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Abstract

Geo-obfuscation is a Location Privacy Protection Mechanism used
in location-based services that allows users to report obfuscated
locations instead of exact ones. A formal privacy criterion, geo-
indistinguishability (Geo-Ind), requires real locations to be hard to
distinguish from nearby locations (by attackers) based on their ob-
fuscated representations. However, Geo-Ind often fails to consider
context, such as road networks and vehicle traffic conditions, mak-
ing it less effective in protecting the location privacy of vehicles, of
which the mobility are heavily influenced by these factors.

In this paper, we introduce VehiTrack, a new threat model to
demonstrate the vulnerability of Geo-Ind in protecting vehicle loca-
tion privacy from context-aware inference attacks. Our experiments
demonstrate that VehiTrack can accurately determine exact vehicle
locations from obfuscated data, reducing average inference errors
by 61.20% with Laplacian noise and 47.35% with linear programming
(LP) compared to traditional Bayesian attacks. By using contextual
data like road networks and traffic flow, VehiTrack effectively elim-
inates a significant number of seemingly “impossible” locations
during its search for the actual location of the vehicles. Based on
these insights, we propose TransProtect, a new geo-obfuscation
approach that limits obfuscation to realistic vehicle movement pat-
terns, complicating attackers’ ability to differentiate obfuscated
from actual locations. Our results show that TransProtect increases
VehiTrack’s inference error by 57.75% with Laplacian noise and
27.21% with LP, significantly enhancing protection against these
attacks.
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1 Introduction
With the increasing availability of wireless connectivity and ad-
vances in positioning technologies, vehicles are heavily involved
in various location-based services (LBS) such as navigation [1] and
transportation systems [2]. These services often require vehicles to
share their real-time locations with central servers, posing signifi-
cant privacy risks, such as potential tracking and exposure of sensi-
tive information like drivers’ home addresses [3]. Consequently, en-
suring the location privacy of vehicles in LBS applications is crucial.
The issue of location privacy in LBS has gained considerable
attention over the past two decades. Many recent studies like [4—
6] have focused on geo-obfuscation, a location privacy protection
mechanism (LPPM) that allows users to report obfuscated locations
instead of exact coordinates to servers. Notably, Andrés et al. [5]
introduced a formal privacy criterion for geo-obfuscation, called
geo-indistinguishability (Geo-Ind), which is extended from Differ-
ential Privacy (DP), requiring that nearby real locations remain
indistinguishable based on their obfuscated representations.
Albeit effective in protecting sporadic location privacy, Geo-
Ind is also known as a context-free privacy criterion [7], without
considering the impact of contextual information on mobile users’
obfuscated locations. Such an assumption limits the applications
of Geo-Ind in many practical scenarios, where mobile users’ mo-
bility is highly impacted by the surrounding environments. Recent
endeavors [8-15] have delved into exploring the vulnerabilities of
Geo-Ind by taking into account the spatiotemporal correlation of
users’ reported locations. As a countermeasure, some other data
privacy works [10, 14, 16, 17] focus on devising new context-aware
privacy criteria and solutions to protect users’ location data.
While elegant, those works mainly rely on explicit stochastic
models such as Markov chains [18], but they tend to overlook the
implicit long-term correlation between locations that may be deeply
embedded within the contextual data. In fact, the availability of
vehicle traffic flow information is on the rise globally, especially
within the urban and suburban contexts, sourced from road sensors
and traffic cameras [19, 20], mobile applications [21], and official
government or municipal websites [18]. This rich contextual data
presents an opportunity for attackers to learn vehicles’ implicit mo-
bility patterns over long-term periods. Leveraging this knowledge,
attackers can potentially refine the accuracy of location inference
attacks, even when the vehciles’ locations have been obfuscated.
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Figure 1: Introduction of VehiTrack and TransProtect.

Our Contributions. To fill the aforementioned research gap, in
this paper, we aim to study new context-aware threat model
to track vehicle locations and develop the countermeasure. Par-
ticularly, we focus on the scenario where the vehicle traffic flow
information is available. By leveraging the recent fast advancement
of deep neural networks, we aim to delve into the implicit relation-
ships - both short-term and long-term - embedded in the vehicles’
location data using the traffic flow information, without depending
on explicit stochastic models.

Contribution 1: New context-aware threat model “VehiTrack”.
To demonstrate the vulnerability of Geo-Ind when protecting ve-
hicles’ location privacy, we introduce a new threat model called
VehiTrack. VehiTrack seeks to recover the actual locations of a ve-
hicle from its obfuscated data during a journey. It operates in two
phases: In Phase 1, VehiTrack applies Bayes’ formula, considering
the vehicle’s mobility constraints over time on the road network,
to estimate the real locations from obfuscated ones. In Phase 2, it
uses Long Short-Term Memory (LSTM) neural networks, which are
effective at recognizing both short-term and long-term correlation
in sequence data, to refine these estimates using the vehicle traf-
fic dataset. Our results show that VehiTrack significantly reduces
the inference error by 61.51% and 48.15% compared to traditional
Bayesian attacks when using Laplacian noise and linear program-
ming (LP)-based geo-obfuscation methods, respectively.

Our findings also reveal that the vulnerability of Geo-Ind to
context-aware inference attacks largely stems from its failure to
account for the constraints of road networks and traffic condi-
tions on vehicle mobility. As depicted in Fig. 1(a), many locations
within the obfuscation range, though compliant with Geo-Ind, are
deemed “impossible” when contextual data is considered. This al-
lows the VehiTrack model to significantly narrow its search for
actual locations-on average, 81.69% of locations can be dismissed
by incorporating road and traffic constraints. Motivated by this
observation, we developed a new geo-obfuscation method called
TransProtect. This approach ensures that the chosen obfuscated
locations conform to realistic vehicle movement patterns, making
it challenging for VehiTrack to effectively reduce the search range
using contextual information.

Contribution 2: The countermeasure “TransProtect”. TransPro-
tect is designed to create synthetic trajectories to closely emulate
the vehicle’s actual mobility. As Fig. 1(b) shows, TransProtect can be
integrated into the current geo-obfuscation framework to confine
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the obfuscation range to a set of locations within the generated
synthetic trajectories, called “candidate locations”. Consequently,
the obfuscated location chosen from candidate locations has to
adhere to the realistic vehicles’ mobility patterns, which effectively
prevents attackers from excluding any “impossible locations” using
context-aware inference approaches like VehiTrack.

To create such synthetic trajectories, TransProtect leverages
a transformer model, a deep neural network that learns context
by handling long-range dependencies of the sequence data and
has achieved great success in many artificial intelligence domains
[22, 23]. To process the location sequence data of vehicles, we let
TransProtect first conduct location embedding to map the node (lo-
cation) set of the road network to a lower dimensional vector space,
preserving spatial features of road network locations. To achieve
this objective, TransProtect applies Node2Vec [24] to maximize the
log probability of observing a network neighborhood for each node
conditioned on its feature representation. It also utilizes a Graph
Convolutional Network (GCN) [25] to integrate edge weights and
neighborhood data into these embeddings.

TransProtect uses a Transformer encoder to evaluate each loca-
tion’s likelihood of being the vehicle’s real position by capturing
spatial patterns and adjusting scores based on data utility loss, then
selects the top locations for obfuscation.

Contribution 3: Empirical validation based on real-world
dataset. To evaluate the performance of both VehiTrack and
TransProtect, we conducted an extensive simulation using the Rome
taxi trajectory datasets [26], comparing both methods against state-
of-the-art location inference and location privacy protection al-
gorithms. The experimental results show that (1) When provided
with vehicle locations obfuscated using Laplacian noise [5] and LP,
VehiTrack demonstrates remarkable accuracy in tracking vehicle
locations. On average, its expected inference error (EIE), which
reflects the location privacy level, is 66.58% and 51.17% lower for
Laplacian noise and LP (averaged on all epsilon values), respec-
tively, compared to classic Bayesian inference attacks [4]. (2) Our
proposed countermeasure, TransProtect, can effectively protect the
location privacy of vehicles against VehiTrack. On average, the
synthetic location set generated by TransProtect increases EIE by
40.26% when using Laplacian noise and LP for obfuscation [2, 27].

The rest of the paper is organized as follows: Section 2 gives the
preliminaries of Geo-Ind. Section 3 introduces the new threat model
VehiTrack and Section 4 describes the countermeasure TransPro-
tect. Section 5 evaluates the performance of both VehiTrack and
TransProtect. Section 6 presents the related work. Finally, Section
7 makes a conclusion.

2 Preliminary

In this Section, we introduce the preliminary knowledge of geo-
obfuscation (Section 2.1), its privacy criterion Geo-Ind (Section 2.2),
and the limitation of Geo-Ind (Section 2.3).

2.1 Geo-Obfuscation in LBS

To ensure the quality of LBS, the server needs to collect the par-
ticipating vehicles’ location information in real-time. Like [1], we
consider the scenario where the server is non-malicious but vul-
nerable to potential data breaches. In such scenarios, unauthorized
parties might gain access to the reported vehicle locations stored on
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the server. Accordingly, the precise locations of the vehicles should
be kept hidden from the server.

In geo-obfuscation [5, 6], privacy-conscious vehicles are allowed
to use an obfuscation function to perturb their actual locations before
reporting the locations to the server. The obfuscation function takes
the vehicle’s precise location as the input and returns a probability
distribution of the obfuscated location, based on which the vehicle
can randomly select an obfuscated location to report. Beyond con-
cealing the precise locations of vehicles, the obfuscated locations
should be chosen in a manner that maintains the estimated travel
cost to the destination reasonably close to the actual travel cost of
the vehicle. Assessing the distortion of travel costs resulting from
obfuscated locations requires access to global information about
the target region, including its real-time vehicle traffic conditions
and the distribution of spatial tasks. However, managing this data
on an individual basis by vehicles poses significant challenges. As
such, previous studies [1, 2, 4, 6] have mainly concentrated on the
server-side computation of the obfuscation function.

For the sake of computational efficiency, many geo-obfuscation
methods [5, 6] consider users’ mobility on a set of discrete loca-
tions. When considering vehicle LBS, the existing works [2, 28]
discretize the road network into a set of road connections, denoted
as V = {vy, ..., }. Those connections include road intersections,
forks, junctions where roads intersect with others, and points where
the road changes direction. All the other locations within the road
network are approximated to their nearest connections in V. By
discretizing the location field into the finite location set YV, the
obfuscation function Q can be described as an obfuscation matrix
Z = {2k} (v;00)ev?> Where each z; . denotes the probability of
selecting vy as the obfuscated location given the actual location v;
(U,’, U € (V)

2.2 Geo-Indistinguishability

Although the server takes charge of generating the obfuscation
function, the vehicles’ exact locations are still hidden from the
server since the obfuscated locations are selected in a probabilistic
manner [1]. Specifically, the obfuscation function is designed to
satisfy Geo-Ind [5], which requires that even if an attacker has
obtained a vehicle’s reported (obfuscated) location and the obfus-
cation function from the server, it is still hard for the attacker to
distinguish the vehicle’s real location v; from any nearby location
vj. Geo-Ind is formally defined in Definition 2.1:

Definition 2.1. (Geo-Ind) An obfuscation matrix Z satisfies e-
Geo-Ind if, for each pair of neighboring locations vi,v; € V with
d;j <y, the following constraints are satisfied

Zig eEd"'fzj)k <0, Yoj,0j,0 €V withd;j <. (1)

which means that the probability distributions of the obfuscated loca-
tions ofv; andv; are sufficiently close. Here, d; j denotes the Haversine
distance (the angular distance on the surface of a sphere) between v;
andvj, andy > 0 is a predetermined distance threshold.

LP formulation. Many recent works [1, 2] address the quality issue
caused by geo-obfuscation using linear programming (LP), of which
the objective is to minimize the data quality loss while ensuring
Geo-Ind is maintained. The LP is then formulated to optimize the
values of Z, which comprises K? decision variables (entries). Besides
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Figure 2: Geo-indistinguishability and its limit.

satisfying Geo-Ind in Equ. (1), for each real location v;, the sum
probability of the obfuscated locations should be 1 (probability unit
measure), i.e.,
K
Z Zig =1, Vo, €V. @)
k=1
We let UL(Z) denote the utility loss caused by the obfuscation
matrix Z, where UL(Z) is assumed to be a linear function of Z [1, 2].
Finally, the LP is formulated to minimize UL (Z) while satisfying the
constraints of the probability unit measure (Equ. (2)) and Geo-Ind
(Equ. (1)):
min UL (Z) s.t. Equ. (1)(2) are satisfied. (3)

2.3 Limitations of Geo-Ind

As Fig. 2(a) shows, Geo-Ind aims to guarantee that a vehicle’s loca-
tion v; remains indistinguishable from any other location v; within
the circle centered at v; with a radius of y based on their obfuscated
location distributions. However, Geo-Ind is a context-free privacy
criterion without considering the context information that can be
used in inference attacks. As Fig. 2(b) shows, an attacker can lever-
age context information, such as the vehicle’s historical locations,
speed limits, and surrounding traffic conditions, to eliminate “im-
possible” locations of the vehicle within the circle. This, in turn,
narrows down the search range for the vehicle’s actual location
and increases the accuracy of its location tracking.

In the next section, we will introduce a new threat model to
demonstrate the vulnerability of Geo-Ind when protecting vehicles’
location privacy.

3 VehiTrack: A Context-Aware Location
Inference Algorithm

In this section, we introduce a new location inference algorithm,
called VehiTrack, to accurately recover the real locations of a target
vehicle from its obfuscated locations even though Geo-Ind has been
satisfied.

We consider a scenario where a target vehicle reports its loca-
tion multiple times at a sequence of time slots t1, ..., {57, where the
actual locations and the obfuscated locations of the vehicle are de-
noted by x;.y = {x1,....,xn} and y1.N = {J1, ..., YN }, respectively
(xn, Yn € V, for each t,, = t1, ..., tN). Given the observation of the
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vehicle’s obfuscated locations ¥1.n7, VehiTrack aims to find the vehi-
cle’s actual location sequence x1.5. To achieve this goal, VehiTrack
consists of the following two main phases:

Ph1: VehiTrack estimates the posterior p(xp|y,) of the vehicle’s
location at each time slot t,,, by considering the short-term
correlation of the vehicle’s locations using a mobility
restriction-aware Bayesian inference model (Section 3.2).

Ph2: VehiTrack improves the accuracy of the posterior sequence
p(x1131), ..., p(xN|JN), by considering the long-term cor-
relation of the vehicle’s locations using Long Short-Term
Memory (LSTM) neural networks (Section 3.1).

Before introducing the details of the above two phases, in Section

3.1, we first describe the mathematical models used in VehiTrack,

including the main notations and assumptions.

3.1 Models

3.1.1 Threat model. To estimate the target vehicle’s true locations
X1.N = {X1, ..., XN}, we assume that the attacker has access to the
following information at the time slots t1, ..., {N:

(1) the vehicle’s obfuscated locations y1.5 = {71, ... YN };

(2) the obfuscation matrices Z1.n = {Z1, ..., ZN }, where Z,, denotes
the obfuscation matrix at time slot #,;

(3) the background information including the vehicle’s mobility
restrictions in the road networks (e.g., speed limits). We assume
that the attacker has access to the public vehicle trajectory dataset
[26] to obtain historical traffic flow information.

For simplicity, we use p(x,) to represent the prior probability
that the vehicle is located at x,, at time ¢, and use p(x1.,) to repre-
sent the prior joint distribution of the vehicle being located at x1.5,
in the time slots {t1, ..., tp }.

3.1.2  Vehicle’s mobility model. We describe vehicles’ mobility in
the road network as a directed graph G = (V, &), where V and &
denote the node (location) set and the edge set, respectively. Each
edge e; j € & represents that v; is adjacent to v in the road network,
meaning that a vehicle can travel from v; to v; without visiting
any other location in V. Each edge e; j € & is assigned a weight
wj, j, representing vehicles’ minimum travel time through the edge
e; j. The shortest travel time from v; to v; (which are unnecessarily
adjacent), denoted by ¢y, 5;, equals the length of the shortest path
from v; to v in G. Here, the length of a path is defined as the sum
weight of all the edges along the path.

Note that due to the change of traffic conditions (e.g., peak hours
versus off-peak hours on weekdays), the edge weight w; j can vary
over time, rendering the mobility graph G a time-varying graph.
Given G, we call a location v; is reachable by v; during a time
interval [ty—1, ty] if the shortest travel time from v; to v during
[tn-1,tn] is no larger than t, — t,_1, ie., Cojo; < th — th-1. We
use R, to denote the set of locations reachable by v; (or called the
reachable set of v;) during [tp—1, tn].

3.2 Phase 1: Mobility Restriction-Aware
Bayesian Inference

By leveraging the vehicles’ mobility restrictions and the obfusca-

tion matrices, VehiTrack first estimates the posteriors of the target

vehicle’s locations at the time slots {t1, ..., ix'} via a Bayesian infer-

ence model. Note that deriving a posterior over the entire location

set V imposes a substantial computational burden. Indeed, due to
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Step 1: Find the location set R, that are reachable by S,,_1;
Step 2: Derive the posterior of each location in R,, and find the ones
of which the posteriors are higher than the threshold &.

the restrictions of the vehicle’s mobility and its limited obfuscation
range, the possible true location of the vehicle can be confined to
a smaller area. As a result, VehiTrack only needs to compute the
posteriors of the locations within this reduced area and treat the
posteriors of the locations outside this area as negligible.

We use Sy, to represent the set of the vehicle’s possible locations
(identified by VehiTrack) at the time slot t,. Fig. 3 shows the frame-
work of how VehiTrack iteratively derives Sy, from S, _1, which is
composed of the following two steps:

3.2.1 Step 1- Identify the location set Ry, that is reachable by the
locations in Sp—1 during the time interval [t,—1,t,]. Here, Ry is
the union of the reachable sets of all the locations in S;_1, i.e.,
Rn = UviES,klR;-v i.e., each location in R, is reachable by at least
one location in S, 1. To determine RL for each v;, VehiTrack builds
a shortest path tree SPT; in the graph G rooted at v; using the
Dijkstra’s algorithm [29], of which the time complexity is O(|V/ 2).
Here, V/ C V represents the set of nodes included in the SPT;.
For the sake of computation efficiency, VehiTrack limits V; to
the location set of which the Haversine distance is no larger than
(tn — tn—1)Stimit> i-€., which are reachable by the vehicle with its
maximum speed Sjjy;e during [t,—-1, t,] without considering the
mobility restriction imposed by the road network, i.e.,

V! ={vj € V|dij < (tn — ta=1)Stimit } - (4)
VehiTrack first creates an induced subgraph G| of G formed from
the node set V/, where all of the edges (from G) connect pairs of
vertices in V/. We then build SPT; on G; instead of the original
graph G.

PRrOPOSITION 3.1. SPT; is sufficient to identisfy R%.

Proof Sketch: We prove that for Vo, € Rfl, if ¢y op < tn —th-1,

then oy is included in SPT;, and also its distance to v; is equal to
Co;,0r in SPT;. We prove it by contradiction, where the detailed proof
can be found in Section A.1 in Appendix.
3.2.2  Step 2 - Determine the possible location set S,, using the ob-
fuscation matrices. Given the observed (obfuscated) location §j,, and
the obfuscation matrix Z, at each time slot t,,, VehiTrack derives
the posterior probabilities of all the locations x € R, using the
Bayes’ formula:

p(x )Zx, Un
ZyeR, P(X")2x 4,
Here, we consider x as a “possible location” of the vehicle in S,
only if its posterior value p (x|¥1.,) is higher than a pre-determined
threshold & > 0. Therefore, S, is given by

p (xlgn) = , Vx € Ry. (5)
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Sn={x e Rnlp (x|§n) = £}. (6)

3.3 Phase 2: Posterior Refinement using LSTM

Although VehiTrack considers the mobility restrictions of the target
vehicle in adjacent time slots in Phase 1, it falls short of captur-
ing the long-term correlation of the vehicle’s locations. In Phase
2, VehiTrack aims to further improve the accuracy of the poste-
rior estimation by incorporating the LSTM networks, due to their
strong capabilities of learning both short-term and long-term cor-
relation in sequence data [30]. Specifically, VehiTrack takes the
estimated posterior sequence obtained in Phase 1 as the inputs
of the LSTM models and infers the real location sequence as the
outputs. Achieving this goal entails training the LSTM model to
establish the empirical relationship between the observed posteriors
calculated by Phase 1 and the vehicle’s real locations.

3.3.1 Training dataset generation. Following the threat model out-
lined in Section 1, we assume that the attacker has access to the
historical vehicle mobility dataset in the region [31]. Moreover, we
assume that the target vehicle follows similar mobility patterns
with other vehicles in the dataset, despite potential individual vari-
ations. This allows VehiTrack to infer the target vehicle’s locations
by LSTM trained by the historical vehicle mobility data.

VehiTrack generates training samples for an LSTM model by
obfuscating real locations and using Bayesian inference to calculate
location posteriors.

As Fig. 4 shows, to obtain the training inputs (location posteri-
ors), VehiTrack first obfuscates each real location in the trajectory
using the obfuscation matrix (Step (D) and then derives the cor-
responding posteriors based on the obfuscated locations using the
Bayesian inference model in Phase 1 (Step 2)). The model is trained
with one-hot encoded real locations as outputs, and multiple sam-
ples are created for each trajectory to reduce variance from the
obfuscation process. To reduce the sample variance stemming from
the stochastic obfuscated location selection process, we let Vehi-
Track generate multiple training samples (e.g., 20 samples in our
experiments) for each trajectory.

3.3.2 LSTM network architecture. Fig. 5 shows the framework of
LSTM. The input posterior sequences undergo an initial process-
ing step within the dimensionality management block. This block
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employs a padding method to enforce a standardized input format,
specifically by aligning all trajectories with the longest one in the
dataset. The padded posterior vectors are then passed to the neural
network layer, a combination of 5 LSTM layers.

Fig. 5(a) and 5(b) illustrates our LSTM architecture, which, un-
like conventional LSTM, processes entire posterior vectors instead
of scalar values. This allows element-wise operations within the
LSTM cells. We also use a BILSTM model with two parallel layers
(forward and backward) [32] to capture bidirectional patterns. The
forget, input, and output gates dynamically manage the flow of in-
formation, deciding what to retain, add, or pass as the next hidden
state.

To train Post-LSTM, we define the loss function as the cross en-
tropy between predicted and actual vehicle location. The output
of the neural network layer is directed to the sigmoid activation
function block to constrain the output within the range [0, 1]. The
result is then passed to the output block where an arg max opera-
tion is performed upon the output to get the final estimation of the
trajectory.

3.4 Performance of VehiTrack

As demonstrated in our experiments detailed in Section 5.2, on
average, using rome dataset (resp. using the San Francisco dataset),
VehiTrack achieves a 65.54% and 45.93% (resp. 56.86% and 48.78%)
reduction in inference errors corresponding to the Laplacian and
Linear Programming methods respectively, compared to the classic
Bayesian inference algorithm. Our findings also reveal that, by in-
corporating contextual information such as the road network and
traffic flow, VehiTrack can eliminate a significant percentage of
locations within the obfuscation range. For instance, in our experi-
ment in Section 5, using rome dataset (resp. using the San Francisco
dataset) on average, 81.99% (resp. 81.39) of locations within the
obfuscation range are eliminated by considering vehicles’ mobil-
ity restrictions. This factor contributes significantly to the high
inference accuracy performed by VehiTrack.

4 TransProtect: A Countermeasure of
VehiTrack

As analyzed in Section 3, Geo-Ind proves susceptible to privacy
breaches by VehiTrack when protecting the location privacy of
vehicles. This vulnerability stems from the inclusion of “unrealistic”
locations in its obfuscation range, which are prone to elimination by
VehiTrack. Motivated by this insight, in this section, we introduce
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TransProtect, which aims to identify a set of “candidate obfuscated
locations” that closely adhere to the realistic mobility patterns of
vehicles, making them difficult for attackers to distinguish from
actual locations.

4.1 The Framework of TransProtect

As illustrated by Fig. 6, TransProtect can be integrated into the cur-
rent geo-obfuscation framework, such as LP-based geo-obfuscation
[2] or Laplacian noise [5]. Using the context data including local
historical traffic flow data and LBS target distributions, the server
initially trains a “TransProtect” model ((D). This model takes a ve-
hicle’s trajectory as input and outputs a set of candidate obfuscated
locations for the vehicle’s current location within the trajectory.
Before reporting the location, each participating vehicle needs to
download the trained “TransProtect” model to identify the can-
didate location set for obfuscation (). Then, the vehicle can lo-
cally obfuscate its location within the candidate location set using
Laplacian noise ((3)), which requires a low computational load that
doesn’t necessitate global LBS service information. Alternatively,
the vehicle can report the candidate location set, prompting the
server to compute the obfuscation matrix using LP (), which
incurs a relatively higher computational load and relies on global
target information. In both cases, The integration of TransProtect
into the geo-obfuscation framework allows for the restriction of
the obfuscation range to a specific set of locations, aligning with
vehicles’ realistic mobility features while minimizing utility loss.

Fig. 7 shows the framework of TransProtect. TransProtect first
takes the vehicle’s real location sequence (or the trajectory), x;.y =
{x1, ... xN'}, as the input. During each time slot t,, TransProtect
assesses both the utility loss and the likelihood of each location
v; € V being the actual location, based on the vehicle’s historical
locations x1.5—1 = {X1,...,Xn—1}. After this assessment, TransPro-
tect outputs a maximum of K locations as the “candidate locations”
for the obfuscated location, with K representing the maximum
allowable number of locations within the obfuscation range.

As shown by Fig. 7(a)(b)(c), TransProtect mainly comprises the
following three components: (a) location embedding, (b) location as-
sessment by transformer encoder, and (c) location ranking adjusted by
utility loss. Next, we introduce the details of the three components
in Section 4.2, Section 4.3, and Section 4.3, respectively.

4.2 Location Embedding

The objective of location embedding is to map the nodes (locations)
in the road network graph G to a low dimensional feature space,
where the neighborhood information of each node in G can be well-
preserved. Here, we let f : V — RY be the map from the locations
to their feature representations, where g denotes the dimension of
the resulting embeddings.
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Figure 7: TransProtect framework.

Node2Vec. To achieve the above objective, as Fig. 7(a) shows,
we first map locations to vectors using Node2Vec [24], a semi-
supervised algorithm designed for scalable feature learning in net-
work structures. Node2Vec seeks to maximize the log-probability of
observing a network neighborhood Nj; for each node v; conditioned
on its feature representation fxoy (v;), i.e.,

max > logPr (Nilfavay (01) - ()
! v, eV

Directly minimizing the objective function in Equ. (7) results in
significant computational overhead when the location set V is
large. Equ. (7) can be simplified to

mjgx Z ~log Zy, + Z Inav (0i) fnav (v) )

v; eV v;eN;

by assuming the conditional independence of the likelihood of ob-
serving the neighbors in N; and the symmetry in feature space,
where Z,, = ZU]_ cv exp(fnav (v;) fazv (vj)) can be further approx-
imated using negative sampling [33].
Graph Convolutional Network. Following the initial embedding
of nodes via Node2Vec, we proceed to improve these embeddings
using a Graph Convolutional Network (GCN) [25]. The primary goal
of GCN is to incorporate both the edge weights and the neighbor-
hood information into the node representations, thus achieving a
more contextually comprehensive embedding.

Specifically, GCN processes the Node2Vec embeddings using
a series of convolutional layers. Each layer in GCN updates the
node embeddings by aggregating information from their respective
neighborhoods, with an emphasis on the connectivity patterns as
dictated by the graph structure. This process is formally expressed
through the following convolution operation in each layer:

S0+ = ¢ (D bED-Es Ve, ©)

where D™2ED™2 denotes the symmetric normalized Laplacian
matrix. Here, E = E +1 includes the addition of the identity matrix I
to incorporate self-connections E, and D is the diagonal node degree
matrix of E. The matrix S{!) represents the activations from the
I-th layer, 0 is the layer’s trainable weight matrix, and o(-) is a
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non-linear activation function such as the sigmoid. The initial layer
activations are set to the node embeddings SO = N2y (x1.N)-

By applying Node2Vec followed by GCN, we obtain the em-
bedding of each trajectory x;.)y, denoted as foen (x1:N) € RNX9,
which captures the spatial nuances of the trajectory within the
embedding space.

Positional embedding. As Fig. 7(a) shows, after Node2Vec and
GCN, each trajectory xy.y is initially transformed into a vector
space representation fgon (x1.8). To incorporate the sequential
order of the locations in the trajectory, positional encodings are
added to the embedding vectors. These encodings provide a unique
position signature that allows the model to consider the order
of locations within each trajectory. The positional encodings are
calculated as follows:
0s 0s
PE (pos,2i) = sin (lo(i)m) s PE(pos 2i+1) = €OS (w(;{:)m)

(10
where pos and i are the location’s position in the trajectory and
the dimension index, respectively. These encodings are added to
the embedding vectors to produce the final location embeddings
f(x1:N) = feen(x1:N) + PE.
4.3 Location Assessment by Transformer

As Fig. 7(b) shows, taking the location embeddings f(x;.n) as the
inputs, the transformer encoder in the second component outputs
the score matrix Hy.yy = [hy,...,hy], where each vector h, =
[hi,ns Bl € R contains the predictive probability scores across
all the locations in V at each time slot t,. Here, L is the number
of locations in V, and each probability score hj, = p(vj]x1:n-1)
(j = 1,.., L) reflects v;’s likelihood of being the real location at t,
given the observation of the vehicle’s historical locations x1.5—1.
Detailed steps of the Transformer encoder. As illustrated by Fig.
7(b), f(x1.N) is first passed to a multi-head attention mechanism. In
each attention head, the input sequence is linearly transformed into
queries Q, keys K, and values V using respective weight matrices.
The scaled dot-product attention for each head is computed as:

. QKT
Attention(Q,K, V) = softmax | =—— | V. (11)
VIk
Each attention head head; processes the sequence independently
using the following transformation:

head; = Attention ( Foin)WE, fxpn)WE, f(xl:N)w}’) . (12)

The outputs from each head are then concatenated and linearly
transformed to produce the final representation for each position
in the sequence: b = Concatenate(head;, ..., headg)WO.

Here, B is the number of headers, and W? W{( R WY and W9
are the trainable parameters of the model. The dimensionality of
each head’s output, g, is set to g/B to maintain a consistent di-
mensionality across different heads. After processing the sequence
through the Transformer’s multi-head attention module, the de-
rived representation hf is then delivered to a fully connected layer.
This layer applies a learned linear transformation characterized
by weight matrix WFC and bias b¥C, producing a set of logits for
each location in the sequence: a, = W' Ch;’n + b€, where a,
represents the logits at time slot ¢, and hy ,, denotes the n-th vec-
tor in the sequence after the attention mechanism. For each time
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step tp, the logits a,, are then passed through a softmax function
to yield a probability distribution over the set of all possible loca-
tions V, i.e., h,, = softmax(a,). By stacking the vectors hy, ..., hx
for all the N time slots, we construct the probability score matrix
Hi.n = [hy, ..., hn]. Hi.n serves as the final output from the Trans-
former encoder, encapsulating the predictive distribution over the
location set V at each time step within the trajectory.
Loss and Training. During the training process, we aim to mini-
mize the cross entropy loss Lcg(Hi.N, X1.N) between the predicted
location probability distribution Hy.n and the location ground truth
X1.n (which is obtained from the real vehicle trajectory dataset
[26]), i.e., min Leg(Hin, Xin) = = X004 T ey £jn log(hjn)-
Here, X.n = {}?j!"}KXN is a one-hot encoded matrix of the
true locations with %; , indicating the ground truth presence (or
absence) of a location v; at time slot #; in the trajectory.

4.4 Location Ranking Adjusted by Utility Loss

As depicted in Fig. 7(c), after assessing the probability scores of
the locations using the Transformer encoder, TransProtect adjusts
the scores by the data utility associated with each location. Here,
we use Acy,, »; to denote the utility loss caused by the obfuscated
location v; given the real location x,. Each location v; is assessed
by the weighted sum of the probability score and the inverse of the

utility loss: hy ,, + zo%—, where the weight & > 0 is a predefined
Xn.vj

constant, reflecting the user’s emphasis on data utility during lo-
cation obfuscation. TransProtect then ranks all the locations in V
based on their weighted scores and selects the top K locations as
the “candidate locations” for obfuscation.

Measurement of utility loss. The assessment of utility loss is
contingent on the specific manner in which location data is used
in downstream decision-making. As an example, in this paper, we
consider the LBS applications where vehicles need to physically
travel to designated locations to receive desired services such as
navigation [3], or to fulfill tasks in spatial crowdsourcing [2]. In
those applications, data utility loss can be quantified by the discrep-
ancy between the estimated and actual travel costs to reach the
designated locations. Note that our framework is also readily ex-
tended to other LBS applications with slight adjustments, provided
that a clear relationship between data utility loss and obfuscated
data can be established.

We let g; denote the prior probability that the target location
is located at the location v; (I = 1,..,N). Given a real location
Xn, the utility loss caused by an obfuscated location v; is defined
as the expected error of the traveling costs to the target location,
calculated by

N
Acxn’z,j = Z q ’an,vl - cvj,vl‘ . (13)
=1
Location filtering. After calculating the weighted score h;,, +

e % __ of each location v 7, TransProtect identifies the set of candi-
Xn.vj

date locations using a min heap [29], mainly with the two features:
(f1) the top element has the minimum score in the heap; (f2) the
min heap has two types of operations: push to insert a new element,
and pop to remove the top element from the heap. The min heap is
initialized by empty. TransProtect then pushes each location in V
onto the heap. Once the heap reaches its capacity K and determines
whether to add a new location v; € V, TransProtect first checks
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whether the top location in the current heap has a higher score
than v;. If NO, v; won’t be pushed onto the heap since it has a
lower score than the K locations in the current heap; If YES, the
top location is popped off and v; is pushed onto the heap. Note that
the popped location cannot have the K highest score, since it has a
lower score than the other K — 1 locations in the current heap and
the newly added location ;.

Time complexity. In min heap, both push and pop operations take
O(log K) time complexity and O(1) space complexity. Suppose that
there are L candidate locations to check by the transformer encoder.
To find the K locations with the highest scores, it takes up to L
push/pop operations, amounting to O(L log K) operations. As both
L and K are not large in practice, e.g. they are set by up to 50 and
1739 respectively in our experiment (Section 5), such a computation
load is acceptable to vehicle-equipped devices like smartphones.

5 Performance Evaluation

We carry out an extensive simulation to assess the performance of
our location inference algorithm VehiTrack and our new LPPM
TransProtect in Section 5.2 (Experiment I) and Section 5.3
(Experiment II), respectively, with the comparison of a list of state-
of-the-art methods. In Section 5.1, we first introduce the settings
of the experiment, including the real-world dataset used in the
simulation, the benchmarks, and the performance metrics?.

5.1 Experimental Settings

5.1.1  Vehicle location dataset. We adopt two vehicle trajectory
datasets: (1) Rome taxicab dataset [26], which includes 367,052 tra-
jectories from approximately 320 taxis, covering 30+ days, and (2)
San Francisco dataset [34], including 34,564 trajectories from 536
taxis, covering 30 days. For both datasets, the road network infor-
mation of the target region is extracted by OpenStreetMap [35],
which provides fine-grained location (node) and road (edge) infor-
mation. To crop the road map data of Rome (resp. San Francisco),
we compute the bounding area keeping a coordinate (latitude =
41.9028, longitude = 12.4964) (resp. (latitude = 37.7739, longitude =
-122.4312)) as the center and computed all the nodes and edges
within a 20-kilometer (resp. 10-kilometer) radius distance from the
center.

5.1.2  TransProtect model training setting. The experiments are con-
ducted on Ubuntu 22.04 with an NVIDIA GeForce 4090 GPU. We
implement TransProtect using PyTorch 2.1 [36]. We set the em-
bedding dimensionalities to 128 and batch size to 50. The initial
learning rate is 0.001.

5.1.3 Benchmarks. In Experiment I, we test the performance of
VehiTrack against the two conventional geo-obfuscation methods
(i) Planar Laplacian noise (labeled as “Laplace”) [1], which uses
€-Geo-Ind as the privacy criterion. Laplace assumes the obfuscation
probabilities z; . o eieﬁ, where € is the privacy budget, and
Amax is the maximum distance between any two locations in the
target region.

(ii) LP-based geo-obfuscation (labeled as “LP”) [2]: LP (defined
in Equ. (3)) aims to minimize the data utility loss of a single vehicle
with the e-Geolnd constraints being satisfied.

The source code of both VehiTrack and TransProtect is available at: https://github.
com/sourabhy1797/VehiTrack.
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We compare the performance of VehiTrack with the following
four classic location inference algorithms.
(i) Bayesian Inference attack [4], labeled as “Bayes”: Given the
vehicle’s obfuscated location, Bayes derives the posterior of the
vehicle’s real location by the Bayes’ formula and estimates the ve-
hicle’s real location as the location that maximizes the posterior.
(ii) Hidden Markov Model-based location inference [18], la-
beled as “HMM”: HMM assumes the vehicle’s mobility follows
a Markov process, of which the transition matrix can be learned
explicitly using publicly accessible traffic flow data [37]. In HMM,
the vehicle’s real locations and obfuscated locations are considered
hidden states and observable states, respectively. Under these as-
sumptions, the vehicle’s real trajectory can be recovered from the
obfuscated locations by the Viterbi algorithm [38].
(iii) VehiTrack in Phase 1, labeled as “VehiTrack-I": To conduct
an ablation study, we test VehiTrack-I, wherein the vehicles’ loca-
tions are inferred directly using the posterior sequence generated by
Phase 1 of VehiTrack. A comparative analysis between VehiTrack
and VehiTrack-I allows us to assess the extent of improvement
attributed to the incorporation of LSTM in Phase 2.

In Experiment II, we integrate TransProtect into Laplace and
LP, labeled as “Laplace+TransProtect” and “LP+TransProtect”,
respectively. Specifically, we limit the obfuscation range of Laplace
and LP to the candidate location set output by TransProtect. We test
the four inference algorithms when vehicles’ locations are protected
by “Laplace+TransProtect” and “LP+TransProtect”.

5.1.4  Metrics. In both Experiments I&II, we measure two metrics:
(1) expected inference errors (EIE), which is defined as the expected
error between the estimated locations (by attackers) and the vehi-
cles’ actual locations, and (2) data utility loss, which is defined as
the expected distortion of estimated traveling cost (in Equ. (13)).

The main experimental results regarding inference error and
data utility loss in Experiments I and II are listed in Table 1&2 and
Table 3, respectively.

5.2 Experiment I: Evaluation of VehiTrack

We randomly select 100 trajectories from the Rome and San Fran-
cisco Taxicab datasets to simulate the vehicles’ mobility. We use
Laplace and LP to obfuscate all the locations within each trajectory,
with locations recorded approximately every 20 seconds for both
datasets. We then apply the four location inference algorithms, Vehi-
Track, VehiTrack-I, HMM, and Bayes to infer the vehicles’ real loca-
tions from the obfuscated locations, of which the expected inference
errors are compared in “Experiment I” in Table 1 (Laplace) and Table
2 (LP). Based on the two tables, we have the following observations:
(1) Context-free location inference method Bayes has the
highest inference error. On average, if we apply Laplacian noise
as obfuscation methods, the inference error of Bayes is respectively
199.19%, 2.97%, and 156.33% (resp. 131.81%, 64.51%, and 70.00%)
higher than that of VehiTrack, VehiTrack-I, and HMM using the
Rome dataset (resp. using the San Francisco dataset). If we apply
LP as obfuscation methods, the inference error of Bayes is 76.10%,
36.60%, and 36.65% (resp. 95.23%, 28.12%, and 36.66%) higher than
that of VehiTrack, VehiTrack-I, and HMM using the Rome dataset
(resp. using the San Francisco dataset). Unlike Bayes mainly focus-
ing on single-location inference, the four context-aware inference
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Table 1: Expected inference error of Laplace and Laplace + TransProtect (km)

Location privacy protection algorithms

Location Experiment I Experiment IT

inference Laplace Laplace+TransProtect

algorithms Rome San Francisco Rome San Francisco

€ (km™T) 50 [ 75 100 [ 50 [ 75 [ 100 5.0 7.5 10.0 5.0 7.5 10.0

VehiTrack | 0.22 | 0.21 | 0.21 | 0.22 | 0.22 | 0.21 || 0.33(153.4%) | 0.32(349.2%) | 0-31(sa66%) | 0-39(s7457%) | 0-36(s6a207) | 0-34(s58.67)

VehiTrack-I | 0.63 | 0.62 | 0.62 | 0.31 | 0.31 | 0.30 0.66(13.91%) | 0.65(+4.62%) | 0-65(45.00%) | 0-53(470.45%) | 0-53(470.45%) | 0-52(471.33%)
Bayes 0.65 | 0.64 | 0.64 | 051 | 0.51 | 0.50 || 0.69(4550%) | 0-65(+1.02) | 0-64(s0.497) | 0.70(s3679%) | 0-69(4355a) | 0-65(+29.427)
HMM 0.26 | 0.25 | 0.25 | 030 | 0.30 | 0.28 || 0.71(4175%) | 0.69(41797) | 0.68(+1767) | 0.68(+1247) | 0-66(s121%) | 0.64(4130%)

Table 2: Expected inference error of LP and LP + TransProtect (km)

Location privacy protection algorithms

Location Experiment I Experiment IT

inference LP LP+TransProtect

algorithms Rome San Francisco Rome San Francisco

€ (km™T) 50 [ 75 [ 100 | 50 [ 7.5 | 100 5.0 7.5 10.0 5.0 7.5 10.0

VehiTrack [ 0.21 [ 0.21 [ 0.19 | 0.21 [ 0.20 | 0.20 |[ 0.29(1349%) | 0.26(1240%) | 0-25(s307%) | 0-26(s22.43%) | 0-25(42373%) | 0-25(+24.58%)

VehiTrack-I | 0.30 | 0.26 | 0.25 | 032 | 031 | 032 || 0.39(4308%) | 0.35(4349%) | 0.33(+316%) | 0-44(+37567) | 042(s3027%) | 0-40(425.53%)
Bayes 0.40 | 037 | 031 | 0.41 | 0.40 | 0.40 || 0.45(41427) | 044(4195%) | 042(4327%) | 0.64(4s3.067%) | 0-63(454707%) | 0-62(456.64%)
HMM 030 | 0.26 | 0.23 | 0.34 | 0.34 | 033 || 04504503%) | 0-43(se5.67) | 0-41(478.1%) | 0.57(x67.51%) | 0-56(+6a26%) | 0-55(+66.01%)

methods achieve lower inference errors since they all account for
the vehicles’ location correlation using either the road network mo-
bility model (VehiTrack and VehiTrack-I) or Markov Model (HMM).
In addition, Fig. 8 in Appendix shows that, on average, VehiTrack-I
(and also VehiTrack) eliminates 81.69% (resp. 89.39%)of locations
across 100 trajectories of Rome dataset (resp. San Francisco dataset)
by considering vehicles’ mobility restrictions due to the road net-
work. This substantial reduction aids attackers in narrowing down
the search range for the vehicles’ actual locations.
(2) VehiTrack achieves an even lower expected inference er-
ror compared to the Markov-based method HMM. On average,
using the Rome dataset (resp. the San Francisco dataset), the EIE of
VehiTrack is 14.34% and 22.22% (resp. 26.66% and 38.23%) lower than
that of HMM when Laplacian and LP are applied, respectively. HMM
has higher inference error because assuming Markov property in
HMM can only capture the correlation of vehicles’ locations in ad-
jacent time slots (short-term), while LSTM in Phase 2 of VehiTrack
can additionally capture the long-term correlations of vehicles’
locations, further improving the VehiTrack’s inference accuracy.
(3) VehiTrack outperforms VehiTrack-I in terms of infer-
ence accuracy (Ablation study). By comparing VehiTrack and
VehiTrack-I, we find that LSTM in Phase 2 further reduces the aver-
age inference error by 65.58% and 24.12% for the Rome dataset and
by 29.03% and 34.37% for the San Francisco dataset, considering
both obfuscation methods (Laplacian noise and LP). Like HMM,
VehiTrack-I achieves higher inference error, since it only captures
short-term correlations within the location sequence by considering
vehicles’ mobility restrictions due to the road network conditions,
but without considering long-term correlation between locations.
To demonstrate that VehiTrack can better capture the long-term
correlation of vehicles’ locations compared to the benchmarks,
among the 100 trajectories, we pick up trajectories that have more
than 40 locations. In Fig. 9(a)(b)(c) and Fig. 10(a)(b)(c) in Appendix,
we exclusively evaluate the inference errors of the four algorithms

Table 3: Expected data utility loss of different methods (km)

Location privacy protection algorithms

€ Exp. I Exp. II
(km™1) Laplace Lp Lap.+TransP. | LP+TransP.
RM [ SF [RM [ SF [RM [ SF [ RM [ SF

5.0 0.24 | 0.29 | 0.53 | 0.50 || 0.25 0.31 0.58 | 0.43
7.5 0.24 | 0.28 | 0.47 | 0.43 || 0.25 0.30 0.49 | 0.42
10.0 0.24 | 0.28 | 0.29 | 0.40 || 0.24 0.30 0.38 | 0.40

for these selected “long” trajectories. The depicted results in the fig-
ure highlight that the accuracy advantage of VehiTrack is even more
significant compared to the findings in Table 1 and Table 2, e.g.,
using the Rome dataset (resp. San Francisco dataset), VehiTrack’s
inference error is 51.36%, 33.33%, and 48.56% (resp. 41.93%, 25%,
and 29.16%) lower than that of Bayes, VehiTrack-I, and HMM, re-
spectively (consider that for all the 100 trajectories of rome dataset,
VehiTrack’s inference error is 49.77%, 41.41%, and 41.52% lower
than that of Bayes, VehiTrack-I, and HMM, respectively).

(4) As € increases, the inference errors of all four inference
algorithms increase. This is attributed to higher values of € al-
lowing for smaller deviations from obfuscated locations to actual
locations. Consequently, this leads to a reduction in overall infer-
ence errors and also a lesser loss of data utility due to Laplacian
noise and Linear Programming, as demonstrated in Table 3.

5.3 Experiment II: Evaluation of TransProtect

We apply TransProtect to refine the location set of geo-obfuscation
and then assess the inference error of the four location inference
algorithms, of which the results are shown in “Experiment II” in
Table 1 (Laplace) and Table 2 (LP). By comparing the experimental
results in Experiments I and II, we can check how much privacy
improvement is contributed by TransProtect. In the tables, the
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subscript (444) means the inference error is increased by a% after
integrating TransProtect. We have the following observations:

(1) Integrating TransProtect in Laplace and LP increases the
expected inference error of the context-aware inference al-
gorithms. On average, employing TransProtect increases the infer-
ence error of VehiTrack, VehiTrack-I, and HMM by 40.28%, 18.39%,
and 119.41% (resp. 65.77%, 70.74%, and 125%) using Rome dataset
(resp. San Francisco dataset). This is because the obfuscation range
is restricted to the candidate locations (determined by TransProtect)
that are difficult to distinguish from real locations using context-
aware inference models. Particularly, Fig. 8(a)(b) in Appendix shows
that with TransProtect integrated, on average using Rome dataset
(resp. San Francisco), only 1.45% (resp. 1.59%) locations are elimi-
nated in the obfuscation range by VehiTrack-I when vehicles’ mo-
bility restrictions are considered, making it difficult for attackers
to narrow down the search range for the target locations.

(2) The integration of TransProtect maintains the utility loss
at an acceptable level. This is attributed to TransProtect’s incli-
nation to choose locations with lower data utility loss, considering
road network conditions. In contrast, the original obfuscation meth-
ods (i.e. Laplacian and LP) don’t consider measuring data utility
loss in the road network when selecting obfuscated locations. Con-
sequently, TransProtect allows the selection of locations further
away from the real location, with the data utility loss guaranteed
at an acceptable level (as shown in Table 3, i.e., on average, using
Rome dataset (resp. San Francisco dataset), TransProtect increases
the data utility loss by 1.04, 1.02, 1.30 times (resp. all 1.07) when
€ =5.0km™!, 7.5km™!, and 10.0km™'.

6 Related Works

Geo-Ind. The discussion of location privacy criteria dates back
nearly two decades to when Gruteser and Grunwald [39] intro-
duced location k-anonymity, based on Sweeney’s k-anonymity
[40]. Recently, Andr’es et al. [5] extended Differential Privacy (DP)
to "Geo-Ind" for location privacy protection, spurring the develop-
ment of new geo-obfuscation methods [1, 4, 5, 27]. For instance,
Andr’es et al. [5] developed a geo-obfuscation method adding noise
from a polar Laplacian distribution to actual locations to achieve
Geo-Ind. Considering the diverse sensitivity of data utility loss to
obfuscation in LBS, other works discretize the location domain and
optimize the obfuscation distribution using LP [1, 2, 6, 28, 41].

Context-aware threat models. Although effective in protecting
sporadic locations, geo-obfuscation based on Geo-Ind is still vulner-
able to context-aware inference attacks. Recent efforts have focused
on attacking Geo-Ind using the spatiotemporal correlation of users’
reported locations, either from a single user over time (e.g., trajec-
tory) [8-13] or from multiple users [14, 15]. Some works assume
users’ mobility follows a Markov process [8, 11], where current
locations depend on previous ones, e.g., our prior work [18] tracks
vehicles’ locations using an HMM, where we learn the transition
matrix of the Markov chain via publicly accessible traffic flow data.
Context-aware LPPM. Another approach to context-aware loca-
tion privacy focuses on new privacy criteria and solutions to protect
users’ location data [10, 14, 16, 17]. For instance, assuming attackers
use Markov models for users’ mobility, Cao et al. [10] defined a cri-
terion to quantify privacy levels of existing methods. Cao et al. [14]
extended DP to new criteria for spatiotemporal event privacy and
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created a framework to calculate privacy loss in location protection
mechanisms. Considering temporal correlations, Xiao et al. [17]
introduced §-location set-based DP and a planar isotropic mecha-
nism for geo-obfuscation. In [18], we proposed generating synthetic
trajectories using Markov chain, making it harder for attackers to
distinguish real from obfuscated locations using traffic flow infor-
mation. While elegant, context-aware threat models and LPPMs
primarily rely on explicit stochastic models like Markov chains,
overlooking long-term correlations between locations hidden in
context data. In contrast, VehiTrack and TransProtect use DNNs
to uncover implicit relationships in sequence data, outperforming
existing methods in location inference and privacy protection.
Synthetic data-based privacy protection. It is worth mentioning
that several recent works have used synthetic data to protect users’
privacy, especially in high-dimensional, sparse datasets prone to
breaches [42-48]. These studies focus on anonymization, preserv-
ing the statistical properties of original data while hiding users’
identities [43] to protect personally identifiable information. In
contrast, TransProtect uses synthetic data to increase indistinguish-
able pairs in the protected dataset, leading to different research
challenges due to the divergent goals.

7 Discussions and Conclusions

In this work, we studied the context-aware location privacy pro-
tection for vehicles in LBS. We introduced a new threat model
VehiTrack to show the vulnerability of Geo-Ind. As a countermea-
sure, we then developed TransProtect to create candidate locations
for obfuscation that are hard to distinguish from real locations (by
VehiTrack). The simulation results have demonstrated the vulnera-
bility of Geo-Ind to VehiTrack and the effectiveness of TransProtect
in protecting vehicles’ location privacy against VehiTrack.

We envision new promising research directions to explore fur-
ther. In addition to LSTM, transformer models provide an alternative
method for VehiTrack to track the locations of vehicles. Transformer
has demonstrated its strong capability not only in synthetic data
generation but also in a variety of inference models [49]. How-
ever, incorporating Transformer into VehiTrack introduces some
additional challenges to address. First, we will study how to use Mul-
timodal Transformers [50] instead of Vanilla transformers, consider-
ing the different modalities in VehiTrack’s input (location posterior
sequence) and output (location sequences). Before directing location
posteriors into the Transformer model, we will apply approxima-
tion or discretization techniques to map posterior sequences to
lower dimensional feature space considering their high dimensions.
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A Appendix
A.1 Proof of Proposition 3.1

Proor. For the sake of contradiction, we assume that there exists
a location v € ‘Rf,, ie, ¢y < tnh — th—1, but not identified by
SPT;. There are two cases:
Case 1: v ¢ "Vl.' and ¢y, o, < tn — ty—1. Due to the restriction of
the road network, the travel cost from v; to vy, denoted by dz{,k’
should be no smaller than d; ;. (Haversine distance). Let s; ;. denote
a vehicle’s average speed from v; to vy (note s; . < Sjimit), then
we can obtain that % < i’—]l:
that d; g < (tn — tn—1)Stimit and o € V/ by Equ. (4), which is a
contradiction.
Case 2: v € V/ and ¢y, < tp — tn-1, but the travel cost from v;
to v in SPT; is larger than t, — t,,—1. In this case, there must exist at
least one location v; € V\V/ that is in the shortest path from v; to
k.. Then, the travel cost from v; to v; in G is no larger than t, —t,—1
since ¢y, 0, = Copop = Copop < tn = th—1 — Copop < tn — tp—1, Which
is a contradiction that has been proved in Case 1 (by considering
vy as ). O

= Cyop < Ip — tp—1, indicating

A.2 Additional Experimental Results

Table 4: Expected data utility loss (km) of Laplace and LP
given different K values

Expected data utility loss (km)

Rome dataset

Laplace+TransProtect

€ K=5|K=10 | K=15| K=20 | K=25
5.0km ™! 0.2530 | 0.3120 0.3923 0.5207 0.6532
7.5km™! 0.2480 | 0.3055 0.3892 0.5132 0.6498
10.0km~! | 0.2431 0.2991 0.3822 0.5089 0.6412
LP+TransProtect

€ K=5|K=10 | K=15 | K=20 | K=25
5.0km ™! 0.4073 | 0.5835 0.7983 1.019 1.378
7.5km™! 0.3591 | 0.4921 0.6784 0.916 1.342
10.0km™" | 0.2963 | 0.3837 0.5429 0.878 1.336

San Francisco dataset

Laplace+TransProtect

€ K=5|K=10 | K=15 | K=20 | K=25
5.0km~! | 0.2750 | 0.3065 | 0.3516 | 0.5002 | 0.6614
7.5km™! 0.2430 | 0.3042 0.3441 0.4962 0.6535
10.0km~"' | 0.2391 | 0.3013 | 0.3413 | 0.4909 | 0.6489
LP+TransProtect

€ K=5|K=10 | K=15 | K=20 | K=25
5.0km~! | 0.4266 | 05028 | 0.5373 | 0.6743 | 0.7136
7.5km™! 0.4213 | 0.5008 0.5322 0.6721 0.7094
10.0km~! | 0.4083 | 0.4992 | 0.5257 | 0.6648 | 0.7025

(1) The TransProtect parameters K (candidate location set
size) and « (utility loss weight) impact the data utiltiy loss. We
present the average data utility loss and the expected inference error
of “Laplace+TransProtect” and “LP+TransProtect” given different
K and a for the Rome and San Francisco datasets in Fig. 11(a)(b)
and Fig. 12(a)(b), and Fig. 13(a)(b) and Fig. 14(a)(b), respectively. In
addition, the expected utility loss and the expected inference error of
the two methods with different values of K and € are shown in Table
4 and Table 5. The figures and tables show that the average data

Sourabh Yadav, Chenyang Yu, Xinpeng Xie, Yan Huang, Chenxi Qiu

Table 5: Expected inference error (km) of Laplace and LP
given different K values for Rome dataset

Expected inference error (km)

Rome dataset

Laplace+TransProtect

€ K=5|K=10 | K=15 | K=20 | K=25
5.0km ™! 0.3324 | 0.3515 0.3846 0.4123 0.4532
7.5km~1 | 0.3148 | 0.3389 | 0.3698 | 0.4087 | 0.4435
10.0km™! | 0.3043 | 0.3243 0.3602 0.3892 0.4369
LP+TransProtect

€ K=5|K=10 | K=15 | K=20 | K=25
5.0km ™! 0.2829 | 0.2894 0.3129 0.3198 0.3301
7.5km™1 | 0.3301 | 0.2589 | 0.2983 | 0.3047 | 0.3193
10.0km™! | 0.2339 | 0.2512 0.2743 0.2983 0.3101

San Francisco dataset

Laplace+TransProtect

€ K=5|K=10 | K=15 | K=20 | K=25
5.0km~! | 0.3543 | 03898 | 0.4164 | 0.4506 | 0.4914
7.5km~! | 0.3212 | 03621 | 0.4013 | 0.4474 | 0.4885
10.0km™" | 0.3053 | 0.3398 | 0.3972 | 0.4403 | 0.4834
LP+TransProtect

€ K=5|K=10 | K=15 | K=20 | K=25
5.0km~! | 0.2436 | 0.2587 | 0.2853 | 0.3081 | 0.3284
7.5km™! 0.2418 | 0.2513 0.2811 0.3013 0.3197
10.0km™" | 0.2394 | 0.2478 | 0.2785 | 0.2965 | 0.3137

utility loss and expected inference error of “Laplace+TransProtect”
and “LP+TransProtect” increases with an increase in K. This is
because a higher value of K expands the candidate location set,
providing a chance for locations with higher data utility loss to be
selected.

In Fig. 11(a)(b), Fig. 12(a)(b), Fig. 13(a)(b) and Fig. 14(a)(b), we find
that when « increases, both data utility loss and expected inference
error of “Laplace+ TransProtect” and “LP+TransProtect” decreases.
This is because a higher a value results in locations with lower
data utility loss having a comparatively higher score than locations
with higher probability scores (output by the Transformer encoder),
making them more likely to be selected as candidate locations. Fig.
11(a)(b) and Fig. 13(a)(b) provides a visual example, illustrating that
when o = 100, certain locations with higher data utility loss are
included in the candidate location set. Conversely, when o = 10, 000,
almost all candidate locations can achieve low data utility loss. Fig.
11(a)(b) and Fig. 13(a)(b) also indicates that once & > 10, 000, data
utility loss plays a predominant role in candidate location selection
in TransProtect, and further increases in @ do not significantly
impact data utility loss (as observed when comparing data utility
loss at = 10,000 and & = 100, 000).

In addition, Fig. 15(a)(b)(c) give illustrative examples to show how
K and « impact the data utility loss. Fig. 15(a)(b) shows that when
K is increased from 10 to 15, more locations with higher data utility
loss become part of the candidate location set. Fig. 15(a)(c) shows
that when a = 100, some locations with higher utility loss are in-
cluded in the candidate location set, while when a = 10, 000, almost
all the candidate locations can achieve low utility loss. The figure
also indicates that when « > 10, 000, utility loss already achieves
the major role in candidate location selection in TransProtect, and
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Figure 8: Percentage of loca-
tions eliminated in VehiTrack-I.
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Figure 11: Impacet of K (candidate location set size) and «
(utility loss weight) on the data utility loss of TransProtect for
Rome Dataset

Figure 13: Impacet of K (candidate location set size) and «
(utility loss weight) on the data utility loss of TransProtect for
SF Dataset
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Figure 12: Impacet of K (candidate location set size) and « (util-
ity loss weight) on the expected inference error of TransProtect
for the Rome dataset.

Figure 14: Impacet of K (candidate location set size) and o (util-
ity loss weight) on the expected inference error of TransProtect
for the San Francisco dataset.
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