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Near-contact approach of two permeable spheres
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An analysis is presented for the axisymmetric lubrication resistance between permeable
spherical particles. Darcy’s law is used to describe the flow in the permeable medium
and a slip boundary condition is applied at the interface. The pressure in the near-contact
region is governed by a non-local integral equation. The asymptotic limit K = k/a* < 1
is considered, where k is the arithmetic mean permeability, and a~! = al_l +a, !
is the reduced radius, and a; and ap are the particle radii. The formulation allows
for particles with distinct particle radii, permeabilities and slip coefficients, including
permeable and impermeable particles and spherical drops. Non-zero particle permeability
qualitatively affects the axisymmetric near-contact motion, removing the classical
lubrication singularity for impermeable particles, resulting in finite contact times under
the action of a constant force. The lubrication resistance becomes independent of gap and
attains a maximum value at contact F = 61t uaWK ~2/3f,, where j is the fluid viscosity, W
is the relative velocity and f. depends on slip coefficients and weakly on permeabilities; for

two permeable particles with no-slip boundary conditions, f. = 0.7507; for a permeable
particle in near contact with a spherical drop, . is reduced by a factor of 276/3.
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1. Introduction

Interest in the hydrodynamics of particles with permeable media is motivated by particle
filtration processes, where suspended particles interact with a porous filter or frit or
with a porous cake of captured particles (Belfort, Davis & Zydney 1994; Civan 2007;
Hwang & Sz 2011). Permeable particles formed by flocculation of smaller particles and
drops arise in applications such as waste water treatment (Le-Clech, Chen & Fane 2006;
Wang et al. 2020). In other applications, permeable particles are used to enhance mass
transport in packed bed (Rodrigues, Ahn & Zoulalian 1982) and fluidized catalytic reactors
(Davis & Stone 1993), and in chromatography columns (Liapis & McCoy 1994; Blue &
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Jorgenson 2015). The design and construction of equipment for these applications requires
an understanding of the hydrodynamic interactions of suspended permeable particles.

Fluid flow in a homogeneous, permeable material is usually described using Darcy’s
law (Darcy 1856). According to Darcy’s law, the fluid velocity is proportional to the
pressure gradient with proportionality k/u, where p is the viscosity of the fluid, and k
is the permeability of the material that typically scales with the square of the pore size.
Darcy’s law is appropriate when the length scale set by velocity gradients is much larger
than the pore scale. Typically, this situation is realized in materials with a high solid-phase
volume fraction, e.g. flow through a packing of solid particles where the pore scale is set
by the particle size. Brinkman’s equation, by contrast, is an appropriate description for
permeable materials with very dilute solid networks where the pore scale tends to set the
length scale of velocity gradients (James & Davis 2001; Auriault 2009; Nield & Bejan
2013). An example of the latter is flow through a dilute fibrous packing where the pore
scale, and scale of velocity gradients, are set by the distance between fibres, not their
diameter.

Early works that relied on Darcy’s law assumed that no-slip boundary conditions apply
at the interface between the permeable material and the free fluid region (Gheorghitza
1963; Joseph & Tao 1964). There have been several investigations of the appropriate
boundary conditions at this interface (Beavers & Joseph 1967; Saffman 1971; Neale &
Nader 1974; Ochoa-Tapia & Whitaker 1995; Bars & Woster 2006; Cao et al. 2010).
No-slip and slip-velocity boundary conditions are most frequently used. According to the
slip-velocity boundary condition proposed by Beavers & Joseph (1967) and by Saffman
(1971), the tangential velocity on the boundary of a permeable material is proportional to
the tangential stress.

A significant amount of work has focused on analyses of suspended spherical particles
moving towards thin, permeable layers as a model for particle capture in filtration (Goren
1979; Nir 1981; Debbech, Elasmi & Feuillebois 2010; Ramon & Hoek 2012; Ramon et al.
2013; Khabthani, Sellier & Feuillebois 2019). In these studies, it was assumed that the fluid
velocity normal to the permeable layer is proportional to the local pressure difference
across the layer with proportionality k'/u, where k' is the permeance, a characteristic
property of the layer. Radial flow within the permeable layer was neglected. An important
finding in the foregoing studies is that permeable boundaries provide a cutoff for the
lubrication resistance allowing contact under the action of a finite force. This is in
contrast to the case for impermeable boundaries where contact is prevented by the singular
lubrication resistance.

Hydrodynamic interactions between impermeable particles with permeable half-spaces
(Sherwood 1988; Michalopoulou, Burganos & Payatakes 1992); permeable particles and
impermeable walls (Payatakes & Dassios 1987; Burganos et al. 1992; Davis 2001);
between two permeable particles (Jones 1978; Michalopoulou, Burganos & Payatakes
1993; Bibler et al. 2006); and between permeable particles with impermeable cores (Chen
1998; Chen & Cai 1999) have been studied. A few of these works used Brinkman’s
equation to describe the flow inside the permeable medium (Chen 1998; Chen & Cai
1999; Davis 2001), the remainder used Darcy’s law; comparisons show that similar results
were obtained (Chen 1998). Several studies considered the axisymmetric near-contact
motion of the particles. The results demonstrate non-singular lubrication resistance
(Sherwood 1988; Burganos et al. 1992; Michalopoulou et al. 1992; Davis 2001), as seen
for particles interacting with thin permeable layers discussed in the preceding paragraph.
However, the bispherical-coordinate calculations and the collocation method used for these
studies converge slowly for near-contact configurations and become singular at contact.
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Figure 1. Schematic showing (a) two particles with radii and permeabilities a; and k; (i = 1, 2), respectively,
with velocities :I:%W, and separated by a gap hg; (b) profile of near-contact region between the particles
showing cylindrical coordinate system.

Calculations using tangent-sphere coordinates can provide the contact force but are limited
to zero gap width (Sherwood 1988).

The lubrication analysis presented herein provides a bridge between prior studies by
providing efficient calculations for the lubrication resistance of near-contact and contact
configurations of permeable particles. The flow in the permeable medium is governed
by Darcy’s law; no-slip and slip-velocity boundary conditions are considered on the
boundary of the permeable medium. The formulation allows for arbitrary ratios of particle
radii, permeabilities and slip coefficients. Accordingly, the analysis encompasses pairwise
near-contact configurations of permeable and impermeable particles, and configurations
of permeable particles with spherical drops. The zero-size-ratio limit describes the
interactions of particles and drops with permeable half-spaces and fluid interfaces. Scaling
arguments for the lubrication problem are presented in § 2, and the governing equations
are derived in § 3. Section 4 contains analytical and numerical results. The lubrication
resistance and contact force are compared with previous calculations in § 5.

2. Lubrication scaling

The scaling argument presented below for the lubrication flow between spherical particles
explains the qualitative effect of particle permeability.

Lubrication theory is used to describe the axisymmetric near-contact motion between
two permeable spheres in a fluid with viscosity p. A cylindrical coordinate system (r, z)
is invoked with z-coordinate coinciding with the symmetry axis, and radial coordinate r is
distance from the axis, as shown in figure 1. The spheres are separated by a gap hg, and
W = —dhg/dt is the magnitude of the relative velocity of the spheres.

The gap width hy sets the length scale for gradients of the fluid velocity in the
z-direction, and W sets the scale for the magnitude of the fluid velocity in the z-direction.
A distinct lateral length scale L describes variations of the fluid velocity in the radial
direction,

a> L>> hy. @2.1)

Under this assumption, the radial velocity scale is WL/ho according to the continuity
equation, and, by the Navier—Stokes equations, the characteristic pressure in the gap is
given by

pe ~ uWaL™. (2.2)
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Close to the symmetry axis, the profile of the gap between spherical particles is
approximately parabolic,

2
h=hy+ —, (2.3)
2a
where a1 and a, are the sphere radii, and a is the reduced radius (a = al_l +a, ! ). This
geometry suggests the lateral length scale
Lo = (hoa)'/?, (2.4)

which lies in the range (2.1) required for lubrication theory and for the order of
approximation of expansion (2.3), provided that (i9/a)'/? <« 1. For impermeable spheres,
the appropriate lateral lubrication length scale is L.
The time scale for the near-contact motion is
ho
o = W
A second time scale enters the near-contact motion between permeable spheres given by
tr = ho/j, where j is the magnitude of the flux according to Darcy’s law, j = kVp/u
and Vp is the intraparticle pressure gradient. Inside the permeable particles, pressure
variations are the same order of magnitude in the radial and axial directions, and by
the continuity of the pressure across the particle surface, Vp ~ p./L, where p. is the
characteristic pressure in the gap between the particles. Combining these estimates with
the scaling (2.2) and taking L = Ly for the lateral length scale, yields the second time

(2.5)

scale,
1 (Lo :
tr = oK™ (—) . (2.6)
a
Here, K = k/a? is the dimensionless permeability. This result can be re-written as
f Lo\’
* (_") , 2.7)
1o Ly
thereby defining a second lateral length scale,
Ly = aK'. (2.8)
Herein, small permeabilities,
K« (2.9)

are assumed so that Ly lies in the required range (2.1). (Moreover, L; exceeds the pore
scale, aK'/?, as required for the use of Darcy’s law.)

The ratio of the above time or length scales defines a parameter ¢ that characterizes the
near-contact motion of permeable spheres,

¢ = (/1) = (Lo/Le = "0k, (2.10)
a

The shortest of the two time scales, and correspondingly the longest of the two length
scales, controls the near-contact motion. For g > 1, near-contact motion results primarily
by fluid flow from the gap between the particles; for ¢ < 1, near-contact motion results
primarily from fluid flow into the permeable particles. The cross-over between these
regimes occurs for g = O(1).
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The last expression on the right side of (2.10), obtained by inserting (2.4) and (2.8),
indicates that the parameter ¢ can be interpreted as a re-scaled gap width, i.e. hg/a
normalized by K?/3. This interpretation indicates that particle permeability becomes
important for hg/a < K?/5. Under the assumption of small permeabilities (2.9), this
transition occurs within the lubrication regime.

Given that the force driving the near-contact motion is balanced by the pressure in the
lubrication region, F ~ p.L?, and using (2.2) yields

F~ puWa’L™2, (2.11)

where L = max(Lg, Ly). Taking L = Ly recovers the classical singular lubrication
resistance that characterizes the near-contact motion of impermeable spheres,

F ~ uwahy ', (2.12)

and thus W ~ F(ua)~!(ho/a), indicating that the gap decays exponentially in time under
the action of a constant force but contact does not occur. Ultimately, however, when
the gap between the particles diminishes so that max(Lg, Lx) = L, the non-singular,
gap-independent force is

F ~ paWK =27, (2.13)

according to (2.8) and (2.11). Here, W ~ F (nwa)~ K35, indicating that the relative velocity
between permeable spheres approaches a constant value under the action of a constant
force and contact occurs in finite time.

3. Lubrication formulation

Here, a lubrication formulation is presented for the near-contact motion of two permeable
particles. The formulation accounts for the fluid flux j into the particles described by
Darcy’s law with the Beavers—Joseph boundary condition to account for the slip at the
interface of a permeable medium. The particle size ratio is arbitrary; hence the limiting
case of a particle approaching a half-space is recovered. As shown below, it is convenient
to define the mean permeability

k= 3k + k) G.D

to accommodate particles with distinct permeabilities. Accordingly, the dimensionless
mean permeability is defined as

K = k/d°. (3.2)

Two sets of dimensionless lubrication variables are defined corresponding to the choice
of characteristic length: (@) classical lubrication variables for impermeable spheres defined
in terms of the length scale Lo,

_ r _za _ vl _ w _ pLg
r=—, Z:_Z’ V= —, W= —, p= 3
Ly Ly Wa w uWa

j= ]qu/z, (3.3a-f)

and (b) permeable-sphere lubrication variables defined in terms of the length scale Ly,
J

j= W (3.4a—f)

r za vl W pLﬁ
Ly ’ N /,LWa3 '

<
3
S

:L_%a %, Wa

[a\R

r=

Here, (r,z) is the cylindrical coordinate system defined in figure 1; v and w are the
corresponding radial and axial components of the fluid velocity in the lubrication region.
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The dimensionless axial velocity is unaffected by the characteristic length because it is
non-dimensionalized by relative velocity of the particles, W. The parameter ¢ is defined
by (2.10). The dimensionless intraparticle flux j or j in (3.3a—f)—(3.4a—f) is obtained using
the characteristic magnitude,

j~ =, (3.5)

where p. is given by (2.2) and L is given by Lo or Ly, respectively.

3.1. Formulation in classical lubrication variables

The formulation is presented here in terms of the classical lubrication variables for
impermeable spheres (3.3a—f). The resulting leading-order lubrication equation that
governs the pressure in the near-contact region between permeable particles is

g 1d [ dph® (& a dp
2477jip) 1= ['p—-<ﬂ-%)] Ll =0, lim p(») =0,

T rdr FE 12 § q}_l’ qf_l drl;_g F— 00
(3.6a—c)
where the dimensionless form of the gap profile (2.3) is
h=1+ " (3.7
- 2 k) .

and 2j is the total flux of fluid into the particles. The following paragraphs extend the
description of the terms appearing in (3.6a—c).

The tangential fluid velocity on the permeable particle surfaces obeys the
Beavers—Joseph slip-velocity boundary condition vy = ak!/?u =1z, where © is the
tangential stress on the particle surface, and « is the slip coefficient (Beavers & Joseph
1967; Saffman 1971). The slip parameters @; (i = 1, 2) that appear in (3.6a—c) are defined
as

& = a;ik; K5, (3.8)

where «; and K; = k;i/a®, respectively, are the slip coefficient and dimensionless
permeability of particle i, and K is the dimensionless mean permeability (3.2). The radial
velocity profile is derived in Appendix B, where it is shown that the term multiplying
r in the square brackets on the right side of (3.6a—c) is the radial flux (BS) recast in
dimensionless variables (3.3a—f). The function g, derived in Appendix B, accounts for
velocity slip on the particle surfaces and is given by

14+ 4x) 4+ 4xp + 12x1x2

X1,X2) = 3.9
g(x1, x2) I (3.9)
For particles with equal slip parameters, &y = &1, (3.9) reduces to
g=1+6x. (3.10)
The total flux of fluid into the particle surfaces is given by Darcy’s law,
ki op ky Op
0j = 1P 2072 G.11)

;an ;Bn’

where p; and p; are the intraparticle pressure fields that satisfy Laplace’s equation, the
gradients are evaluated on the particle surfaces and » is in the outward normal direction.
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Continuity of the pressure field across the particle surfaces imposes the length scale L
on the intraparticle pressure fields. Given that L < a, the intraparticle pressures decay
quadratically to zero away from the particle surfaces according to (AS). Thus, to leading
order, the intraparticle pressure fields obey Laplace’s equation in a semi-infinite region.
Moreover, the intraparticle pressure fields p; and p, are equal because they are forced
only by the radial pressure distribution in the gap and pressure variations across the gap
(i.e. z-direction) are negligible according to the lubrication approximation. Thus, (3.11)
simplifies to
. kop

J (3.12)

won’
indicating that the total intraparticle flux depends only on the mean permeability (3.1).

As shown in Appendix A, the pressure gradient at the particle surfaces can be expressed
as a boundary integral of radial pressure variations in the gap between the particles.
Inserting the result given by (A8)-(A10) into (3.12) and non-dimensionalizing, yields the

flux,

o -

jp1) = —/ l/i/ (r’d—p) ¢ /r)dr. (3.13)
o rdr r

This result demonstrates the non-local character of the lubrication problem for permeable

particles, i.e. the local flux into the particles depends on the pressure distribution over the

entire lubrication region.

Inserting (3.13) into (3.6a—c) defines an integro-differential equation for the pressure
in the lubrication region between the particles. The classical description for impermeable
spheres is recovered for ¢ — oo but the formulation is singular for ¢ — 0, corresponding
to particles in contact. An alternate formulation that is non-singular for particles in contact
is obtained using the permeable-sphere lubrication variables.

3.2. Formulation in permeable-sphere lubrication variables

In terms of permeable-sphere lubrication variables (3.4a—f), (3.6a—c) and (3.13) become

- 1d|_dph® [& & dp
2j[ﬁ]—1=:5[7—p—g<“1 9)} i

a Pl 0, lim 5(F) =0, (3.14a—
i\ 7 d7 Jim p(r) (3.14a-c)

T F=0 r—00
and
~ 1 d dp -
jlp1(F) = —/0 N (V’J) o' /) dr. (3.15)
In these variables, the parameter g appears only in the dimensionless gap profile,
- 72
h=q+ bR (3.16)

The solution for particles in contact is obtained by setting g = 0.

3.3. Near-contact motion of a spherical drop and a permeable particle

The lubrication formulation for the near-contact motion between a spherical drop with a
fully mobile interface and a particle with permeability k; and slip coefficient /1 is obtained
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in the limit oy — oo (Barnocky & Davis 1989). In this limit, (3.9) reduces to

g =4(1 + 3xy), drop. (3.17)

Given that the drop is impermeable, k = %kl. Accordingly, the dimensionless lubrication
formulations (3.6a—c) and (3.14a—c) for this problem are

i} 1d[_dph’ Q dp
2q_5/2j[ﬁ]—1=——_|:?—p— (1+3“—1>}, LI =0, 1imp@ =0,

?dr d; 3 qh d;‘ =0 r—00
(3.18a—c)
and
- 1d|_dph’ a1 dp o
2jlpl —1l==—=|Fr——14+3— )|, — =0, 1 =0, (3.19a-
/] P d7 |:rd? 3 ( - hﬂ a7 |;_, A, P0) (3-19a-0)

where 7, j} and & are given by (3.7), (3.13), (3.15) and (3.16), respectively.

Although these equations differ from (3.6a—c), (3.13) and (3.14a—c), (3.15), their
solutions can be derived from the latter for the case of two permeable particles with equal
slip parameters using the following transformation,

Le— 2L, p— LYy, & -2 (3.20a—c)

Under this transformation, the dimensionless variables and parameters undergo the
transformations,

Fr—>7, h—H, p— }Tﬁ’, (3.21a—c)
F=2720F, h=27%K, p— 272, (3.22a—c)
g— 274 (3.23)

Inserting transformations (3.20a—c)—(3.23) into (3.18a—c)—(3.19a—c) yields (3.6a—c) and
(3.14a—c), with g given by (3.10), that describe the near-contact motion of two particles
with parameters ¢’ and @) = & = &'.

Embedded in formula (3.17) are three assumptions: (i) surface tension gradients, i.e.
Marangoni stresses, are absent; (ii) tangential stresses in the gap dominate viscous stresses
associated with the fluid flow inside the drop; and (iii) capillary pressure dominates the
lubrication pressure (2.2) so that drop deformation is negligible. Respectively, the latter
two assumptions require AuWL™! « uWhy ! and uWalL™ « ya~', where y is the
coefficient of interfacial tension, Au is the drop-phase viscosity, and L = max(Lg, Ly).
Given definitions (2.4) and (2.8), these restrictions impose upper bounds on the viscosity
ratio, A, and Bond number, Bo = F/(ya),

A < (a/ho)"? max [1, q_l/Z] . Bo < K5 max [1, qz] : (3.24a,b)

Under conditions described by (3.24a), the system is independent of viscosity ratio.
Provided that Bo < K*/3, the neglect of drop deformation is uniformly valid in gap. This
contrasts with the usual near-contact motion of drops with impermeable surfaces where
deformation always becomes important at sufficiently small gaps.
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4. Results

The results presented in §§ 4.1-4.4 are for the case of no-slip boundary conditions on the
surfaces of permeable particles. Under no-slip conditions, only the mean permeability
(3.1) enters the problem and the behaviour of the system is characterized by a single
parameter, g. The effect of velocity slip at the surface of permeable particles is considered
in §4.5. Extension of the results to describe the lubrication resistance for drops and
permeable particles is presented in § 4.6.

4.1. Limiting asymptotic results

4.1.1. Large and small values of q

Large g describes conditions where the effect of permeability on near-contact motion is
weak. For ¢ > 1, (3.6a—c) can be solved by a regular perturbation to obtain an expansion
for the pressure in integer powers of g/,

b ) =pV® +4¢7p V@ + 0, @.1)
and
j®) =@ +0G™"?). (4.2)
The leading-order pressure distribution is
3
5O ) = > 4.3
P00 = 55 (4.3)
corresponding to impermeable spheres, and the leading-order intraparticle flux is derived
from it,
- ©1d (,dp®
i(0) 7y — 7
Jr) = _/0 o (r/ K, ¢ (r'/r)dr. (4.4)

The first-order perturbation problem for the pressure distribution is

1d [LapOm] - dph
- [; P21 =2jo@, L =0, 1impP@ =0,  (@.5a-0)
r dr

r—00

dr 12 dr

=0

where ;) (7) is given by (4.4). Solving this boundary-value problem and integrating by
parts yields,

V) =12 [ / - u()j O dr + u(@) f rj“”(r/)/ dr’i| , (4.6)
r 0

where

2h(F) + 1 h(F) — 1

uy = O o (L> . 4.7)
2h%(r) h(r)

Small ¢ describes conditions where the intraparticle flux qualitatively affects

near-contact motion. For ¢ < 1, the pressure has an expansion in integer powers of ¢

that can be derived by solving (3.14a—c) with a regular perturbation,

(@) = pOF + 0(g), (4.8)

where p(?)(7) is obtained by solving (3.14a—c) with ¢ = 0, corresponding to particles in
contact.
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Figure 2. Pressure distribution between permeable particles with no-slip boundary conditions, ¢ as indicated;
classical (a) and permeable-sphere (b) lubrication variables; two-term large-q expansion (4.1) for ¢ = 5 (dashed
line); inset: curves depicting [3(0)(?) — p(r), far-field expansion (4.10) (dash-dotted lines).

4.1.2. Far-field pressure and intraparticle flux
By the analysis presented in Appendix C, the far-field flux and pressure distributions are

J = =3f(@) 7> +0G7), (4.9)
PO~ PO = 2 F @) g+ 0oz, (4.10)

where PO (7) is the pressure distribution corresponding to impermeable spheres (4.3),
and f is the dimensionless lubrication resistance (4.14a) that depends on the pressure
distribution over the entire lubrication region, reflecting the intrinsically non-local
character of the problem.

4.1.3. Near-field intraparticle flux
The intraparticle flux is largest near the symmetry axis, » < max(Lg, Lx). For ¢ > 1, the
near-field intraparticle flux is

i 9
2%(7) = 2—55 —0@q 7, 4.11)

which is obtained by inserting the leading-order pressure profile (4.3) and the Green’s
function expansion (A14) into boundary integral (3.13). For ¢ « 1, the near-field flux is
obtained by expanding (3.14a—c) to yield

2i(F) =1 — 0G°) — 0(¢Y). (4.12)

This result indicates that fluid near the symmetry axis flows into the particles rather than
radially out of the gap between them.

4.2. Pressure and flux distributions

The pressure and intraparticle flux distributions in the lubrication region are depicted
in figures 2 and 3. These results were obtained by numerical solution of (3.6a—c) and
(3.14a—c). The large-g expansions (4.1)—(4.2) are shown for the case g = 5.

The inset of figure 2 shows that the pressure field is insensitive to particle permeability
in the far-field, consistent with (4.10). The maximum intraparticle flux observed in
figure 3(a) for ¢ — oo agrees with the prediction value (4.11), and the intraparticle flux
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Figure 3. Intraparticle flux distribution into permeable particles with no-slip boundary conditions and ¢
as indicated in terms of classical (a) and permeable-sphere (b) lubrication variables; leading-order large-g
expansion (4.2) (dash-dotted line) in (a) and curve for ¢ = 5 (dashed line) in (b); insets show 2]_'?3 (a) and 2}7’3
(b) with far-field expansion (4.9) (dashed lines).

profile corresponding to ¢ = 0 in figure 3(b) shows a broad region where fluid enters the
permeable particle, consistent with (4.12). The results in figure 3 show regions of negative
flux, i.e. fluid flux emerging from the particle interior. This observation is consistent with
zero net flux into the particles (i.e. fooo Jj(r)yrdr = 0), a consequence of the intraparticle
pressure field obeying Laplace’s equation, as shown in Appendix A. Non-monotonic flux
distributions have been found in similar problems (Knox et al. 2017).

4.3. Lubrication and contact force

Integrating the pressure distribution obtained by solving (3.6a—c) or (3.14a—c) yields the
hydrodynamic force, F,

"D e (4.13)

6mtpaW — \L D '
where f is the dimensionless resistance coefficient corresponding to characteristic length
L. Resistance coefficients f and f, corresponding to classical and permeable-sphere
lubrication length scales Lo and Lg, respectively, are defined

flg)=1 /0 prdr, fl@=1% /0 prdr. (4.14a,b)

The resistance coefficients are related, f = ¢f, according to (2.10) and (4.13). Figure 4
shows the resistance coefficients as functions of ¢; dashed lines depict the limiting
formulas given below. _

Inserting the pressure distribution for impermeable spheres (4.3) into (4.14a) yields f =
1, corresponding to the classical Reynolds lubrication force Fy = 6mua’?W /hg. Retaining
the next term in the large-g expansion (4.1) yields

f@=1-cqg?+0(q™), (4.15)

where ¢ = 1.8402. According to definition (2.10), the result implies that the lubrication
force between particles is reduced in proportion to their mean permeability, i.e. f = 1 —
ckal/zhas/z.
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Figure 4. Hydrodynamic resistance coefficients (4.14a,b) vs. g for permeable particles with no-slip boundary
conditions; formulas (4.15)—(4.16) for large and small ¢ (dashed lines).

Integrating the solution of (3.14a—c) in formula (4.14b) yields
F@ =1 = Dg+ 0@ (4.16)
for ¢ < 1, where fc(o) is the contact resistance,
F9 = 0.7507, (4.17)

corresponding to ¢ = 0, and D = 0.224 is the first-order correction. By contrast to the
singular lubrication force between impermeable spheres, the lubrication force between
permeable spheres with mean dimensionless permeability K attains a finite maximum
value at contact,

F. = 6muaWK 20 (4.18)

consistent with the scaling (2.13).

4.3.1. Permeable and impermeable particles

The near-contact motion between a particle with permeability k; and an impermeable
particle (ko = 0) is interesting because it describes the capture of impermeable particles at
the interface of a porous medium (e.g. filter thicker than L;) and the near-contact motion
of a permeable particle towards an impermeable wall. This case is encompassed by the
above results given that only the mean permeability k = 14, enters the formulation under
no-slip boundary conditions.

4.4. Contact time

Here, the contact time is calculated for two permeable particles under the action of a
constant force along their centreline. The contact time ¢, for two particles brought together
from an arbitrary surface-to-surface separation /i, has two contributions,

fe = Ioo + 10, (4.19)

where the overbar denotes time normalized by the Stokes time 67ua?/F. The time 7o
represents the time required to bring the particles from the initial separation /i, to a gap
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hg that lies in the range
h
KPP« =« (4.20)
a

and 7y is the time required for the gap to decrease from hg to contact in the lubrication
regime. For hg in the range (4.20), qo = (ho/a)K—%/3 > 1, thus I, is insensitive to
particle permeability and can be accurately approximated by the time required for
impermeable spheres to move from their initial separation hy, to a separation hy.
Accordingly,

too = Coo — log(ho/a), (4.21)
where C, is determined by the hydrodynamics of impermeable spheres and depends only

on the initial separation. By contrast, 7y is sensitive to the particle permeability. Taking
W = —dhg/dt and integrating (4.13) yields

q0 f
fo(qo) = f 1D 4. (4.22)
0 q

This calculation can be re-written to isolate the dependence on ¢, given that go > 1 and
f — 1 for large ¢g. Rewriting (4.22) and combining with (4.19), (4.21), and (2.10) yields a
formula for the contact time

7. = Coo — log (COK2/5) + O(K), 4.23)
where
17 00 Py
Co = exp [ [12 4 [ Ld] Soma wow
0 49 1 q

Accordingly, the contact time between permeable spheres under the action of a constant
force is finite, consistent with the discussion below (2.13).

4.4.1. Rough particles
The contact time for impermeable spheres with small amplitude roughness § < a is

7. = Coo — log(8/a), (4.25)

where C, depends only on the initial separation, /., as defined above. This result is
obtained by assuming that hydrodynamic interactions are identical to smooth spheres,
except that contact occurs at a finite separation, 6 (Smart & Leighton 1989; Da Cunha
& Hinch 1996). This simple model for roughness describes particles with a sparse coating
of asperities (Jenkins & Koenders 2005).

An equivalent roughness, .4, can be defined as the roughness amplitude that yields the
same contact time for rough and permeable spheres under the action of a constant force.
Equating the contact time predicted by (4.23) and (4.25) for permeable and rough particles,
respectively, yields

8eq/a = CoK*>, (4.26)

where Cg has the numerical value given in (4.24).
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4.5. Effect of velocity slip

Here, the effect of velocity slip at the surfaces of the permeable particles is explored.
Extensions of the large-g and far-field expansions for finite slip are presented in §§4.5.1
and 4.5.2. The effect of slip on the contact force and contact time are presented in §§ 4.5.3
and 4.5.5. The connection to the problem of impermeable particles with slip-velocity
boundary conditions is discussed in § 4.5.4.

4.5.1. Large-q expansion with finite slip
Solving (3.6a—c) by a regular perturbation for g >> 1 with finite slip requires an expansion
of (3.9) for small values of its arguments. The resulting expansion is

p(r,q, a1, a2) = po(r, q) + pa(F, q, 41, @2), (4.27)

where po(7, q) is the expansion (4.1) for no-slip conditions, and py (7, g, &1, &2) is the
expansion

Pa(Frq, é1,62) = ¢ ' PV (7, @1, &2) + ¢ 2 PP (F, &, G)

+ 473D 7 a1, a2) + 0(g7H, (4.28)
where
(D= ~ N 12,\
pa (r7 ag, 052) == _}—l_3ama (429a)
) m A A 18 . N
P F G, @) = = (45, — Gndiy), (4.29b)
e 144 1 R
PO (7, G, G) = —— = (1663 — T626,). (4.29¢)
50
Here,
am = % (@1 + &) (4.30)
and
~—1 _ 1 A—1
o' =1 (o +ar) (4.31)

are the mean and reduced slip parameters, respectively, both assumed to be O(1). The
leading-order intraparticle flux (4.4) is unaffected by slip for ¢ > 1.
Inserting expansion (4.27) into (4.14a) yields

f(q. &1, 82) = fo(@) +fu(q, &1, @), (4.32)
where fy(g) is given by expansion (4.15), and
Jalq,81,82) = ¢ P @1, 62) + 42 fP @1, 82) + ¢ (@1, 62) +0lg ), (433)
with

V@1, 62) = —26i, (4.34a)
fP(@1, @) = 2482 — G,@m), (4.34b)
@1, &) = — 2164, — 1&,a;,). (4.34¢)

These results indicate that the lubrication resistance for permeable and impermeable
particles with slip-velocity boundary conditions coincide up to O(g~2); the effect of
intraparticle flux enters at O(g~>/?).
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Figure 5. Contact resistance as a function of slip parameter; & = 0 (case 1), & = @ (case 2); limiting
formulas (4.39)—(4.42) (dashed lines).

4.5.2. Far-field expansion with finite slip

At leading order, the far-field intraparticle flux is affected by velocity slip only through the
resistance coefficient f(q, &1, @) and is thus given by (4.9). By the analysis presented in
Appendix C, the far-field pressure distribution, extended for finite slip, is

) —p O (F) = —96q @ ® — 2°f(q. &1.62) F g + OGP, (4.35)
where p© () is the pressure distribution corresponding to impermeable spheres with

no-slip boundary conditions (4.3). The result indicates that the effect of slip dominates
the effect of permeability in the far field.

4.5.3. Contact force
The effect of slip on the contact resistance f, is shown in figure 5 for two special cases

ar =0, (1)}

4.36
a=a. 2) ( )

Typically, case (1) describes the near-contact interaction of permeable and impermeable

particles, discussed in §4.3.1; case (2) typically describes near-contact interactions

between particles with equal permeability and slip coefficients, according to the coupling
between these parameters indicated by (3.8).

Figure 5 shows the numerical results obtained by solving (3.14a—c)—(3.15) with g given

by
1+ 4x
=971 X2

(4.37)

for case (1), and by (3.10) for case (2).
For small values of the slip parameters, (3.9) is expanded for x; < 1 (i = 1, 2) to obtain

g =143 +x)+ 0. (4.38)
This form indicates that the contact resistance, fc (@1, @), has the regular expansion
fe(@r,a2) =fO — Ad,, + 0(G?) (4.39)

for &, < 1, where &y, is the mean slip parameter (4.30), fc(o) is the contact resistance

under no-slip conditions (4.17) and A &~ 0.445; the predictions are shown in figure 5.
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For &, > 1, the contact force has the asymptotic form

fe(@1, &) = —— [loga, + B(@2/a1)] + 0(&, * log &), (4.40)

94,
according to the derivation given in Appendix D, where &, is the reduced slip parameter
(4.31) and the coefficient B is obtained numerically. For equal slip parameters (i.e. case
(2)), B(1) & —0.17 and the resulting asymptote is shown in figure 5.

A different situation arises for @, > 1 with @) = O(1) because &, = O(1) so that
formula (4.40) does not apply. The limit &, — oo corresponds to the near-contact motion
between a spherical drop and a permeable particle with slip parameter &; which has
contact resistance

F DGy =27%%%.27ay), (4.41)

according to (4.50b). Here, fc(&) is the contact resistance for permeable particles with
equal slip parameters. Using this result and assuming the form (4.40) for the finite &
correction, yields

- . EP T Ar(a . . _ .
fo(@1, 62) = 2795727 36) + 1652”[1ogaz+31<a1>]+0(a22loga2), Gy > 1,

(4.42)

where the coefficients A; and B are obtained numerically. For case (1) (i.e. «; = 0), the

coefficients have the values A ~ 0.35, B; ~ 0.43, and fc(O) = ~C(O) given by (4.17). The
resulting asymptote is shown in figure 5.

4.5.4. Impermeable particles with slip-velocity boundary conditions
The classical first-order lubrication problem for the near-contact motion between
impermeable particles with slip-velocity boundary conditions (Hocking 1973) is presented
in Appendix E. Here, the results for permeable and impermeable particles with
slip-velocity boundary conditions are compared for the case of particles with equal slip
parameters.

The comparison requires taking the slip length in (E2) as

A = ak'/?, (4.43)

consistent with Beavers—Joseph boundary conditions (B2a,b), yielding the slip parameter
for impermeable particles,

m=6a/q. (4.44)

Inserting this definition into the small-m expansion (E7) for the resistance f recovers the
first 3 terms of the large-g expansion (4.33)—(4.34) for permeable particles with equal
slip parameters. Similarly, a small-m expansion of the pressure (E3) recovers expansion
(4.28)—(4.29) for the case of equal slip parameters. Also, the leading-order, far-field
correction to the pressure, p — p(), is the same for permeable and impermeable particles,
as seen by inserting (4.44) into the expansion (E4) and comparing the result to (4.35) for
equal slip parameters.

By contrast to the non-singular contact resistance for permeable particles, f(g, &) =
fu(&) for ¢ — 0, presented above in § 4.5.3, the resistance for impermeable particles with
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equal slip coefficients is log singular at contact,

I 1 (%
flg,a@) = —|log| — | —-1], ¢g—0, (4.45)
3a q
according to (E6) and (4.44).

The foregoing comparison shows that for large gaps, hg/a > K*/° (ie. ¢> 1),
permeable particles with slip can be approximated as impermeable particles with
slip-velocity boundary conditions (O’Neill & Bhatt 1991) but this approximation breaks
down at small gaps, ho/a = O(K?/3), where the intraparticle flux becomes significant.

4.5.5. Contact time

In this section, the effect of velocity slip on the contact time between permeable particles
under the action of a constant force is explored for the case of equal slip parameters &; =
& = @. In this case, formula (4.23) becomes

7. = Coo — log <C(&)K2/5) + 0@GKY), (4.46)
where C(&) describes the reduction in contact time resulting from velocity slip and is
given by

17, & 00 Fly 4
, yo) — 1
C(&) = exp [— / AV / %dq} . (4.47)
0 q 1 q

The results in figure 6 show that C(&) is approximately linear. For & < 1, the contact
time (4.46) is controlled by particle permeability with

C(@) = Co+ O(a), (4.48)

where Cyp has the numerical value reported in (4.24), and the constant of proportionality
is approximately 1.15. For & >> 1, the contact time is controlled by the slip velocity with

C(&) = 6e3%4 + 0(1), (4.49)

according to (4.43) and (E11), and the constant is approximately 0.1. The equivalent
roughness, defined by (4.26), can be extended for slip-velocity boundary conditions by
inserting C(&) in place of Cp.

The above results demonstrate that the classical non-integrable lubrication singularity
is removed by either of two mechanisms: non-zero particle permeability, or non-zero slip
velocity.

4.6. Permeable particles and drops with fully mobile interfaces

As shown in § 3.3, the results for a spherical drop with a fully mobile interface and a
particle with permeability k| and slip parameter &; can be obtained from the results for
a pair of permeable particles using transformation (3.20a—c). Accordingly, the resistance
functions f@ (&) and f@ (&), for a spherical drop and a permeable particle, are given by

FDq &) = @3¢, 2784, fD(q q) =27%F02%q,27q1),  (4.50a,b)

where f(g, &) and f(q, &) are the resistance functions for permeable particles with equal
slip parameters.

925 Al1-17



https://doi.org/10.1017/jfm.2021.588 Published online by Cambridge University Press

R.B. Reboucas and M. Loewenberg

16

0 2 4 6 8 10

Figure 6. Effect of slip parameter on contact time for permeable particles; numerical evaluation (solid line),
(4.48)—(4.49) (dashed lines).

Formulas (4.50a,b) extend the foregoing results for the lubrication resistance between
permeable particles with equal slip parameters to the case of a spherical drop and a
permeable particle with slip parameter ¢&;. This includes the results for &; = 0 shown
in figure 4 and (4.15)—(4.17), and, by setting &, = &, also includes the results shown in
figure 5 (curve 2) and (4.33) and (4.39)—(4.40).

According to formula (4.50a,b) and the analysis presented in §§4.4 and 4.5.5, the
contact time between a spherical drop and a permeable particle is

I = Ch, — log (C'@)K*S), 4.51)

where

@) = [0(2*1/5&)]1/ ‘) (4.52)

Here, C(&) is defined by (4.47) and plotted in figure 6. The parameter Cl, is determined
by the hydrodynamic interactions between a spherical drop and an impermeable sphere; it
depends only on the initial separation and the viscosity ratio of the drop.

The contact time between a spherical drop and a rough particle is similarly modified
t. = C., —log(é Ja)'/* thus the equivalent roughness for a permeable particle is the same
for its interaction with a spherical particle or a drop.

5. Comparison with previous work

In this section, the lubrication resistance obtained from this work is compared to prior
bispherical-coordinate calculations by Burganos et al. (1992) and tangent-sphere-coordinate
calculations by Sherwood (1988). The former calculations describe the motion of a
permeable sphere toward an impermeable wall, the later describes the contact force of
an impermeable sphere at the interface of a semi-infinite permeable medium.

The results presented in figure 7(a) show close agreement between the lubrication
theory and the bispherical-coordinate calculations of Burganos et al. (1992). Errors of
the lubrication approximation, defined by

Fex — Fiup

A= ———, (5.1)
Fex
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Figure 7. Hydrodynamic force between a permeable sphere and an impermeable wall vs. gap, K; = 2K as
indicated, a1 = 1; (a) exact calculations (Burganos et al. 1992) e, lubrication theory (lines); (b) errors of
lubrication approximation (5.1) (dashed straight lines between calculations e).

0.8

Figure 8. Lubrication resistance f vs. ¢; exact calculations (Burganos et al. 1992) K| = 2K as indicated,
a1 = 1; lubrication theory with &; = 0.25.

are shown in figure 7(b), where F,, is the exact result from bispherical-coordinate
calculations (Burganos et al. 1992), and Fy,;, is the lubrication approximation. The results
show that errors increase with gap width and permeability, as expected. When recast in
terms of lubrication variables, the bispherical-coordinate calculations cluster onto a single
curve in the regime where the lubrication theory is expected to apply (i.e. (ho/a)'/? <« 1
and K'/3 « 1) as seen in figure 8. For a fixed value of the slip coefficient, the lubrication
theory predicts a weak, 1/10-power dependence on the permeability accordingly to (3.8),
however, this is not discernible in the exact calculations.

Interms of K = %K 1, the contact force reported by Sherwood (1988) for an impermeable

/

sphere in point contact with a permeable half-space, with Kl1 > « 1 under no-slip

boundary conditions, is given by (4.18) with coefficient ~C(O) = 0.27; this is in contrast

to the value fc(o) = 0.7507 determined herein. We have been unable to reconcile this

discrepancy (J.D. Sherwood, personal communication).

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.588.
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Appendix A. Solution of intraparticle pressure in the lubrication region

Here, the normal derivative of the intraparticle pressure on the boundary of the particle
surface is expressed as a boundary integral of the pressure distribution in the near-contact
region. Dimensional variables are used. By the disparity of the length scales, L <« a, the
intraparticle pressure p(r, z) obeys Laplace’s equation

V2 =0 (A1)

in a semi-infinite region, vanishes for z — —oo, and matches the pressure, p(r), in the
lubrication gap on the boundary at z = 0.
Hankel transformation of (A1) and boundary conditions yields

dp R . o0 R
FEe w’P = 0; Plw,0) = / Jo(wr)p(r)rdr, P(w,—00) =0, (A2a—c)
vé 0

where Is(w, 7) = fooo Jo(wr)p(r, z)r dr is the Hankel-transformed pressure. The solution
of the transformed problem is

P(w, 7) = P(w, 0)e“?, (A3)

where P(w, 0) is the Hankel-transformed pressure distribution in the gap between the
particles (A2b); by the inverse Hankel transform, the intraparticle pressure is given by

o0
p(r,2) = / P(w, 0)e®Jo(wr)wdw. (A4)
0
For —z > L,
pr) = o~ (AS)
pr,z) = o (r2 +22)3/2’

where L is the lateral length scale imposed by the pressure distribution in the near-contact
region. The limiting result is obtained using P(w,0) ~ F /(2m) for wL < 1, where F =
21 fooo prdr is the lubrication force due to the pressure in the near-contact region.

From (A4), the normal derivative of pressure on the particle surface is

ap
0z

= / W*P(w, 0)Jo(wr) do. (A6)
7=0 0

Rewriting this result using the identity
. *1d d
— 0’ P(w,0) = / —— (2 ) Jotwryr ar, (A7)
o rdr dr
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yields
813 o 1 d /dp / /
— =— — dr, A8
0z |,—¢ /0 ¥ dr (r dr’ ¢(r /r) " (A%)
where
o
o(rF/r)y="r / Jo(wr)Jo(wr) do (A9)
0
is the Green’s function. Rewriting the Bessel function integral in (A9) yields
2 x 2/x
K , A10
0= TS (1 + x) (A10)

where x = r//r, and K is the first-kind elliptic integral,

/2 do
K@ = / _ (A11)
o Vi—ase
Accordingly, the Green’s function obeys the reciprocal relation
<i>( ).
¢(1/x) = (A12)
A series expansion of (A9) for x < 1 is given by
¥ 7
¢>(x)_x+——l—6—4+0(x) (A13)
and, combining this result with the reciprocal relation (A12), yields
p) =1+ 1x7+ 2xt + 007 (A14)

for x > 1. At x = 1, the Green’s function has the following log-singular expansion,
0@ = (14 26— 1) = 2= 1) log (s — 1]} = 2= 1) — (e 17

YT 2 16 e(s" 2 16
+0 [(1 —0*log|1 —xl] +0(1 — 0. (A15)

As a consequence of the intraparticle pressure field obeying Laplace’s equation (A1),
the integral of the pressure derivative over the surface vanishes, i.e.

rdr = 0. (A16)

This result along with Darcy’s law (3.11), implies that there is zero net fluid flux into the
particles, consistent with the results shown in figure 3.
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Appendix B. Radial flux with Beavers-Joseph boundary conditions

Here, the radial flux between permeable particles with Beavers—Joseph (Saffman)
slip-velocity boundary conditions is calculated, and dimensional variables are used. By
conservation of radial momentum the radial velocity is governed by

v dp
- Bl
Pz = o (B1)

and obeys Beavers—Joseph slip-velocity boundary conditions

1/2dv
, v —anrk
dZ 0 ( ) 2Ky dz

12dv

v(0) = ajk, (B2a,b)

where k; and «; (i = 1, 2) are the permeabilities and slip coefficients for each particle
(Beavers & Joseph 1967; Saffman 1971).
Solving (B1)-(B2a,b) yields

1 dp
V= 2—d—z(z —h)+ (v — v1) + vy, (B3)

where v and v, are the velocities at z = 0 and z = h, respectively. Hence,

dp , 142 dp , 142
vy = _X_1_ph2$’ vy = _X_z_phzﬁ, (B4a,b)
2udr  14+x14+x 2udr 14x1+x
where x; = aik)/* k™1 (i = 1,2). The resulting radial flux is
/’1 4 Ldps ek 7wk ®5)
v = T~ ) )
o CYET T A\ T T

and g is a dimensionless function given by (3.9).

Appendix C. Far-field pressure distribution

The far-field radial pressure distribution can be obtained from a regular expansion of
(3.6a—c) in powers of 1/r. Inserting the expansion of the Green’s function (A13) into
the intraparticle flux (3.13) gives

o 1 [ d [ ,dp 1 [ .d (,dp N
- _ 1 £ dr — — 2 (/= )d/ +0G7d). (C1
APIw) F/O dr’( dr) "Tas ), T oar (rdr/) r+oeT). €

The first term on the right side vanishes because of the boundary conditions (3.6a—c), and
the second term can be integrated by parts to obtain the far-field intraparticle flux (4.9).
Inserting (4.9) into (3.6a—c) and integrating, yields the far-field pressure distribution (4.10)
for no-slip boundary conditions.

For finite slip on the particle surfaces, the function g must also be expanded for r > 1
recognizing that x; = &;¢~ !4~ ! (7). Expansion of (3.9) yields

gx) =1+ 12¢7'a,r 2+ 0™, (C2)

where @, is the arithmetic mean slip parameter (4.30). Then, inserting this result and (4.9)
into (3.6a—c) and integrating, yields the modified far-field pressure distribution (4.35).
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A similar far-field analysis of (3.14a—c)—(3.15) leads to the corresponding result in terms
of permeable-sphere variables (3.4a—f)

J() = —=3f(q. a1, &2)F > + 0G™), (C3)
i o 576 - e .
p—pOF = —964,,7° — — (g &1, )7 TLoG7Y, (C4)

where p© (7) is the pressure distribution corresponding to impermeable spheres (4.3)
recast in permeable-sphere variables.

Appendix D. Contact force for large slip limit

Here, the limiting solution for the pressure distribution and force is derived for particles
in contact (¢ = 0) with large values of the reduced slip parameter (4.31). Expanding (3.9)
for x > 1 yields

g=12x+0(1), (D1)

where x = x1x2/(x1 + x2). Inserting this result into (3.14a—c)—(3.15) yields a differential
equation for the leading-order pressure,

1d /_<dp
— <~5—p) = -84 '+ 0@, (D2)

Fdr | dF ’
where &, is the reduced slip parameter (4.31). The solution,
p=26;"7*+0@?, (D3)

does not satisfy the boundary conditions at 7 = 0 or ¥ — oo due to boundary layers that
format7 ~ &, \/ 3 where the intraparticle flux balances the flow in the gap, and at 7 ~ &/ 2
where the lubrication solution matches to the outer solution for impermeable particles
with slip-velocity boundary conditions. Integrating the leading-order pressure (D3) with

the cutoffs resulting from the boundary layers, leads to the resistance formula (4.40).

Appendix E. Impermeable spheres with slip-velocity boundary conditions

The axisymmetric lubrication problem for a pair of impermeable spheres with slip-velocity
boundary conditions with equal slip coefficients oy = ap = « is presented here. The
first-order lubrication solution, obtained by Hocking (1973) and reproduced below,
provides certain limiting behaviours for permeable particles with slip, as discussed in
§4.5.4. A second-order lubrication solution is available (Blawzdziewicz, Wajnryb &
Loewenberg 1999) but is not needed because only the leading-order solution is developed
in our analysis.
The governing equation for the radial pressure distribution in the gap is

1d[_dph’ dp
rdr| dr12 h dr

m = 6;/ho, (E2)

is the slip parameter, and A; is the slip length. The slip length relates the slip velocity vs to
the tangential stress t on the particle surfaces, vy = 4,7/ .

=0, lim p( =0, (Ela—c)

F—0 F—00

where
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The solution to boundary-value problem (Ela—c) is

p(r, m) 0 0 1 A (E3)
Fom)y=———+ —log——"—.
P mh(r)  m? & h(F) +m
Expanding for large 7 yields the far-field pressure,
pr.m) = pOF) = —16m7 = + 0G*). (E4)
Inserting this pressure distribution into (4.14a) yields the hydrodynamic resistance
- 2
ﬂm=ﬁﬂuwmw+m—ﬂ. (ES)
For m > 1, this result yields
-2
f=—logm—1), (E6)
m

indicating that the lubrication force is log singular at contact, according to (4.13).
Expanding the resistance (E5) for m < 1, yields

m 2 3

F_gqg_m m m 4
f=l=34—5 -5 +om. (E7)

E.1. Contact time

Here, the contact time is calculated for impermeable particles with slip-velocity boundary
conditions. The contact time is given by (4.19) with 7, defined by (4.21) and

. " f(m)
o0
Taking
A h
S22« (E9)
a a

ensures that 7o, is independent of slip and implies that my < 1 so that
fo(mo) = 3 — logmo + O(mp). (E10)

Combining this result with (4.19), (4.21), and (E2) yields
- —324s

t. = Coo — logbe —. (E11)
a

The result indicates that the contact time between impermeable particles with slip-velocity
boundary conditions is finite for Ay > 0.

925 Al1-24



https://doi.org/10.1017/jfm.2021.588 Published online by Cambridge University Press

Near-contact approach of two permeable spheres

REFERENCES

AURIAULT, J.L. 2009 On the domain of validity of Brinkman’s equation. Transp. Porous Media 79,
215-223.

BARNOCKY, G. & DAvis, R.H. 1989 The lubrication force between spherical drops, bubbles and rigid
particles in a viscous fluid. Intl J. Multiphase Flow 15, 627-638.

BARS, M.L. & WOSTER, M.G. 2006 Interfacial conditions between a pure fluid and a porous medium:
implications for binary alloy solidification. J. Fluid Mech. 550, 149-173.

BABLER, M.U., SEFCIK, J., MORBIDELLI, M. & BALDYGA, J. 2006 Hydrodynamic interactions and
orthokinetic collisions of porous aggregates in the Stokes regime. Phys. Fluids 18, 013302.

BEAVERS, G.S. & JOSEPH, D.D. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30,
197-207.

BELFORT, G., DAvis, R.H. & ZYDNEY, A.L. 1994 The behavior of suspensions and macromolecular
solutions in crossflow microfiltration. J. Membr. Sci. 96, 1-58.

BLAWZDZIEWICZ, J., WAINRYB, E. & LOEWENBERG, M. 1999 Hydrodynamic interactions and collision
efficiencies of spherical drops covered with an incompressible surfactant film. J. Fluid Mech. 395, 29-59.

BLUE, L.E. & JORGENSON, J.W. 2015 1.1 wm superficially porous particles for liquid chromatography: part
II: column packing and chromatographic performance. J. Chromatogr. 1380, 71-80.

BURGANOS, V.N., MICHALOPOULOU, A.C., DASSIOS, G. & PAYATAKES, A.C. 1992 Creeping flow around
and through a permeable sphere moving with constant velocity towards a solid wall: a revision. Chem.
Engng Commun. 117, 85-88.

CAO0, Y., GUNZBURGER, M., HUA, F. & WANG, X. 2010 Coupled Stokes-Darcy model with Beavers-Joseph
interface boundary condition. Commun. Math. Sci. 8, 1-25.

CHEN, S.B. 1998 Axisymmetric motion of multiple composite spheres: solid core with permeable shell, under
creeping flow conditions. Phys. Fluids 10, 1550—-1563.

CHEN, S.B. & CAI A. 1999 Hydrodynamic interactions and mean settling velocity of porous particles in a
dilute suspension. J. Colloid Interface Sci. 217, 328-340.

C1VAN, F. 2007 Reservoir Formation Damage, 2nd edn, chap. 18. Elsevier Inc.

DA CuUNHA, F.R. & HINCH, E.J. 1996 Shear-induced dispersion in a dilute suspension of rough spheres.
J. Fluid Mech. 309, 211-223.

DARCY, H. 1856 Les Fontaines Publiques de la Ville de Dijon. Dalmont.

Davis, A.M.J. 2001 Axisymmetric flow due to a porous sphere sedimenting towards a solid sphere or a solid
wall: application to scavanging of small particles. Phys. Fluids 13, 3126-3133.

Davis, R.H. & STONE, H.A. 1993 Flow through beds of porous particles. Chem. Engng Sci. 48 (23),
3993-4005.

DEBBECH, A., ELASMI, L. & FEUILLEBOIS, F. 2010 The method of fundamental solution for the creeping
flow around a sphere close to a membrane. Z. Angew. Math. Mech. 90 (12), 920-928.

GHEORGHITZA, 1. 1963 La formule de Stokes pour les enveloppes sphériques poreuses. Arch. Rat. Mech. Anal.
12, 52-57.

GOREN, S.L. 1979 The hydrodynamic force resisting the approach of a sphere to a plane permeable wall.
J. Colloid Interface Sci. 69, 78-85.

HOCKING, L.M. 1973 The effect of slip on the motion of a sphere close to a wall and of two adjacent spheres.
J. Engng Maths 7, 207-221.

HwaNG, K.J. & Sz, P.Y. 2011 Membrane fouling mechanism and concentration effect in cross-flow
microfiltration of BSA/dextran mixtures. Chem. Engng J. 166, 669—677.

JAMES, D.F. & Davis, A.M.J. 2001 Flow at the interface of a model fibrous porous medium. J. Fluid Mech.
426, 47-72.

JENKINS, J.T. & KOENDERS, M.A. 2005 Hydrodynamic interaction of rough spheres. Granul. Matt. 7,
13-18.

JONES, R.B. 1978 Hydrodynamic interactions of two permeable spheres I: the method of reflections. Physica
A 92, 545-556.

JosePH, D.D. & TAO, L.N. 1964 The effect of permeability on the slow motion of a porous sphere in a
viscous fluid. Z. Angew. Math. Mech. 44, 361-364.

KHABTHANTI, S., SELLIER, A. & FEUILLEBOIS, F. 2019 Lubricating motion of a sphere towards a thin porous
slab with Saffman slip condition. J. Fluid Mech. 867, 949-968.

K~Nox, D.J., DUFFY, B.R., MCKEE, S. & WILSON, S.K. 2017 Squeeze-film flow between a curved
impermeable bearing and a flat porous bed. Phys. Fluids 29, 023101.

LE-CLECH, P., CHEN, V. & FANE, T.A.G. 2006 Fouling in membrane bioreactors used in wastewater
treatment. J. Membr. Sci. 284, 17-53.

925 A1-25



https://doi.org/10.1017/jfm.2021.588 Published online by Cambridge University Press

R.B. Reboucas and M. Loewenberg

LIAPIS, A.L. & McCoy, M.A. 1994 Perfusion chromatography: effect of micropore diffusion on column
performance in systems utilizing perfusive adsorbent particles with a bidisperse porous structure.
J. Chromatogr. 660 (1), 85-96, 17th International Symposium on Column Liquid Chromatography.

MICHALOPOULOU, A.C., BURGANOS, V.N. & PAYATAKES, A.C. 1992 Creeping axisymmetric flow around
a solid particle near a permeable obstacle. AIChE J. 38, 1213-1228.

MICHALOPOULOU, A.C., BURGANOS, V.N. & PAYATAKES, A.C. 1993 Hydrodynamic interactions of two
permeable particles moving slowly along their centerline. Chem. Engng Sci. 48, 2889-2900.

NEALE, G. & NADER, W. 1974 Practical significance of Brinkman’s extension of Darcy’s law: coupled
parallel flows within a channel and a bounding porous medium. Can. J. Chem. Engng 52, 475-478.

NIELD, D.A. & BEJAN, A. 2013 Convection in Porous Media, 4th edn. Springer.

NIR, A. 1981 On the departure of a sphere from contact with a permeable membrane. J. Engng Maths 15,
65-75.

OCHOA-TAPIA, J.A. & WHITAKER, S. 1995 Momentum transfer at the boundary between a porous medium
and a homogeneous fluid — I. Theoretical development. Intl J. Heat Mass Transfer 38, 2635-2646.

O’NEILL, M.E. & BHATT, D.S. 1991 Slow motion of a solid sphere in the presence of a naturally permeable
surface. Q. J. Mech. Appl. Maths 44, 91-104.

PAYATAKES, A.C. & DAssI10sS, G. 1987 Creeping flow around and through a permeable sphere moving with
constant velocity towards a solid wall. Chem. Engng Commun. 58, 119-138.

RAMON, G.Z. & HOEK, E.M.V. 2012 On the enhanced drag force induced by permeation through a filtration
membrane. J. Membr. Sci. 392-393, 1-8.

RAMON, G.Z., HUPPERT, H.E., LISTER, J.R. & STONE, H.A. 2013 On the hydrodynamic interaction
between a particle and a permeable surface. Phys. Fluids 25, 073103.

RODRIGUES, A.E., AHN, B.J. & ZOULALIAN, A. 1982 Intraparticle-forced convection effect in catalyst
diffusivity measurements and reactor design. AIChE J. 28 (4), 541-546.

SAFFMAN, P.G. 1971 On the boundary condition at the surface of a porous medium. Stud. Appl. Maths 50,
93-101.

SHERWOOD, J.D. 1988 The force on a sphere pulled away from a permeable half-space. Physico-Chem.
Hydrodyn. 10, 3—12.

SMART, J.R. & LEIGHTON, D.T. 1989 Measurement of the hydrodynamic surface roughness of noncolloidal
spheres. Phys. Fluids A 1 (1), 52-60.

WANG, J., CAHYADI, A., WU, B., PEE, W., FANE, A.G. & CHEW, J.W. 2020 The roles of particles in
enhancing membrane filtration: a review. J. Membr. Sci. 595, 117570.

925 A1-26



