SOAP.AL: A Collaborative Tool for Documenting Human Behavior
in Videos through Multimodal Generative Al

Qingxiao Zheng
University at Buffalo, SUNY;
University of Illinois
Urbana-Champaign, USA
qingxiao@buffalo.edu

Daan Mansour
University of Illinois
Urbana-Champaign, USA
dmanso2@illinois.edu

ABSTRACT

Large Multimodal Models offer new opportunities for analyzing hu-
man activities and social behavior in fields requiring expert knowl-
edge. Their in-context learning and adaptive abilities make cus-
tomization possible for experts without coding skills. This paper
introduces SOAP.AI a collaborative tool facilitating experts to an-
alyze human behaviors using AL SOAP.AI is designed to foster
a sense of ownership during human-AI collaboration, encourag-
ing task modifications and evaluations to meet diverse goals. For
instance, teaching Al to recognize behavioral nuances in autistic
individuals could enhance AI’s inclusion and value alignment. Our
demonstration will engage CSCW researchers and HCI practition-
ers to discuss the design of collaborative Al systems for behavioral
insights generation in various settings, such as medical settings,
sports, social media, education, home care, and more.

CCS CONCEPTS

« Human-centered computing — Systems and tools for in-
teraction design; Collaborative and social computing systems and
tools; Interactive systems and tools; « Information systems —
Multimedia information systems.
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1 INTRODUCTION

Human social behaviors, enriched by complex social cues, e.g.,
body language, gestures, facial expressions, and eye contact, have
driven research interest in human activity analysis and social sig-
nal processing [2] , which aims to automatically detect, interpret,
and synthesize various social cues [42]. These insights are cru-
cial for supporting targeted interventions [19]. For example, in
special education, experts rely heavily on detailed analyses and doc-
umentation of clients’ social behavior, such as engagement, emo-
tional status, and verbal expressions during therapy or coaching
sessions [5, 9]. Such documentation, often referred to as "invisible
workload" [26, 35], is critical for tracking clients’ progress. Effective
documentation can provide comprehensive evaluations and further
develop effective therapeutic strategies. However, it is challenging
to finish documentations because it requires intensive manpower
and takes a large amount of time [20, 21, 34, 40].
Machine-learning models in human social behavior analysis
can detect basic nonverbal cues but often struggle to adjust to the
unique traits of individual users, specific groups, or social contexts
[1, 8]. For example, these models can identify a person touching
their face by analyzing spatial relationships among body parts [7],
and determine the cause of action—whether it’s due to thinking,
embarrassment, or imitation [17]. However, they require extensive
retraining to adapt to new or changing contexts. This limitation
hampers non-coding experts, like clinicians and coaches, from effec-
tively using these tools and exploratory analysis on what and how
to document using these models. It also deepens the divide between
domain experts and technology in application development.[39].
Existing tools for behavior analysis in social interactions primar-
ily focus on individual or dyadic interactions, such as Bedmutha et
al’s ConverSense [6], which tracks audio-based social signals dur-
ing patient-provider interactions, and Patel et al’s system [36] that
captures nonverbal cues for real-time clinical feedback to enhance
empathic, patient-centered care. Similarly, Arakawa and Yakura
[4] use multimodal signals of gaze to identify anomalies in coach-
coachee interactions. Research also extends to group dynamics,
with studies like Willenbrock and Hung [28] on team cohesion
and Samrose et al’s MeetingCoach [37], which provides meeting
dashboards of transcripts and behavioral cues. However, existing
solutions are limited by the lack of flexibility because they only
support one-shot scene analysis (e.g., looking for moments when
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speech speed is high) without allowing for more customized anal-
ysis. Also, most of them are visualization-based, using timelines
to highlight moments of specific behaviors, which fails to support
comprehensive documentation or inspire deeper analysis.

The recent advent of generative Al (GenAl), particularly Large
Multimodal Models (LMMs) like GPT-40, LLaVA, and Gemini [23,
30] may address the above limitations in social behavior analysis.
These models excel at interpreting complex verbal and non-verbal
behaviors and analyze text, video, and audio data to produce de-
tailed behavioral descriptions [18, 23, 29, 30]. Unlike non-GenAI
models, LMMs rapidly adapt to new contexts with minimal data,
due to advanced in-context learning capabilities, and can modify
behaviors "on the fly" after deployment [15, 44]. This adaptability
enhances flexibility in social behavior analysis, and the models’
text-based outputs can provide inspirational insights. However,
challenges persist, particularly in multi-modal information-seeking
[14], such as accurately interpreting domain-specific social cues and
addressing algorithmic biases [3, 32]. This highlights a clear need
for tools that support domain experts in customizing Al analyses
to document social behaviors in videos more effectively.

Our demo aims to facilitate collaboration among experts, sup-
ported by Al in analyzing human behaviors in videos across con-
texts that heavily depend on domain knowledge. This will be par-
ticularly beneficial to CSCW researchers and practitioners looking
to integrate multimodal data with Al to extract deeper behavioral
insights in diverse fields [11, 12, 22, 24, 31, 41, 45, 46]. Additionally,
it encourages reflection on the responsible use of Al, particularly
addressing concerns like algorithmic bias and value alignment.

2 SOAP CONCEPT AND DESIGN OVERVIEW

SOAP.Al s a collaborative tool that enables experts to work with Al
in documenting human behaviors using multimodal AL “SOAP” is
a documentation method widely used by the education domain [10].
The design was informed by 17 interviews with special education
experts who routinely analyze and document human behaviors
across group sessions of coaching and therapy. We identified a
core concern raised by experts: Al’s fluidity. Fluidity in Al entails
dynamically adapting task definitions and evaluations to diverse
contexts and evolving user goals. It involves customizing assess-
ments for specific environments, understanding context-dependent
task definitions, and creating new performance benchmarks based
on expert standards. For instance, Al should recognize that rocking
behavior in autistic children often represents sensory needs rather
than disengagement.

To address the fluidity concern, a key design of SOAP.Al is its
support for developing end-user ownership in human-AI collab-
orative documentation. Recent HCI research has explored the in-
fluence of ownership during human-AlI collaboration, particularly
in collaborative writing tasks [16, 25, 33]. Ownership—of both tan-
gible objects and intangible entities such as ideas—often develops
through acts of creation and control [16]. It is formed via three
major paths, control, self-investment, and developing an intimate
knowledge of the owner’s target [13]. Although a sense of owner-
ship has been shown to enhance collaboration outcomes among
team members [27, 38, 43], its impact on human-AI collaboration
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remains under-examined, which motivates us to adopt it in our
design context.

2.1 Interface

Figure 1 illustrates how SOAP.AI operates, with a step-by-step
guide as follows: In the Video Panel: (A) Users upload a video for
analysis. In the Chatbot Panel: (B) The Al detects individuals in the
video automatically. Users can first name these detected individuals
by interacting with the chatbot. Further, users interact with the
chatbot to query about the video content, receiving insights gener-
ated from analyzed human behaviors. The Behavior Collaboration
Panel (C-H), inspired by the concept of self-investment in owner-
ship theory, involves: (C) Users select predefined behaviors from the
global behavior set. (D) Selected or newly added behaviors are in-
corporated into the user’s local behavior set. (E-H) Users customize
behaviors in the behavior manager by: (E) Editing the behavior
name, (F) Defining the behavior, (H) Marking behavior occurrences
with timestamps, aided by Al-generated video descriptions. Once
customization is complete, users can test the AI's understanding by
querying the chatbot, or they can delete, save, and share these local
behaviors with the global set to enhance collaboration. Additional
features include: (I) Interactions are supported by both transcripts
and visual graphs, enhancing user engagement and understand-
ing. (J) Based on conversation history, the Al displays contextual
information, such as noting a child’s abnormal behavior during a
therapy session due to rainy weather, which informs the behavior
analysis notes generation.

2.2 Implementation

We implemented Soap as a web-based tool shown in figure 2, con-
sisting of (A) a customizable front-end interface with a chatbot and
feature visualizations, (B) a back-end server for video processing
and Al models, and (C) a programmatic framework for analyzing
and querying videos using GPT-4v. Users upload their videos, from
which OpenAl Whisper extracts transcripts and timestamps. A
Python script extracts video frames at a rate of 2 frames per second,
and these frames, along with the transcripts, are fed into GPT-4v for
analysis. Moreover, we automatically perform prompt engineering
from expert conversations with the chatbot to provide context-
sensitive insights and refine the model’s outputs. The analyzed
data is stored in an SQL database, accessible through the chatbot,
supporting further visual analysis and report generation.

3 PILOT, LIMITATION, AND FUTURE WORK

We engaged eight special education experts for pilot sessions with
SOAP.AI where they uploaded videos and collaborated with the
AT on documentation. The feedback was generally positive, with
experts impressed by the AI’s capabilities and eager to co-create
documents, aligning with our design goals. However, concerns
arose about the AI’s output.

One major issue identified was the inaccurate automatic speech
recognition (ASR) in scenarios involving children’s utterances, or
people using non-speaking devices like iPads for communication.
This exposes a significant inclusivity limitation in our current de-
sign, emphasizing the need for improvements to better meet the
diverse user needs. Additionally, the Al sometimes struggled to
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Figure 1: The core design of Soap.Al: the “control” path, where users select behaviors from collections and direct queries to the
Al (C-D); the “self-invest" path, allowing users to input self-defined behavioral tasks for refined Al analysis (E-H); and the
"knowledge" path, where the Al displays shared context (J), enabling users to verify its alignment with their expectations.
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Figure 2: Architecture of Soap; (A) a customizable front-end interface with a chatbot and feature visualizations, (B) a back-end
server for video processing and AI models, and (C) a programmatic framework for analyzing and querying videos using GPT-4v.

capture pauses in interactions, crucial for accurate behavioral anal- 4 ACKNOWLEDGEMENT
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