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ABSTRACT

Binary collision rates are calculated for the permeable particles undergoing (i) Brownian motion, (ii) gravity sedimentation, (iii) uniaxial
straining flow, and (iv) shear flow. Darcy’s law is used to describe the flow inside the permeable particles, and no-slip boundary conditions
are applied at particle surfaces. A leading-order asymptotic solution of the problem is developed for the weak permeability regime
K =k/a®> < 1, where k = % (k1 + k) is the mean permeability and a = aja,/(a; + ay) is the reduced radius; a;, k; (i =1, 2), respectively, is
the radius and permeability of each particle. The resulting collision rates are given by the quadrature of the pair mobility functions for perme-
able particles in the near-contact lubrication region and size-ratio-dependent parameters obtained from standard hard-sphere pair mobility
functions. Collision rates in shear flow vanish below a critical value of the permeability parameter K, that increases with diminishing size
ratio. The analogous problem of pair collision rates of particles with small-amplitude surface roughness da is also analyzed. The formulas for
the collision rates of rough particles provide accurate analytical approximations for the collision rates of permeable particles for all four

aggregation mechanisms and a wide range of size ratios using an equivalent roughness d = 0.72K%/>,
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I. INTRODUCTION

The aggregation of particles suspended in fluids has been the sub-
ject of intense theoretical and practical investigations for over a cen-
tury. Examples of applications encompass deep-bed granular
filtration,' rain-drop formation,™ and particle coagulation in marine
environments, e.g., marine “snow.” ® A fundamental description of
the rates of particle encounters is crucial in properly characterizing the
resulting suspension stability and microstructure.

The rate of coagulation in a dilute dispersion of impermeable
particles was first investigated by Smoluchoswski in 1917” who pro-
posed a model for analyzing interparticle encounters, neglecting the
hydrodynamic interactions and assuming a sticking force at contact.
Fuchs® proposed a correction to Smoluchowski’s model for electrically
charged aerosol particles. Spielman,” Valioulis and List,’’ and Kim
and Zukoski'! analyzed the perikinetic (Brownian) coagulation of
spherical colloidal particles, accounting for pairwise hydrodynamic
interactions and non-hydrodynamic interparticle forces, such as the
van der Waals attraction and electrostatic repulsion.

Curtis and Hocking,IZ Arp and Mason,”  Zeichner and
Schowalter,”” Van de Ven and Mason,"” and Adler'® studied the
orthokinetic coagulation: particle coagulation in suspensions undergo-
ing prescribed flows, including shear flow, and uniaxial straining flow.

Particle coagulation in more general flows has also been consid-
ered.” " In these studies, the pairwise hydrodynamic interactions and
non-hydrodynamic interparticle forces”’ were incorporated in a trajec-
tory analysis.”' *’ Coagulation of sedimenting particles has also been
analyzed using trajectory calculations that incorporate the hydrody-
namic interactions and interparticle forces.” *’

The foregoing analyses only consider the pairwise particle interac-
tions; thus, their application is limited to semi-dilute suspensions.
Pairwise coagulation rates are usually expressed in a dimensionless
form as a collision efficiency, E, i.e., the rate of coagulation normalized
by the coagulation rate in the absence of hydrodynamic and non-
hydrodynamic forces (i.e., as predicted by Smoluchowski’s theory”) sta-
bility ratio is defined as the reciprocal of the collision efficiency, E~'.

Davis and co-workers investigated the effects of hydrodynamic
interactions and interparticle forces on the collision efficiency of
spherical drops in Brownian motion, sedimentation,” linear flows,”"*
and particle flotation by bubbles or drops.” These studies show that
interfacial mobility significantly enhances the collision efficiency of
drops compared to the no-slip boundary conditions appropriate for
rigid particles.

The analysis in most of the foregoing studies is restricted to
either the small- or large-Peclet number limit. Exceptions include
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Zinchencko and Davis™* and Bal’’® who investigated the coagulation
rates in colloidal suspensions by the combination of Brownian motion
and shear flow at arbitrary Peclet numbers, and Zinchenko and
Davis’’ and Ramirez et al.”” who evaluated coagulation rates by the
combination of Brownian motion and sedimentation at arbitrary
Peclet number.

Due to the classical lubrication singularity for vanishing surface-
to-surface separations, hy — 0 (i.e, contact), collisions between
smooth spherical (impermeable) particles are possible only in the pres-
ence of material-specific non-hydrodynamic attractive forces (e.g., van
der Waals forces), or generic physical phenomena, including surface
roughness or particle permeability™” that lead to a breakdown of the
lubrication singularity at contact.

Particles with surface roughness amplitude da are usually treated as
smooth spherical particles, where the surface-to-surface separation is
restricted according to hy > da, contact occurs at hy = da, and the
roughness amplitude is assumed to be small compared to the particle
size, 0 < 1.°°"* Two limits for the coefficient of contact friction have
been considered: zero and infinite, corresponding to perfect slip and no-
slip, respectively, but the results are insensitive to this choice™"" because
the viscous transverse lubrication resistance acting over the near-contact
region dominates the friction acting at the point of contact.

The investigation of the collision efficiency of permeable particles
dates back to 1967 when Sutherland"” proposed a geometric model for
the formation of high-porosity aggregates based on Smoluchowski’s
diffusion equation. Following this previous work, a significant body of
research has been focused on the aggregate formation and collision
rates of particle aggregates (flocs) with highly porous structure. Often,
Brinkman’s equation”” is used for describing the flow inside highly
porous aggregates.”” " Neale et al.”' proposed a correction factor to
the Stokes drag on a settling permeable sphere to account for the per-
meable effects and examined the assumption that an isolated high-
porosity aggregate may be modeled as an impermeable body.””
Adler” analyzed the streamlines using Brinkman’s equation for the
flow inside permeable spheres to predict aggregation-disaggregation
dynamics. Further theoretical and experimental works on the aggrega-
tion kinetics of fractal aggregates with radially varying permeability
showed that collision efficiencies decreased with the fractal dimension
while the viscous drag increased.”

Bibler et al.” used the method of reflections™ to study the pair-
wise hydrodynamic interactions of high-porosity aggregates in linear
flows using Brinkman’s equation to describe flow inside the aggregate.
Collision efficiencies were estimated from a trajectory analysis with
and without the van der Waals forces. The same author used the fore-
going trajectory analysis scheme to explore the collision efficiency of
aggregates accounting for fractal dimension, internal structure, and
interparticle forces.”’ Near-field and lubrication interactions were
unresolved in these studies, and perhaps justified, by the restriction to
particles with high porosities.

Problems involving thin permeable layers or membranes have
been extensively studied,”’ *° including the collision efficiency for par-
ticles captured by drops with a permeable interface.”” In these prob-
lems, the thin permeable layer reduces to a normal velocity boundary
condition. Core-shell particles comprised of a comparatively thin,
highly porous shell and impermeable core have been analyzed using
Brinkman’s equation to describe the fluid flow in the shell,’**” and
collision efficiencies have been calculated.””

ARTICLE scitation.org/journal/phf

Darcy’s law’' is usually a more appropriate model than
Brinkman’s equation for describing flow in porous particles.”” Slip-
velocity boundary conditions apply’” " but no-slip boundary condi-
tions are often used. Brinkman’s equation was derived for creeping
flow through dilute, fixed arrays of particles.””>"” Despite its wide
use for flow in porous materials, Brinkman’s equation is only valid for
very high porosities, and even then, only for specific microstructures,
e.g., arrays of spheres with > 95% porosity.”” Often, it happens that
the Brinkman term (Laplacian of the velocity), while physically unjus-
tified, has a negligible effect so that the Brinkman equation reduces to
Darcy’s law."”

Reboucas and Loewenberg™”” developed a lubrication analysis
for permeable spheres in close contact, hy/a < 1, under the weak per-
meability conditions,

K=k/a* < 1. (1.1)

Here, hy is the surface-to-surface separation, a = a;a,(a; + az)_l is
the reduced radius, k is the mean permeability of the particles,

k=3 +k), (12)

and K is the dimensionless permeability. Their analysis showed that
axisymmetric mobilities for weakly permeable particles are qualita-
tively affected for gap widths hy/a = O(K?*/), and, in contrast to the
impermeable spheres, have non-zero O(K*®) values at contact.
Accordingly, the particle contact is predicted to occur in finite time
under the action of a constant force, leading to finite collision efficien-
cies even in the absence of non-hydrodynamic forces or surface rough-
ness. This is partially offset by the discovery that permeability causes
particles to spend less time in close contact because the transverse
hydrodynamic interactions are also reduced.”’

The weak permeability limit, K — 0, is singular. The particle per-
meability affects the trajectories at O(1) within a thin O(K*/*) bound-
ary layer that forms in the near-contact region outside of the contact
surface. Away from the boundary layer, ho/a > K*/°, permeability
has a weak O(K) effect. Surface roughness is an analogous physical
phenomenon that circumvents the lubrication singularity and forms a
O-thickness boundary layer. These situations are similar to the
O(Ay/ua Ufzo)l/ ? thickness boundary layer that forms in the near-
contact region for the impermeable particles in limit of the weak van
der Waals forces, Ay — 0, where A, is the Hamaker constant, U}y is
the relative velocity of the particles at large separations, a is the particle
size, and p is the fluid Viscosity.z’i‘Rl

In this paper, the collision efficiency of permeable particles is ana-
lyzed for aggregation in Brownian motion, gravity sedimentation, uni-
axial straining flow, and shear flow, each separately considered. Weak
permeability conditions (1.1) are assumed. As an example, permeabil-
ities for partially sintered ceramics are O(107%) m***** correspond-
ing to K = 107® for 10 um particles. Darcy’s law is used to describe
the intraparticle flow, and no-slip boundary conditions are applied at
the particle surfaces. Collision efficiencies are derived for spheres with
small-amplitude surface roughness and the two problems are shown
to be analogous through the definition of an equivalent roughness for
permeable particles. The resulting formulas provide accurate closed-
form analytical approximations for the collision efficiencies of perme-
able spheres. The focus here is on the physical mechanism of particle
permeability; thus, the van der Waals attraction is included only for
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collision efficiencies in Brownian motion and neglected in calculations
of collision efficiencies in flow and sedimentation under the assump-
tion of large Peclet numbers, as explained below. The problem is for-
mulated in Sec. II, and the assumptions are discussed. Collision
efficiency formulas are derived for permeable particles in Sec. 11T and
for rough particles in Sec. I'V. The results are graphically presented
and discussed in Sec. V. Concluding remarks are made in Sec. V1.

Il. PROBLEM FORMULATION

In a dilute suspension, the pair-distribution function, p;,, is gov-
erned by the steady-state Fokker-Plank equation,

V- (pVi2) =0, @1

where V, is the relative velocity of the particles. Particles are assumed
to aggregate on contact; thus, p;; = 0 on a spherical contact surface
with radius » = a; + a,, where a; and a, are the particle radii; far
from the contact surface, p;; = 1.

The relative velocity of the particles is given by”***

Vi, = —D\V[G(s)t+H(s) (1 — #t)] -V (logplz(r) +%§f))

+[L(s)EE+M(s) (1~ £8)] - Vi) +Bog 1
+ 0y X r—[A(s)EF+B(s) (I — £F)] Ex - T. (2.2)

Here, r = r, — r; is the vector between the particle centers, ¥ =r/|r|
is a unit vector along the line-of-centers, I is the identity tensor, and
s = |r|/a is the center-to-center separation normalized by the average
radius (2.8). The quantities E., and @, are the imposed rate-of-strain
and vorticity in the fluid. The quantities k3 and T are Boltzmann’s
constant and absolute temperature; @, is the interparticle potential.
The quantities Dg? and Vlg)g are, respectively, the Stokes-Einstein-
Sutherland relative diffusivity and gravitational particle velocities in
the absence of hydrodynamic interactions (i.e., s — 00),

DY = k3T<m(10) + mé‘”) L VY = [Frgml” — Fagm|, (2.3)
where

(0)_1+Ki

i

= i =1,2 2.4
6mpa; i=12), 24)
are the hydrodynamic mobilities of isolated permeable particles in
Stokes flow with no-slip boundary conditions, and

Fio= ?a?Apg (i=1,2), (2.5)

are the net gravity forces acting on the particles. Here, k; are the particle
permeabilities and K; = k;/a? are the dimensionless permeabilities, 4 is
the fluid viscosity, g is the acceleration of gravity, and Ap = p, — p, is
the excess particle density, where p, and p,, are, respectively, the density
of the suspending fluid and the particles (assumed the same for both).
Equation (2.2) defines the pairwise axisymmetric and transverse
mobility functions G, L, A and H, M, B, respectively. According to
their definitions, G, H, L, and M tend to unity at large separations,
whereas A and B vanish for s — oco. The pair mobilities depend on the
center-to-center separation s, particle permeabilities K; (i=1, 2), and
size ratio k = ay/a;. The linear superposition inherent in the form of

scitation.org/journal/phf

the relative particle velocity (2.2) is predicated on the assumption of
small Reynolds numbers,
(0)
Re — % <1, (2.6)
where Vl(g) = |V§2’ |, and p is the fluid density.

For the weak permeability regime K < 1 considered herein, the
particle mobilities are affected by the permeability only in the near-
contact region and only by the mean permeability (1.2). Outside of
this region, the particle mobilities are approximately equal to the
mobilities of impermeable particles. Impermeable particles with small-
amplitude surface roughness, 6 < 1, will also be analyzed because of
the useful analogy it provides. In this case, impermeable mobility func-
tions apply everywhere away from the contact surface at r = a; + a
+ da, where a is the reduced radius (2.9). For either of these cases, iso-
lated mobilities for impermeable spheres, (67ua;) ' (i = 1,2), can be
used in place of the isolated mobilities for permeable spheres (2.4).
Accordingly, (2.3) simplifies to

po _ kT ©

_2(af —a3)Apg
12 _67'[[107 12,¢ — :

o
Different length normalizations are convenient in different con-

texts. For convenience, these are summarized here. The average and
reduced radius are defined,

(2.7)

1 1
Zl:z((ll‘f'az):ial(l"‘K)? (28)
a=aya(a; + a2)71 =ak(1+ K)_l =va, (2.9)
where K = a,/a; denotes the size ratio and v is the conversion factor
between the average and reduced radius which arises in the analysis to
follow

v=-=2(1+x)". (2.10)

TR

The center-to-center separation r and surface-to-surface separation h are
both relevant, and two corresponding dimensionless lengths are used,

(2.11)

and

ho
€e=—;

a

= ve. (2.12)

A. van der Waals attraction

Herein, consideration of interparticle forces is limited to the
unretarded van der Waals potential,”*

@), = Ay, (2.13)

where Ay is the Hamaker constant, and ®,, is the dimensionless
potential,

_ 1 8K 8K
@y(s) = —~ ( +

(k+1)2(2—4)  (k+1)2 —4(1 — k)

) , (2.14)

(r + 1)2(52 —4)
(k+1)°s —4(1 — x)

+lo
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which has the singular form at contact,

_ v .
O,(¢) = —&+ O(logé), ¢x1, (2.15)
where k, &, and v are defined above.

The dimensionless Hamaker parameter,

Ay = Ap/ksT, (2.16)

characterizes the relative strength of the van der Waals attraction in
Brownian motion; typically, Ay = O(1). The relative strength of the
van der Waals interactions for non-diffusing particles, aggregating
under gravity-driven sedimentation or in a prescribed flow, is charac-
terized by the parameter Qp; which is related to the Peclet number,

0
Pe Pe— w9

Qszv kBT )

(2.17)

where V{;” is given by (2.7) for sedimentation and V1<2> = Ea for

particles in flow, where E, is the imposed strain rate. Often, Pe > 1
and thus Qp > 1. Consider, for example, 30 um particles in a fluid
with viscosity 4 = .01 Pasand A ~ 1 for two situations: (i) sediment-
ing in normal gravity with Ap/p =2 and (ii) in shear flow with
shear-rate E., = 10 s~ . For both of these cases, Qy & 10° [and Re
~.001, where the Reynolds number is defined by Eq. (2.6)].

Even for Qg > 1, the van der Waals attraction can be important
because of its singular behavior (2.15). Balancing the O(,uVl((z) a) vis-
cous and O(Apah,?) van der Waals forces acting on the particles in
close contact yields the O(Ay /pa® U1°§)1/ * boundary layer associated
with the weak van der Waals attraction.”””' Comparing to the
O(K?/*) boundary layer associated with the particle permeability”’
indicates that van der Waals attraction is negligible if

5/4

K> Qy (2.18)

The van der Waals attraction is included in our analysis of
aggregation in Brownian motion because Ay = O(1) is typical.
However, the van der Waals attraction is omitted in our collision
efficiency calculations for non-diffusing particles aggregating
under sedimentation or in an imposed flow under the assumption
that Eq. (2.18) holds. Herein, the focus is on permeability and sur-
face roughness as physical mechanisms that give rise to non-zero
collision rates in the absence of non-hydrodynamic forces. The
complementary regime of particle collisions mediated by colloidal
forces has been the subject of numerous classical investigations,
such as those discussed in the Introduction.

B. Collision efficiencies

In this section, pairwise aggregation rates are defined and the
classical formulas for collision efficiencies, given in terms of pair
mobility functions, are recalled for particles in Brownian motion, grav-
ity sedimentation, and in imposed uniaxial straining and shear flows;
each case is separately considered.

The pairwise aggregation rate of particles ] is given by the inte-
gral of the flux over the contact surface at r =r,,”’

e = —Yllan P12V - nds, (2.19)

Te

scitation.org/journal/phf

where 1, = a; + a, + da for particles with surface roughness, other-
wise 7. = a; + a,. Here, n; (i=1, 2) are the upstream number densi-
ties of the particles, and subscript x = B, g, st, sh, respectively, will be
used to denote aggregation in Brownian motion, gravity sedimenta-
tion, straining flow, and shear flow. Collision efficiencies are defined as

E . =J./JY, (2.20)

where J\* is the aggregation rate in the absence of hydrodynamic
interactions (ie, G=H=L=M =1 and A =B = 0). Collision
rates under these conditions are given by’

]éo) = 47m1n2D§g) (a1 + a2), (2.21a)
JO = mny Vi n(ar + a)’, (221b)

for aggregation in Brownian motion and gravity sedimentation, and

(0) 87 3
Js = mmEx(a; + a3)”, 2.22a
st 3\/5 1782 oo( 1 2) ( )
4
]s(;l)) = g”lanoo(m + 02)3, (2.22b)

for aggregation in uniaxial straining flow and shear flow. Here, Dﬁ‘?

and vf‘z’?g are given by Eq. (2.7), and E is the imposed strain rate.
Collision efficiencies are obtained for each aggregation mecha-

nism, by appropriately simplifying the relative particle velocity (2.2),

inserting it into Eq. (2.1), and integrating with boundary conditions,

plz(Sc) =0 and plz(OO) =1, (2.23)

where s, = r./a.

The collision efficiency for Brownian motion is obtained by sim-
plifyin% Eq. (2.2) for neutrally buoyant particles in a quiescent fluid
[ie, Vlg?g = E = o« = 0]. Integrating the resulting radial velocity
in Eq. (2.1) and applying boundary conditions (2.23) yield’

Ep = 1/Ix(s.), (2.24a)
00 eAH(i)(s)

As indicated, the van der Waals attraction is retained in the above for-
mula for the binary collision efficiency of particles in Brownian
motion. The formulas below for collision efficiencies in sedimentation
and linear flows are derived with the van der Waals attraction omitted,
as discussed in Sec. 1T A.

The collision efficiency for gravity sedimentation is obtained
by inserting Eq. (2.2) simplified for non-diffusing particles in a quies-
cent fluid [ie, D\) = Eo. = w. = 0] into Eq. (2.1). Dividing the
resulting components of the relative velocity normal, and parallel, to
the line-of-centers, and integrating the critical trajectory upstream
from the equator of the contact surface to determine the radius of the
upstream collision cross section, yieldz“t’27

Ey = &), (2.25a)
% L(s) — M(s)d
I(s) = J %f (2.25b)

The collision efficiency for uniaxial straining flow is similarly obtained
after inserting Eq. (2.2), simplified for non-diffusing, neutrally buoyant
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particles in an axisymmetric flow [ie., Dﬁ? = Vl(g)g = 0 = 0], into

Eq. (2.1). The result jg? >

Ey = ¢ 3lslsd) (2.26a)

_ [*A(s) — B(s)ds
Ia(s) = L AL s (2.26b)

A more complicated picture arises in shear flow due to the existence of
nearby recirculating (closed) particle trajectories that do not contribute
to particle aggregation at steady state and must be subtracted from the
net particle flux on the contact surface. The collision efficiency in this
case is given by’

3/2
Eg, = (e’““(‘") — Sh(&)) , (2.27a)
1 (> B(s)
Lp(s) == | e —"" _ds 2.27b
sh( ) 4.[5 1 —A(S) ) ( )
where e — I, > 0 is assumed; for e 2 — I;, < 0, Ey, = 0.

C. Permeable particles

For permeable particles, the pairwise mobilities that appear in Eq.
(2.2) depend on the particle separation, the size ratio, and the perme-
ability parameter g,"

q= eK 2% = V71£K72/5 , (2.28)

where K is the dimensionless mean permeability and € is the dimen-
sionless gap (2.12).

Under the weak permeability conditions (1.1), the particle mobi-
lities are approximately the same as those for impermeable particles
with O(K) error for g >> 1, but they are qualitatively altered for
q = O(1). The near-contact axisymmetric mobilities for permeable
particles exhibit a simplified, separable dependence on permeability,”’

14
Ge=v 1=, 2.29
=V (2:292)
4
Le = Ry(K) ——, 2.29b
) (2.29)
As =1—Ry(k) i (2.29¢)

flq)’

where R, and Ry, respectively, are the dimensionless contact resistan-

ces that arise for particles in point-contact migrating parallel to their

line-of-centers in gravity and uniaxial straining flow. The function f(g)

is the numerical solution of an axisymmetric Reynolds lubrication
: 39 . .

equation that has the asymptotic properties,

fl@) =aqg—ad +0(), q<1, (2.30a)
f@=1-cq?+0(q"), gq>1, (2.30b)

where ¢; =0.7507, ¢; =0.224, and ¢; = 1.8402. Inserting Eqs. (2.28)
and (2.30a) into Eq. (2.29) reveals that the axisymmetric mobilities of
permeable particles have non-zero O(K?/®) contact values in contrast
to the vanishing mobilities at contact for impermeable particles.”’ This
is why the permeable particles can aggregate even in the absence of
interparticle forces.

The transverse mobilities M and B have the lubrication forms

scitation.org/journal/phf

B .5 B
my + mylog ™' + my {IOg &t - Eg(q)} log &' + meg(q)

Mg’ = )
B . 5 B
my + mslog &' + {logé 't Eg(q)} log&™" + mzg(q)
(2.31a)
.. 5 _
by +bylog& ' + by {IOg &t - Eg(q)} log &' + bsg(q)
B =

G )

B . 5 -
by + bslog&™' + {logg - Eg(q)}logc '+ brg(q)
(2.31b)

where the coefficients m; and b; (i = 1-9) depend on the size ratio.
The function g(g) is the numerical solution of a transverse Reynolds
lubrication equation® with the asymptotic properties,

12
g(q) = —?logq +ca+0(g), g<1, (2.32a)

g@) =cq?+0(q°), g>1, (2.32b)

with ¢4 = — 0.48 and ¢5 =2.12. Inserting the limiting result (2.32a)
for ¢ — 0 into Eq. (2.31), yields permeability-dependent contact val-
ues for the transverse mobilities.”’

The lubrication forms of the classical mobility functions are

Geo=v'¢, (2.33a)
Leo = Ry(x) &, (2.33b)
Agp=1—Ry(x)¢ (2.33¢)

and

my + my log EV b my long1

Mgy = , 2.34a
=0 my + ms log g logzg*f1 ( )

by + bylog &7 + by log?é !
Beg= L1 72008 ¢ thloge (2.34b)

by + bslog ¢ 4 log?e ™!

These results are recovered from formulas (2.29) and (2.31) by setting
f=1 and g=0, corresponding to g — oo, according to Egs. (2.30b)
and (2.32b).

Away from the near-contact region, the particle mobilities are
approximated by the mobilities of impermeable particles, denoted by
Gy, Lo, Ao, My, By, under the assumption of weak permeability, as dis-
cussed above.

lll. COLLISION EFFICIENCY FORMULAS FOR
PERMEABLE PARTICLES

In this section, a leading-order asymptotic formulation is pre-
sented for the computation of collision efficiencies of weakly perme-
able particles. Collision efficiencies are determined by the values of the
collision efficiency integrals (2.24)-(2.27) on the contact surface at
s=2. The formulation employs a uniformly valid approximation of
the integrands in Egs. (2.24b)-(2.27b) for K < 1. The resulting colli-
sion efficiencies are given by a quadrature of lubrication approxima-
tions for the mobility functions of permeable particles in the near-
contact region, and the size-ratio-dependent parameters are derived
from standard hard-sphere mobilities. The details of the generic
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derivation are provided in Appendix A, and the procedure for evaluat-
ing the formulas is provided in Appendix B.

A. Collision efficiency for Brownian motion

The binary collision efficiency for permeable particles undergoing
Brownian motion is given by Eq. (2.24). The collision efficiency inte-
gral (2.24b) is evaluated on the contact surface by the procedure
described in Appendix Al. Accordingly, the functions P(s) and Q in
Eq. (A1) are given by

Q(s) = G(s), (3.1a)
zeAn‘D(S)
P(s) = a (3.1b)
and correspondingly, by Eqs. (2.29a) and (2.15),

vLE
Q: = 7N (3.23)

T f@

efyzéH
Pe="0r. (3.2b)

The corresponding function, Gy, for impermeable spheres is also
required, and in the lubrication regime is given by Eq. (2.33a). The
required indefinite integral (A11) is

Y wapdé v (I/AH)
Fa(x) = Colia 33
B(x) VJOe 228 ) (33)
where E; = [ e~'dt/t is the exponential integral.

Inserting Eqgs. (3.1)-(3.3) into Eq. (A12) and the result into Eq.
(2.24) yields the collision efficiency,

-1
EW = {rB +AY - gEl (Ak)} , (3.4)
where
00 Ap®(t) A
—ol)e 2+1)°G(1) 2 68
00 26]\;.,&)(!) B
:J ——————dt Ay >0 (3.5)
o (2+1)°G(¢)
and

AY =Y U& e Mlf(g) ~ 1) 50+ | e p(g dﬂ 69

1
P: = > (3.8b)
and
v
Fpo(x) = Elogx, (3.9)
yielding the collision efficiency,
EW = {FB,O+A§§2) —gloguKz/s} L A1, (3.10)
where
Tso = lim JOC 2 g+ Vioge (3.11)
=) eroten” T2 8t '
and

> dq (', .dq| .
A :g Ul [f(q) — HEqJFLf(Q) ﬂ =0.1626v.  (3.12)

Here, I'p ¢ depends only on the size ratio, and V*1A292) has the indi-
cated constant value. The numerical value of this integral was previ-
ously computed to determine the contact time between the permeable
particles under the action of a constant force [Ref. 39, Eq. (4.24)].

The effect of the particle permeability vanishes in the comple-
mentary limit of the strong van der Waals attraction, Ay > 1, and the
classical result E](go) for impermeable spheres is recovered,

EY =1, (3.13)

with I'g given by Eq. (3.5).

B. Collision efficiency for sedimentation

The collision efficiency for permeable particles undergoing sedi-
mentation is given by Eq. (2.25). The collision efficiency integral
(2.25b) is evaluated on the contact surface by the procedure in
Appendix Al. The required functions in Eq. (A1) are thus

Q(s) =L(s), P(s) = (L(s) = M(s))s™", (3.14)
and from Egs. (2.29b) and (2.31a), the lubrication forms are
ch:Rgi , ch :—lMg(f,q). (3.15)
f(q) 2
The corresponding functions, L, and M,, for impermeable spheres are

also required; their lubrication forms are given by Eqgs. (2.33b) and
(2.34a). Here, the required indefinite integral (A11) is

Here, the parameter Ay is the modified Hamaker parameter for per- 1 (% dt
meable particles, Fe(x) = — Rigj Meo(t) 2% log f(x), (3.16)
Ay = An . (3.7) and f,(x) is given by Eq. (A30) in Appendix A4. Inserting this result
6K?2/5 with Eqs. (3.14) and (3.15) into (A12) yields the collision efficiency

For Ay < 1, Egs. (3.1b), (3.1b), and (3.3) reduce to integral evaluated on the contact surface,
5 I9(se) = Tg + Al —logf, (VK*°) , (3.17)
P(s) =, (3.82)
$ where
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B % Lo(t) — Mo(t) e
Iy ELO[L Wd”bgfg“)]’ e
. 1 00 d (1 d
AP T Ul [Mf(é,q)f(q)—Mg,o(é)}§+JOM5(67q)f(q);q] :
(3.19)

Inserting this result into Eq. (2.25) yields the collision efficiency,

, -2
Eg‘) = [ef(rg“\fﬂ))fg(Z/Kz/s)} . (3.20)

C. Collision efficiency for uniaxial strain

The collision efficiency for permeable particles in uniaxial
strain is given by Eq. (2.26). The analysis is closely analogous to
that given above for gravity-induced collisions. The collision
efficiency integral (2.26b) is evaluated on the contact surface by
the procedure in Appendix Al. In this case, the required functions
are

Q(s) =1—A(s), P(s) = (A(s) — B(s))s - (3.21)
From Egs. (2.29¢) and (2.31b), the lubrication forms are
¢ |
¢ =Ry, P:==B:<,q), 3.22
Q: ff(q) ¢75 g(g q) ( )

where we define
B=1-B8. (3.23)

The corresponding functions, 1 — A, and By, for impermeable spheres
are also required, and their lubrication forms are given by Eqs. (2.33¢)
and (2.34b). The required indefinite integral (A11) is

L dt

Fao) = - [ Balt);

and fy(x) is given by Eq. (A31) and B is defined by Eq. (3.23).

Inserting this result with Egs. (3.21) and (3.22) into (A12) yields the
collision efficiency integral evaluated on the contact surface,

= logfy(x), (3.24)

19(s)) = T + AY) — logfu(vK?/%), (3.25)
where
| [ Ao(t) — Bo(t) .
Iy = llir(l) L 2+ O = Ao(D)] dt + log f (&) (3.26)
and

Inserting this result into Eq. (2.26) yields the collision efficiency,

3
gk _ [e—(rwAE?) ) fst(,,Kz/S)] . (3.28)

scitation.org/journal/phf

D. Collision efficiency for shear flow

The contact values for two collision efficiency integrals are
needed for the collision efficiency of particles in shear flow, accord-
ing to Eq. (2.27). This includes the integral, I;(s.), analyzed above,
and Iy, (sc), given by Eq. (2.27b), evaluated below by the procedure
in Appendix Al. For Iy(s.), the required functions in Eq. (A1) are

1
Q(s)=1—-A(s), P(s)= Zele“(‘)B(s)s. (3.29)
Here, the evaluation of the collision efficiency integral I is required
away from the contact surface, which is facilitated by the procedure
described in Appendix A3. The lubrication forms of Eq. (3.29) are
obtained using Eqs. (A22) and (A23) and Egs. (2.29¢) and (2.31b),

Qg:Rs[i PV:l(ef(r“*’\“(q))ﬂt(VKZ/S))ZBE(g“ q)
) 2 S (330)
£=0(K*)
and

4 1 — 2 4 4
Qio=Ru&, Pio=-(ef(8) Beo(é), KPP <éxl,

2
(3.31)

where I'y, is given by Eq. (3.26) and fy(&) is given by Eq. (A31). The
function Ay (q) is generically defined by Eq. (A24) and is, in this case,
given by

q/
(3.32)

where B’ is defined by Eq. (3.23). The additional indefinite integral
(A11) needed for evaluating I, on the contact surface is

Aff(q):%ﬁ Uj@ [Bé(é,q’)f(q')—B’g,o(c’)}d; J BL(¢, q’)f(q’)d_q,]’

e 2L 4 dt
WtJ fa(t)Beo(t)—, (3.33)

¢ t

Fsh(é) =

where & is an arbitrary constant.
Inserting the above elements into (A12) yields the collision effi-
ciency integral evaluated on the contact surface,

19(s) = Ty + AY — Fy, (WK?/5) (3.34)
where
> g7 2holt Bo(t) .
rsh_g%“ T (2+t)dt+Fsh(g)} (3.35)
and
—2Iy 00 d
N =S [l aro - femo@] 2
1
+J M2 (K25 BL(E, g)f (q )Lﬂ (3.36)
0

Note that the Value of &y used in Eq. (3.33) affects the value of 'y, but
not the value of I ( o).

Phys. Fluids 33, 083322 (2021); doi: 10.1063/5.0060018
Published under an exclusive license by AIP Publishing

33, 083322-7

¥¥'6€:1L2 20T 19qusdeq €0



Physics of Fluids ARTICLE

Inserting this result together with Egs. (3.25) into Eq. (2.27)
yields

) 3/2
B = | (o 0x) — (0 + A - mas)|
(3.37)

where the quantity inside the square brackets is assumed to be positive,
otherwise Eg,=0. In shear flow, there exists a positive, size-ratio-
dependent critical permeability, K., below which Eg, = 0. The critical
permeability is a root of the equation

0 2
(ef(rsﬁ/\ixj)fst (ny/S)) - (Fsh + Aigi = Lsh (VK*%/S)) =0,
(3.38)

where Ag?*) and As)li denote evaluation at K = K,. The existence of a
critical permeability is analogous to the critical roughness below which
particle contact does not occur in shear.”

IV. COLLISION EFFICIENCY FORMULAS FOR ROUGH
PARTICLES

The aggregation of particles with small-amplitude surface
roughness ¢ < 1 is considered in this section because of the quali-
tative similarity to the aggregation of permeable particles. Rough
particles also have axisymmetric mobilities with non-zero contact
values and can thus undergo aggregation in the absence of non-
hydrodynamic interparticle forces. The O(d) boundary layer that
forms in the limit of small-amplitude roughness is analogous to
the O(K?/®) boundary layer formed with permeable particles in the
weak-permeability limit (1.1).

The axisymmetric mobilities of particles with surface roughness
have non-zero O(J) contact values because the contact surface is, by
definition, at a non-zero surface-to-surface separation, e = J; the con-
tact values are obtained by inserting € = ¢ into the near-contact mobi-
lities for impermeable particles Eqs. (2.33) and (2.34). For separations
€ > 0, the mobilities of rough particles are identical to those for
smooth, impermeable particles.”” "

A. Collision efficiencies for rough particles

As shown in Appendix A2, the values of collision efficiency inte-
grals at the contact surface, s =2+ vd, for particles with small-
amplitude surface roughness, o, are directly obtained from the contact
values of collision efficiency integrals for permeable particles by mak-
ing the following substitution:

A® — F(wK*?) — F(1d). (4.1)

This result is supported by Eq. (A25). By this procedure, the collision
efficiencies for particles with small-amplitude surface roughness are
derived below. A direct derivation of the formulas is presented in
Appendix A2, and the parameters needed for evaluating the formulas
are provided in Appendix B.

1. Brownian motion

By the procedure described above, using substitution (4.1), the
collision efficiency for rough particles in Brownian motion is derived
from Eq. (3.4) and is given by

scitation.org/journal/phf

-1
5 14
Ey = [FB —5E (As)} : (4.2)

where Iy is given by Eq. (3.6), E;(x) is the exponential integral, and
Aj is the modified Hamaker parameter for rough particles,

Ay

Ay =—. 4.3
"= s (4.3)
For A5 < 1, Eq. (4.2) reduces to
N -1
EY = [rB,O - %log yé} L As< 1, (4.4)

where I'g is given by Eq. (3.11). The classical result (3.13) is recov-
ered for A; >> 1; surface roughness has a negligible effect under these
conditions.

2. Gravity sedimentation
The collision efficiency for rough particles undergoing sedimen-
tation, derived from Eq. (3.20) by substitution (4.1), is
; -2
EO) — (afg fg(z/é)) , (4.5)
where f, is defined by Eq. (A30) and Iy is given by Eq. (3.18).

3. Uniaxial strain

The collision efficiency for rough particles in uniaxial strain,
derived from Eq. (3.25) by substitution (4.1), is

EY = (e Tfu(wd))’, (4.6)
where f is defined by Eq. (A31) and I is given by Eq. (3.26).

4. Shear flow

By the same procedure, substituting Eq. (4.1) into Eq. (3.38), the
collision efficiency of rough particles in shear flow is given by

3 3/2
Y = [0 T fuv0)) — (T — Faw))] . @)

where f;; is given by Eq. (A31), 'y, by Eq. (3.26), I'y, by (3.35), and Fy,
by (3.33).

 The size-ratio-dependent critical roughness, J,, below which
Eﬁ;: ) = 0,” is a root of the equation obtained by making the same sub-
stitution into Eq. (3.38), i.e.,

(e T fu(v0,))” — (T — F(v0.)) = 0. (4.8)

B. Equivalent roughness

The qualitative similarity between the weakly permeable particles
and the particles with small-amplitude surface roughness suggests the
introduction of an equivalent roughness J,, defined by setting the
corresponding collision efficiencies equal, E%) = E®). Equating
the collision efficiency for permeable and rough particles, by equating
the contact values for the collision efficiency integrals (A12) and
(A20), yields
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F(1d,) — F(K*®) + A© =0. (4.9)

This result suggests &, &~ cxK*/°, reflecting the respective boundary
layer thicknesses for the two problems, where the coefficient ¢, would
be expected to depend on the aggregation mechanism and size ratio of
the particles. Inserting this scaling and Eqgs. (4.11), (A11), and (A14)
into Eq. (4.9) yields an equation for the roughness coefficient, ¢,

[[ Peot@ 2+ [ petcaia - peo0)] 2+ [ piteapiian o

(4.10)

This relationship is not generally invertible except for constant P,
and, under these conditions, ¢, will be independent of size ratio. These
conditions are met for particle aggregation under Brownian motion in
the absence of the van der Waals attraction, according to Eq. (3.1b).
Inserting Eqs. (3.1b) and (3.12) into relation (4.10) yields

(0)
Bog = kK%, o =72 M0 20,7224, (4.11)

The collision efficiency of the particles with permeability K under
Brownian motion without the van der Waals attraction is thus rigor-
ously related to the collision efficiency of particles with surface rough-
ness J.g the result is independent of the size ratio. Defining the
equivalent roughness by equating the collision rates in Brownian
motion is mathematically equivalent to equating the contact time
between the permeable and rough particles under the action of a con-
stant force directed along their line-of-centers starting from an arbi-
trary separation outside of the lubrication region [cf. Ref. 39, Egs.
(4.24) and (4.26)].

Equation (4.11) holds for the constant P; in Eq. (4.10). The non-
constant P arises because of the oblique trajectories that determine
the collision efficiencies in sedimentation, uniaxial strain, and in shear
flow. The transverse mobilities M and B are insensitive to permeability,
thus P; ~ P: "’ but the logarithmic behavior of P at ¢ =0, result-
ing from the lubrication forms of the transverse mobilities (2.34a), sug-
gests that, while the scaling of Eq. (4.11) is expected to hold, the
roughness coefficient, ¢, may be sensitive to the aggregation mecha-
nism, size ratio, and the Hamaker constant (Brownian motion).
However, the results presented below shows this sensitivity is very
weak and support the robustness of Eq. (4.11) for all four aggregation
mechanisms and parameter ranges considered herein.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, the numerical results are presented for the colli-
sion efficiencies of permeable particles undergoing (i) Brownian
motion, (ii) gravity sedimentation, (iii) uniaxial straining flow, and (iv)
shear flow. In the latter case, the results are also presented for the criti-
cal permeability below which Ey, = 0. The corresponding results for
rough particles are also presented using the relationship (4.11). The
procedure for evaluating the collision efficiencies is described in
Appendix B.

Figures 1-5 reveal a very close quantitative agreement between
the results for permeable and rough particles using an equivalent
roughness defined by (4.11) for all four aggregation mechanisms over
a wide range of parameter values; in most cases, the curves for perme-
able particles and particles with equivalent roughness are virtually
indistinguishable.

scitation.org/journal/phf

0.7 ; :

FIG. 1. Coliision efficiencies for particles in Brownian motion, Ay = 10~*; permeable
particles (3.4) (solid lines), rough particles (4.2) with Ag1 = ckA,j1 and ¢ given by
Eq. (4.11) (dashed lines), formula (3.10) (dotted lines); size ratios indicated.

To better understand why the equivalent roughness relationship
(4.11) is applicable even for situations where the collision efficiency is
determined by oblique, asymmetric trajectories, the influence of the
transverse mobility was explored with and without incorporating the
particle permeability. The dotted lines in Fig. 3 depict the results for
permeable particles obtained using the axisymmetric lubrication for-
mula (2.29¢) for permeable particles with the transverse lubrication
formula (2.34b) for the impermeable particles [ie., in place of Eq.
(2.31b)]. Although the particle permeability has no effect on the trans-
verse pair mobility of equal size particles, it has a moderate O(1) effect
on unequal size particles in close contact and qualitatively alters the
near-contact motion for extreme size ratios.”” A comparison of the
dotted and solid lines in Fig. 3, however, indicates that effect of perme-
ability on the transverse mobility is barely perceptible even for
Kk = .125. This finding demonstrates the insensitivity of collision

107 10 1072 102
K2/5
FIG. 2. Collision efficiencies for particles undergoing sedimentation, permeable par-

ticles (3.20) (solid lines), rough particles (4.5) with 64 given by Eq. (4.11) (dashed
lines); size ratios indicated.
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107 10 1073 1072
K2/5

FIG. 3. Collision efficiencies for particles in uniaxial straining flow, permeable par-
ticles (3.28) (solid lines), rough particles (4.6) with d., given by Eq. (4.11) (dashed
lines), permeable particles using impermeable transverse mobility function B: o
(dotted lines); size ratios indicated.

efficiencies to the transverse mobility and provides a plausible explana-
tion for the robustness of the proposed equivalent roughness (4.11) for

permeable particles.

Bibler et al.”® calculated the collision efficiencies for permeable
particles in shear flow in complementary high-permeability regime,
K = O(1). A reliable quantitative comparison to their results is not
possible due to the disparity of the regimes considered. However, the
results for the largest permeabilities presented in Fig. 4 appear to be in
approximate agreement with the predictions of Babler et al.>® for per-

meabilities in the smallest range they considered.

VI. CONCLUDING REMARKS

scitation.org/journal/phf

0.8}

. 06]

04+

0.2 , ‘
104 1073 - 102
K

FIG. 5. Size ratio vs critical permeability (3.38) (solid lines) and critical roughness
(4.8) with 04 given by Eq. (4.11) (dashed lines).

for weak permeability and small-amplitude roughness. A similar analy-
sis could be developed for collision rates of drops with a low interfacial
mobility.”

A quantitative relation between permeable and rough particles
has been established through an equivalent roughness, allowing use of
the simpler formulas for rough particles as approximations for the
aggregation rate of permeable particles.

SUPPLEMENTARY MATERIAL

See the supplementary material for tabulated values of f{q) and
£(q), and tables of coefficients for the transverse mobility functions M
and B that appear in Egs. (2.30)-(2.32). For further discussion of
these quantities, see Refs. 39 and 80.

Permeability and roughness are analogous generic mechanisms
that allow particle aggregation without the need for interparticle forces.
Simplified asymptotic formulas for binary collision rates were derived
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APPENDIX A: ASYMPTOTIC EVALUATION
OF COLLISION EFFICIENCY INTEGRALS

In this Appendix, the collision efficiency integrals
(2.24b)~(2.27b) are simplified for the case of weakly permeable par-
ticles and for particles with small-amplitude surface roughness.
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1. Collision efficiency integrals for weakly permeable
particles

The general approach to simplifying the evaluation of the inte-
grals ka (x = B, g, st,sh) on the contact surface, s, =2, for weakly
permeable particles, K < 1, is to decompose the efficiency integrals
into four parts and perform the near-contact integrations in the
gap-width variable &,

1M(s,) = Jw g((z Z)) ds =10 £ 1@ 410 1@ (A1)
2 ’
where the integrals are defined,
L "
= Peo(d) .
1% = J S0, A3
g Qeold) : (49
21 Pe(&q)  Peol8)
IS :J - — =l dE, A4
; [Qé(é 9 og:o@)} : (4
2 P:(é9)
(4) — - A5
JO QE(§7Q) ( )
Here, ¢, and ¢, satisfy
KPP <<, &=aKP, (A6)

where d; is an arbitrary constant. Note that the variable ¢ in inte-
grals I®) and I is related to the integration variable, &, by
Eq. (2.28).

The function Q in the above integrals is one of the axisymmet-
ric mobility functions, G, L, or 1 — A, and P is the nonsingular
remainder of the collision efficiency integrand, i.e., combinations of
the mobility functions as they appear in Egs. (2.24b)-(2.27b),
including the factors of s [and the exponential of the van der Waals
potential in Eq. (2.24b)]. The functions Py and Qo correspond to the
mobility functions for impermeable particles appropriate for g > 1.
The functions P and Q¢ are the near-contact, lubrication forms of
Pand Q, and P¢ and Q¢ are the near-contact forms of Py and Q.
The integrands for the collision efficiency integrals of impermeable
spheres have non-integrable singularities, Qz o ~ ¢, at contact, lead-
ing to the divergence of the collision efficiency integrals (and van-
ishing of collision efficiencies) for impermeable spheres.
Accordingly, & > 0 is required for the integration limits of I, and
I5 above.

In the near-contact regime,

¢
=R, A7
A =Rea) (A7)
Qo =RE, (A7Db)

according to Egs. (2.29) and (2.33), where R is the size-ratio-
dependent contact resistance for the axisymmetric mobility func-
tion L or 1 — A; for G, R = v~!. Here, the function f(q) has asymp-
totic properties given by Eq. (2.30). The near-contact form P
corresponds to the lubrication approximation of the integrands,
obtained from Egs. (2.29) and (2.31) [and Eq. (2.15) for integral
(2.24b)].

scitation.org/journal/phf

Inserting Eq. (A7) into integrals (A3)-(A5) and taking account
of the assumed orders of magnitude (A6) yield

@ _ 1[® d¢ . 2/5
9 =2 Peol$) = = F(&) — F(AKT), (A8)
RJ, ¢
oL . o194
I =2 ! [P 9)f (@) = Peo(O)] (49)
dyv! q
(4) 1 ot £ dq
=] reara (10
0 q
where F is the indefinite integral
1[* dt

Combining the above integrals and integral (A2), taking the limit
&, — 0, and arbitrary assigning d; = v, yields the desired result,

1®(s.) =T + A©® — F(uK?®) (A12)
where

[ = lim{I(S) + F(5)). (A13)

1

O Um i ato) —Pial9)] 2 | Pitar@ ).

(A14)

Here, the quantity I, in Eq. (A13) is the collision efficiency integral
for impermeable particles,

< Py(t)
s Qo(1)

dt. (A15)

0e) = |

Recall that ¢ and ¢ in the integrand of Eq. (A14) are related by
Eq. (2.28).

2. Collision efficiency integrals for particles with small-
amplitude roughness

The corresponding analysis for the evaluation of the inte-
grals integrals LY (x= B,g,st,sh) on the contact surface,
se =2+ vd, for small-amplitude surface roughness, ¢ < 1, is
similar to the foregoing analysis for weakly permeable particles
but the situation is simpler because only impermeable sphere
mobility functions are required. In this case, the integrals are
decomposed into two parts,

@y (TP oy
1Y(s,) LJ 20) ds=1" + 1%, (A16)
M =1(&), (A17)
@ _ [* Peol$)
= | @ is

where I is the collision efficiency integral for impermeable spheres
(A15). Inserting Eq. (A7b) into the second integral yields

Phys. Fluids 33, 083322 (2021); doi: 10.1063/5.0060018
Published under an exclusive license by AIP Publishing

33, 083322-11

¥¥'6€:1L2 20T 19qusdeq €0



Physics of Fluids ARTICLE

& dé
10— [ P F e -Fwo). a9
vo c

where F(x) is the indefinite integral (A11). Here again, & > 0 is
required to avoid the singularity of Q: at contact. Rearranging
these integrals and taking the limit &, — 0 yield the desired result,

19(s,) =T — F(vd), (A20)

where I' is given by Eq. (A13).

Note that the contact value of the collision efficiency integrals
for particles with surface roughness can be derived from the result
for permeable particles by the substitution (4.1) in Eq. (A12). This
result is justified below.

3. Evaluation of collision efficiency integral away from
contact surface

The results for the evaluation of collision efficiency integrals
off the contact surface are provided here. This is required for the
evaluation of collision efficiencies in shear flow.

Outside of the near-contact region, the collision efficiency inte-
gral is given by the corresponding integral for impermeable par-
ticles (A15),

1(8) =1(&), &=0(1). (A21)

Two distinct cases arise for the evaluation of collision efficiency
integrals in the near-contact region,

I(q) =T +Alg) - FwK*?), &= 0(K*"), (A22)
(&) =T —F(¢), K <é<l. (A23)
Here, F(x) is the integral defined by Eq. (A11), I is given by Eq.

(A13), and A(q) is the extension of Eq. (A14) for evaluation off of
the contact surface,

Alg) = [j“ P ()~ Peo©)] G+ | PeCea “”ﬂ |
(A24)

Note that Eq. (A23) is actually equivalent to Eq. (A21) according to
the definition (A13).

The result for evaluation on the contact surface, (A12), is
recovered from Eq. (A22) for ¢ — 0 given that Eq. (A24) reduces to
Eq. (A14). Equation (A22) reduces to Eq. (A23) for large g, given
that

lim A(q) = F(vK*®) — F(¢&). (A25)

g—00

Equation (A23) corresponds to the formula for rough spheres
(A20) with roughness vd = £. This result justifies Eq. (4.1) because
q — oo corresponds to K — 0 for & > 0.

4, Two indefinite integrals

The two closely related indefinite integrals, F, and Fi,
defined by Eqgs. (3.16) and (3.24), and needed, respectively, for

scitation.org/journal/phf

calculating the collision efficiencies in sedimentation and uniax-
ial straining flow are evaluated here. The derivation is similar to
that presented in Davis [Ref. 27, Eq. (3.6)]. Both integrals have
the form,

F(x) = logf(x), (A26)
where
) x™ 2logx™' +ds — A ”
x) = ,
(log?x~1 4 dslogx—1 + dy)* \2logx~! +ds + A
. ds . dyds — d, (A27)
1 — 35 b 2 - 5 b
2R 4R
A28
2d; — dpds + ds(d2 — 2dy) (428)
o3 = 5
4RA
and
A= (d2 —4d,)'"?. (A29)

The arbitrary constant associated with the indefinite integral, F(x),
indicates that ¢f(x) can also be used, where ¢ is an arbitrary con-
stant; herein, we take c=1.

For F,(x), defined by Eq. (3.16),

felx) =f(x), (A30)

with f(x) defined by (A27)-(A29), the coefficients given by d;=m;
(i=1-5) in Eq. (2.34a), and R =R, For F,, defined by Eq. (3.24),

fulx) = x/@RIf (), (A31)

with f(x) as defined above, d;=0b; (i=1-5) in Eq. (2.34b), and
R = Rst-

APPENDIX B: NUMERICAL EVALUATION OF
COLLISION EFFICIENCY FORMULAS

Here, we describe the parameters needed to evaluate the colli-
sion efficiency formulas derived in this paper and where to find
them.

The size-ratio-dependent parameters R and I" defined by Egs.
(A7) and (A13), respectively, depend on hard-sphere mobility func-
tions Go, Lo, Mo, Ao, and B,. The axisymmetric contact resistances,
R, were evaluated using the resistance function code of Jeffrey”” by
the procedure described in Appendix D of Ref. 80. The parameters
I' were evaluated using a bispherical coordinate code provided by
Zinchenko."”*® The values of these parameters for several size ratios
are provided in Tables I and II.

The functions F(x) defined by Eq. (A11) require the size-ratio-
dependent coefficients for the near-contact lubrication forms (2.34)

TABLE 1. Contact forces for particles migrating in gravity (y = 1) and in axisymmetric
straining flow.

K 1 09 0.75 0.6 0.5 0.4 0.3 025 0.125

Ry 0.7745 0.7500 0.6947 0.6357 0.5561 0.4538 0.3939 0.2175

R 4.077 4.059 3.947 3.691 3.415 3.034 2.530 2.226 1.285
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TABLE II. Coefficients I" for collision efficiencies of particles in Brownian motion, gravity sedimentation, straining flow, and shear flow. Here, I is obtained with F, defined by

integral (3.33) with & = v x 107°.

K 1 0.9 0.75 0.6
I'so 1.528 1.526 1.513 1.482
I, EE —0.080 0.0042 0.202
—0.038 —0.045 —0.086 —0.186
| 0.6099 0.6148 0.6462 0.7228

0.5 0.4 0.3 0.25 0.125
1.449 1.403 1.341 1.301 1.156
0.413 0.674 0.889 0.916 0.410
—0.299 —0.446 —0.585 —0.618 —0.359
0.8139 0.9551 1.173 1.324 1.917

of the standard hard-sphere mobility functions M¢ ¢ and B¢y which
can be found in a text book.”

Collision efficiency formulas for permeable particles also
require the functions f{g) and g(g) that enter the lubrication forms
(2.29) and (2.31) and the coefficients for M and B¢ in Egs. (2.31a)
and (2.31b).””* For convenience, tabulated values of flg) and g(q)
and tables of coefficient values for the mobility functions are repro-
duced and provided as supplementary material. These parameters
are needed for the functions A”) defined by Eq. (A14).
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