
model an appropriate choice for a bias model. Our analysis presented
in Section 2 suggests that both building energy consumption and its cor-
responding bias indeed exhibit a daily periodicity over time. However,
in cases where bias and variance patterns show non-periodic patterns or
they are related with other factors such as temperature and humidity,
the bias model should be adjusted to account for such factors. In such
cases, the bias model may need to comprise other types of parametric
or nonparametric models beyond the time-series model. Therefore, to
identify the most suitable bias model, a comprehensive exploratory data
analysis must be conducted prior to the application of the proposed
method. Similarly, when the variance patterns interlink with other
factors, WLS should leverage appropriate regression functions for these
associated factors.

4. Case study: electrical energy demand prediction with parame-
ter calibration

We assess the effectiveness of the proposed calibration approach
using hourly electricity consumption data during the summer months
from June to September 2014, obtained from a residential building
located in the Mueller neighborhood area of Austin, Texas. To simulate
the building’s electricity demand, we first initialize a BEM using BEopt
2.8.0.0 [53], which is an EnergyPlus-based software for evaluating
residential building designs, by taking the specific dimensions and other
relevant characteristics of the building. Here, the building is configured
in a rectangular shape with dimensions of 14 × 9 m2 on the first floor
and 10 × 9 m2 on the second floor.

To run the EnergyPlus BEM simulator, two input files should be
established beforehand: EPW and IDF files. The EPW file stands for
EnergyPlus weather file and typically includes weather information
such as dry-bulb temperature, relative humidity, wind speed and direc-
tion, and atmospheric pressure near the building under study. In our
analysis, they are collected from the meteorological station situated
nearby the building in Mueller and compiled in the EPW file with a
1 h resolution during the corresponding period of energy consumption
data. These ambient conditions serve as observable inputs 𝐱𝑡 in (3)
within the context of calibration.

The IDF file is an abbreviation of the input data file and contains
various information that defines the simulation setting and environ-
ment. It typically includes (i) schedules for various building operations
that dictate when and how they operate during the simulation; (ii)
building description such as the building’s geometry as well as construc-
tions, zones, and thermal properties; (iii) HVAC system description;
(iv) information about internal loads such as occupancy schedules,
lighting, and equipment loads; (v) zone conditions that describe de-
sired thermal comfort conditions, thermostat setpoints, and HVAC con-
trol sequences for each thermal zone; (vi) material and construction
properties, etc. [2]. These pieces of information are characterized by
simulation parameters. Users can adjust the parameters and customize
the IDF file according to their modeling requirements and goals. The
parameters used in this study are described in Section 4.1. With the two
input files, we simulate hourly electricity consumption for the studied
building using EnergyPlus 9.3.0 [2].
9

Table 1
List of BEM parameters and their ranges.
Symbol Description Unit Default Min Max

𝜃1 Solar transmittance – 0.4 0 1
𝜃2 Gross rated cooling COP W/W 2.95 2 5
𝜃3 Gross rated cooling capacity W 30517 12000 60000
𝜃4 Cooling supply air flow rate m3∕s 0.77 0 1

4.1. Implementation settings

In the BEM calibration literature, various studies have targeted spe-
cific sets of parameters. For instance, [54] concentrated on parameters
related to lighting, control and operation systems, water and air loops,
air handling units, and domestic hot water. Chong et al. [55] centered
their investigation on parameters associated with walls and materi-
als. Chong and Menberg [16] incorporated multiple parameters related
to HVAC systems, envelope (such as wall and roof) thermal char-
acteristics, and internal load-related parameters. Kim and Park [20]
considered multiple parameters for thermal zones, fans and pumps, and
plants, to name a few. In this study, we select four parameters that are
considered important in the literature, as summarized in Table 1.

To evaluate the predictive performance of the proposed method
for simulating the electricity demands of the building, we consider
multiple training and test sets [56–58]. Specifically, we use actual
and simulated hourly electricity consumption data over a period of 21
consecutive days as a training set, whereas as a test set, we use the
data collected over the following 10 days. We consider 10 different
‘‘training (21 consecutive days)–test (next 7 consecutive days)’’ pairs
of data by shifting the time horizon from June to September in 2014.
For example, the first dataset, Data 1, consists of 504 hourly electricity
consumption data (21 days during Jun 1–Jun 21) for training and 168
hourly data (7 days during Jun 22–Jun 28) for testing. Data 2 also
comprises 504 hourly data (Jun 8–Jun 28) for training and 168 hourly
data (Jun 29–Jul 5) for testing. Note that the time period is shifted by 7
days to account for weekly variations. Similarly, we set eight additional
pairs of data, Data 3 to Data 10. We conduct 10 experiments with
these 10 sets of training and test data to assess the proposed method.

For the BO implementation in Step 1 of Algorithm 1 (or Algorithm
2), we set the initial number of design points 𝑁0 as 40 (=10 × 𝑃𝜃) to
ensure the good quality of the initial GP surrogate [59]. The maximum
simulation budget 𝑁max is set to 300 in Algorithm 2. For the selection of
model parameters in the SARIMA model in Step 2 of Algorithm 1, they
are fixed once the initial selection is made in order to ensure stable
performance of the algorithm. Further, Algorithm 1 terminates when
either (i) the Euclidean distance between the consecutive parameter
values is less than 10−2, (ii) the difference between the consecutive loss
function values 𝐹 (⋅) is less than 10−2, or (iii) the maximum number of
iterations is reached, e.g., we set 𝐾max = 5 in this case study.

For the purpose of comparing the effectiveness of the proposed
approach with alternative methods, we employ three standard metrics:
MSE, CVRMSE, and NMBE. The MSE serves as our primary loss function
which we aim to minimize. We calculate it using the test set for out-of-
sample prediction. It quantifies the discrepancy between the measured
and simulated energy consumption in unseen data.

𝑀𝑆𝐸 [𝑘𝑊 ℎ2] = 1
𝑇test

𝑇test
∑

𝑡=1
(𝑦(𝐱𝑡) − 𝜂(𝐱𝑡; 𝜽̂) − 𝛿(𝐱𝑡; 𝜷̂))2, (26)

here 𝑇test denotes the number of data points in the test set, i.e., 𝑇test =
68 in this case study.
Next, the CVRMSE (Coefficient of Variation of the Root Mean

quared Error) similarly quantifies the discrepancy between the two,
ut it divides the square root of MSE by the averaged measured value
(𝐱) as follows:

𝐶𝑉 𝑅𝑀𝑆𝐸 [%] = 1

√

√

√

√

∑𝑇test
𝑡=1 (𝑦(𝐱𝑡) − 𝜂(𝐱𝑡; 𝜽̂) − 𝛿(𝐱𝑡; 𝜷̂))2

× 100. (27)

𝑦(𝐱) 𝑇test
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Both the ASHRAE Guideline 14 [60,61] and the protocol offered by
Federal Energy Management Program (FEMP) [62,63], which describe
the measurement and verification of BEMs, recommend that CVRMSE
should not exceed 30% for hourly data to ensure the well-validated
BEM.

Finally, the NMBE (Normalized Mean Bias Error) is a normalized
form of the mean bias error calculated by the average discrepancies
between measured and simulated data as below:

𝑁𝑀𝐵𝐸 [%] = 1
𝑦(𝐱)

∑𝑇test
𝑡=1 (𝑦(𝐱𝑡) − 𝜂(𝐱𝑡; 𝜽̂) − 𝛿(𝐱𝑡; 𝜷̂))

𝑇test
× 100. (28)

positive (resp., negative) NMBE value indicates that the BEM under-
stimates (resp., overestimates) the measured energy consumption val-
es. Typically, this metric is not employed in isolation but rather used
s a supplementary criterion in conjunction with MSE and CVRMSE
ue to its potential for cancellation effects, i.e., large positive model
esiduals can be cancelled by large negative ones. ASHRAE Guideline
4 and the FEMP protocol suggest that NMBE from a well-calibrated
EM should fall within the range of ±5%.

.2. Comparison with other alternatives

We compare the performance of deBias-IRLS with other alternatives,
ncluding ordinary least squares, Bayesian calibration, 𝐿2 calibration,
nd two approaches using artificial neural networks.

(a) Ordinary Least Squares (OLS): This method is a straightfor-
ward approach that calibrates 𝜽 by directly solving the mini-
mization problem (2) without considering the bias as well as
heteroskedasticity. In other words, when evaluating the OLS
method, the bias term 𝛿(⋅) in the MSE, CVRMSE, and NMBE
formula is set to 0 since OLS does not consider the bias. We
employ BO to get parameter estimates 𝜽̂ to solve (2).

(b) Bayesian Calibration: It has been a predominant approach in
the calibration literature. It is usually built upon the linear
linkage model (3). Unlike OLS, it considers the bias term 𝛿(⋅),
which is usually emulated by a GP. The BEM output 𝜂(𝐱𝑡;𝜽) is
also modeled by using a GP with pre-designed points 𝐱𝑡 and
𝜽. The parameters 𝜽 along with hyperparameters in a kernel
function of the GPs are placed by the prior distributions using
domain knowledge or non-informative priors and estimated by
exploring their posteriors using the MCMC procedure.

(c) 𝑳𝟐 Calibration: This calibration method takes two steps to
obtain an estimator 𝜽̂𝐿2 . Given the inputs and corresponding
actual electricity consumption data {𝐱𝑡, 𝑦(𝐱𝑡)}𝑇𝑡=1, it proceeds by
estimating the true process 𝜁 , where 𝑦(𝐱) = 𝜁 (𝐱) + 𝜖 with an
observation error 𝜖, using kernel ridge regression [32,64] in the
reproducing kernel Hilbert space. Then it constructs an emulator
𝜂̂(⋅) for 𝜂(⋅) by a GP [65] using the pre-specified design points of
parameters and their BEM outputs {(𝐱𝑡′ ;𝜽𝑡′ ), 𝜂(𝐱𝑡′ ;𝜽𝑡′ )}𝑇

′

𝑡′=1. Con-
sequently, 𝜽 is calibrated by solving the following optimization
problem:

𝜽̂𝐿2 = argmin
𝜽∈𝜣

‖𝜁 (⋅) − 𝜂̂(⋅ ;𝜽)‖𝐿2
. (29)

(d) Neural Networks I: This approach mimics the inverse model-
based calibration framework [66] using artificial neural net-
works. Unlike the so-called forward model-based calibration
approach that maps 𝜽 to 𝜂(⋅ ;𝜽) to construct the surrogate 𝜂̂(⋅)
in the conventional setting, the inverse model-based approach
maps 𝜂(⋅ ;𝜽) to 𝜽 for estimating the relationship 𝑔(⋅) such that
𝜽 = 𝑔(𝜂(𝐱;𝜽) + 𝛿(𝐱)) + 𝜺 with 𝜺 being a 𝑃𝜃-dimensional vector
of random errors. To train the function 𝑔(⋅), artificial neural
networks are used due to the high degree of nonlinearity of 𝑔(⋅).

(e) Neural Networks II: This approach is a variant of 𝐿2 calibra-
tion, but it estimates the surrogates of 𝜁 (⋅) and 𝜂(⋅) using artificial
neural networks rather than GPs.
10
Table 2
Comparison of calibration accuracy: average MSE, CVRMSE, and NMBE in 10 test sets
Method (Prior) MSE [kWh2] CVRMSE [%] NMBE [%]

deBias-IRLS 0.412 (0.208) 28.720 (7.662) −2.464 (14.810)
OLS 0.598 (0.204) 35.410 (8.947) 2.752 (13.998)
Bayesian (uniform) 0.769 (0.353) 40.108 (12.441) −9.033 (19.608)
Bayesian (Gaussian) 0.685 (0.299) 37.747 (11.336) −2.142 (19.163)
𝐿2 Calibration 0.697 (0.232) 37.881 (6.214) −1.696 (13.770)
Neural Networks I 0.623 (0.163) 36.148 (6.816) 5.455 (10.054)
Neural Networks II 0.692 (0.270) 37.781 (9.734) 0.877 (16.467)

Note: the values inside parentheses are standard deviations.

Similar to the proposed method, we use hourly data for imple-
menting all of these alternatives with the exception of the Bayesian
method. For Bayesian calibration, we employ daily aggregated data
due to the extensive computational time required when using hourly
data. Additionally, we utilize two distinct prior specifications for each
parameter: uniform and Gaussian. The prior means for the uniform
distributions of the normalized parameters, ranging from 0 to 1, are
set to 0.5. For the Gaussian prior distributions, the prior means are
set close to the parameter values obtained by deBias-IRLS, mimicking
the case where we have prior knowledge, along with the standard
deviation of 0.2. To explore the posterior distributions, we use the No-
U-Turn Sampler (NUTS), a sampling technique based on Hamiltonian
Monte Carlo, which enhances the convergence of MCMC by efficiently
exploring the posterior distributions. Concerning the MCMC procedure,
it is set to run for 4000 iterations with 4 chains. The first half of
the samples is designated as the burn-in period, while the second
half is utilized to explore the posteriors. More details about Bayesian
calibration can be found in [14] and [26] in a general setting, as well
as in [16] in the context of the BEM calibration. In this study, we do
not conduct Bayesian calibration using the hourly data, because it takes
over 2 days for each training set, and we decide to quit running the
implementation due to its excessive computation time. Instead, when
we use the daily aggregated data, it takes roughly 8–9 h to complete
each experiment. It should be noted that the computation time is also
dependent on the number of MCMC iterations.

4.3. Implementation results

In this section, we evaluate the effectiveness of the proposed deBias-
IRLS method and compare it with other alternatives in terms of cali-
bration accuracy (or prediction accuracy) and the suitable uncertainty
quantification capability. Table 2 first summarizes the comparison
results based on the average values of MSEs, CVRMSEs, and NMBEs
and their standard deviations, using the 10 different test sets. Clearly,
deBias-IRLS achieves the lowest MSE and CVRMSE values compared to
other methods on average, indicating the highest prediction accuracy
for the building’s electricity simulation. For more details, Fig. 7 presents
the comparison of MSEs and CVRMSEs of each method for 10 test sets.

Furthermore, the CVRMSE value obtained from deBias-IRLS is lower
than the threshold of 30%, and the NMBE value falls within the
allowable range of ±5%, both of which satisfy the guidelines from
ASHRAE and FEMP. The results indicate that the BEM is well-calibrated
through the proposed bias-correction procedure. Although the absolute
values of NMBE from some alternative methods are slightly smaller
than that of deBias-IRLS, it would be due to some cancellation effects in
positive and negative residuals when calculating NMBEs. Also, NMBE
is generally used as a supplementary measure alongside MSE and
CVRMSE in the BEM calibration. Therefore, it is advisable to place
greater emphasis on MSE and CVRMSE than NMBE when interpreting
the calibration results.

Unlike the deBias-IRLS method, OLS does not consider the system-
atic bias, which usually occurs in the BEM application as discussed in
Section 2, so it loses its prediction capability. Moreover, the Bayesian
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approach exhibits worse prediction performance compared to deBias-
IRLS and OLS in terms of MSE and CVRMSE. Interestingly, even when
the Gaussian prior is employed with prior means close to the values
from the deBias-IRLS, the Bayesian approach generates higher error
measures. One possible reason is that it uses daily data for train-
ing due to its excessive computing time with hourly data. Another
reason of the low prediction accuracy is that the Bayesian approach
utilizes only the pre-designed points in calibration to build their sur-
rogates, whereas deBias-IRLS adaptively finds the parameter points
by sequentially simulating the energy consumption output within the
BO implementation. Additionally, the respective calibration objective
is different in that deBias-IRLS directly minimizes the difference be-
tween the actual and simulated electricity consumption along with the
bias, whereas Bayesian calibration maximizes the likelihood with the
surrogates constructed to represent the BEM and/or physical process.
Also, 𝐿2 calibration and two benchmarks using neural networks show
lower calibration accuracy than deBias-IRLS. This is possibly because
𝐿2 calibration and two neural networks do not deal with the bias
appropriately. Another reason could be that 𝐿2 calibration and Neural
Networks II still construct the surrogates using the pre-designed points.

Another advantage of the deBias-IRLS method is that it provides
improved uncertainty quantification capabilities once the ML estimates
𝜽̂ML are obtained. Recall that putting larger (resp., smaller) weights
on less (resp., more) varying periods through the WLS formulation
alleviates heteroskedasticity. This formulation enables us to use the
asymptotic properties of the ML estimator and thus to construct the
asymptotic CIs for the BEM parameters. In addition to the aforemen-
tioned alternatives, we consider another benchmark that just addresses
the systematic bias through bias modeling, ignoring heteroskedasticity,
in order to demonstrate the impact of mitigating heteroskedasticity. We
call this additional benchmark deBias-OLS.

The performance of uncertainty quantification can be evaluated
based on the CIs of the estimated parameters [12,51]. Table 3 sum-
arizes the comparison results of the half-bandwidth of 95% CIs for
11
ach parameter using each method. Note that CIs stand for confidence
ntervals for OLS, deBias-IRLS, 𝐿2 calibration, and two methods using
eural networks, whereas credible intervals for Bayesian calibration.
ll the methods except for Bayesian calibration use the asymptotic
roperties of the ML estimator to construct the confidence intervals.
n the contrary, the 95% credible intervals in Bayesian calibration
re derived by the intervals with the 0.025 and 0.075 quantiles of
ach posterior distribution. A larger bandwidth indicates a greater
ncertainty in estimation. Overall, both deBias-IRLS and deBias-OLS
ield narrower CIs compared to other methods. It implies that the bias
orrection may assist lower estimation uncertainties even if its goal is to
liminate any potential bias patterns. When compared to deBias-OLS,
eBias-IRLS provides either narrower or comparable half-bandwidths
f CIs, indicating more controlled uncertainty. Also, deBias-IRLS con-
tructs narrower CIs than OLS, 𝐿2 calibration, and Neural Networks I
nd II. Further, its standard deviations (see the numbers inside the
arentheses) are smaller in general, indicating better robustness. Fi-
ally, it is not straightforward to compare between confidence and
redible intervals, but the results suggest that deBias-IRLS leads to
uch narrower half-bandwidths than the Bayesian approach.

. Conclusion

This study presents a novel bias-corrected parameter calibration ap-
roach to effectively calibrate the BEM, while simultaneously mitigat-
ng the heterogeneous variance of the electricity loads. This approach
nables us to design a new algorithm that explores the IRLS method
n linear regression. Specifically, we analyze the systematic bias pat-
ern between the actual and simulated electrical energy consumption,
resent in the BEM. We show that this pattern can be captured by using
he time-series model that incorporates seasonal components. More-
ver, the variance of residuals may exhibit heterogeneous patterns,
specially the inflated variance in the afternoon. This is often well-
xplained by the stochastic and heterogeneous occupant behavior in the
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Table 3
Uncertainty quantification results: average half-bandwidth of the 95% CI for each BEM parameter in 10 test sets.
Method (Prior) 𝜃1 𝜃2 𝜃3 𝜃4
deBias-IRLS 0.045 (0.071) 0.032 (0.014) 0.015 (0.015) 0.004 (0.004)
deBias-OLS 0.064 (0.047) 0.024 (0.006) 0.040 (0.044) 0.010 (0.021)
OLS 0.016 (0.030) 0.058 (0.015) 0.040 (0.017) 0.004 (0.004)
Bayesian (uniform) 0.459 (0.014) 0.357 (0.138) 0.464 (0.014) 0.418 (0.073)
Bayesian (Gaussian) 0.285 (0.045) 0.283 (0.070) 0.337 (0.020) 0.290 (0.047)
𝐿2 Calibration 0.107 (0.171) 0.045 (0.021) 0.062 (0.087) 0.033 (0.061)
Neural Networks I 0.256 (0.158) 0.056 (0.017) 0.121 (0.148) 0.078 (0.093)
Neural Networks II 0.130 (0.232) 0.052 (0.018) 0.020 (0.021) 0.023 (0.047)

Note: the values inside parentheses are standard deviations.
esidential building (e.g., starting to turn on the air conditioner, etc.)
his heterogeneity may negatively affect prediction and uncertainty
uantification capabilities. To address this heterogeneity, we introduce
eights in the loss function. This procedure can be achieved using the
RLS procedure.
Our implementation results demonstrate that the proposed ap-

roach can improve prediction accuracy significantly in terms of sev-
ral metrics. In particular, both CVRMSE and NMBE results satisfy
he industry guidelines in the BEM calibration. Moreover, we demon-
trate the improved uncertainty quantification capabilities through the
roposed deBias-IRLS method.
In the future, we aim to broaden the scope of our methodology to

ncompass more generalized settings. For example, we will consider the
utputs from multiple channels. Smart meters allow utility providers
o collect electricity consumption data from different channels such as
VAC, lighting, and appliances. Thus, we can calibrate parameters with
ulti-output data if such data become available to us. Furthermore, we
lan to apply the well-calibrated BEM for the purpose of control and
anagement in building energy use as part of demand response pro-
rams [67,68], as well as renewable generation planning in microgrid
perations [69].
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