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Resistance and mobility functions for the
near-contact motion of permeable particles
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A lubrication analysis is presented for the resistances between permeable spherical
particles in near contact, h0/a � 1, where h0 is the minimum separation between
the particles, and a = a1a2/(a1 + a2) is the reduced radius. Darcy’s law is used
to describe the flow inside the permeable particles and no-slip boundary conditions
are applied at the particle surfaces. The weak permeability regime K = k/a2 � 1 is
considered, where k = 1

2 (k1 + k2) is the mean permeability. Particle permeability enters
the lubrication resistances through two functions of q = K−2/5h0/a, one describing
axisymmetric motions, the other transverse. These functions are obtained by solving
an integral equation for the pressure in the near-contact region. The set of resistance
functions thus obtained provide the complete set of near-contact resistance functions
for permeable spheres and match asymptotically to the standard hard-sphere resistances
that describe pairwise hydrodynamic interactions away from the near-contact region. The
results show that permeability removes the contact singularity for non-shearing particle
motions, allowing rolling without slip and finite separation velocities between touching
particles. Axisymmetric and transverse mobility functions are presented that describe
relative particle motion under the action of prescribed forces and in linear flows. At
contact, the axisymmetric mobility under the action of oppositely directed forces is
U/U0 = d0K2/5, where U is the relative velocity, U0 is the velocity in the absence of
hydrodynamic interactions and d0 = 1.332. Under the action of a constant tangential force,
a particle in contact with a permeable half-space rolls without slipping with velocity
U/U0 = d1(d2 + logK−1)−1, where d1 = 3.125 and d2 = 6.666; in shear flow, the same
expression holds with d1 = 7.280.
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R.B. Reboucas and M. Loewenberg

1. Introduction

Understanding particle filtration and particle flocculation require an understanding of the
hydrodynamic interactions of permeable particles and particles with a permeable medium
(Belfort, Davis & Zydney 1994; Le-Clech, Chen & Fane 2006; Civan 2007; Hwang
& Sz 2011; Wang et al. 2020). The operation and design of packed-bed and fluidized
reactors (Rodrigues, Ahn & Zoulalian 1982; Davis & Stone 1993) and chromatography
columns (Liapis & McCoy 1994; Blue & Jorgenson 2015) also relies on a fundamental
understanding of the hydrodynamics of permeable particles.
Fluid flow in a homogeneous, permeable material is usually described using Darcy’s

law (Darcy 1856), whereby the fluid velocity v in a permeable medium is given by

v = − k
μ

∇p, (1.1)

where k is the permeability, μ is the fluid viscosity and ∇p is the local pressure gradient.
The permeability scales with the square of the pore size and Darcy’s law is appropriate
when the length scale set by pressure gradients is much larger than the pore scale. The
normal velocity and pressure are continuous at the boundary of a permeable material and
the free fluid region. There have been several investigations of the appropriate boundary
condition for the tangential velocity (Beavers & Joseph 1967; Saffman 1971; Neale &
Nader 1974; Ochoa-Tapia & Whitaker 1995; Bars & Woster 2006; Cao et al. 2010) but the
no-slip boundary condition is most frequently used.
Brinkman’s equation (Brinkman 1949) is another widely used description of flows in

permeable media. However, it is physically justified only for materials with very sparse
microstructures, consisting of fixed arrays of particles (Tam 1969; Childress 1972; Howells
1974; Lévy 1983), e.g. arrays of spheres with at least 95% porosity (Durlofsky & Brady
1987). In any case, the ‘Brinkman term’ (i.e. Laplacian of the velocity) has an O(k/L2)
relative magnitude, where L is the length scale associated with velocity gradients and k1/2
is the pore scale. Accordingly, Brinkman’s equation often reduces to Darcy’s law, given
that L � k1/2 usually applies (Auriault 2009). As shown below, these conditions apply for
the near-contact motion of permeable particles.
Hydrodynamic interactions between spherical particles and thin, permeable layers

have been analysed as a model for filtration (Goren 1979; Nir 1981; Debbech, Elasmi
& Feuillebois 2010; Ramon & Hoek 2012; Ramon et al. 2013; Khabthani, Sellier &
Feuillebois 2019). Several studies explored the hydrodynamic interactions of spherical
particles with permeable half-spaces (Michalopoulou, Burganos & Payatakes 1992;
Damiano et al. 2004), conversely, others considered the interactions of permeable spheres
with impermeable walls (Payatakes & Dassios 1987; Burganos et al. 1992; Davis 2001;
Roy & Damiano 2008), and a few analysed hydrodynamic interactions between pairs of
permeable spheres (Jones 1978; Michalopoulou, Burganos & Payatakes 1993; Bäbler et al.
2006). Creeping flow conditions were assumed in all of these studies. Some used Darcy’s
law to describe the fluid flow in the permeable medium, others used Brinkman’s equation
(despite its limitations discussed above), the choice usually related to the porosity of the
material (Auriault 2009). Most of the prior studies consider axisymmetric motion and the
results show that permeability reduces hydrodynamic resistance (Goren 1979; Nir 1981;
Payatakes & Dassios 1987; Burganos et al. 1992; Michalopoulou et al. 1992, 1993; Davis
2001; Debbech et al. 2010; Ramon & Hoek 2012; Ramon et al. 2013; Khabthani et al.
2019).
Much more is known about pairwise hydrodynamic interactions of hard spheres, i.e.

impermeable rigid spheres, in creeping flows. Beginning with the classical study on
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Resistance and mobility functions for permeable particles

axisymmetric pair interactions by Stimson & Jeffery (1926), a complete formal framework
was developed for pair interactions (Cooley & O’Neill 1969a; Lin, Lee & Sather 1970;
O’Neill & Majumdar 1970a,b; Batchelor & Green 1972; Brenner & O’Neill 1972; Nir &
Acrivos 1973; Batchelor 1982; Jeffrey 1982; Jeffrey & Onishi 1984a,b; Kim & Mifflin
1985; Corless & Jeffrey 1988a,b; Jeffrey 1989, 1992) with several additional studies on
particle–wall interactions (Brenner 1961; Maude 1963; Goldman, Cox & Brenner 1967a,b;
O’Neill & Stewartson 1967; Cooley & O’Neill 1968). This work is summarized in classic
texts (Happel & Brenner 1983; Kim & Karrila 2005). A principal result from this body
of research is the general relationship between the forces, torques and stresslets acting on
the particles and their linear and angular velocities and the imposed stress field by a grand
resistance matrix that involves a set of scalar resistance functions that depend only on the
centre-to-centre distance between particles (Kim & Karrila 2005).
Several methods have been used to compute the pairwise hydrodynamic resistances

of hard spheres. Calculations using bispherical coordinates (Stimson & Jeffery
1926; Brenner 1961; Lin et al. 1970; O’Neill & Majumdar 1970a; Ingber &
Zinchenko 2012), twin-multipole expansions (Jeffrey & Onishi 1984a,b; Jeffrey 1992)
and boundary collocation (Kim & Mifflin 1985) provide exact results for all but
near-contact configurations with vanishing surface-to-surface separation, h0 → 0, where
the resistances are singular and these methods fail. The contact singularities of the
resistance functions control important qualitative features of the hard-sphere dynamics. An
example is the classical result that hard spheres cannot be pushed into contact by a finite
force and thus interparticle contact does not occur in hard-sphere suspensions without
singular interparticle forces (e.g. van der Waals attraction). Near-contact resistances must
therefore be resolved, usually by a lubrication analysis (Goldman et al. 1967a,b; O’Neill
& Stewartson 1967; Cooley & O’Neill 1968; O’Neill & Majumdar 1970b; Jeffrey 1982;
Corless & Jeffrey 1988a,b; Jeffrey 1989).
The same methods have been applied to problems involving permeable particles

and/or boundaries. Several studies on axisymmetric motion used bispherical coordinates
calculations (Goren 1979; Payatakes &Dassios 1987; Burganos et al. 1992; Michalopoulou
et al. 1992, 1993; Davis 2001), and a few others used boundary collocation (Chen
1998; Chen & Cai 1999). Prior lubrication analyses have focused on the axisymmetric
near-contact motion of hard spheres with permeable membranes. In a recent analysis of the
near-contact motion between permeable spheres, we showed that the lubrication resistance
between permeable particles is non-singular at contact, in contrast to the O(a/h0)
lubrication singularity that characterizes the relative motion of hard spheres (Reboucas
& Loewenberg 2021a). This feature allows contact between particles in suspension, even
without the presence of interparticle forces (Reboucas & Loewenberg 2021b).
Here, we extend our previous lubrication analysis (Reboucas & Loewenberg 2021a) to

the case of asymmetric, transverse motion and use the general resistance framework for
spherical particles (Kim & Karrila 2005) to derive the complete set of resistance functions
that describe the near-contact motion of rigid, permeable spheres. The intraparticle flow is
governed by Darcy’s law, no-slip boundary conditions are applied on the particle surfaces
and weak permeability conditions are assumed,

K � 1, (1.2)

where K = k/a2 is the dimensionless permeability, k is the arithmetic mean permeability
of the particles,

k = 1
2 (k1 + k2) (1.3)
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R.B. Reboucas and M. Loewenberg

and a = a1a2(a1 + a2)−1 is the reduced radius; subscripts 1 and 2 are particle labels.
As discussed above, Brinkman’s equation is inappropriate under weak permeability
conditions. However, the use of Brinkman’s equation would not significantly influence the
results presented here because the length scale associated with the intraparticle velocity
has the lower bound L ≥ k1/5a3/5 (Reboucas & Loewenberg 2021a) thus, the Brinkman
term has a sub-dominant, O(K3/5), relative magnitude in Brinkman’s equation (Auriault
2009).
Under weak permeability conditions (1.2), hydrodynamic resistances are sensitive to

the permeability, and qualitatively affected, for gap widths h0/a = O(K2/5), but at larger
separations, particle permeability has a much weaker O(K) effect on hydrodynamic
resistances, allowing permeable particles to be approximated by hard spheres away from
the near-contact region (Reboucas & Loewenberg 2021a). Thus, combining the lubrication
resistances presented here with the resistances for well-separated hard spheres tabulated
in the literature (Kim & Karrila 2005) provides a complete hydrodynamic description for
pairwise hydrodynamic interactions of permeable spheres.
The governing lubrication equations are derived in § 2. An integral Reynolds lubrication

equation that governs the pressure distribution is derived and solved numerically in
§ 3. The formulation allows for arbitrary ratios of particle radii and particles with
different permeabilities. The resistance functions that describe the near-contact motion
of permeable spheres are presented in § 4. Mobility functions, derived by combining the
lubrication resistance functions for permeable spheres with the hard-sphere hydrodynamic
functions for h0/a � K2/5, are presented in § 5, including the special case of a particle
undergoing near-contact translation parallel to a wall or a permeable half-space under the
action of an applied force or an imposed shear flow. Concluding remarks are presented in
§ 6.

2. Problem formulation

The transverse motion of two permeable spheres separated by a small gap h0 in a fluid
with viscosity μ is considered here. Particle 1 has radius a1, particle 2 has radius a2 and
κ = a2/a1 will be used to denote the size ratio.
Note that various symbols have been used to denote size ratio in prior lubrication

analyses, e.g. k−1 = |a2/a1| (O’Neill & Majumdar 1970b), κ = −a1/a2 (Jeffrey 1982;
Corless & Jeffrey 1988a,b), λ = a2/a1 (Batchelor 1982; Jeffrey & Onishi 1984a; Jeffrey
1989, 1992) and β = a2/a1 (Kim & Karrila 2005). We use κ = a2/a1 here for consistency
with our earlier study (Reboucas & Loewenberg 2021a).

2.1. Lubrication equations for transverse motions of permeable particles
A cylindrical coordinate system (r, θ, z) is used with z-coordinate coincident with the
line of centres of the two particles, and with z = 0 at the surface of particle 2 shown
in figure 1. A Cartesian coordinate system (x, y, z) is also defined with the same origin,
x-coordinate aligned with θ = 0, and y aligned with θ = π/2. The surfaces of the particles
are approximately parabolic in the near-contact region, r � a, where a = a1a2/(a1 + a2)
is the reduced radius. The surface of particle 1 corresponds to z = h0 + r2/(2a1), and the
surface of particle 2 corresponds to z = −r2/(2a2).
The leading-order lubrication equations for transverse motion of the particles are

∂2v̄r

∂ z̄2
= ∂ p̄

∂ r̄
,

∂2v̄θ

∂ z̄2
= 1

r̄
∂ p̄
∂θ

,
∂ p̄
∂ z̄

= 0,
1
r̄

∂

∂ r̄
(r̄v̄r) + 1

r̄
∂v̄θ

∂θ
+ ∂v̄z

∂ z̄
= 0. (2.1a–d)
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Resistance and mobility functions for permeable particles
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Figure 1. Schematic showing two particles with radii and permeabilities ai and ki (i = 1, 2), respectively,
separated by a gap h0; particle 1 has translational and angular velocities U1 and ω1; particle 2 is stationary. The
Cartesian and cylindrical coordinate systems are shown.

The overbars denote dimensionless variables defined by

r̄ = r
L1

, z̄ = za1
L21

, v̄r = vr

U0
, v̄θ = vθ

U0
, w̄ = wa1

U0L1
, p̄ = pL31

μU0a21
, (2.2a–f )

where L1 = √
a1h0 is the characteristic lateral length scale set by the geometry of the

near-contact region, and U0 is a characteristic velocity magnitude that depends on the
boundary conditions of the problem. The lubrication approximation holds when h0 � a.
Only two transverse motions need consideration: (a) transverse motion of particle 1 with

velocity in the x-direction (i.e. θ = 0) with magnitude U1, and (b) rotation of particle 1
with angular velocity in the positive y-direction with magnitude ω1. Particle 2 is stationary
in both problems. The resistances corresponding to the translation and rotation of particle
2 are obtained by relabelling and symmetry. Boundary conditions for these two problems
are

z̄ = z̄1(r̄) :
{
v̄r = (Ū1 − ω̄1) cos θ, v̄θ = −(Ū1 − ω̄1) sin θ

v̄z = −ω̄1r̄ cos θ + j̄1[p̄](r̄, θ)
, (2.3)

z̄ = z̄2(r̄) : v̄r = v̄θ = 0, v̄z = −j̄2[p̄](r̄, θ), (2.4)

where z̄1 and z̄2 define the surfaces of particles 1 and 2, respectively,

z̄1 = 1 + 1
2
r̄2, z̄2 = − 1

2κ
r̄2. (2.5a,b)

Here, Ū1 = U1/U0 and ω̄1 = ω1a1/U0 are the dimensionless translational and rotational
velocities of particle 1. Recall that κ = a2/a1.
The quantities j1, j2 are the fluxes of fluid into the surfaces of the permeable particles.

Given that the intraparticle pressure fields satisfy Laplace’s equation, are equal to the
lubrication pressure at the particle surfaces, and decay to zero inside the particles, as
shown in Appendix A, it follows that the intraparticle fluxes are linear functionals of
the lubrication pressure. The intraparticle fluxes are normal to the particle surfaces but,
as discussed in Appendix A, act in the z-direction to leading order, and thus only enter
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R.B. Reboucas and M. Loewenberg

the boundary condition for the velocity in the z-direction, as indicated in (2.3)–(2.4). The
fluxes are made dimensionless by the characteristic velocity in the z-direction, U0L1/a1,

j̄i = jia1
U0L1

, i = 1, 2. (2.6)

Boundary conditions (2.3)–(2.4) impose the following θ -dependence:

v̄r = Ū(r̄, z̄) cos θ, v̄θ = V̄(r̄, z̄) sin θ, v̄z = W̄(r̄, z̄) cos θ, (2.7a)

p̄ = P̄(r̄) cos θ, j̄i = J̄i[P̄](r̄) cos θ, i = 1, 2. (2.7b)

Inserting these forms into the lubrication equations (2.1a–d) and boundary conditions
(2.3)–(2.4) yields,

∂2Ū
∂ z̄2

= P̄′,
∂2V̄
∂ z̄2

= − P̄
r̄
, (2.8a,b)

∂Ū
∂ r̄

+ 1
r̄

(
Ū + V̄

) + ∂W̄
∂ z̄

= 0, (2.9)

z̄ = z̄1(r̄) :
{
Ū = (Ū1 − ω̄1), V̄ = −(Ū1 − ω̄1),

W̄ = −ω̄1r̄ + J̄1[P̄](r̄).
(2.10)

z̄ = z̄2(r̄) : Ū = V̄ = 0, W̄ = −J̄2[P](r̄). (2.11)

Note that P̄ depends only on r̄, and the prime in (2.8a,b) denotes a derivative.
Integrating the (2.8a,b) with boundary conditions (2.10)–(2.11) for Ū and V̄ yields

Ū = 1
2
P̄′(r̄)(z̄ − z̄1(r̄))(z̄ − z̄2(r̄)) + Ū1 − ω̄1

h̄(r̄)
(z̄ − z̄2(r̄)), (2.12a)

V̄ = − 1
2r̄

P̄(r̄)(z̄ − z̄1(r̄))(z̄ − z̄2(r̄)) − Ū1 − ω̄1

h̄(r̄)
(z̄ − z̄2(r̄)), (2.12b)

where
h̄(r̄) = z̄1 − z̄2 = 1 + 1

2(1 + κ−1)r̄2. (2.13)

Inserting these results into the continuity equation (2.9) and integrating using the
boundary conditions for W̄, yields the Reynolds lubrication equation

1
12r̄

(
r̄P̄′h̄3

)′ − 1
12r̄2

P̄h̄3 − 2J̄
[
P̄
] = −1

2
C

(
1 + κ−1

)
r̄, (2.14a)

which satisfies the homogeneous boundary conditions

P̄(0) = P̄(∞) = 0. (2.14b)

Here, primes are used to denote differentiation with respect to r̄ and C is the constant

C =
[(
Ū1 + ω̄1

) − κ−1 (
Ū1 − ω̄1

)] (
1 + κ−1

)−1
. (2.15)

The quantity 2J̄ = J̄1 + J̄2 is the combined flux into both particles. For hard spheres, i.e.
J̄ = 0, the solution of (2.14) is

P̄∞(κ, r̄) = C
6
5
r̄
h̄2

. (2.16)
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Resistance and mobility functions for permeable particles

2.2. Forces, torques and stresslets
The forces, torques and stresslets on each of the spheres are calculated using the relations
(O’Neill & Majumdar 1970b; Corless & Jeffrey 1988b),

Fx1

πμU0a1
=

∫ R̄0

0

[
−P̄r +

(
∂V̄
∂ z̄

− ∂Ū
∂ z̄

)
z̄=z̄1

]
r dr, (2.17)

Fx2

πμU0a1
=

∫ R̄0

0

[
−P̄rκ−1 +

(
∂Ū
∂ z̄

− ∂V̄
∂ z̄

)
z̄=z̄2

]
r dr, (2.18)

Ty1
πμU0a21

=
∫ R̄0

0

(
∂Ū
∂ z̄

− ∂V̄
∂ z̄

)
z̄=z̄1

r dr, (2.19)

Ty2
πμU0a21

= κ

∫ R̄0

0

(
∂Ū
∂ z̄

− ∂V̄
∂ z̄

)
z̄=z̄2

r dr, (2.20)

Sxz,1
πμU0a21

=
∫ R̄0

0

[
P̄r + 1

2

(
∂Ū
∂ z̄

− ∂V̄
∂ z̄

)
z̄=z̄1

]
r dr, (2.21)

Sxz,2
πμU0a21

=
∫ R̄0

0

[
−P̄r + κ

2

(
∂Ū
∂ z̄

− ∂V̄
∂ z̄

)
z̄=z̄2

]
r dr, (2.22)

where the upper limit of integration is R̄0 = O(
√
a1/h0), a precise definition is not required

(O’Neill & Stewartson 1967; Kim & Karrila 2005).
Inserting (2.12a,b) into (2.17)–(2.22) and integrating by parts to separate the pressure

contributions yields

Fx1
πμU0a1

= 1
2
C

(
κ−1 − 1

)
(I1 − IK) − 2BI2, (2.23)

Fx2

πμU0a1
= −1

2
C

(
κ−1 − 1

)
(I1 − IK) + 2BI2, (2.24)

Ty1
πμU0a21

= −1
2
C

(
1 + κ−1

)
(I1 − IK) + 2BI2, (2.25)

Ty2
πμU0a21

= 1
2
C (1 + κ) (I1 − IK) + 2κBI2, (2.26)

Sxz,1
πμU0a21

= 1
4
C

(
3 − κ−1

)
(I1 − IK) + BI2, (2.27)

Sxz,2
πμU0a21

= −1
4
C(3 − κ)(I1 − IK) + κBI2, (2.28)

where B is given by

B = Ū1 − ω̄1 (2.29)

and C is defined by (2.15). Here, we define the integrals

I1(ξ, κ, R̄0) =
∫ R̄0

0
P̄∞r2 dr, I2(ξ, κ, R̄0) =

∫ R̄0

0

r
h̄
dr, (2.30a,b)
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R.B. Reboucas and M. Loewenberg

and

IK(ξ, κ,K) =
∫ ∞

0
(P̄∞ − P̄)r2 dr, (2.31)

where ξ = h0/ā is the gap normalized by the average radius, and κ = a2/a1 is the size
ratio. Here, P is the rescaled pressure

P = CP, (2.32)

which is introduced for convenience in the solution of the Reynolds lubrication equation
that follows below.
This rearrangement of (2.17)–(2.22) is useful because it isolates the influence of particle

permeability. The integrals I1 and I2 describe the dynamics of hard spheres; only the
permeability integral, IK , depends on the permeability. The upper limit for IK can be
extended to infinity because P̄∞ − P̄ decays sufficiently fast for r̄ → ∞, indicating that
permeability does not affect flow in the matching region.

3. Solution of the Reynolds equation

In this section, an integral equation is derived for the pressure that allows evaluation of
the permeability integral, IK . Numerical and asymptotic limiting results are presented.
As shown below, the permeability integral can be expressed in terms of a single-variable
permeability function

IK(ξ, κ,K) =
(
1 + κ−1

)−2
g(q), (3.1)

where the parameter q is defined

q = K−2/5 h0
a

. (3.2)

Here, K is the dimensionless permeability,

K = k/a2, (3.3)

where k = 1
2 (k1 + k2) is the mean permeability, and a = a1a2/(a1 + a2) is the reduced

radius.
To obtain the functional form (3.1), we rescale the lubrication equation (2.14) using the

variables

r̂ = r
L0

, ẑ = za

L20
, P̂ = pL30

μU0a2
, Ĵ = Ja

U0L0
q5/2, (3.4a–d)

where

L0 =
√
ah0, (3.5)

is the length scale set by the geometry of the near-contact region (2.13), and a is the
reduced radius. The scaling for the particle flux is obtained using the order-of-magnitude
estimate, J ∼ kp/μL0 where p ∼ μU0a2/L30 is the magnitude of pressure in the
near-contact region.
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Resistance and mobility functions for permeable particles

In terms of these variables, the Reynolds lubrication equation (2.14) transforms to a
one-parameter equation, depending only on q. The result is

1
12r̂

(
r̂P̂ ′ĥ3

)′ − 1
12r̂2

P̂ ĥ3 − 2q−5/2Ĵ
[
P̂

]
= −1

2
r̂, (3.6a)

with boundary conditions

P̂(0) = P̂(∞) = 0, (3.6b)

where
ĥ(r̂) = 1 + 1

2 r̂
2 (3.7)

is the gap profile, and primes denote differentiation with respect to r̂.
As shown in Appendix A, the intraparticle flux depends only on the mean permeability

(1.3) and is expressed as a boundary integral of the pressure distribution in the gap between
the particles

Ĵ[P̂](r̂) = −
∫ ∞

0
ŵ(r)φ(r/r̂) dr, (3.8)

where ŵ is defined by derivatives of the pressure

ŵ(r̂) =
[
1
r̂

(
r̂P̂

)′]′
, (3.9)

and the Green’s function, φ(x), is given by (A15). Similar boundary integrals arise in
analogous lubrication problems from other fields where a coupling exists between spheres
in contact, or near contact, and intraparticle transport (Hertz 1882; Batchelor & O’Brien
1977; Davis, Schonberg & Rallison 1989).
The integro-differential Reynolds equation (3.6a) can be reduced to the integral

equation,
1
12 ŵĥ

3 + 1
4

(
ÎA

[
ŵ

] + ÎB
[
ŵ

])
ĥ2r̂ − 2q−5/2Ĵ

[
ŵ

] = −1
2 r̂, (3.10)

where boundary conditions (3.6a) are incorporated, ŵ is defined by (3.9) and

ÎA
[
ŵ

] = −1
2

∫ ∞

r̂
ŵ dr, ÎB

[
ŵ

] = 1
2

∫ r̂

0

(r
r̂

)2
ŵ dr. (3.11a,b)

The rescaled pressure is obtained as

P̂ =
(
ÎA − ÎB

)
r̂. (3.12)

The permeability function (3.1) is given by

g(q) =
∫ ∞

0
(P̂∞ − P̂)r2 dr, (3.13)

which, after integration by parts, becomes

g(q) = 1
8

∫ ∞

0
(ŵ∞ − ŵ)r4 dr. (3.14)

Here, P̂∞ is the pressure for hard spheres (2.16)

P̂∞(r̂) = 6
5
r̂

ĥ2
, (3.15)
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R.B. Reboucas and M. Loewenberg

and

ŵ∞(r̂) = ŵ
[
P̂∞

]
(r̂) = 12r̂

5
r̂2 − 4

ĥ4
. (3.16)

3.1. Numerical method
Integral (3.10), was discretized on a set of N points using a uniform mesh r̂i, (i = 1, . . . ,N)
on the interval 0 ≤ r̂ ≤ r̂N . An N × N system of equations was thus generated for the
values ŵi at each of the points r̂i using a piecewise linear representation of ŵ. The
non-singular integrals ÎA and ÎB, respectively, yield upper and lower triangular matrices
with elements evaluated by trapezoid-rule integration on the intervals between points.
The matrix obtained by discretizing the flux integral (3.8) was obtained by analytically
evaluating the log-singular portion of the Green’s function (A20) on all intervals and
evaluating the non-analytic remainder with adaptive Gaussian quadratures. This method
yields O(1/N2) convergence, and the permeability function g(q) was obtained to O(1/N3)
accuracy by extrapolating for N → ∞ using results from calculations with different
numbers of points. The contributions to integrals from the region r̂N ≤ r̂ ≤ ∞ were
approximately incorporated using ŵ ≈ ŵ∞ for r̂ > r̂N to accelerate the convergence for
r̂N → ∞. The system of equations were iteratively solved using a Gauss–Seidel scheme.
The numerical values provided in the Supplementary Material available at https://doi.

org/10.1017/jfm.2022.171 were obtained from calculations with N ≈ 400 and r̂N ≈ 20 and
are accurate to 3 digits.

3.2. Numerical and asymptotic results for the permeability function g(q)
Results for the permeability function g(q) are shown graphically in figure 2 and provided
in tabular form in the Supplementary Material. The limiting behaviours for small and large
q, derived in Appendix B, are

g(q) = −12
5 log q + b1 + b2q + O(q2), q � 1, (3.17)

with b1
.= −0.48 and b2

.= −1.5, and

g(q) = c1q−5/2 + O
(
q−5

)
, q � 1, (3.18)

with c1
.= 2.12. The results show that g(q) > 0, indicating that permeability reduces the

lubrication pressure between particles undergoing transverse near-contact motion, i.e.
P̂∞ > P̂ according to (3.13).

4. Lubrication resistance functions for permeable spheres

We present here the complete set of resistance functions for near-contact motion of
permeable particles, and discuss the effect of permeability.

4.1. Transverse resistance functions
Rearranging (2.23)–(2.28) to isolate the type of motion yields the forces, torques and
stresslets in terms of resistance functions. The notation and general definition of resistance
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Resistance and mobility functions for permeable particles

10110–1 100

100

101

g

q

f

10–1

10–2

Figure 2. Transverse and axisymmetric permeability functions g(q) and f (q), defined by (3.13) and (D5),
respectively; numerical solutions (solid lines), asymptotic forms (3.17)–(3.18) and (D6)–(D7) (dashed lines).
Tables of numerical values for f (q) and g(q) are provided in the Supplementary Material.

functions used in the literature is followed (Jeffrey 1992; Kim & Karrila 2005). The results
are

− Fx1

πμU0a1
= 6YA

11Ū1 + 4YB
11ω̄1, (4.1)

− Fx2
πμU0a1

= 3(1 + κ)YA
21Ū1 + (1 + κ)2YB

21ω̄1, (4.2)

− Ty1
πμU0a21

= 4YB
11Ū1 + 8YC

11ω̄1, (4.3)

− Ty2
πμU0a21

= (1 + κ)2YB
21Ū1 + (1 + κ)3YC

21ω̄1, (4.4)

− Sxz,1
πμU0a21

= −4YG
11Ū1 + 8YH

11ω̄1, (4.5)

and

− Sxz,2
πμU0a21

= −(1 + κ)2YG
21Ū1 + (1 + κ)3YH

21ω̄1. (4.6)

Here, YR
αβ(ξ, κ, q) are the transverse resistance functions, where the superscript R refers to

one of the resistance tensors A,B,C,G or H in the resistance matrix (C1), and subscripts
α and β refer to the particle labels 1 or 2. Using symmetry relations and the Lorentz
reciprocal theorem, the grand resistance matrix can be derived from this set of resistance
functions, as shown in Appendix C.
The transverse resistance functions are

YR
αβ(ξ, κ, q) = YR,0

αβ (ξ, κ) − g(q)Υ R
αβ(κ) + O

(
ξ log ξ−1

)
, (4.7)

where YR,0
αβ are the hard-sphere resistance functions (C5)–(C14), g(q) is the transverse

permeability function (3.13) shown in figure 2 and Υ R
αβ are the size-ratio-dependent
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R.B. Reboucas and M. Loewenberg

coefficients given by

Υ A
11 = κ

12
(1 − κ)2

(κ + 1)3
, Υ A

21 = −κ

6
(1 − κ)2

(κ + 1)4
, (4.8a,b)

Υ B
11 = −κ

8
(1 − κ)

(κ + 1)2
, Υ B

21 = κ2

2
1 − κ

(κ + 1)4
, (4.9a,b)

Υ C
11 = κ

16(1 + κ)
, Υ C

21 = − κ2

2(1 + κ)4
, (4.10a,b)

Υ G
11 = −(3κ − 1)(1 − κ)κ

16(1 + κ)3
, Υ G

21 = (3 − κ)(1 − κ)κ2

4(1 + κ)5
, (4.11a,b)

Υ H
11 = − κ

32
3κ − 1

(1 + κ)2
, Υ H

21 = κ2

4
3 − κ

(1 + κ)5
. (4.12a,b)

Recall that ξ = h0/ā is the gap normalized by the average radius, κ = a2/a1 is the size
ratio and q = K−2/5h0/a is the permeability parameter. The result (4.7) indicates that
particle permeability additively affects the transverse resistance functions.

4.2. Axisymmetric resistance functions
The leading-order axisymmetric resistance functions are presented here using the results
of our recent analysis (Reboucas & Loewenberg 2021a). Following the presentation in
§ 4.1, the forces, torques and stresslets are (Jeffrey 1992; Kim & Karrila 2005)

− Fz1
πμU0a1

= 6XA
11Ū1, − Fz2

πμU0a1
= 3(1 + κ)XA

21Ū1, (4.13a,b)

− Tz1
πμU0a21

= 8XC
11ω̄1, − Tz2

πμU0a21
= (1 + κ)3 XC

21ω̄1, (4.14a,b)

− Szz,1
πμU0a21

= −4XG
11Ū1, − Szz,2

πμU0a21
= −(1 + κ)2XG

21Ū1, (4.15a,b)

where Ū1 and ω̄1 are translational and rotational velocities of particle 1 along the line of
centres, in the z-direction. Here, XR

αβ(ξ, κ, q) are the axisymmetric resistance functions, the
superscript R refers to the resistance tensor A,C or G and subscripts α and β are particle
labels 1 or 2. The remaining resistance functions for the grand resistance matrix (C1) for
axisymmetric motion are derived from this set of functions, as shown in Appendix C.
The leading-order, axisymmetric resistance functions are

XA
αβ(ξ, κ, q) = XA,0

αβ (ξ, κ)f (q), XG
αβ(ξ, κ, q) = XG,0

αβ (ξ, κ)f (q), (4.16a,b)

where XA,0
αβ and XG,0

αβ are the hard-sphere resistance functions (C15)–(C18), and f (q) is the
axisymmetric permeability function (D5) shown in figure 2. This function was recently
analysed (Reboucas & Loewenberg 2021a), and its primary features are summarized in
Appendix D.
Particle permeability is seen to have a multiplicative effect on the axisymmetric

resistance functions, in contrast to its additive effect on the transverse functions.
Axisymmetric rotation does not generate a lubrication pressure thus, XC

αβ(ξ, κ, q) =
XC,0

αβ (ξ, κ).
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Resistance and mobility functions for permeable particles

4.3. Matching to the outer region
Away from the near-contact region, hard-sphere resistance functions describe pairwise
hydrodynamic interactions for permeable spheres to O(K). According to (3.18) and (4.7)
and (D7) and (4.16a,b), the resistance functions for permeable spheres presented in
§ 4.1–4.2 are equal to the corresponding hard-sphere functions in the overlapping region

K2/5 � ε � 1, (4.17)

for K → 0, where ε = h0/a is the gap normalized by the reduced radius a = a1a2/(a1 +
a2). Accordingly, the resistance functions for permeable spheres match asymptotically to
the hard-sphere functions. This provides a uniformly valid approximation for the resistance
functions

ZR
αβ(ξ, κ, q) = ZR,0

αβ (ξ, κ) + ZR
Lαβ(ξ, κ, q) − ZR,0

Lαβ(ξ, κ), (4.18)

where ZR
αβ is a pairwise resistance function for permeable spheres, ZR,0

αβ is the

corresponding hard-sphere resistance function, ZR,0
Lαβ is the lubrication approximation for

the hard-sphere function and ZR
Lαβ is the lubrication resistance function for permeable

spheres, as developed in our study.

4.4. Non-singular particle motions
The qualitative effects of particle permeability on the lubrication resistances are discussed
below. Permeability relieves the lubrication pressure in the near-contact region, as
discussed at the end of § 3.2 and at the end of Appendix D. We show here that
permeability qualitatively alters near-contact motion of particles and gives rise to
additional non-singular contact motions that are inaccessible to hard spheres. For hard
spheres, only rigid-body motions, i.e. pair translation and dumbbell rotation, and relative
rotations about the symmetry axis are non-singular at contact. As a result of permeability,
non-shearing motions of particles in contact also become non-singular. These include
rolling without slip and axisymmetric approach.

4.4.1. Transverse motions
Particle permeability lessens the magnitude of the transverse lubrication function YR

αβ if

the contributions YR,0
αβ , Υ R

αβ in (4.7) have the same algebraic sign; the latter is determined
by formulas (4.8a,b)–(4.10a,b) and (C5)–(C10). It is thus seen that permeable particles
of unequal size have lower translational resistances, YA

11, Y
A
21; translational resistances for

equal-size particles are unaffected by permeability. Permeability reduces the rotational
resistance YC

11 of a particle spinning close to a stationary particle but it enhances the
rotational coupling between the particles, increasing YC

21.
To generally explain the role of permeability in transverse particle motions, it is

convenient to examine the forces, torques and stresslets given by (2.23)–(2.28). The
effect of permeability depends on whether the contribution from the lubrication pressure,
I1 − IK , reinforces or opposes the contribution from shearing motion of the particle
surfaces, I2; permeability reduces the magnitude of the former contribution, but has no
effect on the latter. Accordingly, the net effect of particle permeability depends on the
coefficients of I1 − IK and I2 in (2.23)–(2.28).
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R.B. Reboucas and M. Loewenberg

The forces, torques and stresslets for the special case of particle motion prescribed by

(κ − 1)Ū1 + (κ + 1)ω̄1 = 0, Ū2 = ω̄2 = 0 (4.19a,b)

are unaffected by particle permeability because C = 0 in this case, according to (2.15),
and thus the pressure contribution, associated with I1 − IK , vanishes in (2.23)–(2.28). This
result explains why the translational resistances for equal-size particles are unaffected by
permeability.
Conversely, the shearing contribution vanishes in (2.23)–(2.28) for rolling motion of the

particles without slip,
Ū1 = ω̄1 = 1, Ū2 = ω̄2 = 0, (4.20a,b)

because B = 0, according to (2.29). The forces, torques, and stresslets in this case are
due entirely to the pressure contribution I1 − IK , and thus have reduced magnitudes for
permeable particles. Moreover, rolling motion of permeable particles is non-singular at
contact, as shown by combining (3.1), (3.17) and (C4a) to yield,

lim
ξ→0

(I1 − IK) = 24
25

(
1 + κ−1

)−2
logK−1 + C0, (4.21)

where C0 depends only on size ratio. Other rolling motions without slip (e.g. pure
rotation; −κω̄2 = ω̄1 = 1, Ū1 = Ū2 = 0) are also non-singular, and can be generated by
a superposition of (4.20a,b) with non-singular rigid-body translation and rotation.

4.4.2. Axisymmetric motions
Given the form of the axisymmetric resistances (C15)–(C18), and formula (D6), it follows
that axisymmetric resistances (4.16a,b) have the limiting forms,

lim
ξ→0

XA
αβ(ξ, κ, q) = χA

αβ(κ)K−2/5, lim
ξ→0

XG
αβ(ξ, κ, q) = χG

αβ(κ)K−2/5, (4.22a,b)

where the functions χA
αβ(κ) and χG

αβ(κ) depend only on the size ratio. The result
demonstrates that the axisymmetric resistances for permeable particles are non-singular
at contact in contrast to the ξ−1 singular resistances for hard spheres.

5. Mobility functions

Here, we present pairwise mobilities of permeable particles defined by the relative
velocity of the particles U12 = U2 − U1 under the actions of forces and an imposed flow
(Batchelor & Green 1972; Batchelor 1982)

U12 = [
G(s)r̂r̂ + H(s)

(
I − r̂r̂

)] · U∞
12,0

+ [
L(s)r̂r̂ + M(s)

(
I − r̂r̂

)] · U∞
12,g

+ E∞ · r + ω∞ × r − [
A(s)r̂r̂ + B(s)

(
I − r̂r̂

)] · E∞ · r. (5.1)

Here, r = x2 − x1 is the vector between the particle centres, r̂ = r/|r| is a unit vector along
the line of centres, I is the identity tensor and s = |r|/ā is the centre-to-centre separation
normalized by the average radius, ā = 1

2(a1 + a2). The quantities E∞ and ω∞ are the
imposed rate of strain and vorticity in the fluid, and U∞

12,0 and U∞
12,g are, respectively,
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Resistance and mobility functions for permeable particles

the relative velocities in the absence of hydrodynamic interactions (i.e. s → ∞) under the
action of equal and opposite forces and under the action of gravity

U∞
12,0 = F 2 − F 1

6πμa
, U∞

12,g = 2
(
a22γ − a21

)
Δρ1g

9μ
, (5.2a,b)

where F 1 = −F 2, a is the reduced radius, g is the acceleration due to gravity, Δρi =
ρi − ρ is the difference between the density of particle i (i = 1, 2) and the density of the
fluid and

γ = Δρ2

Δρ1
, (5.3)

is the ratio of particle density differences.
Equation (5.1) defines the pairwise axisymmetric and transverse mobility functions

G, L,A and H,M,B, respectively. According to their definitions, G,H, L and M tend
to unity at large separations, whereas A and B vanish for s → ∞. The pair mobilities
depend on the centre-to-centre separation, s, size ratio, κ , and permeability, K (L and M
also depend on the density difference ratio, γ ). For the weak permeability regime (1.2)
considered herein, hard-sphere mobilities can be used outside of the near-contact region
with O(K) error.
The near-contact mobilities H,M,B for transverse motion were obtained by inverting

the resistance matrix (C1). The near-contact axisymmetric mobility G was similarly
obtained, and mobilities L and A derived by an analysis of the contact forces between
spheres migrating along their line of centres, as described in section § 5.2. Outside of
the near-contact region, mobilities were calculated using a code based on a bispherical
coordinate solution for hard spheres provided by A.Z. Zinchenko.

5.1. Transverse mobilities
The transverse mobilities H, M and B have the near-contact form

Λ(ξ, κ,K) =
λ1 + λ2 log ξ−1 + λ3

[
log ξ−1 − 5

12g(q)
]
log ξ−1 + λ6g(q)

λ4 + λ5 log ξ−1 +
[
log ξ−1 − 5

12g(q)
]
log ξ−1 + λ7g(q)

, (5.4)

where ξ = h0/ā is the gap normalized by the average radius, and q = K−2/5h0/a is
the permeability parameter. The coefficients λi (i = 1–7) depend only on the size ratio;
numerical values for several size ratios are listed in tables 1–3.
The results shown in figures 3–5 demonstrate that permeability quantitatively affects

the transverse mobilities for ξ � O(K2/5), corresponding to q = O(1), and has the largest
effect for extreme size ratios. Particle permeability has no effect for equal-size particles,
as seen in figures 3 and 5, because no lubrication pressure is generated by the motion, as
discussed in § 4.4.1.
Figures 3–4 show that mobility functions H and M for permeable particles are larger

than for hard spheres, whereas the opposite is true for mobility function B, as shown in
figure 5. These observations indicate that particle permeability diminishes the strength
of hydrodynamic pair interactions in all cases, given that H = M = 1 and B = 0 in the
absence of hydrodynamic interactions.
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R.B. Reboucas and M. Loewenberg

κ λ1 λ2 λ3 λ4 λ5 λ6 λ7

1 5.087 2.967 0.4010 6.325 6.043 −0.4514 −0.5613
0.9 5.066 2.969 0.3997 6.272 6.036 −0.4514 −0.5589
0.75 4.921 2.980 0.3911 5.927 5.985 −0.4508 −0.5428
0.6 4.555 2.995 0.3696 5.105 5.831 −0.4479 −0.5020
0.5 4.100 2.993 0.3432 4.177 5.599 −0.4425 −0.4509
0.4 3.387 2.956 0.3027 2.877 5.163 −0.4313 −0.3686
0.3 2.317 2.849 0.2443 1.222 4.378 −0.4103 −0.2378
0.25 1.623 2.756 0.2080 0.3221 3.796 −0.3951 −0.1465
0.125 −0.6696 2.393 0.1033 −1.540 1.516 −0.3451 0.2069

Table 1. Coefficients of transverse mobility H given by (5.4).

κ λ1 λ2 λ3 λ4 λ5 λ6 λ7

0.9 3.128 2.1402 0.2206 6.272 6.036 −0.2745 −0.5589
0.75 2.942 2.104 0.2075 5.926 5.985 −0.2661 −0.5428
0.6 2.529 2.022 0.1794 5.105 5.831 −0.2477 −0.5020
0.5 2.074 1.915 0.1497 4.177 5.599 −0.2267 −0.4509
0.4 1.461 1.736 0.1114 2.877 5.163 −0.1965 −0.3686
0.3 0.7212 1.461 0.06812 1.222 4.378 −0.1560 −0.2378
0.25 0.3448 1.276 0.04718 0.3221 3.796 −0.1326 −0.1465
0.125 −0.3928 0.6909 9.123 × 10−3 −1.540 1.516 −0.06637 0.2069

Table 2. Coefficients of transverse mobilityM (γ = 1) given by (5.4).

κ λ1 λ2 λ3 λ4 λ5 λ6 λ7

1 −1.902 1.501 0.4060 6.325 6.043 0.1688 −0.5613
0.9 −1.894 1.496 0.4106 6.272 6.036 0.1686 −0.5589
0.75 −1.842 1.465 0.4403 5.926 5.985 0.1681 −0.5428
0.6 −1.716 1.378 0.5089 5.105 5.831 0.1682 −0.5020
0.5 −1.566 1.262 0.5831 4.177 5.599 0.1711 −0.4509
0.4 −1.348 1.063 0.6822 2.877 5.163 0.1816 −0.3686
0.3 −1.059 0.7307 0.7987 1.222 4.378 0.2112 −0.2378
0.25 −0.8967 0.4932 0.8572 0.3231 3.796 0.2403 −0.1465
0.125 −0.5606 −0.4511 0.9707 −1.540 1.516 0.4213 0.2069

Table 3. Coefficients of transverse mobility B given by (5.4).

Inserting (3.17) into (5.4) and taking the limit as ξ → 0 yields the contact values of the
transverse mobilities

Λc(κ,K) = λ3
logK−1 + λ′1
logK−1 + λ′2

, ξ = 0, (5.5)

where Λc is the contact value of the transverse mobility function H, M or B, and the
coefficients λ′1 and λ

′
2 are given by

λ′1 = 6λ6λ−1
3 + 5

2λ2λ
−1
3 − 5

2 log ν − 25
24b1, (5.6a)

λ′2 = 6λ7 + 5
2λ5 − 5

2 log ν − 25
24b1, (5.6b)
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0 0.1
0.2

0.3

0.4
H

0.5

0.2

1/log(1/ξ)

0.5

0.25

κ = 1

0.3

Figure 3. Transverse mobility functions H from exact solution for hard spheres using code from A. Z.
Zinchenko (solid lines) and lubrication solutions for hard spheres, K = 0, and permeable spheres, K = 10−7

(dashed lines) vs gap, ξ , for size ratios indicated. Lubrication solution for hard spheres appears as a continuation
of the exact solution; the lubrication solution for permeable spheres deviates for ξ � K2/5.

0 0.1

0.1

0.2

0.3

0.2

0.25

0.5

1/log(1/ξ)

M

κ = 0.9

0.3

Figure 4. Same as figure 3, except for the transverse mobility function M.

where ν = 2κ(1 + κ)−2 and b1
.= −0.48. For convenience, values for λ′1 and λ

′
2 are listed

in table 4. Contact values for the mobilities of hard spheres are given by λ3; even small
permeabilities can significantly alter contact mobilities because its effect decays only
logarithmically.
According to formula (5.5), Λc increases with K for λ′1 > λ′2, decreases for λ

′
1 < λ′2, the

effect is largest for disparate values of these parameters, and Λc is independent of K for
λ′1 = λ′2. Consistent with the discussion above and the results shown in figures 3–5, the
values in table 4 thus indicate that contact values of mobilities H and M increase with K,
B decreases with K, the effect is largest for extreme size ratios and Λc is independent of K
for equal-size particles.
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Figure 5. Same as figure 3, except for the transverse mobility function B.

H M (γ = 1) B

κ λ′1 λ′2 λ′1 λ′2 λ′1 λ′2
1 0 0 — — 0 0
0.9 14.03 13.98 19.03 13.98 13.81 13.98
0.75 14.42 13.99 19.94 13.99 12.89 13.99
0.6 15.39 13.96 22.29 13.96 12.33 13.85
0.5 16.59 13.82 25.43 13.82 9.697 13.82
0.4 18.60 13.44 31.18 13.44 8.232 13.44
0.3 22.17 12.61 42.98 12.61 6.963 12.61
0.25 25.08 11.96 54.09 11.96 6.471 11.96
0.125 42.42 9.585 150.3 9.585 5.997 9.585

Table 4. Coefficients for the contact values of transverse mobilities given by (5.5).

5.2. Axisymmetric mobilities
The axisymmetric mobility G has the near-contact form

G = (1 + κ)2

2κ
ξ

f (q)
= ε

f (q)
, ξ � 1, (5.7)

where ξ = h0/ā and ε = h0/a are the gaps normalized by the average and reduced radius,
respectively, κ is the size ratio and q = K−2/5h0/a is the permeability parameter. Inserting
(D6)–(D7) into (5.7) yields

G =
(
b0 + b1q + O(q2)

)
K2/5, q � 1, (5.8)

and
G =

(
1 + c0q−5/2 + O(q−5)

)
ε, q � 1, (5.9)

where b0
.= 1.332, b1

.= 0.397 and c0
.= 1.8402. The result for hard spheres is recovered

from the latter for q → ∞. Equation (5.8) indicates that the particles undergo a constant
approach velocity at contact under the action of a constant force, consistent with the
non-singular axisymmetric resistances for permeable particles given by (4.22a,b).
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100

10–1

10–2

10–3

10–4 10–3 10–2 10–1

10–7

100 101 102

ε

K = 0

G
L̂

Â1

Figure 6. Axisymmetric mobility functions Â1 and L̂ (γ = 1), defined by (5.10a,b), and G for hard spheres
vs gap, ε = h0/a, for size ratios κ = 0.5 (solid lines), and κ = 0.75 (dash-dotted lines) using code from A. Z.
Zinchenko (curves for κ = 0.5, and κ = 0.75 are indistinguishable for G); lubrication solution for hard spheres,
K = 0, and permeable spheres K = 10−7 (dashed lines).

In the near-contact region, L and 1 − A are proportional to G, motivating the definition
of modified mobility functions L̂ and Â1

L̂(ε, κ, q) = L(ε, κ, q)

F̂(g)
c (κ)

, Â1(ε, κ, q) = 1 − A(ε, κ, q)

F̂(E)
c (κ)

, (5.10a,b)

with the property

lim
ε→0

L̂(ε, κ, q) = lim
ε→0

Â1(ε, κ, q) = lim
ε→0

G(ε, q), (5.11)

where F̂(g)
c and F̂(E)

c are dimensionless contact forces, obtained by the procedure described
in Appendix E and given by (E3)–(E4). These forces arise between two spheres in point
contact, migrating along their line of centres in gravity-driven motion, and in axisymmetric
straining flow, respectively. The mobility function L also depends on the ratio of the
particle density differences, γ , defined by (5.3). Numerical values of the contact forces
are provided in table 6 for several size ratios.
Axisymmetric mobilities G, L̂ and Â1 are shown in figure 6 as a function of

gap where the common behaviour of the modified axisymmetric mobilities (5.11) is
demonstrated; permeability qualitatively changes the near-contact motion for h0/a ≤
O(K2/5), corresponding to q ≤ O(1). Figure 7 shows the universal near-contact behaviour
predicted by combining (5.7) and (5.11)

GK−2/5 = Â1K−2/5 = L̂K−2/5 = q
f (q)

, ε → 0. (5.12)

5.3. Mobility of a particle moving parallel to a wall
In this section, the motion of a sphere in close contact with a wall is considered,
corresponding to the limit κ → ∞. Two problems are studied: (I) motion of a particle in a
quiescent fluid under the action of an imposed force F = F0ex parallel to the wall and (II)
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2 310

2

1

3

q

G K–2/5

4

5

4 5

Figure 7. Universal near-contact behaviour (5.12) vs permeability parameter, q (solid line); small- and large-q
asymptotes given by (5.8)–(5.9) (dashed lines).

motion of a force-free particle in an imposed shear flow parallel to the wall,U∞ = E∞zex.
The particle is torque free in both problems.
The resistance formulation for problems (I) and (II), derived from the general resistance

formulation (C1) for the particle–wall configuration (κ → ∞), is

− Fx1

πμU0a1
= 6YA,∞

11 Ū1 + 4YB,∞
11 ω̄1 − (6YA,∞

11 + 2YB,∞
11 − 4YG,∞

11 )Ē∞, (5.13)

− Ty1
πμU0a21

= 4YB,∞
11 Ū1 + 8YC,∞

11 ω̄1 − (4YB,∞
11 + 4YC,∞

11 + 8YH,∞
11 )Ē∞, (5.14)

where a1 is the radius of the sphere, Ū1 = U1/U0 and ω̄1 = ω1a1/U0 are the
dimensionless translational and rotational velocities, Ē∞ = E∞a1/U0 is the dimensionless
shear rate and YR,∞

11 are the resistance functions (4.7) corresponding to the limit κ → ∞

YA,∞
11 = −g(q)

12
+ 8

15
log ε−1 + AY,∞

11 + O(ε log ε−1), (5.15)

YB,∞
11 = −g(q)

8
− 1

5
log ε−1 + BY,∞

11 + O(ε log ε−1), (5.16)

YC,∞
11 = −g(q)

16
+ 2

5
log ε−1 + CY,∞

11 + O(ε log ε−1). (5.17)

YG,∞
11 = − 3

16
g(q) + 7

10
log ε−1 + GY,∞

11 + O(ε log ε−1). (5.18)

YH,∞
11 = 3

32
g(q) − 1

10
log ε−1 + HY,∞

11 + O(ε log ε−1). (5.19)

Here, ε = h0/a1 is the dimensionless gap, q = K−2/5h0/a1 is the permeability parameter,
g(q) is the transverse mobility function and RY,∞

11 are the matching constants to the outer
solution for this geometry (Goldman et al. 1967a,b; Corless & Jeffrey 1988b).
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Resistance and mobility functions for permeable particles

Ū1

Problem λ0 λ1 λ2 λ3 λ4 λ5

(I) 1.909 2.000 −0.3125 1.590 3.1881 −0.3008
(II) 2.649 3.716 −0.3348 1.590 3.1881 −0.3008

ω̄1

λ0 λ1 λ2 λ3 λ4 λ5
(I) −0.9475 0.5000 0.3125 1.590 3.1881 −0.3008
(II) 0.6513 2.109 0.3348 1.590 3.1881 −0.3008

Table 5. Coefficients for particle velocity parallel to wall (5.20).

0

0

0.1

10–10

K = 10–5

0.2

0.1

0.3
Ū1

ω̄1

0.4

0.2
–1/log(h0/a1)

0.3 0.4

Figure 8. Translational and rotational velocities of a particle moving parallel to a plane wall under the action
of a force; mobility formula (5.20) (solid lines); simplified mobility formula for q � 1 obtained by inserting
(3.17) into (5.20) (dashed lines); permeabilities as labelled.

The translational and rotational mobilities of the particle are determined by solving
(5.13) and (5.14), separately, for problems (I) and (II). The results are

V̄1 = λ0 + λ1 log ε−1 + λ2g(q)
λ3 + λ4 log ε−1 +

[
log ε−1 − 5

12g(q)
]
log ε−1 + λ5g(q)

, (5.20)

where V̄1 = Ū1 or V̄1 = ω̄1, and U0 = (6πμa1)−1F0 for problem (I), and U0 = E∞a1
for problem (II). The numerical coefficients appearing in (5.20) are listed in table 5 for
both problems, and the results are plotted in figures 8 and 9. The results for hard spheres
(Goldman et al. 1967a,b; Corless & Jeffrey 1988b) are recovered for g = 0, corresponding
to q → ∞.
Inserting (3.17) into (5.20) yields a simplified analytical mobility formula depicted by

the dashed lines in figures 8–9. Evaluating the result at contact yields

Ū1 = ω̄1 = d1
logK−1 + d2

, (5.21)

938 A27-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

17
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



R.B. Reboucas and M. Loewenberg
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Figure 9. Same as 8, except for a particle moving parallel to a plane wall in shear flow.

indicating that permeable particles roll without slipping. Here, d1 = 3.125, d1 = 7.280 for
problems (I), (II), respectively, and d2 = 6.666 for both problems. This finding illustrates
the non-singular rolling motion accessible to permeable particles at contact, as discussed
in § 4.4. Hard spheres, by contrast, become stationary at contact and exhibit a slipping
approach to contact with Ū1 > ω̄1 (Goldman et al. 1967a,b), as seen in figures 8–9.

6. Conclusions

A lubrication analysis is presented for permeable, spherical particles using Darcy’s law to
describe the intraparticle velocity. Only the mean permeability enters the problem and the
size ratio is arbitrary. The complete resistance matrix is derived for near-contact motions.
Under the weak permeability conditions (1.2) considered herein, particle permeability

enters only in the lubrication regime, where it modifies the hydrodynamic resistances
through the permeability functions, f (q) and g(q), describing particle motions along and
perpendicular to the line of centres, respectively, and q = (h0/a)K−2/5 is the permeability
parameter. The permeability functions are obtained by solving an integral form of the
Reynolds lubrication equation that results from the non-local coupling between the
pressure in the gap and the intraparticle pressure. Outside of the near-contact region, the
resistance functions can be approximated by hard-sphere functions and the two are equal
in a finite matching region. Particle permeability removes the contact singularity for all
non-shearing particle motions, allowing contacting permeable particles to roll without
slipping and touching particles to separate with finite velocity.
Axisymmetric mobilities have a universal near-contact behaviour that depends only on

the permeability parameter q and attain non-vanishing values at contact, proportional to
K2/5. Permeability enhances transverse mobilities, especially for extreme size ratios, but
has no effect on equal-size particles because the relative particle motion in this case does
not generate a lubrication pressure. Under the action of a constant force, or an imposed
shear flow, a permeable particle in point contact with a planar boundary rolls with an
O(1/ logK−1) velocity, according to a formula derived herein. The same formula also
describes a hard sphere rolling on a permeable half-space which may have relevance to
cross-flow particle filtration.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.171.

938 A27-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

17
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



Resistance and mobility functions for permeable particles

Acknowledgements. The authors are grateful to Dr A.Z. Zinchenko for the use of his bispherical coordinate
code for computing pair mobilities of hard spheres, and to Dr D.J. Jeffrey for the use of his program
for resistance functions (https://www.uwo.ca/apmaths/faculty/jeffrey/) used herein to obtain the matching
constants for the resistance functions of hard spheres.

Funding. This work was supported by the National Science Foundation (grant number 1603806) and the
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (Capes) (Finance Code 001).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Rodrigo B. Reboucas https://orcid.org/0000-0001-8982-3553;
Michael Loewenberg https://orcid.org/0000-0003-1735-0755.

Appendix A. Derivation of intraparticle flux

In this appendix, we derive the combined intraparticle flux as a boundary integral
of the pressure distribution in the near-contact region, given by formula (3.8) in the
text. Unscaled, dimensional variables are used here. By Darcy’s law (1.1) and the
incompressibility of the fluid, the intraparticle pressure fields p1 and p2 satisfy Laplace’s
equation. The combined intraparticle flux is

2j = k1
μ

∂p1
∂n

+ k2
μ

∂p2
∂n

, (A1)

where pressure gradients are evaluated on the particle surfaces, and n is the outward
normal vector. By continuity of pressure across the particle surfaces, the lateral lubrication
length scale L and angular dependence (2.7a) of the pressure distribution in the lubrication
gap are imposed on the intraparticle pressure fields.
There are two length scales that can determine the lateral length scale of the lubrication

region, the geometrically imposed length L0, given by equation (3.5), and LK , a length
scale set by the permeability (Reboucas & Loewenberg 2021a)

Lk = K1/5a. (A2)

In this appendix, L is the maximum of these two length scales

L = max(L0, Lk), (A3)

and L/a � 1 is assumed, where a is the reduced radius.
As shown below, the intraparticle pressure fields decay to zero away from the

near-contact region inside the particles on the length scale L. A semi-infinite permeable
region can thus be considered given that L/a � 1. A cylindrical coordinate system (r, θ, z)
is used, where z < 0 is the permeable region and z > 0 is the fluid region. This is shown in
figure 10. Normal derivatives of pressure on the particle boundary can be approximated by
a z-derivative with error O(L/a)2. Moreover, the intraparticle pressure fields are the same
in each particle because they are forced only by the pressure distributions on their surfaces
in the near-contact region, which are the same because pressure variations across the gap
are negligible according to the leading-order lubrication equations (2.1a–d). Accordingly,
(A1) simplifies to

j = k
μ

∂pi
∂z

∣∣∣∣
z=0

, (A4)

where pi denotes the intraparticle pressure. The result indicates that the total intraparticle
flux depends only on the mean permeability (1.3).
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Fluid region

z

r
n

Permeable region

Figure 10. Cylindrical coordinate system and orientation of normal vector n used to describe pressure
distribution in semi-infinite permeable region, z < 0.

As discussed above, the intraparticle pressure field has the angular dependence

pi(r, θ, z) = Pi(r, z) cos θ, (A5)

imposed by continuity of the pressure at the particle–fluid interface, and it satisfies
Laplace’s equation. Hence, Pi(r, z) satisfies

1
r

∂

∂r

[
1
r

∂

∂r
(rPi)

]
+ ∂2Pi

∂z2
= 0 (A6)

in the semi-infinite region shown in figure 10, vanishes for z → −∞ and matches the
pressure, p(r, θ), in the lubrication gap at z = 0.
A first-order Hankel transform of this equation with the prescribed boundary conditions

yields

d2Qi

dz2
− ω2Qi = 0; Qi(ω, 0) =

∫ ∞

0
J1(ωr)P(r)r dr, Qi(ω, −∞) = 0, (A7a–c)

where Qi(ω, z) = ∫ ∞
0 J1(ωr)Pi(r, z)r dr is the Hankel-transformed intraparticle pressure,

and P(r) is the pressure in the lubrication gap. The solution of the transformed problem is

Qi(ω, z) = Qi(ω, 0) eωz, (A8)

where Qi(ω, 0) is the Hankel-transformed pressure distribution in the gap between the
particles (A7b); by the inverse Hankel transform, the intraparticle pressure is given by

Pi(r, z) =
∫ ∞

0
Qi(ω, 0) eωzJ1(ωr)ω dω. (A9)

For −z � 1,

Pi(r, z) = 3rzI(
r2 + z2

)5/2 , (A10)

which is obtained using P(ω, 0) ≈ ωI for ωL � 1, where I = ∫ ∞
0 Pr2 dr. This result

confirms the decay of pressure away from the near-contact region.
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Resistance and mobility functions for permeable particles

From (A9), the normal derivative of pressure on the particle surface is

∂Pi

∂z

∣∣∣∣
z=0

=
∫ ∞

0
ω2Q(ω, 0)J1(ωr) dω. (A11)

Rewriting this result using the identity

− ω2Q(ω, 0) =
∫ ∞

0

1
r′

d
dr′

[
1
r′

d
dr′

[
r′P(r′, 0)

]]
J1(ωr′)r′ dr′, (A12)

yields
∂Pi

∂z

∣∣∣∣
z=0

= −
∫ ∞

0

1
r′

d
dr′

[
1
r′

d
dr′

[
r′P(r′, 0)

]]
φ

(
r′/r

)
dr′, (A13)

where

φ
(
r′/r

) = r′
∫ ∞

0
J1(ωr′)J1(ωr) dω, (A14)

and rewriting the Bessel function integral yields the Green’s function,

φ(x) = 1
π

[
1 + x2

1 + x
K

(
2
√
x

1 + x

)
− (1 + x)E

(
2
√
x

1 + x

)]
, (A15)

where x = r′/r, and K and E are elliptic integrals of the first and second kind

K(t) =
∫ π/2

0

dθ√
1 − t2 sin2 θ

, E(t) =
∫ π/2

0

√
1 − t2 sin2 θ dθ. (A16a,b)

The rescaled intraparticle flux (3.8) is obtained by recasting (A13) in terms of the
dimensionless variables (3.4a–d).

A.1. Properties of the Green’s function
The Green’s function (A15) is seen to satisfy the reciprocal relation

φ (1/x) = φ(x)
x

. (A17)

A series expansion of (A15) for x � 1 yields

φ(x) = 1
2x

2 + 3
16x

4 + O(x6). (A18)

Combining this result with the reciprocal relation (A17) gives

φ(x) = 1
2x

−1 + 3
16x

−3 + O(x−5) (A19)

for x � 1. The Green’s function has the log singular expansion at x = 1

φ(x) = − 1
π

[(
1 + 1

2
(x − 1) − 1

16
(x − 1)2

)
log

(
1
8
|x − 1|

)

+2 + 1
2
(x − 1) − 3

16
(x − 1)2

]

+ O
[
(1 − x)3 log |1 − x|

]
+ O(1 − x)3. (A20)
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Appendix B. Analysis of transverse permeability function for large and small q

Here, the transverse permeability function g(q) is analysed for the limits of small and large
values of the parameter q.

B.1. Small q limit
The Reynolds equation (3.10) is singular for q → 0 (i.e. h0 → 0) but a non-singular
solution for q = 0 is possible by introducing dimensionless variables defined by the
permeability length scale, Lk, rather than the geometric length scale, L0. The parameter
q can be written as a ratio of these scales

q = (L0/Lk)2, (B1)

where L0 and Lk are defined by (3.5) and (A2), respectively.
The singularity at q = 0 is removed by recasting the problem in terms of the

dimensionless variables

r̃ = r
Lk

, z̃ = za

L2k
, P̃ = pL3k

μU0a2
, J̃ = Ja

U0Lk
. (B2a–d)

In these variables, the Reynolds equation (3.10) becomes

1
12 w̃h̃

3 + 1
4

(
ĨA

[
w̃

] + ĨB
[
w̃

])
h̃2r̃ − 2J̃

[
w̃

] = −1
2 r̃, (B3)

where

w̃(r̃) =
[
1
r̃

(
r̃P̃

)′]′
, (B4)

ĨA
[
w̃

] = −1
2

∫ ∞

r̃
w̃ dr, ĨB

[
w̃

] = 1
2

∫ r̃

0

(r
r̃

)2
w̃ dr, (B5a,b)

and the rescaled gap profile is given by

h̃(r̃) = q + 1
2 r̃

2. (B6)

The permeability function is given by

g(q) = 1
8

∫ ∞

0
(w̃∞ − w̃)r4 dr, (B7)

and w̃∞ corresponds to (3.16),

w̃∞ = w̃
[
P̃∞

]
= 12r̃

5
r̃2 − 4

h̃4
. (B8)

The permeability-scaled Reynolds equation (B3) has regular perturbation solution for
q � 1,

w̃(r̃, q) = w̃0(r̃) + O(q), (B9)

where w̃0(r̃) is the solution with q = 0, corresponding to a contact configuration of the
particles. Inserting this expansion into the Reynolds equation (B3) yields the leading-order
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Resistance and mobility functions for permeable particles

behaviour

g(q) = 1
8

∫ ∞

0
(w̃∞ − w̃0)r4 dr + O(q). (B10)

For convenience, this is rewritten as,

g(q) = 1
8

∫ 1

0
w̃∞r4 dr − 1

8

∫ 1

0
w̃0r4 dr + 1

8

∫ ∞

1
(w̃∞ − w̃0)r4 dr + O(q), (B11)

to isolate the log-singular behaviour resulting from the integration of w̃∞(r̃) at r = 0. Up
to O(1), formula (3.17) was obtained by a numerical solution of w̃0 and evaluation of
integrals in (B11); the O(q) coefficient was obtained by fitting to the solution at finite q.

B.2. Large q limit
For q � 1, the solution of (3.10) has the form of a regular perturbation

ŵ(r̂, q) = ŵ∞(r̂) + q−5/2ŵ1(r̂) + O(q−5), (B12)

where ŵ∞(r̂) is given by (3.16). At leading order for large q, the transverse permeability
function (3.14) is given by

g(q) = −1
8
q−5/2

∫ ∞

0
ŵ1r4 dr + O(q−5), (B13)

where the first-order correction field, ŵ1(r̂), satisfies

1
12 ŵ1ĥ3 + 1

4

(
ÎA

[
ŵ1

] + ÎB
[
ŵ1

])
ĥ2r̂ = 2q−5/2Ĵ

[
ŵ∞

]
. (B14)

Formula (3.18) was obtained by a numerical solution of this equation and evaluation of
integral (B13).

Appendix C. Resistance functions

A brief summary of the equations needed for the full description of the resistance problem
is presented in this appendix. Due to the linearity of the Stokes equations, forces, Fα ,
torques, Tα , and stresslets, Sα , exerted by a particle α = 1, 2 on the surrounding fluid are
related to its imposed motion through a resistance matrix (Jeffrey & Onishi 1984a; Jeffrey
1992; Kim & Karrila 2005),

⎛
⎜⎜⎜⎜⎜⎝

F 1
F 2
T 1
T 2
S1
S2

⎞
⎟⎟⎟⎟⎟⎠ = μ

⎛
⎜⎜⎜⎜⎜⎜⎝

A11 A12 B̃11 B̃12 G̃11 G̃12
A21 A22 B̃21 B̃22 G̃21 G̃22
B11 B12 C11 C12 H̃11 H̃12
B21 B22 C21 C22 H̃21 H̃22
G11 G12 H11 H12 M11 M12
G21 G22 H21 H22 M21 M22

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

U1 − U∞(r1)
U2 − U∞(r2)

ω1 − ω∞
ω2 − ω∞

−E∞
−E∞

⎞
⎟⎟⎟⎟⎟⎠ , (C1)

where A, B, B̃ and C are second-order tensors; G, G̃, H and H̃ are third-order tensors;
andM is a fourth-order tensor that is irrelevant for rigid particles; μ is the fluid viscosity.
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R.B. Reboucas and M. Loewenberg

The spheres have linear and angular velocities Uα and ωα , respectively, and are immersed
in a linear ambient flow field

U∞(r) = U0 + E∞ · r + ω∞ × r, (C2)

where r is the position vector and the centres of the spheres are at rα . The quantities E∞,
ω∞ and U0 are, respectively, the rate of strain and vorticity in the fluid, and the velocity
at r = 0. The resistance matrix (D1a,b) is symmetric and positive definite by the Lorentz
reciprocal theorem.
Dimensionless resistance tensors, denoted with a hat, are defined (Jeffrey & Onishi

1984a; Jeffrey 1992)

Aαβ = 3π(aα + aβ)Âαβ, (C3a)

Bαβ = π(aα + aβ)2B̂αβ, (C3b)

Cαβ = π(aα + aβ)3Ĉαβ, (C3c)

Gαβ = π(aα + aβ)2Ĝαβ, (C3d)

Hαβ = π(aα + aβ)3Ĥαβ, (C3e)

Mαβ = (5/6)π(aα + aβ)3M̂αβ, (C3f )

where α, β = 1 or 2 indicates particle labelling. The tensors obey symmetry relations that
are inherent to the geometry of the two-sphere configuration. For spherical particles, the
resistance tensors can be decomposed into, at most, two scalar functions XR

αβ and YR
αβ that

denote particle resistances parallel and perpendicular to the line of centres of the pair.
By symmetry, only two resistance functions, i.e. XR

11 and XR
21 or YR

11 and YR
21, are needed

(cf. Jeffrey & Onishi (1984a, (1.9)) and Jeffrey (1992, (5))). Here, R refers to one of the
resistance tensors.

C.1. Transverse resistance functions
The resistance functions for hard spheres were evaluated by setting R̄0 = c/

√
ξ in integrals

(2.30a,b), where c is a constant. The result is

I1 = 12
5 (1 + κ−1)−2 log ξ−1 + C1, I2 = (1 + κ−1)−1 log ξ−1 + C2, (C4a,b)

where C1 and C2 depend on size ratio. Then inserting these results in (2.23)–(2.28), setting
the permeability integral IK = 0 and collecting all non-singular terms into the matching
constants RY

αβ yields

YA,0
11 = 4

15
κ(2 + κ + 2κ2)

(1 + κ)3
log ξ−1 + AY

11(κ), (C5)

YA,0
21 = − 8

15
κ(2 + κ + 2κ2)

(1 + κ)4
log ξ−1 + AY

21(κ), (C6)
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Resistance and mobility functions for permeable particles

YB,0
11 = −1

5
κ(4 + κ)

(1 + κ)2
log ξ−1 + BY

11(κ), (C7)

YB,0
21 = −4

5
κ2(1 + 4κ)

(1 + κ)4
log ξ−1 + BY

21(κ), (C8)

YC,0
11 = 2

5
κ

1 + κ
log ξ−1 + CY

11(κ), (C9)

YC,0
21 = 4

5
κ2

(1 + κ)4
log ξ−1 + CY

21(κ), (C10)

YG,0
11 = 1

10
κ(4 − κ + 7κ2)

(1 + κ)3
log ξ−1 + GY

11(κ), (C11)

YG,0
21 = 2

5
κ2(7 − κ + 4κ2)

(1 + κ)5
log ξ−1 + GY

21(κ), (C12)

YH,0
11 = 1

10
κ(2 − κ)

(1 + κ)2
log ξ−1 + HY

11(κ), (C13)

YH,0
21 = 2

5
κ2(7 + κ)

(1 + κ)5
log ξ−1 + HY

21(κ). (C14)

The matching constants RY
αβ depend only on size-ratio and are tabulated in the literature

for a limited set of size ratios (O’Neill & Majumdar 1970a,b; Jeffrey & Onishi 1984a;
Corless & Jeffrey 1988b; Kim & Karrila 2005); herein, we used the code developed by
D.J. Jeffrey to generate these constants (https://www.uwo.ca/apmaths/faculty/jeffrey/).

C.2. Axisymmetric resistance functions
For axisymmetric motion of spheres, there is no coupling between rotation and translation
or strain thus, B = B̃ = 0, and H = H̃ = 0. The leading-order, resistance functions for
hard spheres in translation and strain are (Cooley & O’Neill 1969b,a; Jeffrey & Onishi
1984a; Corless & Jeffrey 1988b; Jeffrey 1992; Kim & Karrila 2005)

XA,0
11 = 2κ2

(1 + κ)3
ξ−1 + O

(
log ξ−1

)
, (C15)

XA,0
21 = − 4κ2

(1 + κ)4
ξ−1 + O

(
log ξ−1

)
, (C16)

XG,0
11 = 3κ2

(1 + κ)3
ξ−1 + O

(
log ξ−1

)
, (C17)

and

XG,0
21 = 12κ3

(1 + κ)5
ξ−1 + O

(
log ξ−1

)
. (C18)

As indicated, these resistances have a ξ−1 singularity at contact. The other non-zero
elements of the axisymmetric resistance matrix are the non-singular rotational
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R.B. Reboucas and M. Loewenberg

resistances

XC,0
11 = κ3

(1 + κ)3
ζ

(
3,

κ

1 + κ

)
+ O

(
ξ log ξ−1

)
, (C19)

XC,0
21 = − 8κ3

(1 + κ)6
ζ(3, 0) + O

(
ξ log ξ−1

)
, (C20)

where ζ(z, p) = ∑∞
k=0(k + p)−z is the Riemann-zeta function.

Appendix D. Axisymmetric lubrication resistance

The axisymmetric integro-differential Reynolds lubrication equation, analogous to (3.6a),
has been derived elsewhere (Reboucas & Loewenberg 2021a, (3.6)) and the axisymmetric
permeability function analysed. For completeness, the principal results are provided in this
appendix. Except as noted, local variable definitions are used. The integral form of the
axisymmetric Reynolds lubrication equation, presented below, is closely analogous to the
transverse Reynolds lubrication (3.10), except that the pressure has no angular dependence
and the pressure and flux scalings in variables (3.4a–d) are given by

p̂ = pL40
μWa3

, Ĵ = J
W

q5/2, (D1a,b)

where W = Uz1 − Uz2 is the relative velocity of the particles along their line of centres,
and L0 is the geometric length scale (3.5).
The integral form of the axisymmetric Reynolds lubrication equation is

1
12 ŵĥ

3 + 1
4 ÎA

[
ŵ

]
ĥ2 − 2q−5/2Ĵ

[
ŵ

] = −1, (D2)

where ĥ is defined by (3.7)

ŵ(r̂) = 1
r̂

(
r̂p̂′)′

, and ÎA
[
ŵ

] =
∫ r̂

0
ŵr dr. (D3a,b)

The intraparticle flux, Ĵ, is given by (3.8) with Green’s function

φ(x) = 2
π

x
1 + x

K
(
2
√
x

1 + x

)
, (D4)

where x = r/r̂, and K is the first-kind elliptic integral defined by (A16a). The
axisymmetric permeability function f (q) is given by

f (q) = 1
3

∫ ∞

0
p̂r dr = 1

12

∫ ∞

0
ŵr3 dr. (D5)

The numerical procedure described in § 3.1 was used to solve (D2). The results for
f (q) are shown graphically in figure 2 and provided in tabular form in the Supplementary
Material. An analysis for small and large values of q, similar to that presented in § 3.2,
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Resistance and mobility functions for permeable particles

yields (Reboucas & Loewenberg 2021a)

f (q) = b1q − b2q2 + O(q3), q � 1, (D6)

with b1
.= 0.7507 and b2

.= 0.224, and

f (q) = 1 − c1q−5/2 + O(q−5), q � 1, (D7)

with c1
.= 1.8402. For hard spheres, p̂ = 3ĥ−2 and thus f = 1. Accordingly, these results

show that permeability reduces the lubrication pressure for axisymmetric near-contact
motion.

Appendix E. Near-contact axisymmetric mobility functions

In the near-contact regime, the axisymmetric mobility functions L and A are proportional
to the G mobility function for permeable spheres (5.7), as indicated by (5.11). Here, the
calculation of the contact forces is described and a table of values is provided.
The contact forces are made dimensionless as

F̂(g)
c = F(g)

c

6πμaU∞
12,g

, F̂(E)
c = F(E)

c

6πμaU∞
12,E

, (E1a,b)

where U∞
12,g is defined by (5.2a,b), and

U∞
12,E = Eā(1 − A), (E2)

is the relative velocity along the line of centres of two spheres in an extensional flow, where
ā is the average radius and E is the rate of strain.
The contact forces are obtained from a force balance on the particles, taking account of

the drag forces due to pair migration, gravity forces or forces exerted by the axisymmetric
straining flow. The results are (Cooley & O’Neill 1969a; Nir & Acrivos 1973)

F̂(g)
c = κ−1 + 1

κ2γ − 1

[
R2 − R1κ

3γ

R1 + R2

]
, (E3)

and

F̂(E)
c = 1

κ

R(E)
2 R1 − R(E)

1 R2

R1 + R2
, (E4)

where

R1 = AX
11 + 1 + κ

2
AX
12, (E5)

R2 = κAX
22 + 1 + κ

2
AX
12, (E6)

R(E)
1 = AX

11 − κ(1 + κ)

2
AX
12 − 2

3
GX
11 − (1 + κ)2

6
GX
21 + (1 + κ−1)−2, (E7)

and

R(E)
2 = 1 + κ

2
AX
12 − κ2AX

22 − (1 + κ)2

6
GX
12 + 2

3
κ2GX

22 − (1 + κ−1)−2. (E8)

In (E5)–(E8), AX
αβ and GX

αβ are matching constants for the axisymmetric resistance
functions, XA

αβ and XG
αβ , obtained from the resistance matrix (C1). For convenience,

representative values of the contact forces are provided in table 6.
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R.B. Reboucas and M. Loewenberg

κ 1 0.9 0.75 0.6 0.5 0.4 0.3 0.25 0.125
F̂(g)
c — 0.3862 0.3673 0.3256 0.2825 0.2270 0.1611 0.1260 0.04296

F̂(E)
c 2.038 2.024 1.933 1.730 1.518 1.238 0.8982 0.7123 0.2538

Table 6. Contact forces for particles migrating in gravity (γ = 1) and in axisymmetric straining flow.

REFERENCES

AURIAULT, J.L. 2009 On the domain of validity of Brinkman’s equation. Transp. Porous Media 79, 215–223.
BÄBLER, M.U., SEFCIK, J., MORBIDELLI, M. & BALDYGA, J. 2006 Hydrodynamic interactions and

orthokinetic collisions of porous aggregates in the Stokes regime. Phys. Fluids 18, 013302.
BARS, M.L. & WOSTER, M.G. 2006 Interfacial conditions between a pure fluid and a porous medium:

implications for binary alloy solidification. J. Fluid Mech. 550, 149–173.
BATCHELOR, G.K. 1982 Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General

theory. J. Fluid Mech. 119, 379–408.
BATCHELOR, G.K. & GREEN, J.T. 1972 The hydrodynamic interaction of two small freely-moving spheres

in a linear flow field. J. Fluid Mech. 56 (2), 375–400.
BATCHELOR, G.K. & O’BRIEN, R.W. 1977 Thermal or electrical conduction through a granular material.

Proc. R. Soc. Lond. A 355 (1682), 313–333.
BEAVERS, G.S. & JOSEPH, D.D. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30,

197–207.
BELFORT, G., DAVIS, R.H. & ZYDNEY, A.L. 1994 The behavior of suspensions and macromolecular

solutions in crossflow microfiltration. J. Memb. Sci. 96, 1–58.
BLUE, L.E. & JORGENSON, J.W. 2015 1.1μm superficially porous particles for liquid chromatography.

Part II. Column packing and chromatographic performance. J. Chromatogr. A 1380, 71–80.
BRENNER, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Engng

Sci. 16 (3-4), 242–251.
BRENNER, H. & O’NEILL, M.E. 1972 On the Stokes resistance of multiparticle systems in a linear shear field.

Chem. Engng Sci. 27 (7), 1421–1439.
BRINKMAN, H.C. 1949 A calculation of the viscous force exerted by a flowing fluid on a dense swarm of

particles. Appl. Sci. Res. A 1, 27–34.
BURGANOS, V.N., MICHALOPOULOU, A.C., DASSIOS, G. & PAYATAKES, A.C. 1992 Creeping flow around

and through a permeable sphere moving with constant velocity towards a solid wall: a revision. Chem.
Engng Commun. 117, 85–88.

CAO, Y., GUNZBURGER, M., HUA, F. & WANG, X. 2010 Coupled Stokes-Darcy model with Beavers-Joseph
interface boundary condition. Commun. Math. Sci. 8, 1–25.

CHEN, S.B. 1998 Axisymmetric motion of multiple composite spheres: solid core with permeable shell, under
creeping flow conditions. Phys. Fluids 10, 1150.

CHEN, S.B. & CAI, A. 1999 Hydrodynamic interactions and mean settling velocity of porous particles in a
dilute suspension. J. Colloid Interface Sci. 217, 328–340.

CHILDRESS, S. 1972 Viscous flow past a random array of spheres. J. Chem. Phys. 56 (6), 2527–2539.
CIVAN, F. 2007 Reservoir Formation Damage, 2nd edn, chap. 18. Elsevier.
COOLEY, M.B.A. & O’NEILL, M.E. 1968 On the slow rotation of a sphere about a diameter parallel to a

nearby plane wall. IMA J. Appl. Maths 4 (2), 163–173.
COOLEY, M.B.A. & O’NEILL, M.E. 1969a On the slow motion of two spheres in contact along their line of

centres through a viscous fluid. Math. Proc. Camb. Phil. Soc. 66 (2), 407–415.
COOLEY, M.D.A. & O’NEILL, M.E. 1969b On the slow motion generated in a viscous fluid by the approach

of a sphere to a plane wall or stationary sphere. Mathematika 16 (1), 37–49.
CORLESS, R.M. & JEFFREY, D.J. 1988a Forces and stresslets for the axisymmetric motion of nearly touching

unequal spheres. Physico-Chem. Hydrodyn. 10, 461–470.
CORLESS, R.M. & JEFFREY, D.J. 1988b Stress moments of nearly touching spheres in low Reynolds number

flow. Z. Angew. Math. Phys. 39, 874–884.
DAMIANO, E.R., LONG, D.S., EL-KHATIB, F.H. & STACE, T.M. 2004 On the motion of a sphere in a stokes

flow parallel to a brinkman half-space. J. Fluid Mech. 500, 75–101.
DARCY, H. 1856 Les Fontaines Publiques de la Ville de Dijon. Dalmont.

938 A27-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

17
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



Resistance and mobility functions for permeable particles

DAVIS, A.M.J. 2001 Axisymmetric flow due to a porous sphere sedimenting towards a solid sphere or a solid
wall: application to scavanging of small particles. Phys. Fluids 13, 3126.

DAVIS, R.H. & STONE, H.A. 1993 Flow through beds of porous particles. Chem. Engng Sci. 48 (23),
3993–4005.

DAVIS, R.H., SCHONBERG, J.A. & RALLISON, J.M. 1989 The lubrication force between two viscous drops.
Phys. Fluids A 1 (1), 77–81.

DEBBECH, A., ELASMI, L. & FEUILLEBOIS, F. 2010 The method of fundamental solution for the creeping
flow around a sphere close to a membrane. Z. Angew. Math. Mech. 90 (12), 920–928.

DURLOFSKY, L. & BRADY, J.F. 1987 Analysis of the Brinkman equation as a model for flow in porous media.
Phys. Fluids 30 (11), 3329–3341.

GOLDMAN, A.J., COX, R.G. & BRENNER, H. 1967a Slow viscous motion of a sphere parallel to a plane
wall–I. Motion through a quiescent fluid. Chem. Engng Sci. 22 (4), 637–651.

GOLDMAN, A.J., COX, R.G. & BRENNER, H. 1967b Slow viscous motion of a sphere parallel to a plane
wall–II. Couette flow. Chem. Engng Sci. 22 (4), 653–660.

GOREN, S.L. 1979 The hydrodynamic force resisting the approach of a sphere to a plane permeable wall.
J. Colloid Interface Sci. 69, 78–85.

HAPPEL, J. & BRENNER, H. 1983 Low Reynolds Number Hydrodynamics. Springer.
HERTZ, H. 1882 Ueber die berührung fester elastischer körper. [On the fixed elastic body contact]. J. Reine

Angew. Math. 92, 156–171.
HOWELLS, I.D. 1974 Drag due to the motion of a Newtonian fluid through a sparse random array of small

fixed rigid objects. J. Fluid Mech. 64 (3), 449–476.
HWANG, K.J. & SZ, P.Y. 2011 Membrane fouling mechanism and concentration effect in cross-flow

microfiltration of BSA/dextran mixtures. Chem. Engng J. 166, 669–677.
INGBER, M.S. & ZINCHENKO, A. 2012 Semi-analytic solution of the motion of two spheres in arbitrary shear

flow. Intl J. Multiphase Flow 42, 152–163.
JEFFREY, D.J. 1982 Low-Reynolds-number flow between converging spheres.Mathematika 29 (1), 58–66.
JEFFREY, D.J. 1989 Higher–order corrections to the axisymmetric interactions of nearly touching spheres.

Phys. Fluids A 1 (10), 1740–1742.
JEFFREY, D.J. 1992 The calculation of the low Reynolds number resistance functions for two unequal spheres.

Phys. Fluids A 4 (1), 16–29.
JEFFREY, D.J. & ONISHI, Y. 1984a The forces and couples acting on two nearly touching spheres in

low-Reynolds-number flow. Z. Angew. Math. Phys. 35, 634–641.
JEFFREY, D.J. & ONISHI, Y. 1984b Calculation of the resistance and mobility functions for two unequal rigid

spheres in low-Reynolds-number flow. J. Fluid Mech. 139, 261–290.
JONES, R.B. 1978 Hydrodynamic interactions of two permeable spheres I: the method of reflections. Physica

A 92, 545–556.
KHABTHANI, S., SELLIER, A. & FEUILLEBOIS, F. 2019 Lubricating motion of a sphere towards a thin porous

slab with Saffman slip condition. J. Fluid Mech. 867, 949–968.
KIM, S. & KARRILA, S.J. 2005 Microhydrodynamics: Principles and Selected Applications. Dover.
KIM, S. & MIFFLIN, R.T. 1985 The resistance and mobility functions of two equal spheres in

low-Reynolds-number flow. Phys. Fluids 28 (7), 2033–2045.
LE-CLECH, P., CHEN, V. & FANE, T.A.G. 2006 Fouling in membrane bioreactors used in wastewater

treatment. J. Memb. Sci. 284, 17–53.
LÉVY, T. 1983 Fluid flow through an array of fixed particles. Intl J. Engng Sci. 21 (1), 11–23.
LIAPIS, A.I. & MCCOY, M.A. 1994 Perfusion chromatography: effect of micropore diffusion on column

performance in systems utilizing perfusive adsorbent particles with a bidisperse porous structure.
J. Chromatogr. A 660 (1), 85–96.

LIN, C.J., LEE, K.J. & SATHER, N.F. 1970 Slow motion of two spheres in a shear field. J. Fluid Mech. 43
(1), 35–47.

MAUDE, A.D. 1963 The movement of a sphere in front of a plane at low Reynolds number. Brit. J. Appl. Phys.
14 (12), 894.

MICHALOPOULOU, A.C., BURGANOS, V.N. & PAYATAKES, A.C. 1992 Creeping axisymmetric flow around
a solid particle near a permeable obstacle. AIChE J. 38, 1213–1228.

MICHALOPOULOU, A.C., BURGANOS, V.N. & PAYATAKES, A.C. 1993 Hydrodynamic interactions of two
permeable particles moving slowly along their centerline. Chem. Engng Sci. 48, 2889–2900.

NEALE, G. & NADER, W. 1974 Practical significance of Brinkman’s extension of Darcy’s law: coupled
parallel flows within a channel and a bounding porous medium. Can. J. Chem. Engng 52, 475–478.

NIR, A. 1981 On the departure of a sphere from contact with a permeable membrane. J. Engng Maths 15,
65–75.

938 A27-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

17
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



R.B. Reboucas and M. Loewenberg

NIR, A. & ACRIVOS, A. 1973 On the creeping motion of two arbitrary-sized touching spheres in a linear shear
field. J. Fluid Mech. 59 (2), 209–223.

OCHOA-TAPIA, J.A. & WHITAKER, S. 1995 Momentum transfer at the boundary between a porous medium
and a homogeneous fluid. I. Theoretical development. Intl J. Heat Mass Transfer 38, 2635–2646.

O’NEILL, M.E. & MAJUMDAR, R. 1970a Asymmetrical slow viscous fluid motions caused by the translation
or rotation of two spheres. Part 1. The determination of exact solutions for any values of the ratio of radii
and separation parameters. Z. Angew. Math. Phys. 21, 164–179.

O’NEILL, M.E. & MAJUMDAR, R. 1970b Asymmetrical slow viscous fluid motions caused by the translation
or rotation of two spheres. Part 2. Asymptotic forms of the solutions when the minimum clearance between
the spheres approaches zero. Z. Angew. Math. Phys. 21, 180–187.

O’NEILL, M.E. & STEWARTSON, K. 1967 On the slow motion of a sphere parallel to a nearby plane wall.
J. Fluid Mech. 27 (4), 705–724.

PAYATAKES, A.C. & DASSIOS, G. 1987 Creeping flow around and through a permeable sphere moving with
constant velocity towards a solid wall. Chem. Engng Commun. 58, 119–138.

RAMON, G.Z. & HOEK, E.M.V. 2012 On the enhanced drag force induced by permeation through a filtration
membrane. J. Memb. Sci. 392–393, 1–8.

RAMON, G.Z., HUPPERT, H.E., LISTER, J.R. & STONE, H.A. 2013 On the hydrodynamic interaction
between a particle and a permeable surface. Phys. Fluids 25, 073103.

REBOUCAS, R.B. & LOEWENBERG, M. 2021a Near-contact approach of two permeable spheres. J. Fluid
Mech. 925, A1.

REBOUCAS, R.B. & LOEWENBERG, M. 2021b Collision rates of permeable particles in creeping flows. Phys.
Fluids 33, 083322.

RODRIGUES, A.E., AHN, B.J. & ZOULALIAN, A. 1982 Intraparticle-forced convection effect in catalyst
diffusivity measurements and reactor design. AIChE J. 28 (4), 541–546.

ROY, B.C. & DAMIANO, E.R. 2008 On the motion of a porous sphere in a stokes flow parallel to a planar
confining boundary. J. Fluid Mech. 606, 75–104.

SAFFMAN, P.G. 1971 On the boundary condition at the surface of a porous medium. Stud. Appl. Maths 50,
93–101.

STIMSON, M. & JEFFERY, G.B. 1926 The motion of two spheres in a viscous fluid. Proc. R. Soc. Lond. A 111
(757), 110–116.

TAM, C.K.W. 1969 The drag on a cloud of spherical particles in low Reynolds number flow. J. Fluid Mech.
38 (3), 537–546.

WANG, J., CAHYADI, A., WU, B., PEE, W., FANE, A.G. & CHEW, J.W. 2020 The roles of particles in
enhancing membrane filtration: a review. J. Memb. Sci. 595, 117570.

938 A27-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

17
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss


