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Abstract

Geo-obfuscation is a Location Privacy Protection Mechanism used

in location-based services that allows users to report obfuscated

locations instead of exact ones. A formal privacy criterion, geo-

indistinguishability (Geo-Ind), requires real locations to be hard to

distinguish from nearby locations (by attackers) based on their ob-

fuscated representations. However, Geo-Ind often fails to consider

context, such as road networks and vehicle traffic conditions, mak-

ing it less effective in protecting the location privacy of vehicles, of

which the mobility are heavily influenced by these factors.

In this paper, we introduce VehiTrack, a new threat model to

demonstrate the vulnerability of Geo-Ind in protecting vehicle loca-

tion privacy from context-aware inference attacks. Our experiments

demonstrate that VehiTrack can accurately determine exact vehicle

locations from obfuscated data, reducing average inference errors

by 61.20%with Laplacian noise and 47.35%with linear programming

(LP) compared to traditional Bayesian attacks. By using contextual

data like road networks and traffic flow, VehiTrack effectively elim-

inates a significant number of seemingly “impossible” locations

during its search for the actual location of the vehicles. Based on

these insights, we propose TransProtect, a new geo-obfuscation

approach that limits obfuscation to realistic vehicle movement pat-

terns, complicating attackers’ ability to differentiate obfuscated

from actual locations. Our results show that TransProtect increases

VehiTrack’s inference error by 57.75% with Laplacian noise and

27.21% with LP, significantly enhancing protection against these

attacks.

CCS Concepts

• Security and privacy → Formal security models; Domain-

specific security and privacy architectures; Social network security

and privacy; Privacy-preserving protocols; •Mathematics of

computing→Bayesian computation; Bayesian networks; •Com-

putingmethodologies→Neural networks;Modelingmethod-

ologies.
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1 Introduction
With the increasing availability of wireless connectivity and ad-

vances in positioning technologies, vehicles are heavily involved

in various location-based services (LBS) such as navigation [1] and

transportation systems [2]. These services often require vehicles to

share their real-time locations with central servers, posing signifi-

cant privacy risks, such as potential tracking and exposure of sensi-

tive information like drivers’ home addresses [3]. Consequently, en-

suring the location privacy of vehicles in LBS applications is crucial.

The issue of location privacy in LBS has gained considerable

attention over the past two decades. Many recent studies like [4–

6] have focused on geo-obfuscation, a location privacy protection

mechanism (LPPM) that allows users to report obfuscated locations

instead of exact coordinates to servers. Notably, Andrés et al. [5]

introduced a formal privacy criterion for geo-obfuscation, called

geo-indistinguishability (Geo-Ind), which is extended from Differ-

ential Privacy (DP), requiring that nearby real locations remain

indistinguishable based on their obfuscated representations.

Albeit effective in protecting sporadic location privacy, Geo-

Ind is also known as a context-free privacy criterion [7], without

considering the impact of contextual information on mobile users’

obfuscated locations. Such an assumption limits the applications

of Geo-Ind in many practical scenarios, where mobile users’ mo-

bility is highly impacted by the surrounding environments. Recent

endeavors [8–15] have delved into exploring the vulnerabilities of

Geo-Ind by taking into account the spatiotemporal correlation of

users’ reported locations. As a countermeasure, some other data

privacy works [10, 14, 16, 17] focus on devising new context-aware

privacy criteria and solutions to protect users’ location data.

While elegant, those works mainly rely on explicit stochastic

models such as Markov chains [18], but they tend to overlook the

implicit long-term correlation between locations that may be deeply

embedded within the contextual data. In fact, the availability of

vehicle traffic flow information is on the rise globally, especially

within the urban and suburban contexts, sourced from road sensors

and traffic cameras [19, 20], mobile applications [21], and official

government or municipal websites [18]. This rich contextual data

presents an opportunity for attackers to learn vehicles’ implicit mo-

bility patterns over long-term periods. Leveraging this knowledge,

attackers can potentially refine the accuracy of location inference

attacks, even when the vehciles’ locations have been obfuscated.
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Figure 1: Introduction of VehiTrack and TransProtect.

Our Contributions. To fill the aforementioned research gap, in

this paper, we aim to study new context-aware threat model

to track vehicle locations and develop the countermeasure. Par-

ticularly, we focus on the scenario where the vehicle traffic flow

information is available. By leveraging the recent fast advancement

of deep neural networks, we aim to delve into the implicit relation-

ships - both short-term and long-term - embedded in the vehicles’

location data using the traffic flow information, without depending

on explicit stochastic models.
Contribution 1:Newcontext-aware threatmodel “VehiTrack”.
To demonstrate the vulnerability of Geo-Ind when protecting ve-

hicles’ location privacy, we introduce a new threat model called

VehiTrack. VehiTrack seeks to recover the actual locations of a ve-

hicle from its obfuscated data during a journey. It operates in two

phases: In Phase 1, VehiTrack applies Bayes’ formula, considering

the vehicle’s mobility constraints over time on the road network,

to estimate the real locations from obfuscated ones. In Phase 2, it

uses Long Short-Term Memory (LSTM) neural networks, which are

effective at recognizing both short-term and long-term correlation

in sequence data, to refine these estimates using the vehicle traf-

fic dataset. Our results show that VehiTrack significantly reduces

the inference error by 61.51% and 48.15% compared to traditional

Bayesian attacks when using Laplacian noise and linear program-

ming (LP)-based geo-obfuscation methods, respectively.

Our findings also reveal that the vulnerability of Geo-Ind to

context-aware inference attacks largely stems from its failure to

account for the constraints of road networks and traffic condi-

tions on vehicle mobility. As depicted in Fig. 1(a), many locations

within the obfuscation range, though compliant with Geo-Ind, are

deemed “impossible” when contextual data is considered. This al-

lows the VehiTrack model to significantly narrow its search for

actual locations-on average, 81.69% of locations can be dismissed

by incorporating road and traffic constraints. Motivated by this

observation, we developed a new geo-obfuscation method called

TransProtect. This approach ensures that the chosen obfuscated

locations conform to realistic vehicle movement patterns, making

it challenging for VehiTrack to effectively reduce the search range

using contextual information.

Contribution 2: The countermeasure “TransProtect”. TransPro-
tect is designed to create synthetic trajectories to closely emulate

the vehicle’s actual mobility. As Fig. 1(b) shows, TransProtect can be

integrated into the current geo-obfuscation framework to confine

the obfuscation range to a set of locations within the generated

synthetic trajectories, called “candidate locations”. Consequently,

the obfuscated location chosen from candidate locations has to

adhere to the realistic vehicles’ mobility patterns, which effectively

prevents attackers from excluding any “impossible locations” using

context-aware inference approaches like VehiTrack.

To create such synthetic trajectories, TransProtect leverages

a transformer model, a deep neural network that learns context

by handling long-range dependencies of the sequence data and

has achieved great success in many artificial intelligence domains

[22, 23]. To process the location sequence data of vehicles, we let

TransProtect first conduct location embedding to map the node (lo-

cation) set of the road network to a lower dimensional vector space,

preserving spatial features of road network locations. To achieve

this objective, TransProtect applies Node2Vec [24] to maximize the

log probability of observing a network neighborhood for each node

conditioned on its feature representation. It also utilizes a Graph

Convolutional Network (GCN) [25] to integrate edge weights and

neighborhood data into these embeddings.

TransProtect uses a Transformer encoder to evaluate each loca-

tion’s likelihood of being the vehicle’s real position by capturing

spatial patterns and adjusting scores based on data utility loss, then

selects the top locations for obfuscation.

Contribution 3: Empirical validation based on real-world
dataset. To evaluate the performance of both VehiTrack and

TransProtect, we conducted an extensive simulation using the Rome

taxi trajectory datasets [26], comparing both methods against state-

of-the-art location inference and location privacy protection al-

gorithms. The experimental results show that (1) When provided

with vehicle locations obfuscated using Laplacian noise [5] and LP,

VehiTrack demonstrates remarkable accuracy in tracking vehicle

locations. On average, its expected inference error (EIE), which

reflects the location privacy level, is 66.58% and 51.17% lower for

Laplacian noise and LP (averaged on all epsilon values), respec-

tively, compared to classic Bayesian inference attacks [4]. (2) Our

proposed countermeasure, TransProtect, can effectively protect the

location privacy of vehicles against VehiTrack. On average, the

synthetic location set generated by TransProtect increases EIE by

40.26% when using Laplacian noise and LP for obfuscation [2, 27].

The rest of the paper is organized as follows: Section 2 gives the

preliminaries of Geo-Ind. Section 3 introduces the new threat model

VehiTrack and Section 4 describes the countermeasure TransPro-

tect. Section 5 evaluates the performance of both VehiTrack and

TransProtect. Section 6 presents the related work. Finally, Section

7 makes a conclusion.

2 Preliminary

In this Section, we introduce the preliminary knowledge of geo-

obfuscation (Section 2.1), its privacy criterion Geo-Ind (Section 2.2),

and the limitation of Geo-Ind (Section 2.3).

2.1 Geo-Obfuscation in LBS

To ensure the quality of LBS, the server needs to collect the par-

ticipating vehicles’ location information in real-time. Like [1], we

consider the scenario where the server is non-malicious but vul-

nerable to potential data breaches. In such scenarios, unauthorized

parties might gain access to the reported vehicle locations stored on
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the server. Accordingly, the precise locations of the vehicles should

be kept hidden from the server.

In geo-obfuscation [5, 6], privacy-conscious vehicles are allowed

to use an obfuscation function to perturb their actual locations before

reporting the locations to the server. The obfuscation function takes

the vehicle’s precise location as the input and returns a probability

distribution of the obfuscated location, based on which the vehicle

can randomly select an obfuscated location to report. Beyond con-

cealing the precise locations of vehicles, the obfuscated locations

should be chosen in a manner that maintains the estimated travel

cost to the destination reasonably close to the actual travel cost of

the vehicle. Assessing the distortion of travel costs resulting from

obfuscated locations requires access to global information about

the target region, including its real-time vehicle traffic conditions

and the distribution of spatial tasks. However, managing this data

on an individual basis by vehicles poses significant challenges. As

such, previous studies [1, 2, 4, 6] have mainly concentrated on the

server-side computation of the obfuscation function.

For the sake of computational efficiency, many geo-obfuscation

methods [5, 6] consider users’ mobility on a set of discrete loca-

tions. When considering vehicle LBS, the existing works [2, 28]

discretize the road network into a set of road connections, denoted

asV = {𝑣1, ..., 𝑣𝐿}. Those connections include road intersections,

forks, junctions where roads intersect with others, and points where

the road changes direction. All the other locations within the road

network are approximated to their nearest connections in V . By

discretizing the location field into the finite location set V , the

obfuscation function 𝑄 can be described as an obfuscation matrix

Z = {𝑧𝑖,𝑘 }(𝑣𝑖 ,𝑣𝑘 ) ∈V2 , where each 𝑧𝑖,𝑘 denotes the probability of

selecting 𝑣𝑘 as the obfuscated location given the actual location 𝑣𝑖
(𝑣𝑖 , 𝑣𝑘 ∈ V).

2.2 Geo-Indistinguishability

Although the server takes charge of generating the obfuscation

function, the vehicles’ exact locations are still hidden from the

server since the obfuscated locations are selected in a probabilistic

manner [1]. Specifically, the obfuscation function is designed to

satisfy Geo-Ind [5], which requires that even if an attacker has

obtained a vehicle’s reported (obfuscated) location and the obfus-

cation function from the server, it is still hard for the attacker to

distinguish the vehicle’s real location 𝑣𝑖 from any nearby location

𝑣 𝑗 . Geo-Ind is formally defined in Definition 2.1:

Definition 2.1. (Geo-Ind) An obfuscation matrix Z satisfies 𝜖-
Geo-Ind if, for each pair of neighboring locations 𝑣𝑖 , 𝑣 𝑗 ∈ V with

𝑑𝑖, 𝑗 ≤ 𝛾 , the following constraints are satisfied

𝑧𝑖,𝑘 − 𝑒𝜖𝑑𝑖,𝑗 𝑧 𝑗,𝑘 ≤ 0, ∀𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 ∈ V with 𝑑𝑖, 𝑗 ≤ 𝛾 . (1)

which means that the probability distributions of the obfuscated loca-

tions of 𝑣𝑖 and 𝑣 𝑗 are sufficiently close. Here,𝑑𝑖, 𝑗 denotes theHaversine
distance (the angular distance on the surface of a sphere) between 𝑣𝑖
and 𝑣 𝑗 , and 𝛾 > 0 is a predetermined distance threshold.

LP formulation. Many recent works [1, 2] address the quality issue

caused by geo-obfuscation using linear programming (LP), of which

the objective is to minimize the data quality loss while ensuring

Geo-Ind is maintained. The LP is then formulated to optimize the

values of Z, which comprises𝐾2 decision variables (entries). Besides

Geo-Ind ensures the 
attacker cannot distinguish 

with its nearby locations 
within this circle 

Locations eliminated 
considering vehicles’ 
mobility restriction

(b)(a)

2 obfuscated 
location 
distributions 
are close

Figure 2: Geo-indistinguishability and its limit.

satisfying Geo-Ind in Equ. (1), for each real location 𝑣𝑖 , the sum
probability of the obfuscated locations should be 1 (probability unit

measure), i.e.,

𝐾∑
𝑘=1

𝑧𝑖,𝑘 = 1, ∀𝑣𝑖 ∈ V . (2)

We let UL(Z) denote the utility loss caused by the obfuscation

matrix Z, where UL(Z) is assumed to be a linear function of Z [1, 2].

Finally, the LP is formulated tominimize UL (Z) while satisfying the
constraints of the probability unit measure (Equ. (2)) and Geo-Ind

(Equ. (1)):

min UL (Z) s.t. Equ. (1)(2) are satisfied. (3)

2.3 Limitations of Geo-Ind
As Fig. 2(a) shows, Geo-Ind aims to guarantee that a vehicle’s loca-

tion 𝑣𝑖 remains indistinguishable from any other location 𝑣 𝑗 within
the circle centered at 𝑣𝑖 with a radius of 𝛾 based on their obfuscated

location distributions. However, Geo-Ind is a context-free privacy

criterion without considering the context information that can be

used in inference attacks. As Fig. 2(b) shows, an attacker can lever-

age context information, such as the vehicle’s historical locations,

speed limits, and surrounding traffic conditions, to eliminate “im-

possible” locations of the vehicle within the circle. This, in turn,

narrows down the search range for the vehicle’s actual location

and increases the accuracy of its location tracking.

In the next section, we will introduce a new threat model to

demonstrate the vulnerability of Geo-Ind when protecting vehicles’

location privacy.

3 VehiTrack: A Context-Aware Location
Inference Algorithm

In this section, we introduce a new location inference algorithm,

called VehiTrack, to accurately recover the real locations of a target

vehicle from its obfuscated locations even though Geo-Ind has been

satisfied.

We consider a scenario where a target vehicle reports its loca-

tion multiple times at a sequence of time slots 𝑡1, ..., 𝑡𝑁 , where the

actual locations and the obfuscated locations of the vehicle are de-

noted by x1:𝑁 = {𝑥1, ..., 𝑥𝑁 } and ỹ1:𝑁 = {𝑦1, ..., 𝑦𝑁 }, respectively
(𝑥𝑛, 𝑦𝑛 ∈ V , for each 𝑡𝑛 = 𝑡1, ..., 𝑡𝑁 ). Given the observation of the
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vehicle’s obfuscated locations ỹ1:𝑁 , VehiTrack aims to find the vehi-

cle’s actual location sequence x1:𝑁 . To achieve this goal, VehiTrack

consists of the following two main phases:

Ph1: VehiTrack estimates the posterior 𝑝 (𝑥𝑛 |𝑦𝑛) of the vehicle’s
location at each time slot 𝑡𝑛 , by considering the short-term

correlation of the vehicle’s locations using a mobility

restriction-aware Bayesian inference model (Section 3.2).

Ph2: VehiTrack improves the accuracy of the posterior sequence

𝑝 (𝑥1 |𝑦1), ..., 𝑝 (𝑥𝑁 |𝑦𝑁 ), by considering the long-term cor-

relation of the vehicle’s locations using Long Short-Term

Memory (LSTM) neural networks (Section 3.1).
Before introducing the details of the above two phases, in Section

3.1, we first describe the mathematical models used in VehiTrack,

including the main notations and assumptions.

3.1 Models

3.1.1 Threat model. To estimate the target vehicle’s true locations

x1:𝑁 = {𝑥1, ..., 𝑥𝑁 }, we assume that the attacker has access to the

following information at the time slots 𝑡1, ..., 𝑡𝑁 :

(1) the vehicle’s obfuscated locations ỹ1:𝑁 = {𝑦1, ..., 𝑦𝑁 };
(2) the obfuscation matrices Z1:𝑁 = {Z1, ...,Z𝑁 }, where Z𝑛 denotes

the obfuscation matrix at time slot 𝑡𝑛 ;
(3) the background information including the vehicle’s mobility

restrictions in the road networks (e.g., speed limits). We assume

that the attacker has access to the public vehicle trajectory dataset

[26] to obtain historical traffic flow information.

For simplicity, we use 𝑝 (𝑥𝑛) to represent the prior probability

that the vehicle is located at 𝑥𝑛 at time 𝑡𝑛 and use 𝑝 (x1:𝑛) to repre-

sent the prior joint distribution of the vehicle being located at x1:𝑛
in the time slots {𝑡1, ..., 𝑡𝑛}.
3.1.2 Vehicle’s mobility model. We describe vehicles’ mobility in

the road network as a directed graph G = (V, E), where V and E
denote the node (location) set and the edge set, respectively. Each

edge 𝑒𝑖, 𝑗 ∈ E represents that 𝑣𝑖 is adjacent to 𝑣 𝑗 in the road network,
meaning that a vehicle can travel from 𝑣𝑖 to 𝑣 𝑗 without visiting
any other location in V . Each edge 𝑒𝑖, 𝑗 ∈ E is assigned a weight

𝑤𝑖, 𝑗 , representing vehicles’ minimum travel time through the edge

𝑒𝑖, 𝑗 . The shortest travel time from 𝑣𝑖 to 𝑣 𝑗 (which are unnecessarily

adjacent), denoted by 𝑐𝑣𝑖 ,𝑣𝑗 , equals the length of the shortest path

from 𝑣𝑖 to 𝑣 𝑗 in G. Here, the length of a path is defined as the sum

weight of all the edges along the path.

Note that due to the change of traffic conditions (e.g., peak hours

versus off-peak hours on weekdays), the edge weight 𝑤𝑖, 𝑗 can vary

over time, rendering the mobility graph G a time-varying graph.

Given G, we call a location 𝑣 𝑗 is reachable by 𝑣𝑖 during a time

interval [𝑡𝑛−1, 𝑡𝑛] if the shortest travel time from 𝑣𝑖 to 𝑣 𝑗 during
[𝑡𝑛−1, 𝑡𝑛] is no larger than 𝑡𝑛 − 𝑡𝑛−1, i.e., 𝑐𝑣𝑖 ,𝑣𝑗 ≤ 𝑡𝑛 − 𝑡𝑛−1. We

use R𝑖
𝑛 to denote the set of locations reachable by 𝑣𝑖 (or called the

reachable set of 𝑣𝑖 ) during [𝑡𝑛−1, 𝑡𝑛].
3.2 Phase 1: Mobility Restriction-Aware

Bayesian Inference
By leveraging the vehicles’ mobility restrictions and the obfusca-

tion matrices, VehiTrack first estimates the posteriors of the target

vehicle’s locations at the time slots {𝑡1, ..., 𝑡𝑁 } via a Bayesian infer-

ence model. Note that deriving a posterior over the entire location

setV imposes a substantial computational burden. Indeed, due to

reachable by 

next time slot

Step 2Step 1

Figure 3: Framework of deriving S𝑛 from S𝑛−1.
Step 1: Find the location set R𝑛 that are reachable by S𝑛−1;
Step 2: Derive the posterior of each location in R𝑛 and find the ones

of which the posteriors are higher than the threshold 𝜉 .

the restrictions of the vehicle’s mobility and its limited obfuscation

range, the possible true location of the vehicle can be confined to

a smaller area. As a result, VehiTrack only needs to compute the

posteriors of the locations within this reduced area and treat the

posteriors of the locations outside this area as negligible.

We use S𝑛 to represent the set of the vehicle’s possible locations

(identified by VehiTrack) at the time slot 𝑡𝑛 . Fig. 3 shows the frame-

work of how VehiTrack iteratively derives S𝑛 from S𝑛−1, which is

composed of the following two steps:

3.2.1 Step 1 - Identify the location set R𝑛 that is reachable by the

locations in S𝑛−1 during the time interval [𝑡𝑛−1, 𝑡𝑛]. Here, R𝑛 is

the union of the reachable sets of all the locations in S𝑛−1, i.e.,
R𝑛 = ∪𝑣𝑖 ∈S𝑛−1R𝑖

𝑛 , i.e., each location in R𝑛 is reachable by at least

one location inS𝑛−1. To determine R𝑖
𝑛 for each 𝑣𝑖 , VehiTrack builds

a shortest path tree 𝑆𝑃𝑇𝑖 in the graph G rooted at 𝑣𝑖 using the

Dijkstra’s algorithm [29], of which the time complexity is𝑂 ( |V′
𝑖 |2).

Here, V′
𝑖 ⊂ V represents the set of nodes included in the 𝑆𝑃𝑇𝑖 .

For the sake of computation efficiency, VehiTrack limits V′
𝑖 to

the location set of which the Haversine distance is no larger than

(𝑡𝑛 − 𝑡𝑛−1)𝑠limit, i.e., which are reachable by the vehicle with its

maximum speed 𝑠limit during [𝑡𝑛−1, 𝑡𝑛] without considering the

mobility restriction imposed by the road network, i.e.,

V′
𝑖 =

{
𝑣 𝑗 ∈ V

��𝑑𝑖, 𝑗 ≤ (𝑡𝑛 − 𝑡𝑛−1)𝑠limit

}
. (4)

VehiTrack first creates an induced subgraph G′
𝑖 of G formed from

the node setV′
𝑖 , where all of the edges (from G) connect pairs of

vertices in V′
𝑖 . We then build 𝑆𝑃𝑇𝑖 on G′

𝑖 instead of the original

graph G.

Proposition 3.1. 𝑆𝑃𝑇𝑖 is sufficient to identisfy R𝑖
𝑛 .

Proof Sketch: We prove that for ∀𝑣𝑘 ∈ R𝑖
𝑛 , if 𝑐𝑣𝑖 ,𝑣𝑘 ≤ 𝑡𝑛 − 𝑡𝑛−1,

then 𝑣𝑘 is included in 𝑆𝑃𝑇𝑖 , and also its distance to 𝑣𝑖 is equal to
𝑐𝑣𝑖 ,𝑣𝑘 in 𝑆𝑃𝑇𝑖 . We prove it by contradiction, where the detailed proof

can be found in Section A.1 in Appendix.

3.2.2 Step 2 - Determine the possible location set S𝑛 using the ob-

fuscation matrices. Given the observed (obfuscated) location 𝑦𝑛 and

the obfuscation matrix Z𝑛 at each time slot 𝑡𝑛 , VehiTrack derives

the posterior probabilities of all the locations 𝑥 ∈ R𝑛 using the

Bayes’ formula:

𝑝 (𝑥 |𝑦𝑛) =
𝑝 (𝑥)𝑧𝑥,𝑦̃𝑛∑

𝑥 ′ ∈R𝑛
𝑝 (𝑥 ′)𝑧𝑥 ′,𝑦̃𝑛

, ∀𝑥 ∈ R𝑛 . (5)

Here, we consider 𝑥 as a “possible location” of the vehicle in S𝑛
only if its posterior value 𝑝 (𝑥 |ỹ1:𝑛) is higher than a pre-determined

threshold 𝜉 > 0. Therefore, S𝑛 is given by
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Figure 4: Training data generation in Phase 2.

S𝑛 = {𝑥 ∈ R𝑛 |𝑝 (𝑥 |𝑦𝑛) ≥ 𝜉 } . (6)

3.3 Phase 2: Posterior Refinement using LSTM

Although VehiTrack considers the mobility restrictions of the target

vehicle in adjacent time slots in Phase 1, it falls short of captur-

ing the long-term correlation of the vehicle’s locations. In Phase

2, VehiTrack aims to further improve the accuracy of the poste-

rior estimation by incorporating the LSTM networks, due to their

strong capabilities of learning both short-term and long-term cor-

relation in sequence data [30]. Specifically, VehiTrack takes the

estimated posterior sequence obtained in Phase 1 as the inputs

of the LSTM models and infers the real location sequence as the

outputs. Achieving this goal entails training the LSTM model to

establish the empirical relationship between the observed posteriors

calculated by Phase 1 and the vehicle’s real locations.

3.3.1 Training dataset generation. Following the threat model out-

lined in Section 1, we assume that the attacker has access to the

historical vehicle mobility dataset in the region [31]. Moreover, we

assume that the target vehicle follows similar mobility patterns

with other vehicles in the dataset, despite potential individual vari-

ations. This allows VehiTrack to infer the target vehicle’s locations

by LSTM trained by the historical vehicle mobility data.

VehiTrack generates training samples for an LSTM model by

obfuscating real locations and using Bayesian inference to calculate

location posteriors.

As Fig. 4 shows, to obtain the training inputs (location posteri-

ors), VehiTrack first obfuscates each real location in the trajectory

using the obfuscation matrix (Step 1©) and then derives the cor-

responding posteriors based on the obfuscated locations using the

Bayesian inference model in Phase 1 (Step 2©). The model is trained

with one-hot encoded real locations as outputs, and multiple sam-

ples are created for each trajectory to reduce variance from the

obfuscation process. To reduce the sample variance stemming from

the stochastic obfuscated location selection process, we let Vehi-

Track generate multiple training samples (e.g., 20 samples in our

experiments) for each trajectory.

3.3.2 LSTM network architecture. Fig. 5 shows the framework of

LSTM. The input posterior sequences undergo an initial process-

ing step within the dimensionality management block. This block

Input: 
Posterior 
sequence 

Dim. 
management

Activation 
func. Sigmoid

Output
Trajectory

(b) Post-LSTM

LSTM LSTM LSTML L

LSTMLSTMLSTM

Neural network 
layers

Forget 
Gate

Input 
Gate

Output 
Gate

(a) LSTM gates

Figure 5: Framework of Phase 2.

employs a padding method to enforce a standardized input format,

specifically by aligning all trajectories with the longest one in the

dataset. The padded posterior vectors are then passed to the neural

network layer, a combination of 5 LSTM layers.

Fig. 5(a) and 5(b) illustrates our LSTM architecture, which, un-

like conventional LSTM, processes entire posterior vectors instead

of scalar values. This allows element-wise operations within the

LSTM cells. We also use a BiLSTM model with two parallel layers

(forward and backward) [32] to capture bidirectional patterns. The

forget, input, and output gates dynamically manage the flow of in-

formation, deciding what to retain, add, or pass as the next hidden

state.

To train Post-LSTM, we define the loss function as the cross en-

tropy between predicted and actual vehicle location. The output

of the neural network layer is directed to the sigmoid activation

function block to constrain the output within the range [0, 1]. The
result is then passed to the output block where an argmax opera-

tion is performed upon the output to get the final estimation of the

trajectory.

3.4 Performance of VehiTrack

As demonstrated in our experiments detailed in Section 5.2, on

average, using rome dataset (resp. using the San Francisco dataset),

VehiTrack achieves a 65.54% and 45.93% (resp. 56.86% and 48.78%)

reduction in inference errors corresponding to the Laplacian and

Linear Programming methods respectively, compared to the classic

Bayesian inference algorithm. Our findings also reveal that, by in-

corporating contextual information such as the road network and

traffic flow, VehiTrack can eliminate a significant percentage of

locations within the obfuscation range. For instance, in our experi-

ment in Section 5, using rome dataset (resp. using the San Francisco

dataset) on average, 81.99% (resp. 81.39) of locations within the

obfuscation range are eliminated by considering vehicles’ mobil-

ity restrictions. This factor contributes significantly to the high

inference accuracy performed by VehiTrack.

4 TransProtect: A Countermeasure of
VehiTrack

As analyzed in Section 3, Geo-Ind proves susceptible to privacy

breaches by VehiTrack when protecting the location privacy of

vehicles. This vulnerability stems from the inclusion of “unrealistic”

locations in its obfuscation range, which are prone to elimination by

VehiTrack. Motivated by this insight, in this section, we introduce
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TransProtect, which aims to identify a set of “candidate obfuscated

locations” that closely adhere to the realistic mobility patterns of

vehicles, making them difficult for attackers to distinguish from

actual locations.

4.1 The Framework of TransProtect
As illustrated by Fig. 6, TransProtect can be integrated into the cur-

rent geo-obfuscation framework, such as LP-based geo-obfuscation

[2] or Laplacian noise [5]. Using the context data including local

historical traffic flow data and LBS target distributions, the server

initially trains a “TransProtect” model ( 1©). This model takes a ve-

hicle’s trajectory as input and outputs a set of candidate obfuscated

locations for the vehicle’s current location within the trajectory.

Before reporting the location, each participating vehicle needs to

download the trained “TransProtect” model to identify the can-

didate location set for obfuscation ( 2©). Then, the vehicle can lo-

cally obfuscate its location within the candidate location set using

Laplacian noise ( 3©), which requires a low computational load that

doesn’t necessitate global LBS service information. Alternatively,

the vehicle can report the candidate location set, prompting the

server to compute the obfuscation matrix using LP ( 2©), which

incurs a relatively higher computational load and relies on global

target information. In both cases, The integration of TransProtect

into the geo-obfuscation framework allows for the restriction of

the obfuscation range to a specific set of locations, aligning with

vehicles’ realistic mobility features while minimizing utility loss.

Fig. 7 shows the framework of TransProtect. TransProtect first

takes the vehicle’s real location sequence (or the trajectory), x1:𝑁 =
{𝑥1, ..., 𝑥𝑁 }, as the input. During each time slot 𝑡𝑛 , TransProtect
assesses both the utility loss and the likelihood of each location

𝑣𝑖 ∈ V being the actual location, based on the vehicle’s historical

locations x1:𝑛−1 = {𝑥1, . . . , 𝑥𝑛−1}. After this assessment, TransPro-

tect outputs a maximum of 𝐾 locations as the “candidate locations”

for the obfuscated location, with 𝐾 representing the maximum

allowable number of locations within the obfuscation range.

As shown by Fig. 7(a)(b)(c), TransProtect mainly comprises the

following three components: (a) location embedding, (b) location as-

sessment by transformer encoder, and (c) location ranking adjusted by

utility loss. Next, we introduce the details of the three components

in Section 4.2, Section 4.3, and Section 4.3, respectively.

4.2 Location Embedding

The objective of location embedding is to map the nodes (locations)

in the road network graph G to a low dimensional feature space,

where the neighborhood information of each node in G can be well-

preserved. Here, we let 𝑓 : V → R𝑔 be the map from the locations

to their feature representations, where 𝑔 denotes the dimension of

the resulting embeddings.
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Figure 7: TransProtect framework.

Node2Vec. To achieve the above objective, as Fig. 7(a) shows,

we first map locations to vectors using Node2Vec [24], a semi-

supervised algorithm designed for scalable feature learning in net-

work structures. Node2Vec seeks to maximize the log-probability of

observing a network neighborhoodN𝑖 for each node 𝑣𝑖 conditioned
on its feature representation 𝑓𝑁 2𝑉 (𝑣𝑖 ), i.e.,

max
𝑓

∑
𝑣𝑖 ∈V

log Pr (N𝑖 |𝑓𝑁 2𝑉 (𝑣𝑖 )) . (7)

Directly minimizing the objective function in Equ. (7) results in

significant computational overhead when the location set V is

large. Equ. (7) can be simplified to

max
𝑓

∑
𝑣𝑖 ∈V

⎡⎢⎢⎢⎢⎣
− log𝑍𝑣𝑖 +

∑
𝑣𝑗 ∈N𝑖

𝑓𝑁 2𝑉 (𝑣𝑖 ) 𝑓𝑁 2𝑉 (𝑣 𝑗 )
⎤⎥⎥⎥⎥⎦

(8)

by assuming the conditional independence of the likelihood of ob-

serving the neighbors in N𝑖 and the symmetry in feature space,

where𝑍𝑣𝑖 =
∑
𝑣𝑗 ∈V exp(𝑓𝑁 2𝑉 (𝑣𝑖 ) 𝑓𝑁 2𝑉 (𝑣 𝑗 )) can be further approx-

imated using negative sampling [33].

Graph Convolutional Network. Following the initial embedding

of nodes via Node2Vec, we proceed to improve these embeddings

using a Graph Convolutional Network (GCN) [25]. The primary goal

of GCN is to incorporate both the edge weights and the neighbor-

hood information into the node representations, thus achieving a

more contextually comprehensive embedding.

Specifically, GCN processes the Node2Vec embeddings using

a series of convolutional layers. Each layer in GCN updates the

node embeddings by aggregating information from their respective

neighborhoods, with an emphasis on the connectivity patterns as

dictated by the graph structure. This process is formally expressed

through the following convolution operation in each layer:

S(𝑙+1) = 𝜎
(
D̂− 1

2 ÊD̂− 1
2 S(𝑙 )𝚯(𝑙 )

)
, (9)

where D̂− 1
2 ÊD̂− 1

2 denotes the symmetric normalized Laplacian

matrix. Here, Ê = E+ I includes the addition of the identity matrix I

to incorporate self-connections E, and D̂ is the diagonal node degree

matrix of Ê. The matrix S(𝑙 ) represents the activations from the

𝑙-th layer, 𝚯(𝑙 ) is the layer’s trainable weight matrix, and 𝜎 (·) is a
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non-linear activation function such as the sigmoid. The initial layer

activations are set to the node embeddings S(0) = 𝑓𝑁 2𝑉 (x1:𝑁 ).
By applying Node2Vec followed by GCN, we obtain the em-

bedding of each trajectory x1:𝑁 , denoted as 𝑓𝐺𝐶𝑁 (x1:𝑁 ) ∈ R𝑁×𝑔 ,
which captures the spatial nuances of the trajectory within the

embedding space.

Positional embedding. As Fig. 7(a) shows, after Node2Vec and

GCN, each trajectory x1:𝑁 is initially transformed into a vector

space representation 𝑓𝐺𝐶𝑁 (x1:𝑁 ). To incorporate the sequential

order of the locations in the trajectory, positional encodings are

added to the embedding vectors. These encodings provide a unique

position signature that allows the model to consider the order

of locations within each trajectory. The positional encodings are

calculated as follows:

𝑃𝐸 (𝑝𝑜𝑠,2𝑖 ) = sin

(
𝑝𝑜𝑠

100002𝑖/𝑔

)
, 𝑃𝐸 (𝑝𝑜𝑠,2𝑖+1) = cos

(
𝑝𝑜𝑠

100002𝑖/𝑔

)
(10)

where 𝑝𝑜𝑠 and 𝑖 are the location’s position in the trajectory and

the dimension index, respectively. These encodings are added to

the embedding vectors to produce the final location embeddings

𝑓 (x1:𝑁 ) = 𝑓𝐺𝐶𝑁 (x1:𝑁 ) + 𝑃𝐸.

4.3 Location Assessment by Transformer

As Fig. 7(b) shows, taking the location embeddings 𝑓 (x1:𝑁 ) as the
inputs, the transformer encoder in the second component outputs

the score matrix H1:𝑁 = [h1, ..., h𝑁 ], where each vector h𝑛 =
[ℎ1,𝑛, ..., ℎ𝐿,𝑛] ∈ R𝐿 contains the predictive probability scores across

all the locations in V at each time slot 𝑡𝑛 . Here, 𝐿 is the number

of locations in V , and each probability score ℎ 𝑗,𝑛 = 𝑝 (𝑣 𝑗 |x1:𝑛−1)
( 𝑗 = 1, ..., 𝐿) reflects 𝑣 𝑗 ’s likelihood of being the real location at 𝑡𝑛
given the observation of the vehicle’s historical locations x1:𝑛−1.
Detailed steps of the Transformer encoder. As illustrated by Fig.

7(b), 𝑓 (x1:𝑁 ) is first passed to a multi-head attention mechanism. In

each attention head, the input sequence is linearly transformed into

queries Q, keys K, and values V using respective weight matrices.

The scaled dot-product attention for each head is computed as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Q,K,V) = softmax

(
QK𝑇√

𝑔𝑘

)
V. (11)

Each attention head ℎ𝑒𝑎𝑑𝑖 processes the sequence independently
using the following transformation:

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛
(
𝑓 (x1:𝑁 )W𝑄

𝑖 , 𝑓 (x1:𝑁 )W𝐾
𝑖 , 𝑓 (x1:𝑁 )W𝑉

𝑖

)
. (12)

The outputs from each head are then concatenated and linearly

transformed to produce the final representation for each position

in the sequence: ℎ′x = Concatenate(ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑𝐵)W𝑂 .

Here, 𝐵 is the number of headers, andW
𝑄
𝑖 ,W

𝐾
𝑖 ,W

𝑉
𝑖 , andW𝑂

are the trainable parameters of the model. The dimensionality of

each head’s output, 𝑔𝑘 , is set to 𝑔/𝐵 to maintain a consistent di-

mensionality across different heads. After processing the sequence

through the Transformer’s multi-head attention module, the de-

rived representation ℎ′x is then delivered to a fully connected layer.

This layer applies a learned linear transformation characterized

by weight matrixW𝐹𝐶 and bias b𝐹𝐶 , producing a set of logits for

each location in the sequence: a𝑛 = W𝐹𝐶ℎ′x,𝑛 + b𝐹𝐶 , where a𝑛
represents the logits at time slot 𝑡𝑛 , and ℎ′x,𝑛 denotes the 𝑛-th vec-

tor in the sequence after the attention mechanism. For each time

step 𝑡𝑛 , the logits a𝑛 are then passed through a softmax function

to yield a probability distribution over the set of all possible loca-

tionsV , i.e., h𝑛 = softmax(a𝑛). By stacking the vectors h1, ..., h𝑁
for all the 𝑁 time slots, we construct the probability score matrix

H1:𝑁 = [h1, ..., h𝑁 ]. H1:𝑁 serves as the final output from the Trans-

former encoder, encapsulating the predictive distribution over the

location setV at each time step within the trajectory.

Loss and Training. During the training process, we aim to mini-

mize the cross entropy loss L𝐶𝐸 (H1:𝑁 , X̂1:𝑁 ) between the predicted

location probability distributionH1:𝑁 and the location ground truth

X̂1:𝑁 (which is obtained from the real vehicle trajectory dataset

[26]), i.e., min L𝐶𝐸 (H1:𝑁 , X̂1:𝑁 ) = −∑𝑁
𝑛=1

∑
𝑣𝑗 ∈V 𝑥 𝑗,𝑛 log(ℎ 𝑗,𝑛).

Here, X̂1:𝑁 =
{
𝑥 𝑗,𝑛

}
𝐾×𝑁 is a one-hot encoded matrix of the

true locations with 𝑥 𝑗,𝑛 indicating the ground truth presence (or

absence) of a location 𝑣 𝑗 at time slot 𝑡𝑛 in the trajectory.

4.4 Location Ranking Adjusted by Utility Loss
As depicted in Fig. 7(c), after assessing the probability scores of

the locations using the Transformer encoder, TransProtect adjusts

the scores by the data utility associated with each location. Here,

we use Δ𝑐𝑥𝑛,𝑣𝑗 to denote the utility loss caused by the obfuscated

location 𝑣 𝑗 given the real location 𝑥𝑛 . Each location 𝑣 𝑗 is assessed
by the weighted sum of the probability score and the inverse of the

utility loss: ℎ𝑙,𝑛 + 𝛼
Δ𝑐𝑥𝑛,𝑣𝑗

, where the weight 𝛼 > 0 is a predefined

constant, reflecting the user’s emphasis on data utility during lo-

cation obfuscation. TransProtect then ranks all the locations inV
based on their weighted scores and selects the top 𝐾 locations as

the “candidate locations” for obfuscation.

Measurement of utility loss. The assessment of utility loss is

contingent on the specific manner in which location data is used

in downstream decision-making. As an example, in this paper, we

consider the LBS applications where vehicles need to physically

travel to designated locations to receive desired services such as

navigation [3], or to fulfill tasks in spatial crowdsourcing [2]. In

those applications, data utility loss can be quantified by the discrep-

ancy between the estimated and actual travel costs to reach the

designated locations. Note that our framework is also readily ex-

tended to other LBS applications with slight adjustments, provided

that a clear relationship between data utility loss and obfuscated

data can be established.

We let 𝑞𝑙 denote the prior probability that the target location

is located at the location 𝑣𝑙 (𝑙 = 1, ..., 𝑁 ). Given a real location

𝑥𝑛 , the utility loss caused by an obfuscated location 𝑣 𝑗 is defined
as the expected error of the traveling costs to the target location,

calculated by

Δ𝑐𝑥𝑛,𝑣𝑗 =
𝑁∑
𝑙=1

𝑞𝑙
��𝑐𝑥𝑛,𝑣𝑙 − 𝑐𝑣𝑗 ,𝑣𝑙

�� . (13)

Location filtering. After calculating the weighted score ℎ𝑙,𝑛 +
𝛼

Δ𝑐𝑥𝑛,𝑣𝑗
of each location 𝑣 𝑗 , TransProtect identifies the set of candi-

date locations using a min heap [29], mainly with the two features:

(f1) the top element has the minimum score in the heap; (f2) the

min heap has two types of operations: push to insert a new element,

and pop to remove the top element from the heap. The min heap is

initialized by empty. TransProtect then pushes each location in V
onto the heap. Once the heap reaches its capacity 𝐾 and determines

whether to add a new location 𝑣 𝑗 ∈ V , TransProtect first checks
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whether the top location in the current heap has a higher score

than 𝑣 𝑗 . If NO, 𝑣 𝑗 won’t be pushed onto the heap since it has a

lower score than the 𝐾 locations in the current heap; If YES, the

top location is popped off and 𝑣 𝑗 is pushed onto the heap. Note that
the popped location cannot have the 𝐾 highest score, since it has a

lower score than the other 𝐾 − 1 locations in the current heap and

the newly added location 𝑣 𝑗 .
Time complexity. In min heap, both push and pop operations take

𝑂 (log𝐾) time complexity and𝑂 (1) space complexity. Suppose that

there are 𝐿 candidate locations to check by the transformer encoder.

To find the 𝐾 locations with the highest scores, it takes up to 𝐿
push/pop operations, amounting to 𝑂 (𝐿 log𝐾) operations. As both
𝐿 and 𝐾 are not large in practice, e.g. they are set by up to 50 and

1739 respectively in our experiment (Section 5), such a computation

load is acceptable to vehicle-equipped devices like smartphones.

5 Performance Evaluation

We carry out an extensive simulation to assess the performance of

our location inference algorithm VehiTrack and our new LPPM

TransProtect in Section 5.2 (Experiment I) and Section 5.3

(Experiment II), respectively, with the comparison of a list of state-

of-the-art methods. In Section 5.1, we first introduce the settings

of the experiment, including the real-world dataset used in the

simulation, the benchmarks, and the performance metrics1.

5.1 Experimental Settings
5.1.1 Vehicle location dataset. We adopt two vehicle trajectory

datasets: (1) Rome taxicab dataset [26], which includes 367,052 tra-

jectories from approximately 320 taxis, covering 30+ days, and (2)

San Francisco dataset [34], including 34,564 trajectories from 536

taxis, covering 30 days. For both datasets, the road network infor-

mation of the target region is extracted by OpenStreetMap [35],

which provides fine-grained location (node) and road (edge) infor-

mation. To crop the road map data of Rome (resp. San Francisco),

we compute the bounding area keeping a coordinate (latitude =

41.9028, longitude = 12.4964) (resp. (latitude = 37.7739, longitude =

-122.4312)) as the center and computed all the nodes and edges

within a 20-kilometer (resp. 10-kilometer) radius distance from the

center.

5.1.2 TransProtect model training setting. The experiments are con-

ducted on Ubuntu 22.04 with an NVIDIA GeForce 4090 GPU. We

implement TransProtect using PyTorch 2.1 [36]. We set the em-

bedding dimensionalities to 128 and batch size to 50. The initial

learning rate is 0.001.
5.1.3 Benchmarks. In Experiment I, we test the performance of

VehiTrack against the two conventional geo-obfuscation methods

(i) Planar Laplacian noise (labeled as “Laplace”) [1], which uses

𝜖-Geo-Ind as the privacy criterion. Laplace assumes the obfuscation

probabilities 𝑧𝑖,𝑘 ∝ 𝑒−𝜖
𝑑𝑖,𝑘
Λmax , where 𝜖 is the privacy budget, and

Λmax is the maximum distance between any two locations in the

target region.

(ii) LP-based geo-obfuscation (labeled as “LP”) [2]: LP (defined

in Equ. (3)) aims to minimize the data utility loss of a single vehicle

with the 𝜖-GeoInd constraints being satisfied.

1The source code of both VehiTrack and TransProtect is available at: https://github.
com/sourabhy1797/VehiTrack.

We compare the performance of VehiTrack with the following

four classic location inference algorithms.

(i) Bayesian Inference attack [4], labeled as “Bayes”: Given the

vehicle’s obfuscated location, Bayes derives the posterior of the

vehicle’s real location by the Bayes’ formula and estimates the ve-

hicle’s real location as the location that maximizes the posterior.

(ii) Hidden Markov Model-based location inference [18], la-

beled as “HMM”: HMM assumes the vehicle’s mobility follows

a Markov process, of which the transition matrix can be learned

explicitly using publicly accessible traffic flow data [37]. In HMM,

the vehicle’s real locations and obfuscated locations are considered

hidden states and observable states, respectively. Under these as-

sumptions, the vehicle’s real trajectory can be recovered from the

obfuscated locations by the Viterbi algorithm [38].

(iii) VehiTrack in Phase 1, labeled as “VehiTrack-I”: To conduct

an ablation study, we test VehiTrack-I, wherein the vehicles’ loca-

tions are inferred directly using the posterior sequence generated by

Phase 1 of VehiTrack. A comparative analysis between VehiTrack

and VehiTrack-I allows us to assess the extent of improvement

attributed to the incorporation of LSTM in Phase 2.

In Experiment II, we integrate TransProtect into Laplace and

LP, labeled as “Laplace+TransProtect” and “LP+TransProtect”,

respectively. Specifically, we limit the obfuscation range of Laplace

and LP to the candidate location set output by TransProtect. We test

the four inference algorithmswhen vehicles’ locations are protected

by “Laplace+TransProtect” and “LP+TransProtect”.

5.1.4 Metrics. In both Experiments I&II, we measure two metrics:

(1) expected inference errors (EIE), which is defined as the expected

error between the estimated locations (by attackers) and the vehi-

cles’ actual locations, and (2) data utility loss, which is defined as

the expected distortion of estimated traveling cost (in Equ. (13)).

The main experimental results regarding inference error and

data utility loss in Experiments I and II are listed in Table 1&2 and

Table 3, respectively.

5.2 Experiment I: Evaluation of VehiTrack
We randomly select 100 trajectories from the Rome and San Fran-

cisco Taxicab datasets to simulate the vehicles’ mobility. We use

Laplace and LP to obfuscate all the locations within each trajectory,

with locations recorded approximately every 20 seconds for both

datasets. We then apply the four location inference algorithms, Vehi-

Track, VehiTrack-I, HMM, and Bayes to infer the vehicles’ real loca-

tions from the obfuscated locations, of which the expected inference

errors are compared in “Experiment I” in Table 1 (Laplace) and Table

2 (LP). Based on the two tables, we have the following observations:

(1) Context-free location inference method Bayes has the

highest inference error. On average, if we apply Laplacian noise

as obfuscation methods, the inference error of Bayes is respectively

199.19%, 2.97%, and 156.33% (resp. 131.81%, 64.51%, and 70.00%)

higher than that of VehiTrack, VehiTrack-I, and HMM using the

Rome dataset (resp. using the San Francisco dataset). If we apply

LP as obfuscation methods, the inference error of Bayes is 76.10%,

36.60%, and 36.65% (resp. 95.23%, 28.12%, and 36.66%) higher than

that of VehiTrack, VehiTrack-I, and HMM using the Rome dataset

(resp. using the San Francisco dataset). Unlike Bayes mainly focus-

ing on single-location inference, the four context-aware inference
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Table 1: Expected inference error of Laplace and Laplace + TransProtect (km)

Location privacy protection algorithms

Location Experiment I Experiment II

inference Laplace Laplace+TransProtect

algorithms Rome San Francisco Rome San Francisco

𝜖 (km−1) 5.0 7.5 10.0 5.0 7.5 10.0 5.0 7.5 10.0 5.0 7.5 10.0

VehiTrack 0.22 0.21 0.21 0.22 0.22 0.21 0.33(+53.4%) 0.32(+49.2%) 0.31(+46.6%) 0.39(+74.5%) 0.36(+64.22%) 0.34(+58.6%)
VehiTrack-I 0.63 0.62 0.62 0.31 0.31 0.30 0.66(+3.91%) 0.65(+4.62%) 0.65(+5.00%) 0.53(+70.45%) 0.53(+70.45%) 0.52(+71.33%)

Bayes 0.65 0.64 0.64 0.51 0.51 0.50 0.69(+5.80%) 0.65(+1.92%) 0.64(+0.49%) 0.70(+36.79%) 0.69(+35.54%) 0.65(+29.42%)
HMM 0.26 0.25 0.25 0.30 0.30 0.28 0.71(+175%) 0.69(+179%) 0.68(+176%) 0.68(+124%) 0.66(+121%) 0.64(+130%)

Table 2: Expected inference error of LP and LP + TransProtect (km)

Location privacy protection algorithms

Location Experiment I Experiment II

inference LP LP+TransProtect

algorithms Rome San Francisco Rome San Francisco

𝜖 (km−1) 5.0 7.5 10.0 5.0 7.5 10.0 5.0 7.5 10.0 5.0 7.5 10.0

VehiTrack 0.21 0.21 0.19 0.21 0.20 0.20 0.29(+34.9%) 0.26(+24.9%) 0.25(+32.7%) 0.26(+22.43%) 0.25(+23.73%) 0.25(+24.58%)
VehiTrack-I 0.30 0.26 0.25 0.32 0.31 0.32 0.39(+30.8%) 0.35(+34.9%) 0.33(+31.6%) 0.44(+37.56%) 0.42(+34.27%) 0.40(+25.53%)

Bayes 0.40 0.37 0.31 0.41 0.40 0.40 0.45(+14.2%) 0.44(+19.5%) 0.42(+32.7%) 0.64(+53.96%) 0.63(+54.70%) 0.62(+56.64%)
HMM 0.30 0.26 0.23 0.34 0.34 0.33 0.45(+50.3%) 0.43(+65.6%) 0.41(+78.1%) 0.57(+67.51%) 0.56(+64.26%) 0.55(+66.01%)

methods achieve lower inference errors since they all account for

the vehicles’ location correlation using either the road network mo-

bility model (VehiTrack and VehiTrack-I) or Markov Model (HMM).

In addition, Fig. 8 in Appendix shows that, on average, VehiTrack-I

(and also VehiTrack) eliminates 81.69% (resp. 89.39%)of locations

across 100 trajectories of Rome dataset (resp. San Francisco dataset)

by considering vehicles’ mobility restrictions due to the road net-

work. This substantial reduction aids attackers in narrowing down

the search range for the vehicles’ actual locations.

(2) VehiTrack achieves an even lower expected inference er-

ror compared to the Markov-based method HMM. On average,

using the Rome dataset (resp. the San Francisco dataset), the EIE of

VehiTrack is 14.34% and 22.22% (resp. 26.66% and 38.23%) lower than

that of HMMwhen Laplacian and LP are applied, respectively. HMM

has higher inference error because assuming Markov property in

HMM can only capture the correlation of vehicles’ locations in ad-

jacent time slots (short-term), while LSTM in Phase 2 of VehiTrack

can additionally capture the long-term correlations of vehicles’

locations, further improving the VehiTrack’s inference accuracy.

(3) VehiTrack outperforms VehiTrack-I in terms of infer-

ence accuracy (Ablation study). By comparing VehiTrack and

VehiTrack-I, we find that LSTM in Phase 2 further reduces the aver-

age inference error by 65.58% and 24.12% for the Rome dataset and

by 29.03% and 34.37% for the San Francisco dataset, considering

both obfuscation methods (Laplacian noise and LP). Like HMM,

VehiTrack-I achieves higher inference error, since it only captures

short-term correlations within the location sequence by considering

vehicles’ mobility restrictions due to the road network conditions,

but without considering long-term correlation between locations.

To demonstrate that VehiTrack can better capture the long-term

correlation of vehicles’ locations compared to the benchmarks,

among the 100 trajectories, we pick up trajectories that have more

than 40 locations. In Fig. 9(a)(b)(c) and Fig. 10(a)(b)(c) in Appendix,

we exclusively evaluate the inference errors of the four algorithms

Table 3: Expected data utility loss of different methods (km)

Location privacy protection algorithms

𝜖 Exp. I Exp. II

(km−1) Laplace LP Lap.+TransP. LP+TransP.

RM SF RM SF RM SF RM SF

5.0 0.24 0.29 0.53 0.50 0.25 0.31 0.58 0.43

7.5 0.24 0.28 0.47 0.43 0.25 0.30 0.49 0.42

10.0 0.24 0.28 0.29 0.40 0.24 0.30 0.38 0.40

for these selected “long” trajectories. The depicted results in the fig-

ure highlight that the accuracy advantage of VehiTrack is evenmore

significant compared to the findings in Table 1 and Table 2, e.g.,

using the Rome dataset (resp. San Francisco dataset), VehiTrack’s

inference error is 51.36%, 33.33%, and 48.56% (resp. 41.93%, 25%,

and 29.16%) lower than that of Bayes, VehiTrack-I, and HMM, re-

spectively (consider that for all the 100 trajectories of rome dataset,

VehiTrack’s inference error is 49.77%, 41.41%, and 41.52% lower

than that of Bayes, VehiTrack-I, and HMM, respectively).

(4) As 𝜖 increases, the inference errors of all four inference

algorithms increase. This is attributed to higher values of 𝜖 al-

lowing for smaller deviations from obfuscated locations to actual

locations. Consequently, this leads to a reduction in overall infer-

ence errors and also a lesser loss of data utility due to Laplacian

noise and Linear Programming, as demonstrated in Table 3.

5.3 Experiment II: Evaluation of TransProtect

We apply TransProtect to refine the location set of geo-obfuscation

and then assess the inference error of the four location inference

algorithms, of which the results are shown in “Experiment II” in

Table 1 (Laplace) and Table 2 (LP). By comparing the experimental

results in Experiments I and II, we can check how much privacy

improvement is contributed by TransProtect. In the tables, the
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subscript (+𝑎%) means the inference error is increased by 𝑎% after

integrating TransProtect. We have the following observations:

(1) Integrating TransProtect in Laplace and LP increases the

expected inference error of the context-aware inference al-

gorithms. On average, employing TransProtect increases the infer-

ence error of VehiTrack, VehiTrack-I, and HMM by 40.28%, 18.39%,

and 119.41% (resp. 65.77%, 70.74%, and 125%) using Rome dataset

(resp. San Francisco dataset). This is because the obfuscation range

is restricted to the candidate locations (determined by TransProtect)

that are difficult to distinguish from real locations using context-

aware inference models. Particularly, Fig. 8(a)(b) in Appendix shows

that with TransProtect integrated, on average using Rome dataset

(resp. San Francisco), only 1.45% (resp. 1.59%) locations are elimi-

nated in the obfuscation range by VehiTrack-I when vehicles’ mo-

bility restrictions are considered, making it difficult for attackers

to narrow down the search range for the target locations.

(2) The integration of TransProtect maintains the utility loss

at an acceptable level. This is attributed to TransProtect’s incli-

nation to choose locations with lower data utility loss, considering

road network conditions. In contrast, the original obfuscation meth-

ods (i.e. Laplacian and LP) don’t consider measuring data utility

loss in the road network when selecting obfuscated locations. Con-

sequently, TransProtect allows the selection of locations further

away from the real location, with the data utility loss guaranteed

at an acceptable level (as shown in Table 3, i.e., on average, using

Rome dataset (resp. San Francisco dataset), TransProtect increases

the data utility loss by 1.04, 1.02, 1.30 times (resp. all 1.07) when

𝜖 = 5.0km−1, 7.5km−1, and 10.0km−1.

6 Related Works
Geo-Ind. The discussion of location privacy criteria dates back

nearly two decades to when Gruteser and Grunwald [39] intro-

duced location 𝑘-anonymity, based on Sweeney’s 𝑘-anonymity

[40]. Recently, Andr’es et al. [5] extended Differential Privacy (DP)

to "Geo-Ind" for location privacy protection, spurring the develop-

ment of new geo-obfuscation methods [1, 4, 5, 27]. For instance,

Andr’es et al. [5] developed a geo-obfuscation method adding noise

from a polar Laplacian distribution to actual locations to achieve

Geo-Ind. Considering the diverse sensitivity of data utility loss to

obfuscation in LBS, other works discretize the location domain and

optimize the obfuscation distribution using LP [1, 2, 6, 28, 41].

Context-aware threat models. Although effective in protecting

sporadic locations, geo-obfuscation based on Geo-Ind is still vulner-

able to context-aware inference attacks. Recent efforts have focused

on attacking Geo-Ind using the spatiotemporal correlation of users’

reported locations, either from a single user over time (e.g., trajec-

tory) [8–13] or from multiple users [14, 15]. Some works assume

users’ mobility follows a Markov process [8, 11], where current

locations depend on previous ones, e.g., our prior work [18] tracks

vehicles’ locations using an HMM, where we learn the transition

matrix of the Markov chain via publicly accessible traffic flow data.

Context-aware LPPM. Another approach to context-aware loca-

tion privacy focuses on new privacy criteria and solutions to protect

users’ location data [10, 14, 16, 17]. For instance, assuming attackers

use Markov models for users’ mobility, Cao et al. [10] defined a cri-

terion to quantify privacy levels of existing methods. Cao et al. [14]

extended DP to new criteria for spatiotemporal event privacy and

created a framework to calculate privacy loss in location protection

mechanisms. Considering temporal correlations, Xiao et al. [17]

introduced 𝛿-location set-based DP and a planar isotropic mecha-

nism for geo-obfuscation. In [18], we proposed generating synthetic

trajectories using Markov chain, making it harder for attackers to

distinguish real from obfuscated locations using traffic flow infor-

mation. While elegant, context-aware threat models and LPPMs

primarily rely on explicit stochastic models like Markov chains,

overlooking long-term correlations between locations hidden in

context data. In contrast, VehiTrack and TransProtect use DNNs

to uncover implicit relationships in sequence data, outperforming

existing methods in location inference and privacy protection.

Synthetic data-based privacy protection. It is worth mentioning

that several recent works have used synthetic data to protect users’

privacy, especially in high-dimensional, sparse datasets prone to

breaches [42–48]. These studies focus on anonymization, preserv-

ing the statistical properties of original data while hiding users’

identities [43] to protect personally identifiable information. In

contrast, TransProtect uses synthetic data to increase indistinguish-

able pairs in the protected dataset, leading to different research

challenges due to the divergent goals.

7 Discussions and Conclusions
In this work, we studied the context-aware location privacy pro-

tection for vehicles in LBS. We introduced a new threat model

VehiTrack to show the vulnerability of Geo-Ind. As a countermea-

sure, we then developedTransProtect to create candidate locations

for obfuscation that are hard to distinguish from real locations (by

VehiTrack). The simulation results have demonstrated the vulnera-

bility of Geo-Ind to VehiTrack and the effectiveness of TransProtect

in protecting vehicles’ location privacy against VehiTrack.

We envision new promising research directions to explore fur-

ther. In addition to LSTM, transformermodels provide an alternative

method for VehiTrack to track the locations of vehicles. Transformer

has demonstrated its strong capability not only in synthetic data

generation but also in a variety of inference models [49]. How-

ever, incorporating Transformer into VehiTrack introduces some

additional challenges to address. First, we will study how to useMul-

timodal Transformers [50] instead of Vanilla transformers, consider-

ing the different modalities in VehiTrack’s input (location posterior

sequence) and output (location sequences). Before directing location

posteriors into the Transformer model, we will apply approxima-

tion or discretization techniques to map posterior sequences to

lower dimensional feature space considering their high dimensions.
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A Appendix

A.1 Proof of Proposition 3.1

Proof. For the sake of contradiction, we assume that there exists

a location 𝑣𝑘 ∈ R𝑖
𝑛 , i.e., 𝑐𝑣𝑖 ,𝑣𝑘 ≤ 𝑡𝑛 − 𝑡𝑛−1, but not identified by

𝑆𝑃𝑇𝑖 . There are two cases:

Case 1: 𝑣𝑘 ∉ V′
𝑖 and 𝑐𝑣𝑖 ,𝑣𝑘 ≤ 𝑡𝑛 − 𝑡𝑛−1. Due to the restriction of

the road network, the travel cost from 𝑣𝑖 to 𝑣𝑘 , denoted by 𝑑′
𝑖,𝑘
,

should be no smaller than 𝑑𝑖,𝑘 (Haversine distance). Let 𝑠𝑖,𝑘 denote

a vehicle’s average speed from 𝑣𝑖 to 𝑣𝑘 (note 𝑠𝑖,𝑘 ≤ 𝑠limit), then

we can obtain that
𝑑𝑖,𝑘
𝑠limit

≤ 𝑑 ′
𝑖,𝑘
𝑠𝑖,𝑘

= 𝑐𝑣𝑖 ,𝑣𝑘 ≤ 𝑡𝑛 − 𝑡𝑛−1, indicating
that 𝑑𝑖,𝑘 ≤ (𝑡𝑛 − 𝑡𝑛−1)𝑠limit and 𝑣𝑘 ∈ V′

𝑖 by Equ. (4), which is a

contradiction.

Case 2: 𝑣𝑘 ∈ V′
𝑖 and 𝑐𝑣𝑖 ,𝑣𝑘 ≤ 𝑡𝑛 − 𝑡𝑛−1, but the travel cost from 𝑣𝑖

to 𝑣𝑘 in 𝑆𝑃𝑇𝑖 is larger than 𝑡𝑛 −𝑡𝑛−1. In this case, there must exist at

least one location 𝑣𝑙 ∈ V\V′
𝑖 that is in the shortest path from 𝑣𝑖 to

𝑣𝑘 . Then, the travel cost from 𝑣𝑖 to 𝑣𝑙 in G is no larger than 𝑡𝑛−𝑡𝑛−1
since 𝑐𝑣𝑖 ,𝑣𝑙 = 𝑐𝑣𝑖 ,𝑣𝑘 − 𝑐𝑣𝑙 ,𝑣𝑘 ≤ 𝑡𝑛 − 𝑡𝑛−1 − 𝑐𝑣𝑙 ,𝑣𝑘 ≤ 𝑡𝑛 − 𝑡𝑛−1, which
is a contradiction that has been proved in Case 1 (by considering

𝑣𝑙 as 𝑣𝑘 ). �

A.2 Additional Experimental Results

Table 4: Expected data utility loss (km) of Laplace and LP

given different 𝐾 values

Expected data utility loss (km)

Rome dataset

Laplace+TransProtect

𝜖 𝐾 = 5 𝐾 = 10 𝐾 = 15 𝐾 = 20 𝐾 = 25

5.0km−1 0.2530 0.3120 0.3923 0.5207 0.6532

7.5km−1 0.2480 0.3055 0.3892 0.5132 0.6498

10.0km−1 0.2431 0.2991 0.3822 0.5089 0.6412

LP+TransProtect

𝜖 𝐾 = 5 𝐾 = 10 𝐾 = 15 𝐾 = 20 𝐾 = 25

5.0km−1 0.4073 0.5835 0.7983 1.019 1.378

7.5km−1 0.3591 0.4921 0.6784 0.916 1.342

10.0km−1 0.2963 0.3837 0.5429 0.878 1.336

San Francisco dataset

Laplace+TransProtect

𝜖 𝐾 = 5 𝐾 = 10 𝐾 = 15 𝐾 = 20 𝐾 = 25

5.0km−1 0.2750 0.3065 0.3516 0.5002 0.6614

7.5km−1 0.2430 0.3042 0.3441 0.4962 0.6535

10.0km−1 0.2391 0.3013 0.3413 0.4909 0.6489

LP+TransProtect

𝜖 𝐾 = 5 𝐾 = 10 𝐾 = 15 𝐾 = 20 𝐾 = 25

5.0km−1 0.4266 0.5028 0.5373 0.6743 0.7136

7.5km−1 0.4213 0.5008 0.5322 0.6721 0.7094

10.0km−1 0.4083 0.4992 0.5257 0.6648 0.7025

(1) The TransProtect parameters 𝐾 (candidate location set

size) and 𝛼 (utility loss weight) impact the data utiltiy loss. We

present the average data utility loss and the expected inference error

of “Laplace+TransProtect” and “LP+TransProtect” given different

𝐾 and 𝛼 for the Rome and San Francisco datasets in Fig. 11(a)(b)

and Fig. 12(a)(b), and Fig. 13(a)(b) and Fig. 14(a)(b), respectively. In

addition, the expected utility loss and the expected inference error of

the twomethods with different values of𝐾 and 𝜖 are shown in Table

4 and Table 5. The figures and tables show that the average data

Table 5: Expected inference error (km) of Laplace and LP

given different 𝐾 values for Rome dataset

Expected inference error (km)

Rome dataset

Laplace+TransProtect

𝜖 𝐾 = 5 𝐾 = 10 𝐾 = 15 𝐾 = 20 𝐾 = 25

5.0km−1 0.3324 0.3515 0.3846 0.4123 0.4532

7.5km−1 0.3148 0.3389 0.3698 0.4087 0.4435

10.0km−1 0.3043 0.3243 0.3602 0.3892 0.4369

LP+TransProtect

𝜖 𝐾 = 5 𝐾 = 10 𝐾 = 15 𝐾 = 20 𝐾 = 25

5.0km−1 0.2829 0.2894 0.3129 0.3198 0.3301

7.5km−1 0.3301 0.2589 0.2983 0.3047 0.3193

10.0km−1 0.2339 0.2512 0.2743 0.2983 0.3101

San Francisco dataset

Laplace+TransProtect

𝜖 𝐾 = 5 𝐾 = 10 𝐾 = 15 𝐾 = 20 𝐾 = 25

5.0km−1 0.3543 0.3898 0.4164 0.4506 0.4914

7.5km−1 0.3212 0.3621 0.4013 0.4474 0.4885

10.0km−1 0.3053 0.3398 0.3972 0.4403 0.4834

LP+TransProtect

𝜖 𝐾 = 5 𝐾 = 10 𝐾 = 15 𝐾 = 20 𝐾 = 25

5.0km−1 0.2436 0.2587 0.2853 0.3081 0.3284

7.5km−1 0.2418 0.2513 0.2811 0.3013 0.3197

10.0km−1 0.2394 0.2478 0.2785 0.2965 0.3137

utility loss and expected inference error of “Laplace+TransProtect”

and “LP+TransProtect” increases with an increase in 𝐾 . This is

because a higher value of 𝐾 expands the candidate location set,

providing a chance for locations with higher data utility loss to be

selected.

In Fig. 11(a)(b), Fig. 12(a)(b), Fig. 13(a)(b) and Fig. 14(a)(b), we find

that when 𝛼 increases, both data utility loss and expected inference

error of “Laplace+ TransProtect” and “LP+TransProtect" decreases.

This is because a higher 𝛼 value results in locations with lower

data utility loss having a comparatively higher score than locations

with higher probability scores (output by the Transformer encoder),

making them more likely to be selected as candidate locations. Fig.

11(a)(b) and Fig. 13(a)(b) provides a visual example, illustrating that

when 𝛼 = 100, certain locations with higher data utility loss are

included in the candidate location set. Conversely, when 𝛼 = 10, 000,
almost all candidate locations can achieve low data utility loss. Fig.

11(a)(b) and Fig. 13(a)(b) also indicates that once 𝛼 ≥ 10, 000, data
utility loss plays a predominant role in candidate location selection

in TransProtect, and further increases in 𝛼 do not significantly

impact data utility loss (as observed when comparing data utility

loss at 𝛼 = 10, 000 and 𝛼 = 100, 000).
In addition, Fig. 15(a)(b)(c) give illustrative examples to show how

𝐾 and 𝛼 impact the data utility loss. Fig. 15(a)(b) shows that when

𝐾 is increased from 10 to 15, more locations with higher data utility

loss become part of the candidate location set. Fig. 15(a)(c) shows

that when 𝛼 = 100, some locations with higher utility loss are in-

cluded in the candidate location set, while when 𝛼 = 10, 000, almost

all the candidate locations can achieve low utility loss. The figure

also indicates that when 𝛼 ≥ 10, 000, utility loss already achieves

the major role in candidate location selection in TransProtect, and
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Figure 8: Percentage of loca-

tions eliminated in VehiTrack-I.
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(a) 𝜖 = 5.0km−1
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(b) 𝜖 = 7.5km−1
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(c) 𝜖 = 10km−1

Figure 9: Comparison of EIE of different

location inference algorithms when the

length of trajectories ≥ 40 (Rome).
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(a) 𝜖 = 5.0km−1
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(b) 𝜖 = 7.5km−1
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(c) 𝜖 = 10km−1

Figure 10: Comparison of EIE of different

location inference algorithms when the

length of trajectories ≥ 40 (San Francisco).
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(a) Laplace + TransProtect
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(b) LP + TransProtect

Figure 11: Impacet of 𝐾 (candidate location set size) and 𝛼
(utility loss weight) on the data utility loss of TransProtect for

Rome Dataset
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(a) Laplace + TransProtect
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(b) LP + TransProtect

Figure 12: Impacet of 𝐾 (candidate location set size) and 𝛼 (util-

ity loss weight) on the expected inference error of TransProtect

for the Rome dataset.

further increasing 𝛼 won’t impact the utility loss significantly (by

comparing the utility loss when 𝛼 = 10, 000, 100, 000).
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(a) Laplace + TransProtect
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(b) LP + TransProtect

Figure 13: Impacet of 𝐾 (candidate location set size) and 𝛼
(utility loss weight) on the data utility loss of TransProtect for

SF Dataset

K=5 K=10 K=15 K=20 K=25

Candidate Location Set Size K

0

0.1

0.2

0.3

0.4

0.5

Ex
pe

ct
ed

 In
fe

re
nc

e 
Er

ro
r (

km
)

(a) Laplace + TransProtect
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(b) LP + TransProtect

Figure 14: Impacet of 𝐾 (candidate location set size) and 𝛼 (util-

ity loss weight) on the expected inference error of TransProtect

for the San Francisco dataset.

(a) 𝐾 = 10, 𝛼 = 100 (b) 𝐾 = 15, 𝛼 = 100 (c) 𝐾 = 10, 𝛼 = 105

Figure 15: Impacet of 𝐾 (candidate location set size) and 𝛼
(utility loss weight) on the data utility loss of TransProtect.

*(a)(b)(c) shows the heatmap of the data utility loss of the

locations around a real location (marked by red).


