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ABSTRACT
Large Multimodal Models offer new opportunities for analyzing hu-

man activities and social behavior in fields requiring expert knowl-

edge. Their in-context learning and adaptive abilities make cus-

tomization possible for experts without coding skills. This paper

introduces SOAP.AI, a collaborative tool facilitating experts to an-

alyze human behaviors using AI. SOAP.AI is designed to foster

a sense of ownership during human-AI collaboration, encourag-

ing task modifications and evaluations to meet diverse goals. For

instance, teaching AI to recognize behavioral nuances in autistic

individuals could enhance AI’s inclusion and value alignment. Our

demonstration will engage CSCW researchers and HCI practition-

ers to discuss the design of collaborative AI systems for behavioral

insights generation in various settings, such as medical settings,

sports, social media, education, home care, and more.

CCS CONCEPTS
• Human-centered computing → Systems and tools for in-
teraction design; Collaborative and social computing systems and
tools; Interactive systems and tools; • Information systems →
Multimedia information systems.

KEYWORDS
Behavior analysis, vision-language models, generative AI, collabo-

rative work, videos
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1 INTRODUCTION
Human social behaviors, enriched by complex social cues, e.g.,

body language, gestures, facial expressions, and eye contact, have

driven research interest in human activity analysis and social sig-

nal processing [2] , which aims to automatically detect, interpret,

and synthesize various social cues [42]. These insights are cru-

cial for supporting targeted interventions [19]. For example, in

special education, experts rely heavily on detailed analyses and doc-

umentation of clients’ social behavior, such as engagement, emo-

tional status, and verbal expressions during therapy or coaching

sessions [5, 9]. Such documentation, often referred to as "invisible
workload" [26, 35], is critical for tracking clients’ progress. Effective
documentation can provide comprehensive evaluations and further

develop effective therapeutic strategies. However, it is challenging

to finish documentations because it requires intensive manpower

and takes a large amount of time [20, 21, 34, 40].

Machine-learning models in human social behavior analysis

can detect basic nonverbal cues but often struggle to adjust to the

unique traits of individual users, specific groups, or social contexts

[1, 8]. For example, these models can identify a person touching

their face by analyzing spatial relationships among body parts [7],

and determine the cause of action—whether it’s due to thinking,

embarrassment, or imitation [17]. However, they require extensive

retraining to adapt to new or changing contexts. This limitation

hampers non-coding experts, like clinicians and coaches, from effec-

tively using these tools and exploratory analysis on what and how

to document using these models. It also deepens the divide between

domain experts and technology in application development.[39].

Existing tools for behavior analysis in social interactions primar-

ily focus on individual or dyadic interactions, such as Bedmutha et

al.’s ConverSense [6], which tracks audio-based social signals dur-

ing patient-provider interactions, and Patel et al.’s system [36] that

captures nonverbal cues for real-time clinical feedback to enhance

empathic, patient-centered care. Similarly, Arakawa and Yakura

[4] use multimodal signals of gaze to identify anomalies in coach-

coachee interactions. Research also extends to group dynamics,

with studies like Willenbrock and Hung [28] on team cohesion

and Samrose et al.’s MeetingCoach [37], which provides meeting

dashboards of transcripts and behavioral cues. However, existing

solutions are limited by the lack of flexibility because they only

support one-shot scene analysis (e.g., looking for moments when
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speech speed is high) without allowing for more customized anal-

ysis. Also, most of them are visualization-based, using timelines

to highlight moments of specific behaviors, which fails to support

comprehensive documentation or inspire deeper analysis.

The recent advent of generative AI (GenAI), particularly Large

Multimodal Models (LMMs) like GPT-4o, LLaVA, and Gemini [23,

30] may address the above limitations in social behavior analysis.

These models excel at interpreting complex verbal and non-verbal

behaviors and analyze text, video, and audio data to produce de-

tailed behavioral descriptions [18, 23, 29, 30]. Unlike non-GenAI

models, LMMs rapidly adapt to new contexts with minimal data,

due to advanced in-context learning capabilities, and can modify

behaviors "on the fly" after deployment [15, 44]. This adaptability

enhances flexibility in social behavior analysis, and the models’

text-based outputs can provide inspirational insights. However,

challenges persist, particularly in multi-modal information-seeking

[14], such as accurately interpreting domain-specific social cues and

addressing algorithmic biases [3, 32]. This highlights a clear need

for tools that support domain experts in customizing AI analyses

to document social behaviors in videos more effectively.

Our demo aims to facilitate collaboration among experts, sup-

ported by AI, in analyzing human behaviors in videos across con-

texts that heavily depend on domain knowledge. This will be par-

ticularly beneficial to CSCW researchers and practitioners looking

to integrate multimodal data with AI to extract deeper behavioral

insights in diverse fields [11, 12, 22, 24, 31, 41, 45, 46]. Additionally,

it encourages reflection on the responsible use of AI, particularly

addressing concerns like algorithmic bias and value alignment.

2 SOAP CONCEPT AND DESIGN OVERVIEW
SOAP.AI is a collaborative tool that enables experts to work with AI

in documenting human behaviors using multimodal AI. “SOAP” is

a documentation method widely used by the education domain [10].

The design was informed by 17 interviews with special education

experts who routinely analyze and document human behaviors

across group sessions of coaching and therapy. We identified a

core concern raised by experts: AI’s fluidity. Fluidity in AI entails

dynamically adapting task definitions and evaluations to diverse

contexts and evolving user goals. It involves customizing assess-

ments for specific environments, understanding context-dependent

task definitions, and creating new performance benchmarks based

on expert standards. For instance, AI should recognize that rocking

behavior in autistic children often represents sensory needs rather

than disengagement.

To address the fluidity concern, a key design of SOAP.AI is its

support for developing end-user ownership in human-AI collab-

orative documentation. Recent HCI research has explored the in-

fluence of ownership during human-AI collaboration, particularly

in collaborative writing tasks [16, 25, 33]. Ownership—of both tan-

gible objects and intangible entities such as ideas—often develops

through acts of creation and control [16]. It is formed via three

major paths, control, self-investment, and developing an intimate

knowledge of the owner’s target [13]. Although a sense of owner-

ship has been shown to enhance collaboration outcomes among

team members [27, 38, 43], its impact on human-AI collaboration

remains under-examined, which motivates us to adopt it in our

design context.

2.1 Interface
Figure 1 illustrates how SOAP.AI operates, with a step-by-step

guide as follows: In the Video Panel: (A) Users upload a video for

analysis. In the Chatbot Panel: (B) The AI detects individuals in the

video automatically. Users can first name these detected individuals

by interacting with the chatbot. Further, users interact with the

chatbot to query about the video content, receiving insights gener-

ated from analyzed human behaviors. The Behavior Collaboration

Panel (C-H), inspired by the concept of self-investment in owner-

ship theory, involves: (C) Users select predefined behaviors from the

global behavior set. (D) Selected or newly added behaviors are in-

corporated into the user’s local behavior set. (E-H) Users customize

behaviors in the behavior manager by: (E) Editing the behavior

name, (F) Defining the behavior, (H) Marking behavior occurrences

with timestamps, aided by AI-generated video descriptions. Once

customization is complete, users can test the AI’s understanding by

querying the chatbot, or they can delete, save, and share these local

behaviors with the global set to enhance collaboration. Additional

features include: (I) Interactions are supported by both transcripts

and visual graphs, enhancing user engagement and understand-

ing. (J) Based on conversation history, the AI displays contextual

information, such as noting a child’s abnormal behavior during a

therapy session due to rainy weather, which informs the behavior

analysis notes generation.

2.2 Implementation
We implemented Soap as a web-based tool shown in figure 2, con-

sisting of (A) a customizable front-end interface with a chatbot and

feature visualizations, (B) a back-end server for video processing

and AI models, and (C) a programmatic framework for analyzing

and querying videos using GPT-4v. Users upload their videos, from

which OpenAI Whisper extracts transcripts and timestamps. A

Python script extracts video frames at a rate of 2 frames per second,

and these frames, along with the transcripts, are fed into GPT-4v for

analysis. Moreover, we automatically perform prompt engineering

from expert conversations with the chatbot to provide context-

sensitive insights and refine the model’s outputs. The analyzed

data is stored in an SQL database, accessible through the chatbot,

supporting further visual analysis and report generation.

3 PILOT, LIMITATION, AND FUTUREWORK
We engaged eight special education experts for pilot sessions with

SOAP.AI where they uploaded videos and collaborated with the

AI on documentation. The feedback was generally positive, with

experts impressed by the AI’s capabilities and eager to co-create

documents, aligning with our design goals. However, concerns

arose about the AI’s output.

One major issue identified was the inaccurate automatic speech

recognition (ASR) in scenarios involving children’s utterances, or

people using non-speaking devices like iPads for communication.

This exposes a significant inclusivity limitation in our current de-

sign, emphasizing the need for improvements to better meet the

diverse user needs. Additionally, the AI sometimes struggled to
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Figure 1: The core design of Soap.AI: the “control" path, where users select behaviors from collections and direct queries to the
AI (C-D); the “self-invest" path, allowing users to input self-defined behavioral tasks for refined AI analysis (E-H); and the
"knowledge" path, where the AI displays shared context (J), enabling users to verify its alignment with their expectations.
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Figure 2: Architecture of Soap; (A) a customizable front-end interface with a chatbot and feature visualizations, (B) a back-end
server for video processing and AI models, and (C) a programmatic framework for analyzing and querying videos using GPT-4v.

capture pauses in interactions, crucial for accurate behavioral anal-

ysis. Our team is actively refining this capability to ensure more

accurate interaction assessments. Looking ahead, future versions of

SOAP.AI will include features that enable experts to systematically

evaluate and provide feedback on AI-generated prompts. These

enhancements aim to ensure the tool evolves to effectively meet

end user needs, reinforcing the commitment to making SOAP.AI a

more inclusive and effective resource for professionals.
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