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Criteria for drop generation in multiphase microfluidic devices
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A theory is presented for the transition between the coflowing and the drop-generation regimes observed
in microfluidic channels with a rectangular cross section. This transition is characterized by a critical ratio of
the dispersed- to continuous-phase volume flow rates. At flow-rate ratios higher than this critical value, drop
generation is suppressed. The critical ratio corresponds to the fluid cross section where the dispersed-phase fluid
is just tangent to the channel walls. The transition criterion is a function of the ratio of the fluid viscosities, the
three-phase contact angle formed between the fluid phases and the channel walls, and the aspect ratio of the
channel cross section; the transition is independent of interfacial tension. Hysteretic behavior of drop generation
with respect to the flow-rate ratio is predicted for partially wetting dispersed-phase fluids. Experimental data are

consistent with this theory.
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I. INTRODUCTION

The field of microfluidics has led to devices with low-
ered costs that are capable of swift analysis, yielding a
high resolution and increased sensitivity [1]. Many devices
for controlling microfluidic flows have been developed, the
most common being T-junction [2], flow-focusing [3], and
coflowing [4] devices. Some applications, such as microfluidic
rheometry [5,6], rely on coflowing streams of immiscible
fluids. Most applications, however, rely on precisely controlled
drop generation and many mechanisms of drop generation
have been identified, including squeezing, dripping, and jetting
modes [7-9]; applications that rely on drop generation in-
clude high-throughput screening devices [10] and biochemical
assays [11]. Controlling the transition between coflowing
and drop-generation regimes is critical to the design and
optimization of microfluidic devices and is the subject of this
paper.

The breakup of a cylindrical fluid stream surrounded by a
second coflowing immiscible fluid results from the interfacial-
tension-driven growth of varicose waves at the fluid-fluid
interface. The confining walls of a microfluidic device can
hinder breakup [12-14], and drop generation does not occur
for a fluid stream in contact with confining walls because the
pinned contact lines prevent the growth of varicose waves
[15,16]. The two-fluid coflowing cross-section configuration
shown in Fig. 1(a) is unstable because the inner fluid stream
does not span the channel, leading to drop generation. The
coflowing configuration shown in Fig. 1(c) is stable due
to confinement. The critical cross-section configuration that
separates the drop-generation and coflowing regimes in a
rectangular channel corresponds to that depicted in Fig. 1(b).

The stable configuration depicted in Fig. 1(c) corresponds
to the case where the inner fluid is nonwetting. If the inner fluid
partially wets the channel walls, a typical stable configuration
corresponds to that depicted in Fig. 1(e). The configuration

*michael.loewenberg@yale.edu

2470-0045/2017/95(6)/063103(14)

063103-1

depicted in Fig. 1(d) is a second critical configuration that
arises in systems with partially wetting dispersed-phase
fluids. The presence of two critical configurations [Figs. 1(b)
and 1(d)] for a partially wetting dispersed-phase fluid explains
the hysteretic behavior of drop generation observed in some
experiments [17]. Accordingly, the critical configuration de-
pends on whether the transition is from coflowing to drop
generation or vice versa.

An analysis of critical two-phase configurations [Figs. 1(b)
and 1(d)] in microfluidic devices is presented. The results
provide quantitative criteria for the transition between coflow-
ing and drop-generation regimes. The problem is formulated
and the critical flow-rate ratio, corresponding to the critical
configuration, is defined in Sec. II. The calculation of the
critical flow-rate ratio is described in Sec. III. Analytical and
numerical results are presented in Secs. IV and V, respectively,
and the theory is compared to experimental data in Sec. VL.

II. CRITICAL FLOW-RATE RATIO

The cross-section configurations shown in Fig. 1 are
characterized by a flow-rate ratio Q1/(Q>, where @ and
Q. are the volume flow rates of Fluid 1 and Fluid 2,
respectively. Figures 1(b) and 1(d) correspond to the critical
values Q1/Q> = (Q1/Q2)cr that separate the drop-generation
and coflowing regimes. The drop-generating configuration
depicted in Fig. 1(a) corresponds to a subcritical value of
01/ 0> and the coflowing configurations depicted in Figs. 1(c)
and 1(e) correspond to a supercritical O/ Q5. The aim of this
paper is to determine the dependence of the critical flow-rate
ratio (Q1/Q2)cr on the system parameters.

A. Assumptions

Under the assumption that the fluids are incompressible
and the channel has a constant cross section (and the flow is
laminar), the dimensionless velocity fields u” (i = 1,2) are
unidirectional [5,16,18], i.e., u”(x,y,z) = u¥(x,y)e,, where
the superscripts 1 and 2 refer to the dispersed and continuous
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FIG. 1. Two-fluid cross-section configurations corresponding to (a) drop generation, (c, e) co-flowing, and (b, d) critical configurations in
a 2b x 2w rectangular channel. The dispersed-phase (shaded) and continuous-phase viscosities, pA and p, coordinate system, and three-phase
contact angle B, are shown. The flow is out of the page, in the + z direction.

phases (Fluid 1 and Fluid 2) and e; is a unit vector in the z
direction. Here, dimensionless variables are defined,

(i)

X4 Vs e (i) Uy

= — = — = -— = — l
X=0 Y= 1= oz D
where asterisks denote dimensional quantities, 2b is the
channel depth as shown in Fig. 1, u is the viscosity of Fluid
2, and G is the pressure gradient (the same in both phases

[5,16,18]). Accordingly, the velocities are governed by
Vi) = 371 v = 1, ()

where A is the ratio of the viscosity of Fluid 1 to that of Fluid
2; steady state is assumed. Fluid 2 satisfies no-slip conditions
at the channel boundaries,

@ _ g

u = y==1, or x=4W, 3)

where 2w is the width of the microchannel and W = w/b is
the aspect ratio of the channel (cf. Fig. 1); W > 1 is assumed.
Continuity of velocity and tangential stress are enforced at the
fluid interface,

u® = u®, (4a)
u Ju@ m
an  an (4b)

Under the assumption that surface tension is sufficient
to dominate normal stresses from gravity, the velocities are
independent of the magnitude of interfacial tension [18]
and the fluid interface is described by a circular arc with
radius R = csc B, that intersects the points (0, £ 1), where
the three-phase contact angle f; is the complement of the
usual contact angle. The range 0 < B < /2 is assumed.

The length of the umdlrectlonal flow region is assumed to
be sufficiently long for unstable configurations [cf. Fig. 1(a)]
to undergo breakup. The velocity fields are obtained by solving
Egs. (2)—(4) and volume flow rates are calculated.

A unidirectional analysis may also be relevant for deter-
mining the transition between drop generation and coflowing
operation in nonunidirectional devices. In a T-junction device,
for example, two-fluid configurations similar to those shown in
Fig. 1 describe the flow downstream from the actual junction,
where the velocity fields are unidirectional.

According to the foregoing assumptions, the critical flow-
rate ratio (Q1/Q2)cr depends on the viscosity ratio A, the
three-phase contact angle B,, and the aspect ratio of channel
W and is independent of interfacial tension.

III. CALCULATION OF THE FLUID VELOCITY FIELDS

The critical volume flow rates of Fluids 1 and 2 are
calculated by computing the velocities and evaluating the
volume flux for the critical configurations of the system
[cf. Figs. 1(b) and 1(d)]. For convenience, Q5 is decomposed
as

Q2(A,B1, W) = Qo(W) — Q52 B1, W), &)

where Qy is the volume flow of Fluid 2 in the absence of Fluid
1 and Q5 is the disturbance due to the presence of Fluid 1. As
shown below, @, decays exponentially to a form independent
of W.

Solutions of Egs. (2)—(4) for the velocity fields in Fluids 1
and 2 are given by

uV(x,y) = A7 (up(y) + v1(x,)), (6)

u®(x,y) = uo(x,y) + va(x,). ©)

The base velocity field of Fluid 2, ug, corresponding to the
flow in the absence of Fluid 1 is given by

HO(X,J’) = “p(y) _”w(x,y), (8)
where u, is the pressure-driven component of the velocity,
up(y) = 3(1 = 5%, ©)

and u,, is the wall correction that enforces boundary condition
(3)atx =+W,

cosh ayx
wy(x,y) = Z ko <O - (10)
dy = 2(—fe 3, (11a)

ax = (k+ 1/2).

The terms v, and v, in Egs. (6) and (7) are series expansions
that account for hydrodynamic interactions between the fluids,

(11b)
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vi(x,) =Y ¢’ fix.k)g(y.k), (12)
k=0
v,y =) ¢ HxW.ke,k), (13)
k=0
where
fi(x,k) = coshayx, (14)
sinh o (W — x)
fax,W.k) = “Smha W (15)
8(y.k) = cosayy. (16)

According to (15) and (16), vy(x,y), and thus u®(x,y),
satisfies boundary condition (3).

The coefficients cf) (i = 1,2) are determined by truncating
the velocity expansions, (6) and (7), at k=N —1 and
substituting them into boundary conditions (4). A 2N x 2N
system of linear equations is generated by taking the term-by-
term inner product with the basis functions f;(x,k)g(y.k) (k =
0,N — 1) on a quarter of the fluid interface,

x(s) = Rcos(s/R) — cot By, y(s) = Rsin(s/R), (17)

O0<ss<BiR, R=cscphy, (18)

where B, R is the arc length of the interface over one quadrant
of the cross-section configuration. The aspect-ratio depen-
dence of the expansion coefficients cf) decays exponentially
for W > 1 because f> =~e ™' and u, =0 at the fluid
interface.

Formulas for evaluating the critical flow rates, Q; and
Q,, are provided in Appendix A. For W > 1, the aspect-
ratio dependence of Q; and Q5 decays exponentially and
Qo reduces to the linear form, (A12). Approximate results
for W >»> 1 are thus obtained from limiting calculations for
W — oo.

Solutions (6) and (7) fail to converge as ; and A increase.
However, the expansions described below for 8; = m/2 and
for B, <« 1 exhibit better convergence and help to circumvent
this difficulty.

A. Nonwetting dispersed-phase fluid, g; = = /2

The special case of the nonwetting Fluid 1 is considered
here. The velocity field in Fluid 2 is described as above,
but Fluid 1 is more conveniently described in cylindrical
coordinates (r,6,z), where r is measured from the origin and
6 is measured relative to the x axis of the Cartesian coordinate
system shown in Fig. 1(a). Accordingly,

uD(r,0) = 17 (D) + v1(r,0)), (19)
where the pressure-driven component is given by
uy (r) = 3(1—r7) (20)
and
vi(r0) = Y cf” fi(r,k)g1(6,k), @1
k=0
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FIG. 2. Critical cross section for a partially wetting dispersed-
phase fluid showing the contact angle £, and thickness profile 25(y).

with basis functions

filrk) = r*,
21(0,k) = cos 2k6.

(22a)
(22b)

In the special case W = 1, the odd coefficients cg?ﬂ vanish
by symmetry.

The coefficients in expansions (21) and (13) are determined
by the procedure described in the previous section except, here,
the basis functions used for the inner products are g, (8,k). Only
the first coefficient enters the critical flow rate of Fluid 1, as

given by Eq. (AS5).

B. Lubrication approximation for ; <« 1

For B « 1, the thickness profile of the slender lenticular
region occupied by Fluid 1 (cf. Fig. 2) is given by

5(y) = Bid(y) + O (B7),
5(y) = 31 =%
A lubrication approximation of the velocity of Fluid 1 is
appropriate provided that By « W (here ensured by the

assumption that W > 1). Accordingly, the velocity of Fluid
lis

(23a)
(23b)

uD(x,y) = ur(y) +ul)(x,y), (24)

where u;(y) is the plug-flow component (with respect to the
x direction) resulting from the velocity at the interface and
u')(x,y) is the pressure-driven component,

ur(y) = u®(0,y),
1
ulP(x,y) = ﬁ(az(y) —x%).

Continuity of the velocity at the fluid interface is thus
enforced. According to the lubrication approximation, Fluid
1 is eliminated from the problem, its influence incorporated
through a modified boundary condition for Fluid 2 derived
from continuity of tangential stress,

(25a)

(25b)

vy (. v d (- . dug
" + J\ﬁla—y(a()’)a) =p - 1)5(5(3’)5),
x=0. (26)

The result indicates that Fluid 1 acts like a position-dependent
surface viscosity, A8,8(y). This boundary condition leads to
a linear system of equations for the coefficients in expansion
(13), as shown in Appendix C.
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FIG. 3. Critical flow rates for the exact solution (solid lines) and
lubrication approximation (dashed lines); W > 1.

The critical flow rate of Fluid 1 reduces to

014,81, W) = Qin +271QY, (27)
1

O = 4B, f u®(0,3)3(y) dy, (28a)
0

o = 8 g (28b)

=0 105

where Qi results from the plug-flow component of the
velocity, (25a), and Q((]” results from the pressure-driven com-
ponent, (25b). The pressure-driven component is insignificant
unless A < O(ﬁ%). Formulas for Qi and @, are provided in
Appendix C.

The results shown in Fig. 3 indicate that the flow rates
obtained using the lubrication approximation agree with the
converged exact solution even at moderate ;. All subsequent
results for B; < m/2 were obtained using the lubrication
approximation.

PHYSICAL REVIEW E 95, 063103 (2017)

IV. ANALYSIS FOR LOW- AND HIGH-VISCOSITY RATIOS

Here, the limiting cases of low- and high-viscosity ratios are
presented, considering separately the cases of anonwetting and
a wetting dispersed-phase fluid. A summary of these results is
reported in Table 1. The derivation of these formulas is given
in the remainder of this section and in Appendixes B and C.

A. Nonwetting dispersed-phase fluid, 8; = /2

For A — 0, the velocity field in Fluid 1 effectively satisfies
no-slip boundary conditions at the fluid interface, and the ve-
locity in Fluid 2 satisfies free-surface boundary conditions. By
a regular perturbation for A < 1, presented in Appendix B 1,
the critical volume flow rates have expansions

010, W) =210 + O + 0(n), (29)

QW) = QP +10% + 0033, (30)

where Q) = /8 and the parameters Q!", O, and Q" are
plotted in Fig. 4.

In the limit A — oo, the velocity in Fluid 2 satisfies
no-slip boundary conditions at the fluid interface, yielding
a disturbance flow rate that depends only on the aspect
ratio at leading order. However, A — oo is a singular limit
and a boundary layer analysis is required to determine the
leading-order flow rate of Fluid 1 for A >> 1; O(A~") boundary
layers form where the fluid interface is tangent to the channel
walls. According to the analysis presented in Appendix B 2,
the critical flow rates are given by

12, W) = 27'Q0(1ogr — V) + 012 log ), (31)

QA W) = Q2 — 17 'BP(logr — CP) + O(x 2 log ),
(32)

where QE,L), Cf”, Qfo), Bgz), and sz) are plotted in Fig. 5.

For W > 1, the fluid interface is tangent only to the
horizontal channel boundaries [cf. Fig 1(b)], resulting in two
boundary layer regions; for W = 1, the fluid interface has
four points of tangency, generating four boundary layers.
Accordingly, the parameters QE,L), Cgl), Bgz), and C?) exhibit
discontinuities at W = 1, as shown in Fig. 5.

TABLE I. Summary of asymptotic formulas.

Limiting regime 0 05 Parameter(s)
Br=m/2
L1 24+ o oY +19 Fig. 4
A>1 2710 (1ogr — C(") 02 — 17 'B(logr — ) Fig. 5
B« /2
A< 1 2710 + (& — F)B + B — DF FBOA+ 1) = BiF+ p(A— DF; Egs. (28), (C11), (C13), (C14)
AR > 1 A1(QV1ogAB + CY) Q2 — (1) (BP log A8 + CY) Egs. (37) and (38), Fig. 6
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FIG. 4. Volume flow-rate coefficients for low-viscosity expan-
sions (29) and (30).

B. Partially wetting dispersed-phase fluid

For AB; « 1, the critical volume flow rate for Fluid 1 is
given by Eqgs. (27) and (28), where Qi is

O = (% - FI(W)) B+ B0 — DFW),  (33)

and the critical disturbance flow of Fluid 2 is
Q) = b+ 1) = BIFI(W) + Bi(A — DFR(W).  (34)

Here, F,(W) decays exponentially to a constant and F;(W)
and F3(W) decay exponentially to 0 according to Egs. (C11),
(C13), and (C14).

The limit A8; — oo is singular; boundary layers form near
the tangent points (x,y) = (0, £ 1) for A8; >> 1. The critical
volume flow rates in this regime are given by

Q1 =17 (QR logap1 + C1V), 33)
0y = QY — 8y (B logapy +CY),  (36)

where QY is
QR = 5B +8hs + Fa(W) — BLF(W),  (37)

h, is given by Eq. (A7), F4(W) decays exponentially to 0 and
is given by (C17), Q% and B{” are

R = —461(2"%, (38a)
B = day(B1,W)a1(0, W), (38b)

PHYSICAL REVIEW E 95, 063103 (2017)

ol

FIG. 5. Volume flow-rate coefficients for high-viscosity expan-
sions (31) and (32). Note the discontinuities at W = 1.

and ay (B, W) is

i W
ai(Bi, W) =23 oy tanh £ 4 % (39)

k=0 2

The parameters Cf” and CEZ) are obtained by extrapolating
the numerical results and are shown in Fig. 6. They are
approximately linear in B, and almost independent of W.

V. NUMERICAL RESULTS

Critical volume flow rates were obtained by the numerical
procedure described in Sec. III. It is convenient to define the
rescaled critical flow rates,

AMQ1 — 01(0,81,W))

0=
1
oy

(40)

and

_ 0 -00mW)
0500, A1, W) — 030,51, W)’

where @1(0,8;,W) and Q%(0,8;, W) correspond to the limit
A — 0, Q5(00, B1,W) corresponds to A — oo, and ng) is the
coefficient of log A in Egs. (31) and (35).

The rescaled critical flow rates are shown in Fig. 7 for
conditions spanning the entire ranges of the parameters W
and B, and a wide range of viscosity ratios. The rescaled flow
rates converge exponentially in aspect ratio to the results for
W — oo. Calculations indicate that the results are insensitive
to the aspect ratio for W > 3, consistent with Figs. 4-6.

o2 (41)
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FIG. 6. Volume flow-rate coefficients for high-viscosity expan-
sions (35) and (36) in a partially wetting system: W = 1 (crosses),
W =2(X’s), W = 3 (circles), W = 4 (upward triangles),and W > 1
(downward triangles).

Figure 8 shows the dependence of (Q1/Q2)cr on A for
W and B, as indicated. The coflowing regime corresponds to
01/0Q2 > (Q1/Q@2)er, i.e., Fluid 1 is confined by the channel

(a)

6,

0, 0.6

%.01 0.1 1 10 100 1000

FIG. 7. Scaled critical flow rates: i = 7 /2 (red lines), 1 = = /4
(green lines), f; — 0(blacklines), W = 1 (dashed lines),and W > 1
(solid lines).
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FIG. 8. Critical flow-rate ratios for (a) W = 1 with (top down)
Br=7%.%.5.and qzand for (b) W =2, (c) W =3, and (d) W = 4
with (top down) g1 = %, 5, T, . 5. and {i5. Asymptotic formulas

(dashed lines), A — 0 and A — oo.

walls, suppressing drop generation [cf. Figs. 1(c) and 1(e)].
Drops are generated when Q;/Q2 < (Q1/Q2)cr. i.e., when
Fluid 1 does not span the channel [cf. Fig. 1(a)].
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FIG. 9. Critical flow-rate ratios calculated exactly (black line) vs
by the wide-channel approximation (red lines) for (a) W = 3 and (b)
W=4p8=3%.% %, % &, and {5 (top down).

Figure 9 compares the exact calculations for A(Q/Q2)cr
with the approximate calculations for W >> 1 described in
Sec. III. The results indicate that the wide-channel approxi-
mation is accurate for W > 3, consistent with the insensitivity
with respect to W shown in Figs. 4-7. Numerical calculations
for the approximate curves shown in Fig. 9 and asymptotic
formulas for low- and high-viscosity-ratios are given in
Appendix D.

1_ T T T
[ X X
xX X x X
X
X
X
AQ1 o4 ]
Q2 §
X
o]
®
0.01 e O
3 5 10 20 30

w

FIG. 10. Comparison of the critical flow-rate ratios predicted by
theory (line) vs experiments (symbols) with the coflowing apparatus
(A, =0.19, B, = x/2) [15]; coflowing operation (X’s) and drop
generation (circles).
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FIG. 11. Comparison of the critical flow-rate ratio predicted
by theory (lines; f; as indicated) vs experiments (symbols) in a
T-junction apparatus (W = 1.56) [17]. (a) Transition from drop
generation to coflowing and (b) transition from coflowing to drop
generation; co-flowing operation (X’s ) and drop generation (circles).

The rescaled plots of Q; and Q7 shown in Fig. 7 collapse
the theoretical predictions more effectively than the plots
of AQ/Q> shown in Fig. 8. However, Q) is not directly
measured but is instead obtained from Eq. (5). Obtaining the
plots in Fig. 7 from experiments would require measurements
of the pressure gradient in the region of unidirectional flow
(where the critical configuration occurs) to determine the
volumetric base flow Qp. Unfortunately, the local pressure
gradient is not typically reported in experiments.

For the case of the partially wetting Fluid 1, two critical
cross sections are possible, as shown in Figs. 1(b) and 1(d),
giving rise to hysteresis. The transition from subcritical
values of Q;/Q> to supercritical values proceeds through the
critical configuration [Fig. 1(b)] corresponding to curves with
p1 = /2 in Fig. 8; the transition from super- to subcritical
values of Q/Q> proceeds through the critical configuration
[Fig. 1(d)] corresponding to curves with 8; < m/2 in Fig. 8.
For A 2 100, the results in Figs. 7 and 8 were obtained
using the extrapolated O(L~2) expansions (C27) and (C28)
for 1 < m /2 and expansions (B20) and (B21) for g = m/2.

The validity of the lubrication approximation relies on f; <
W and thus fails for the largest contact angles with W = 1 due
to the magnification of the error caused by using the lubrication
approximation for @5, the exact calculation of @, and the
subtraction needed to obtain the flow rate of Fluid 2 according
to definition (5). The results for W = 1 are thus restricted to
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FIG. 12. Experimentally measured critical flow-rate ratios in
a T-junction apparatus (W = 1.56) with A ~ 7 for the transition
from coflowing to drop generation (symbols) [17]. Surfactant in
neither fluid (diamonds), surfactant in Fluid 2 (downward triangles),
surfactant in Fluid 1 (upward triangles), and surfactant in both
fluids (circles); theoretical predictions using best-fit contact angles
as indicated (lines).

B1 < m/6 in Fig. 8. This problem does not arise for the direct
results shown in Fig. 7.

VI. COMPARISON WITH EXPERIMENTS

Figure 10 shows a comparison between theory and data
generated by a coflowing device [15]. The figure shows that
the theory is consistent with most of the observations: drops
are generated for values of AQ/(Q, below the critical curve
and coflowing is observed above. Similar consistency has been
observed in data from other groups [19].

Figure 11 shows a comparison between theory and T-
junction data for a system that exhibits hysteresis [17]. The
data for each viscosity ratio were obtained from experiments
with surfactants present in one or the other or both fluids
(four possible configurations). The data were provided in
aggregate, distinguished only by viscosity ratio, and not
surfactant configuration; contact angles were estimated from
the data in Fig. 12. Comparison of Figs. 11(a) and 11(b)

100 F T T T T T T

Ay

DR @K XX

l 1 1 1 1 1 1
2 2.1 2.2 2.3 A\ 24 2.5 2.6 2.7

FIG. 13. Comparison of critical flow-rate ratios predicted by
theory (line) vs experiments (symbols) with the T-junction apparatus
(W = 1)[18]; coflowing operation (X’s) and drop generation (circles).

(a) (b)

FIG. 14. Cross-section configurations for microfluidic channels
with W =1 and 1 = m/2; (a) critical configuration and (b) stable
subcritical configuration.

indicates that the transition from drop generation to coflowing
occurs for flow-rate ratios at least an order of magnitude higher
than for the reverse transition (coflowing to drop generation).

Figure 12 shows experimentally measured critical flow-rate
ratios for the transition from coflowing to drop generation [17]
and theoretical predictions based on a best fit for the contact
angle. Four contact angles are shown, corresponding to the
four configurations of surfactants. This figure indicates that the
transition from coflowing to drop generation is independent of
(), indicating that the transition is independent of surface
tension. Data for the reverse transition from drop generation
to coflowing [17] (not shown) is also insensitive to Q.

Figure 13 presents T-junction data for a channel with a
square cross section (W = 1) [18]. The transition between
drop generation and coflowing occurs at a considerably lower
flow-rate ratio than predicted by theory. This observation may
be explained by the contrast between the predicted critical
configuration for a nonwetting fluid in a square channel [cf.
Fig. 14(a)] and stable subcritical coflowing configurations [cf.
Fig. 14(b)] similar to those observed by Guillot and Colin
[18]. Subcritical transition in square cross-section channels
was also found in data from other groups [20,21]. For W = 1,
the theory predicts only an upper bound, i.e., drop generation
cannot occur for Q1/02 > (Q1/Q2)cr, but the transition may
occur at lower values of Q1/Q>.

The transition between drop generation and coflowing
operation may also occur at flow-rate ratios lower than
predicted for W > 1 if the stream of dispersed-phase fluid is
off-center, in contrast to the assumption herein (cf. Fig. 1).
In this case, the theory provides an upper bound for the
transition. An off-center dispersed-phase stream may explain
the subcritical coflowing shown in Fig. 11(a). Similarly, the
best-fit contact angles in Fig. 12 may be underestimated.

VII. CONCLUSIONS

An analysis of the critical flow-rate ratio for the transition
between the coflowing and the drop-generation regimes is
presented for microfluidic channels with a rectangular cross
section. The critical flow-rate ratio corresponds to a critical
two-phase flow configuration that occurs in a region of
unidirectional flow (elsewhere, the velocity field may be
nonunidirectional). The critical flow-rate ratio depends on
the viscosity ratio of the fluids, the three-phase contact angle
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formed between the fluids and the channel walls, and the aspect
ratio of the channel cross section. The transition is independent
of the magnitude of interfacial tension and thus is not usefully
characterized by a capillary number. Hysteresis is predicted
for a dispersed-phase fluid which partially wets the channel
walls.

For the most part, experimental observations are consistent
with the transition predicted by theory. Possible exceptions
include square channels and systems with an off-center stream
of dispersed-phase fluid. In these cases, the theory provides an
upper bound for the transition. It should be possible to extend
the unidirectional theory to these cases.

While hysteresis has been observed in microfluidic systems
[19,22], Zagnoni et al. [17] are the first to report data in terms
of the direction of the transition, i.e., from sub- to supercritical
flow-rate ratio (Q1/Q-2), and vice versa, which is useful for
interpreting hysteretic data. Measurements of the pressure drop
across the region where the critical configuration occurs would
allow a significant collapse of the data in terms of rescaled
critical flow rates, (40) and (41), as shown in Fig. 7. Further
validation of the theory will require additional experiments
with partially wetting systems, including observations of the
transition from coflowing to drop generation, and vice versa,
as well as contact angle measurements.
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APPENDIX A: CRITICAL VOLUME FLOW RATES

Critical volume flow rates are calculated by computing the
area integrals of the velocity fields u'" and u'?, generating Q,
and @». In general, O, is expressed as

11,1, W) =271(Qp + Q) (A1)
where Qp and Q/ are given by
0p = 5% (6R*B1(4 — R®) + (6R* —20)cot B1),  (A2)
oo
0 =4) o (F — 1), (A3)
k=0
and I;* are integrals
+ O . + dy
IF=— e cos(ay(s))—ds.  (Ad)
2 i) dS

Here, R, x(s), and y(s) are given by (17) and (18) and ay is
given by (11b). For B; = m/2, the volume flow rate of Fluid
1, obtained from expansion (19), is

01 W) = %(é +c). (AS)
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The volume flow rate of Fluid 2 is given by Eq. (5). The
base flow component is the integral of the base velocity over
the rectangular cross section and is given by

Qo(W) = %W — 8hs — [szaf(mnhakw - 1)], (A6)
k=0

where h,, is defined by

o0
ha =@ =D ~"¢m), tm)=) k™" (A7)
k=1
The disturbance flow rate is given by
1 x(5)
(A, B, W) = 4[ f up(x,y)dx dy(s)
o Jo
1 oW
—4 f f va(x,y)dxdy(s), (A8)
0 Jx(s)
which can be rewritten as
Q511 W) = QL + Oy (A9)
and components @, and Q' are given by
o0
0L, =0p—8) o %I (A10)
k=0
and
o0
Oy =4 o *(—1)eschay W
k=0
o0
-4 o (cothay W — 1) + 1)
k=0
o0
—4 " dea (I — I )sech o W. (A11)
k=0

Coefficients d; are given by Eq. (11a).

The aspect-ratio dependence of the expansion coefficients
cf) (i = 1,2) decays exponentially for W >> 1, as discussed
in Sec. III. Consequently, Q; and Q;, become independent
of W and Q}, — 0. For W >> 1, the base flow, (A6), decays
exponentially to

Qo(W) = 3W — 8hs. (A12)
APPENDIX B: LIMITING BEHAVIOR FOR A
NONWETTING DISPERSED-PHASE FLUID

The behavior of a system with a nonwetting dispersed-phase
fluid in the limits of A <« 1 and A >> 1 is analyzed here.

1. Low-viscosity ratios

A regular perturbation is developed for A <« 1 by expanding
the velocities u™" and u® about A = 0,

u® =270+ ul ol (B1)

u® =u +au® + 2%+ (B2)
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Inserting these expansions into Eqs. (2)—(4) yields

2@ _ |- j=0, . _
Vi =1, i~ i=1.2, (B3)
uP =0, y=%£1, or x=%W, (B4)
uf,,” = uff_)l, (B5a)
' ouy Bsb
an  an ' (BSb)

The leading-order terms ug) are given by (19) and (7); higher-
order terms are given by (21) and (13). These expansions
(1)

are solved sequentially at each order j, solving first for u;

using boundary condition (B5a) and then for uf,-z) using (B5b);
the sequence is started using ul)’ = ul)(r), given by (20).
Integrating the velocity fields yields the critical flow rates,
(29) and (30).

2. High-viscosity ratios

For A > 1, the leading-order velocity in Fluid 2 satisfies
no-slip boundary conditions at the fluid interface. Integrating
the resulting velocity field over the cross section of Fluid 2
yields Q% in Eq. (32).

The net force exerted on the fluid interface by the stresses
in Fluid 2 has the form

FO = F, +ay(W), (B6)

where F, = —, resulting from the pressure-driven compo-
nent of the velocity, (9), balances the net pressure force on
Fluid 1, which is built into the expansion, (19), for uV;
however, the additional contribution ao( W) cannot be balanced
by the stresses associated with this expansion. The force
balance is achieved through the augmented expansion,

ay(W) -
u(r,0) :l_'(ug)(r)+v1(r,9)+ T‘Vrr glogr,-),

(B7)

which satisfies Eq. (2). Here, u' and v, are given by (20)
and (21), r; is the distance from a position (r,f) to a point
of tangency between the fluid interface and the channel wall,
and N is the number of tangent points. For W > 1, there are
two tangent points, located at (r,8) = (1, £ 7/2); for W =1,
there are two additional points of tangency, at (1,0) and (1,7).

Boundary layers form at the points where the fluid interface
is tangent to the channel walls; expansion (B7) describes the
fluid velocity in the outer region away from these boundary
layers. For k > 0, the coefficients cft” in expansion (B7) are
obtained from boundary condition (4b) using the leading-order
velocity field in Fluid 2. The constant r.‘((]l) is obtained by

matching to the velocity field in the boundary layers.

a. Boundary layer

In the boundary layer, a local Cartesian coordinate system
(x’,y") is defined with unit vectors e, and e,,, where e, is
tangent to the fluid interface, e, is normal to the interface
and directed into Fluid 1, and (0,0) is the point where the
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fluid interface is tangent to the wall (corresponding to r; = 0).
In the boundary layer, Fluid 2 undergoes shear flow, and by
continuity of the velocity at the interface, (4a),

@y = w6 0)( 1+ ), (BS)
h(x")
where h(x") = 3x"% is the thickness profile of Fluid 2 in the
boundary layer. The velocity satisfies no-slip conditions on
the channel walls [y" = —h(x")]. Then, by boundary condition
(4b),
au® 24

ay  x? ®B9)

at the interface, y’ = 0. Balancing this boundary condition for
A — oo requires the rescaled inner variables,

=i, " =ul, (B10)

indicating an O(A~!) boundary layer thickness. Inserting these

variables into Egs. (2) and (B9) yields the leading-order
problem for the boundary layer velocity in Fluid 1:

X =ix,

v =o, (B11)
aaV 2
5 - R y=0. (B12)

Additionally, the boundary layer velocity is required to match
the outer expansion, (B7),

lim i < lim «?, (B13)
F—oo ri—0
and thus,
lima) ~logf, 7— oo, (B14)

where 7 = (&2 + 7).

The far-field solution of Egs. (B11), (B12), and (B14) is

w
lima" = %{logf —y —log2), F— oo,

(B15)
where y is Euler’s constant. Finally, the remaining constant
in expansion (B7) is obtained from the matching condition,
(B13),

o0
1 1
a) ==Y =1k

k=1

a(W) ((N
- W((E + 1) log2 +y —logk). (B16)

Here, N = 2, corresponding to W > 1 with tangent points
at (r,@) = (1, £m/2), or N =4, corresponding to the case
W = 1, which has additional tangent points (1,0) and (1,).

b. Correction to the velocity in Fluid 2

Away from the boundary layer, the velocity in Fluid 2 has
the form

u?® =uf + 27 + 072, (B17)
where uf]z) is the leading-order velocity in Fluid 2 described

above. The first-order correction, u(lz), satisfies Laplace’s equa-

tion and has an expansion of the form (13) with coefficients
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obtained from boundary conditions
) = u® (B18)

at the fluid interface, where u! is the leading-order velocity
field in Fluid 1 given above by (B7).

c. Critical volume flow rates

Integrating velocity fields (B7) and (B17) yields the critical
volume flow rates, (31) and (32), where the parameters ng)
and Cf” are given by

, €V =loga —

=00

ow — 2W) —(c(” + 1) (B19)
N aW)\ ° " 8)

Although the boundary layer is needed to determine the
velocity fields in the outer regions of Fluid 1 and Fluid 2,
the direct contribution of the boundary layer velocities to the
volume flow rates is negligible to the order given.

The foregoing expansions were assumed to have the
extended forms

01 =27"'Q0(logr — €{") + 172B5" (log A + CY"),
(B20)

0, = Q2 +17'B?(logr + C?) + A72BY (log A + CP),
(B21)

where Q) CE”, 0%, B%z), and ng) correspond to Egs. (31)
and (32) and the O(1~?) terms were obtain by numerical ex-
trapolation. All coefficients in these expansions depend on W.

APPENDIX C: LUBRICATION ANALYSIS, 8; « 1

Here, an analysis is presented for 8, < 1. Under the
assumption that A8, = O(1), the results are uniformly valid
in A. Lubrication approximations are used for the velocity of
Fluid 1, (24) and (25), and the shape of the region it occupies
(23) (cf. Fig. 2). As discussed in Sec. III B, the lubrication
approximation automatically enforces continuity of velocity
at the fluid interface.

The tangential stress exerted at the fluid interface by Fluid
2 is given by

u?  u? d§ ou®
an  ox ]5 ay
where §(y) is the thickness profile, (23b), of Fluid 1. The

tangential stress exerted at the fluid interface by Fluid 1,
obtained from the lubrication form, (24), is given by

u'D /- u? _
Frale —AB @(5(3’)?) — B13(y). (C2)

) (€D

A

Evaluating Egs. (C1) and (C2) at x = 0 and inserting them
into the tangential stress balance, (4b), yields

au? ds au® au?
ax E ady ady

9 /-
= —1pi % (5()')
x=0.

) — Bid(y),
(C3)

Boundary condition (26) is obtained by inserting expansion
(7) into this result.
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Taking the inner product of Eq. (26) with cos oy over the

interval —1 < y < 1 yields the linear system for determining

the coefficients cf),

A.c=pBi(L—1Db, (C4)

where
Aji = coth(ar; W)3 i + ABjay M jy., (C5)
bj =2—1) (7> — 3a;*) + w;(W), (C6)

and «; are the eigenvalues, (11b). Here, the matrix M is
given by

YO AL A S
Mjk = ) Q?_ﬂg (C?)
_
1

] =

and w; is the forcing due to the wall-correction velocity (10),

wj(W) =2 Z(—])kak_? sech(ax W)M . (C8)

k=0

The flow rate Q; is given by Eq. (27). The plug-flow
contribution to the volume flow rate of Fluid 1 is obtained
by inserting the velocity, (7), into Eq. (28a),

8 o0
Qint = B (E + 4§ P (—fa> - FI(W)). (C9)

This formula is also obtained from Eqgs. (A1)~(A3) for 81 < 1;
formulas (A8)—(A11) yield

8 e8]
0; = g5~ 4 el Veq ~ AiFOW)

—4Y " (-1 (tanh (%) - 1), (C10)
k=0

where the term in large parentheses decays exponentially in
W. The function F;(W) is defined by

og
Fi(W)=38 Za;ﬁsech oW,
k=0

(C11)
which decays exponentially to 0.

1. Limiting case A < 1

For AB; <« 1, matrix A, defined by (C5), becomes diagonal,
yielding
¢ = Bi(A — 1)by tanh ax W, (C12)

where by, is defined by Eq. (C6). Inserting this result into (C9)
and (C10) yields critical volume flow rates (33) and (34), where
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F> and F; are defined by

Fy(W) =8(hs — 3h7) + 8 ) (¢ — 3 ") (tanh e W — 1)

k=0
og
+4 Z(—l)"aﬁwk(wnanh W (C13)
k=0
and
> « W
F3(W)=—8 Z S [tanh ( ) tanhcckW—l]

k=

o0

W

— 43 (— e 2wg(W) tanh (“*—) tanh o W,
k=0 2

(C14)

and wy(W) is defined by Eq. (C8). Accordingly, F, decays
exponentially to the constant 8(hs — 3h7), where h, is given
by Eq. (A7), and F3 decays exponentially to 0.

2. Limiting case 18; > 1

For A8, > 1,boundary condition (26) reduces to the no-slip
condition,

u® =0, x=0. (C15)

The resulting velocity is given by expansion (7) with coeffi-
cients

¢ = —di(1 — sechay W) . (C16)

Substituting these coefficients into (C10) yields Eq. (37),
where

%
Fy(W) = gza;S tanh (“*2 )

k=0

w
x (1 _ coth (“"T) _ sechay W) (C17)

decays exponentially to 0.

Due to the no-slip boundary condition, (C15), the critical
flow rate of Fluid 1 vanishes according to Eqgs. (27) and (28).
The leading-order nonzero critical flow rate of Fluid 1 is
obtained by expanding the velocity of Fluid 2 for A8 > 1,

2 2 — 2
u?® — ()—l—A P'I’A ZH(Q)—I—---,

Here, ugm

(C18)

where A = AB;. is the leading-order solution
obtained above and the higher-order terms uf) (k = 0) are
solutions of Laplace’s equation. Truncating the expansion at
O(A~") and inserting it into boundary condition (C3) yields

1ou? 8 5 ou auf 5 0
X ax +8y ») 3y | = ox Bié(y), x=0,
(C19)
where
w? & 14
20— 3" dyo tanh (“*—)cosaky (C20)
ax e 2
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is the stress at the fluid interface from the leading-order
solution.

Neglecting the O(A~!) term in Eq. (C19) and integrating
twice yields the leading-order velocity at the fluid interface,

uP(0,y) = ay(B1, W) log(l — y*) + Fs(y,B1, W) + co,
(C21)

where Fj is an analytic function that vanishes at y — +1, a,
is given by Eq. (39), and ¢y is a constant.

The logarithmic singularities seen in Eq. (C21) indicate the
presence of boundary layers at (x,y) = (0,+£1); the foregoing
first-order correction ugz) describes the velocity in the outer
region away from these boundary layers and the constant ¢
in Eq. (C21) is obtained by matching to the boundary layer
velocity.

In the boundary layer, the velocity satisfies Laplace’s

equation,

19 (o i)

Far\ Br ta
where (r,0) defines a local polar coordinate system centered at
(x,y) = (0,+£1), the channel walls corresponding to# = 0, and

the fluid interface at 6 = :|:(’,£r — p1). Here, the inner variables
are defined as

1 52i (2)
F2 392

-0, (C22)

F=A"r, ay =ud, (C23)

where m > 0 is assumed.
Matching between the inner and the outer velocities,

lim u(z) — llm um

Ff—00

(C24)

and the form of the outer velocity imposed by boundary
condition (C21) requires that the far-field form of the inner
velocity is

i — DO(logF + &), D= aﬂ—'}f "‘;),
|

where &, depends on 8; and W and is obtained by solving the
inner problem.

The exponent in Eq. (C23) is taken to be m = 1 under the
assumption that the first term on the left side of Eq. (C19) must
be retained at O(1) in the boundary layer in order to satisfy
no-slip boundary conditions at # = 0. This is motivated by
the need to balance the integral of the stresses induced by
the leading-order outer velocity. Accordingly, the matching
condition yields

Jlim @ (C25)

co = a1(B1,W)(log A + &).

The boundary layer problem was not solved; the constant &,
was instead extrapolated from numerical results. The results
shown in Fig. 15 show an approximately linear dependence on
p1 and a weak dependence on W for W > 1.
The first-order correction to the velocity in Fluid 2,
m(x y), is then given by (13) with coefficients obtained

as the inner product of u; )(O y) with cosayy. Substituting
the interfacial velocity (C21) and Eq. (C26) into (27) and
(28) yields formula (35) for the critical flow rate of Fluid
1. The leading-order velocity in Fluid 2 uf]z) yields QP [cf.

(C26)
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FIG. 15. Coefficient in the far-field expansion, (C25): W =1
(crosses), W =2 (X’s ), W = 3 (circles), W = 4 (upward triangles),
and W > 1 (downward triangles).

Eq. (37)] and the first-order correction u\” yields the O(A™")
component of Eq. (36).
The foregoing expansions can be extended,

01 =ph [A" (4% log A + Cf”)

+A2(B"log A + cg“)] : (€27)
0, = Q2 + A7'(BPlog A + CY)
+A%(BP log A + CY), (C28)

where a, Cf”, Qg‘;), ng), and C?) correspond to
Egs. (35)~39) and the O(A~?) terms were obtained by
numerical extrapolation. Here, all coefficients depend on §;
and W.

APPENDIX D: WIDE-CHANNEL APPROXIMATION

Here, results are presented for critical flow rates in wide
microchannels, W >»> 1. Numerical values are provided for
a range of viscosity ratios A and several values of the contact
angle B, as indicated, in files Q1 Data.txt and Q2Data.txt of the
Supplemental Material [23]; file Q1Data.txt contains critical
values of A Q) and file Q2Data.txt contains the corresponding
critical values of Q7 defined by

Q2(A.B1, W) = 3W — QJ(L.B1). (D1)
where

2(0.B1) = Q5(%.B1) + Qe

and Q- is the total volume flow rate of the continuous-phase
fluid. Here, O, takes account of edge effects in the channel and
Q’, [defined by Eq. (5)] takes account of the reduced flow due

0, = 0.840332, (D2)
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to the presence of the dispersed phase. The results presented in
Fig. 9 indicate that the wide-channel approximation is accurate
for W > 3.

1. Limiting flow rates at low- and high-viscosity ratios

The limiting cases of low- and high-viscosity-ratios for
wide channels are presented here; nonwetting and partially
wetting dispersed-phase fluids are considered separately.

a. Nonwetting dispersed-phase fluid

The limiting behavior of a nonwetting dispersed phase
is presented in Sec. IVA and Appendix B. For W > 1,
the limiting flow rates for low- and high-viscosity ratios,
(29)—(32), reduce to

m

Q1= i +1.022, A<k, (D3)
5 = 1658 4+0.5772%, A<k 1, (D4)
and
Q1 =2.678(logA — 1.58H171, A > 1, (D5)
7 =12.919 — 1.889(log A — 1.003)A~", A > 1. (D6)

b. Partially wetting dispersed-phase fluid

The limiting behavior of a partially wetting dispersed phase
is presented in Sec. IVB and Appendix C. For W > 1, the
limiting flow rates, (33)—(36), reduce to

Q1= %P —03545B2(A — )+ A1 AB < 1,

(D7)
F=2BA+ D+ Q. M1, (D8)
and
0, =2"1(QW1ogAp, +CV), A > 1, (D9)
= LB +20. — (181 (BP log A + CP),
ABL > 1, (D10)
where
QR =481 +0.724, BY = 1.4478, +4.713, (D11)

C\V ~ 0458, —0.13, C¥ ~ —0.548, —0.29. (D12)

The values given in Eq. (D12) were obtained from a best fit
of the numerical results presented in Fig. 6 corresponding to
W1
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