| )
Check for
updates

Interprocedural Path Complexity Analysis

Mira Kaniyur Ana Cavalcante-Studart Yihan Yang
Harvey Mudd College Harvey Mudd College Harvey Mudd College
Claremont, USA Claremont, USA Claremont, USA
mkaniyur@hmc.edu astudart@hmc.edu yukyang@hmec.edu

Sangeon Park David Chen Duy Lam
Harvey Mudd College Harvey Mudd College Harvey Mudd College
Claremont, USA Claremont, USA Claremont, USA
sangpark@hmc.edu davidchen@hmc.edu tlam@hmc.edu
Lucas Bang
Harvey Mudd College
Claremont, USA
bang@cs.hmc.edu
ABSTRACT 1 INTRODUCTION

Software testing techniques like symbolic execution face significant
challenges with path explosion. Asymptotic Path Complexity (APC)
quantifies this path explosion complexity, but existing APC meth-
ods do not work for interprocedural functions in general. Our new
algorithm, APC-IP, efficiently computes APC for a wider range of
functions, including interprocedural ones, improving over previous
methods in both speed and scope. We implement APC-IP atop the
existing software Metrinome, and test it against a benchmark of C
functions, comparing it to existing and baseline approaches as well
as comparing it to the path explosion of the symbolic execution
engine Klee. The results show that APC-IP not only aligns with
previous APC values but also excels in performance, scalability, and
handling complex source code. It also provides a complexity predic-
tion of the number of paths explored by Klee, extending the APC
metric’s applicability and surpassing previous implementations.

CCS CONCEPTS

« Software and its engineering — Software performance; Soft-
ware verification and validation; - Mathematics of computing
— Generating functions.

KEYWORDS
Code Complexity, Path Explosion, Testing Complexity

ACM Reference Format:

Mira Kaniyur, Ana Cavalcante-Studart, Yihan Yang, Sangeon Park, David
Chen, Duy Lam, and Lucas Bang. 2024. Interprocedural Path Complexity
Analysis. In Proceedings of the 33rd ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA "24), September 16—20, 2024, Vienna,
Austria. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3650212.
3652118

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ISSTA °24, September 16-20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0612-7/24/09.
https://doi.org/10.1145/3650212.3652118

162

Software testing and verification techniques rely on program path
coverage to increase confidence in software correctness. However,
for automated software testing approaches like symbolic execution,
path explosion is a well-known bottleneck in code analysis [1, 5, 14].
Asymptotic path complexity (APC) is a metric that formalizes the de-
gree of path explosion, thus quantifying the computational difficulty
of achieving path coverage. Previous work [2] has demonstrated
that asymptotic path complexity is a more accurate and refined
metric to measure code complexity than other common complexity
metrics such as cyclomatic [16] or NPATH [17] complexity. Further,
it has been shown that asymptotic path complexity (APC) is useful
in the context of automated software testing [3, 19], providing an
upper bound on the growth rate of paths explored by a popular
symbolic execution software such as KLEE [6]. In earlier works,
approaches to computing APC only handled intraprocedural analy-
sis, including functions that make no recursive calls or make only
self-recursive calls [3, 19]. In this paper, we extend and optimize
the asymptotic path complexity (APC) metric to measure the com-
plexity of interprocedural programs. We give a new APC algorithm,
APC-IP, able to compute path complexity for interprocedural func-
tions, which subsumes prior approaches and is significantly more
scalable. Our APC-IP is an algorithm that computes the asymptotic
path complexity of intraprocedural and interprocedural code. APC-
IP thus provides a way to quickly predict the difficulty of automatic
test generation for intraprocedural and interprocedural code.
Contributions. We claim the following research contributions.
APC-IP Formalization. Extension of the theory and algorithms es-
tablished for APC to account for interprocedural functions.
Optimization Over All Previous APC Approaches. Replacing theoreti-
cal steps in previous algorithms to improve performance for both
interprocedural and intraprocedural code.

APC-IP Implementation. Implementing APC-IP atop METRINOME,
an existing APC analysis tool.

APC-IP Experimental Validation. Verification that APC-IP gives an
accurate APC for both intraprocedural and interprocedural, and
is the fastest option to process complex source codes. APC-IP is a
predictor of path explosion in symbolic execution experiments.
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int ged(int a, int b) {
while (a != b){
if (a>b) a=a-b;
else b =b - a;}
return a;

Figure 1: Source code for gcd function.

In the following sections, the paper covers the intuition of the
asymptotic path complexity metric, reviews previous work on com-
puting the APC for intraprocedural functions, and the theoretical
changes and optimizations that produce a correct and efficient APC-
IP algorithm. Finally the paper will cover the experimental results
comparing our APC-IP with previous APC metrics as well as KLEE.

2 PATH COMPLEXITY BACKGROUND

Here, we introduce and define path complexity and asymptotic path
complexity. Path complexity is a function expressing the number
of execution paths through a program within a certain execution
depth n. Computing path complexity relies on: (1) the control flow
graph (CFG), a standard representation of a program’s structure,
(2) formal language theory including context free grammars, and
(3) the theory of generating functions.

2.1 Asymptotic Path Complexity Intuition

Asymptotic path complexity (APC) is an asymptotic upper bound of
the path complexity metric. APC is calculated in terms of n, which
is the program’s execution depth, or the length of the path through
the Control Flow Graph. We define the path length to be the number
of edges in the path. The asymptotic path complexity of a program
P is expressed as a function f(n) such that f(n) = O(path(n)),
where path(n) is the number of different executions of a program
with maximum execution length n. Earlier studies have computed
APC for non-recursive as well as recursive programs [3, 19]. Our
work extends this metric for interprocedural functions.

2.2 Path Complexity Examples

To explain the intuition of path complexity, we demonstrate com-
puting path complexity by hand for small depths. We count the
paths until a certain depth for three examples: one non-recursive
function, one recursive function, and one interprocedural function.
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Figure 2: Control Flow Graph for gcd function.

Example: gcd (Non-Recursive). In this control flow graph (CFG)
of a ged function (Figure 2), the nodes are labeled by the line number
of the code. Any counted path must go from start (node T) to exit
(node 4). Since ged contains loops, there are infinitely many paths
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int palindrome_r(const char *s, int b, int e)
{

if ( (e - 1) <=b ) return 1;

if ( s[b] != s[e-1]1 ) return 0;

return palindrome_r(s, b+1, e-1);

}

Figure 3: Source code for palindrome function.

through this graph. Hence, a function in terms of maximum path
length n is used to express path complexity. Below is a table showing
both the number of paths withlength n (len(p) = n) and the number
of paths within depth n (len(p) < n).

[o 1 2 3 4 5 6 7 8 9 10 11 12
‘0010020040080

Depth, n
[{p :Ten(p) =n}]
[{p : len(p) < n}|

0 0 1 1 1 3 3 3 7 7 7 15 15

For example, the shortest path, T — 0 — 4, is length 2. The next
shortest paths are 2 paths of length5, T -0 —-1—2 — 0 — 4,
andT - 0 - 1 — 3 — 0 — 4 respectively. We continue to
complete the table above. One can manually verify that the function
2l(n+1)/3] _1 correlates with the numerical series in the table. With
METRINOME, the APC of the gcd function is upper-bounded by
2l(n+1)/3] _ 1 approximately O(1.26").
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Figure 4: Control Flow Graph for palindrome function.

Example: palindrome (Recursive). A recursive palindrome func-
tion is given in Figure 4. When the recursive call is made at node 4,
the control flow passes back to the entry point of the function at
node T. Similar to the previous path counting methods, the path
number is bounded by the length of execution given by n.

Depth, n o 1 2 3 4 5 6 7 8 9 10 11 12
{p:len(p)=n}f O 0o o 1 1 0 0 1 1 0 0 1 1
[{p:len(p)<n}| |0 o 0o 1 2 2 2 3 4 4 4 5 6

Here, the shortest pathis T — 0 — 1 — 5, with length 3.
The next shortest pathis T — 0 — 2 — 3 — 5, with length 4.
Then, there is the first path with a recursive calL, T - 0 —» 2 —
4+ (T — 0 - 1 — 5) — 5. This path has length 7. By convention,
the recursive edge doesn’t count in the length, since no code is
executed in that step. Furthermore, the final 5 must occur once
we return from the recursive call to finish the original call. For
recursive functions, call and return locations must be appropriately
matched within a path. By using the table, we can calculate the
path complexity to be |n/2] (for n > 2) which is O(n/2).
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bool is_even(int n){
if (n == 0) return true;
else return is_odd(n - 1);

¥ }

bool is_odd(int n){
if (n == 0) return false;
else return is_even(n - 1);

Figure 5: Source code for is_even and is_odd functions.

Interprocedural Call

TO. iseven(n) |

00. if (n==0)

Interprocedural Call

T1. is_odd(n)

I
return is_odd(n-1) ‘

0.1. return true‘ ‘0,2, ‘1,04 if (n == 1)‘
] \ I
: ‘ 11. return true‘ ‘ 1.2. return is_even(n-1) ‘
Non-interprocedural | | |
et i Interprocedural Return [ am—rr

Non-interprocedural |

|
|

| Return |
| B i
|

Figure 6: Control Flow Graph for is_even and is_odd func-
tions (dashed lines are interprocedural calls).

Example: is_even and is_odd (Interprocedural, mutually re-
cursive). The functions is_even and is_odd (CFGs in Figure 6)
have mutually recursive interprocedural calls where the node 0_2
calls is_odd and the node 1_2 calls is_even.

Depth, n o 1 2 3 4 5 6 7 8 9
[{p :Ten(p) = n}] ‘o o 0 1 0 0 1 0 0 1 0 0 1
0

[{p : len(p) < n}| o 0 1 1 1 2 2 2 3 3 3 4

Here, we see that our shortest path, Ty — 0.0 — 0_1 — 0_3,
is length 3. Our next shortest pathis Ty — 0.0 — 0_2+ (T3 —
1.0 = 1_1 — 1_3) — 0_3 is length 6. This path contains nested
interprocedural calls. Then we have Ty — 0.0 — 0_2+ (T} —
1.0—12+(Tp »0_0—0_1—0_3) —1_3) > 0_3,oflength 9.
Again, calls and returns should be matched. Similar to the previous
examples, interprocedural path complexity can also be manually
calculated with the the table. The number of paths within a given
depth can be expressed as | n/3] for this function (where n > 2).
Observations. The gcd function’s CFG can be thought of as a finite
automaton where paths in the graph form a regular language [22].
The recursive palindrome example instead requires matching calls
and returns, hinting at the need for a context-free language to
represent paths [22]. The analytic combinatorics behind counting
members of regular and context-free languages parameterized by
length is well understood [8, 10, 12], and it is these methods that are
used straightforwardly in existing APC analyses [3, 19]. However,
interprocedural paths (as in the is_even and is_odd example) can
be thought of as generated by an interdependent set of recursive
context-free grammars. Now, one could treat such a system of cou-
pled context-free grammars as a single large grammar and apply
the same approaches in order to compute interprocedural APC, but
we observed that this is too inefficient to be an effective method
for computing APC. Similar to solving coupled systems of differ-
ence equations [15], carefully simplifying subsystems of constraints
that arise from these interdependent systems of graphs and gram-
mars is the key to making our approach efficient for computing
interprocedural APC (i.e. Algorithms 5 and 6 of Section 3.3).
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2.3 Recursive Path Complexity Analysis

An existing approach, APC-R for non-interprocedural recursive
code [19], is reproduced here in Algorithm 1. The first two lines
which compute the control flow graph and the system of equations
are elided in this paper, but control flow graph construction is well-
known, and our following examples elucidate how the system of
equations is constructed from the CFG.

Algorithm 1 APC-R: ASYMPTOTIC-ANALYSIS OF
RECURSIVE FuNcTIONS (Program P)

: G « CoNTROL-FLOW-GRrAPH(P)
: S « SystEM(G)

V « VARIABLES(S)

: T« EumiNaTe(S, V/{T})

D « DiscriminanT(T)

: R « Roors(D)

: if (R = 0) then

g(z) = Sowve(I, T)/(1 - z)
9: apc = SymB-CaLc(g, R) « upper bound of g
: else

r* « minimum positive real root in R
apc « (1/r*)"

: return apc

> get the variables in S
> I in terms of T

> Case 1

0N U W

> Case 2

> Return Asymptotic Path Complexity

To compute APC for a program P, the algorithm produces a
control flow graph G, and then converts it to a context free grammar
R and then to a system of equations S. The grammar R is constructed
such that its language L(R) corresponds with paths through G.
A context free grammar is used because all strings that can be
generated by the context-free language correspond to paths through
the control-flow graph, which is what we wish to count. Each string-
replacement grammar rule encodes information about a node in
the control graph: which nodes it can lead to, if there are any
recursive calls, and whether or not it’s a return node. The Chomsky-
Schiitzenberger Enumeration Theorem is then applied to compute
a system of equations that describes constraints on a combinatorial
generating function that counts the number of strings of a given
length, as explained in the following examples.

Theorem (Chomsky-Schiitzenberger, 1963) If L is a context-free
language with unambiguous context-free grammar, and ay. is the
number of words of length k in L, then g(x) = X7 apx* is a power
series over N that is algebraic over Q(x). O
Continued Example: palindrome. We start with the control flow
graph on the left of Figure 7, then create the context-free grammar
(below left) and use Chomsky-Schiitzenberger to transform it into
a system of equations (below right).

T — 0V, T = Vox

Vo — 1V1]2V, Vo = Vix + Vox
Vi — 5V5 Chomsky-Schiitzenberger Vi =Vsx

Va2 — 3V3|4V, V2 = Vax + Vax
V3 — 5Vs Transformation Vs=x

Vi — T5Vs Vi = TVsx

Vs — ¢ Vs=1

Looking at the context-free grammar, we note that string re-
placement rules correspond to traversing the control flow graph.
For example, the first rule goes from T to 0V, representing a path
that just started at node 0, and is currently deciding what to do. The
second rule represents a branch in the control flow graph: Vj can be
replaced with either 1V; or 2V3, representing the split in the graph.
Finally, suppose we replace V; with 5V5 and then replace Vs with ¢
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— this is a terminal character, and the final generated string is 015,
representing following the leftmost path in the control flow graph
and returning. On the other hand, if we traverse the rightmost path
of the graph, we have the option to replace V, with 4V4, and then Vj
with T5Vs: since T is the start symbol, this represents a recursive
call. Note that the T is before the 5: the recursive call must return
before the calling node can return, so the recursive call’s string
replacement is before the path ends at node 5.
Substituting to eliminate variables V; givesus T = % The
APC-R algorithm branches into two cases here. If the discriminant
D of T has any real roots, we can directly calculate the APC as (ri*)”,
where r* is the minimum positive real root of D. In this example,
the discriminant of T has no real roots, so we must take further
steps to compute the APC, using a generating function g(x). This
generating function always has the formula g(x) = % This g(x)
encodes, in its series expansion, the integer sequence of path(n)
forn = 1,2,3,..., as the coefficients of x!,x2,x3,.... That is, the
coefficient [x"]g(x) is the number of paths through the control
flow graph starting at T with max depth n. For this example, the

3
Taylor expansion is g(x) = % = %

=3+ 2x% 4250 + 260 + 3x7 + 4x® + 4x% + 4x10 4 5x11 4
Observe that the coefficients of this series exactly correspond to
the path counts of the earlier manually computed palindrome ex-
ample. A complete treatment of generating functions for encoding
sequences of integers can be found in several references [21, 24, 26].

After the generating function g(x) is produced, symbolic calculus
is used to compute the APC using the Taylor series of the generating
function. Given the generating function, g, one computes

D m;-1 n
j 1
cijn’ | —
§ ij e

i=0 j=0 !

path(n) = ()
where r; represents the distinct roots of the denominator of g,
J as the multiplicity of r;, and each c; j is the coefficient of the
corresponding term in path(n), which is solved for as a system
of equations using linear algebra. This equation gives the upper
bound of path complexity, and the asymptotic value is APC. Using
this approach, the APC-R of palindrome function is O(n/2). A full
discussion of this method is found in [2]. The overall algorithm for
APC-R is summarized in Algorithm 1.

3 INTERPROCEDURAL PATH COMPLEXITY

3.1 Introduction

APC-R is capable of computing the path complexity of recursive
functions by including recursive calls in the context-free grammar.
We adapt this approach to develop APC-IP, which can compute
the path complexity of interprocedural functions. We implement
three major changes: the first is sufficient for correctness, while the
second and third make the algorithm computationally tractable.
Our first change, covered in Section 3.2, is to relabel the ver-
tices of the control flow graph and thus the variables in the system
of equations to handle multiple graphs. We produce control flow
graphs Gy, . .., Gy, for each function in program P, instead of one
control flow graph for the singular function. These control flow
graphs also contain metadata representing function calls. Subse-
quently, we produce a set of interrelated systems to solve, with
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each system encoding a single graph, instead of a single system
encoding all the graphs. This relabeling is sufficient to produce a
theoretically correct yet naive algorithm for interprocedural path
complexity analysis, which we call NAPC-IP. However, empirically,
NAPC-IP is computationally intractable for interprocedural func-
tions of any significant size or complexity. Therefore, we optimize
solving the system of equations in Section 3.3, implementing a
ELIMINATE-OPTIMIZED in Line 4 that is designed to solve lengthy
and numerous interrelated systems. In addition, we replace the as-
ymptotic analysis of the generating function via symbolic calculus
(line 9 of Alg 1, SymB-CALc) with a more effective analytic combi-
natorial approach (line 9 of Alg 2, GETRGF) in Section 3.4. Our final
algorithm, APC-IP (Alg 2), implements both these optimizations.
The three major changes from APC-R to APC-IP are detailed in
section 3.2, 3.3, and 3.4 respectively.

Algorithm 2 APC-IP: ASYMPTOTIC-ANALYSIS OF
INTERPROCEDURAL FUNCTIONS (Program P)

1: Gy, ..., G, < ConTROL-FLOW-GRAPHS(P)
2: S=5Sp,...,S, <« SystEMS(G, . .., Gp) > Alg 3
3: V="V,...,V, « VARIABLES(Sy, . .., Spn)
4: T « ELmmiNaTE-OpTIMIZED (S, V/{Ty }) > Alg 5
5: D « DiscriIMINANT(T)
6: R « Roots(D)
7: if (R = 0) then > Case 1
8: g(z) =Sowve(l,Ty) /(1 - z)
9: apc = GETRGF(g, R) « upper bound of g > Alg 7
10: else > Case 2

r* « minimum positive real root in R
apc « (1/r )"

: return apc > Return Asymptotic Path Complexity

3.2 From Code to Systems of Equations

As we saw in section 2.3, the first step of APC-R is to convert the
source code of a function into a control flow graph (CFG). We first
establish a start node T that points to the function’s first node. All
other nodes are named V;,, where n represents that node’s number.

We adapt this labeling process for interprocedural functions.
Each separate function needs unique labeling and a start symbol
we can refer to. Thus, for the i-th function we assign a start node
T; and non-terminal nodes V; j, for the j-th node of the i-th function.

Continued Example: palindrome. Recall from section 2.3 the
code of the palindrome function. Using the labeling convention
established for APC-R, the CFG for the palindrome function would
correspond to the left graph of Figure 7. With our convention, the
CFG for this function corresponds to the graph in the right.
Continued Example: is_even and is_odd. We manually com-
puted this APC in Section 2. We now use APC-IP.

Below is the APC-IP algorithm to generate the systems of equa-
tions from the control flow graphs. It operates identically to the
SysTEM algorithm inAPC-R, except that it produces a system for
each graph, and the variables are indexed by both graph and node.
SysTEMS (Algorithm 3) produces interrelated systems, where the
V;,j vertex variables are contained within a graph’s system S;, but
the T; variables are interrelated by function calls.

Here are the systems this algorithm produces from the control
flow graphs for is_even.
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Figure 7: CFG for palindrome using APC-R labeling in the left
and APC-IP labeling in the right (dashed lines are recursive
calls / returns).

Figure 8: CFGs for is_even and is_odd using APC-IP labels
(dashed lines are interprocedural calls / returns).

Algorithm 3 Systems (Graphs Gy, ..., Gp)

1: for each G; do > Make system for each graph
2 Si={Ti =xVio} v Initial equation for each system of equations
3 for each j € Nopes(G;) do
4 expr =0
5: for each k € OuT-NEIGHBORS(j) do
6: expr = expr +V;
7 if expr = 0 then > j has no children
8: expr =1 > To preserve terminal nodes’ calls
9: for each T,, € CaLis(j) do > A node can have >1 outgoing calls
10: expr =T,, - expr
11: eqn = {V;; = expr - x}
12: Si=S;Ueqgn > Add equation to system

13: return S = {S;, Sy, .. ., Sn} > Return systems

System 0 (is_even) System 1 (is_odd)

Ty = Voox Ty = Viox

Voo = Voux + Voox Vio = Viix + Vipx
Voi = Vosx Vig=Visx

Vo,z = TIVU,BX V])z = T()V],3x

Vos =1 Viz=1

To find our T function, instead of solving for T, we solve for
To, which is the T of the function whose path complexity we are
calculating. This modification to APC-R is sufficient to produce a
theoretically correct path complexity algorithm for interprocedu-
ral functions. As such, we refer to APC-R with this modification
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alone as NAPC-IP, or naive asymptotic path complexity for inter-
procedural functions. However, empirically, NAPC-IP is inefficient
and unable to process interprocedural functions with any signifi-
cant complexity. For example, processing an interprocedural merge
sort function took over 2000 seconds. As such, we implement two
further changes in the following subsections, one to the step of solv-
ing the systems, and one to the step of analysis on the generating
function g(x), to produce our final APC-IP.

3.3 Computing the Generating Function

The first of two major performance issues with NAPC-IP was solv-
ing the system of equations, which occurs in line 4 of the Algo-
rithms 2 and 3. When multiple graphs or long systems of equations
were involved, the former ELIMINATE-NAIVE, which was left un-
changed from APC-R, often stalls, crashs, or times out. ELIMINATE-
NAIVE solves the system in its entirety, solving for T in APC-R,
and Ty for NAPC-IP. Our new method ELIMINATE-OPTIMIZED is
optimized for function calls and larger systems of equations. These
optimizations slow down the algorithm for small computations, but
greatly enhance performance for difficult source code. Our original
ELIMINATE-NAIVE, shown below, iterates through the system of
equations to eliminate until the first variable, T in APC-R and Ty
in NAPC-IP. It also makes 2 interior loops through the system of
equations, one to search for a solution if need be, and one to substi-
tute that solution in. It searches for a solution in the case where an
equation of the form X = A, where we are solving for X, contains
X within A.

Algorithm 4 ELIMINATE-NAIVE (system S, vars V)

: if len(S) = 1 then
return S[0]

1
2
3: sub «— expression for last variable V[ —1] from last equation S[—1]
4: if V[—1] € sub then > If last equation has last variable on both sides
5: for each eq € S do
6 if V[-1] € eq then
7 sub = SOLVE(eq,V[-1])
8: if len(sub) = 1 then
9: break
: for eacheq € Sdo  » Substitute solution throughout the system of equations
if V[-1] € eq then
eq « substitute sub for V[—1] in eq
: return ELIMINATE-NAIVE(S[: —1], V[: —=1])

> Unique solution for variable

Algorithm 5 ELIMINATE-OPTIMIZED (Systems S, Vars V)

: 5=50,51,...,5n

T={}

: for each i € len(S) do

d « substitution dictionary for eliminating

d = {{Vk : all eqns containing Vx }VVi € S;}
T « add PARTIAL-ELIMINATE(S;, V;, d)

: d={T; : {all eqns € T containing T; } }
co={Tp,Th,..., Tu}

: return PARTIAL-ELIMINATE(T, 0, d)

> Solve each system for T;

> Variables for eliminating T's
> Solve T's for Ty

WP UL

Our new algorithm, ELIMINATE-OPTIMIZED, makes two key changes:
(1) solving each graph’s system of equations separately before com-
bining them, (2) using a dictionary to optimize iteration through
each system. Solving each system of equations is done by a helper
function, PARTIAL-ELIMINATE, and entails eliminating all the V; ;
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Algorithm 6 PARTIAL-ELIMINATE (sys s, vars v, dict d)

1: if len(s) = 1 then
2 return s[0] >ReturnT; = A
3: var = v[—1] « var to eliminate

4: eqn = s[—1] « eqn of form var = A
5: sub « right side of eqn, equal to var
6: if var € sub then > Must solve for var
7 for each eq € d[var] s.t. eq in bounds do
8: sub = solve(eq, var)

9: if len(sub) = 1 then

break

: for each eq € d[var] do

> Unique solution for var

12: eq « substitute var with sub
13: d « update dict d after substitution
14: return PARTIAL-ELIMINATE(s[: —1], 0[: —1],d)

vertex variables, which are specific to a single system of equations,
since a graph can only call another graph’s T variable. This re-
sults in a single equation for T; in terms of other Tjs. Solving these
lightly-coupled systems separately at first allows us to avoid work-
ing with complex polynomial equations for longer, thus speeding
up our symbolic solving package. PARTIAL-ELIMINATE also uses a
substitution dictionary d to avoid iterating once through the whole
system of equations to find solutions and iterating through again
to substitute them in. This replaces the loops on lines 5 and 10 in
Algorithm 4 that iterate through the whole system for shorter loops
that only pass through the necessary equations (usually 3 or less).
After solving each system of equations for T;, we combine these
equations into a final system of equations containing only T vari-
ables, and solve these for Ty with a final call to PARTIAL-ELIMINATE.

Continued Example: is_even and is_odd. We continue our ex-
ample of is_even and is_odd to illustrate some of the differences
in our methods. Recall the systems of equations:

System 0 (is_even) System 1 (is_odd)

To = Voox Ty = Viox

Voo = Voux + Voox Vio = Viix + Vigx
Vo1 = Vosx Vig=Visx

Vo2 =TiVosx Viz =ToVisx

Voz =1 Viz=1

The old method would backsolve the system, treating these in-
terrelated systems of equations as one singular, large system of
equations, solving from Vj 3 to Ty to Vp3 to Ty. In cases where a
variable being solved for was on both sides of the equation, it would
iterate through the list of equations to isolate and solve it in an-
other equation, and then plug that solution in. It results in the final
equation Ty = x3 + x® 4+ Tyx®, which we refer to as T.

The new method would solve as follows. We show the separation
of systems of equations for easier backsolving; recall that all the
substitutions shown would be found using a dictionary. We begin
with the two separated systems shown above, and start eliminating
the first system until Ty (step 1-3) to get:

Ty = Vipx

Vio = Viax + Vipx
To = x> + T1x*? Vipn=x

Viz =ToVizx

Vig=1

Steps 4-7: Eliminate the second system until Ty

Ty = x> + T1x3 Ti = Vigx = x> + Tox®
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Step 8: Eliminate T by substituting the equation on the right into
the one on the left. We get Ty = x3 + x° + Tyx®. Our ELIMINATE-
OPTIMIZED also yields Ty = x> + x® + Tyx® as our I.

After elimination, we calculate the discriminant of T', as described
n [19]. If the discriminant has no real roots, we move into Case 1.
Else, we move into Case 2. This example is Case 1, so we now solve

for Ty in T' to find our generating function, exactly as we did in

3
li(x3 ’
we get the generating function g(x) = £—°x = (l_x)xﬁ

Our ELIMINATE-OPTIMIZED thus solves multiple systems of equa-
tions more efficiently, and arrives at the same gamma function,
which can be turned into a generating function exactly as in APC-R.
Now that we have our generating function g(x), we must find an

upper bound of g as the last step in computing APC.

APC-R. After algebraic manipulation, we get Tp = Therefore,

3.4 From Generating Function to APC

Recall that a generating function encodes a sequence using the
coeflicient of the series expansion. Our generating function g(x)
represents the sequence path(n). Then, the coefficient of x” in the
Taylor expansion of g(x), [x"]g(x), is path(n), or the number of
paths through the CFG within depth n. In this step of the algorithm,
we compute the asymptotic behavior of the closed form of [x"]g(x),
resulting in the APC, which bounds path(n) above.

In NAPC-IP, the second step that was computationally costly was

the symbolic calculus inside Case 1 (SymB-CaLc). When the APC
from the generating function is calculated, the number of required
computations rapidly increase with more complex functions, grow-
ing faster than the number of nodes in the control flow graphs. For
more complicated functions, part of this method requires the Taylor
series of the generating function up to 100 terms. In practice, it can
take more than 1000 seconds to compute all the required Taylor
series terms. In APC-IP, we replace the SymB-CALc step with our
new method GETRGF, where the computations are bounded by the
roots of the generating function g(x)’s denominator. In GETRGF,
g(x) and the General Expansion Theorem for Rational Generating
Functions [11] are enough to compute APC.
General Expansion Theorem for Rational Generating Func-
tions (GETRGF). If g(x) = P(x)/Q(x), where Q(x) = qo(1 —
,olx)d1 (1—p2x)d2 . (1—p;x)d’ and the numbers (p1, p2, . . ., pr) are
distinct, and if P(x) is a polynomial of degree less than dy +da+- - -+d;,
then [x"]g(x) = fi(n)p} + fa(n)p} +- - -+ fe(n) p}, where each fi.(n)
is a polynomial of degree dy. — 1 with leading coefficient

L= P(1/px) .
(die = 1)'q0 [T (1 = pj/ i) %

Below outlines a step by step procedure of our novel approach
for getting the APC from generating function.

(1) From the generating function (g(x)), first get its denominator
(Q(x)), numerator (P(x)), and the dictionary rootsDict. The dictio-
nary rootsDict stores all the distinct roots r; of the denominator
along with its multiplicity d;:

rootsDict = {(rj : d;j) | rj is a root of Q(x)}
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(2) If the degree of P(x) is greater than the degree of Q(x), the
generating function does not satisfy the requirements of the theo-
rem. Thus, we use polynomial long division to find the remainder
R(x) of P(x)/Q(x), which has a lesser degree than Q(x). Since
g(x) = P(x)/Q(x) = S(x) + R(x)/Q(x) for some finite polynomial
S(x), S(x) can only affect the Taylor series expansion of g(x) for
small powers of n, and thus would not change the asymptotic path
complexity of [x™]g(x). Therefore, we can simply replace P(x)
with R(x) when finding the asymptotic upper bound of g(x)’s co-
efficients, in order to satisfy the theorem conditions.

(3) Then, the reciprocal p; of each of the roots r; in rootsDict is
computed. The multiplicity d; is also recorded:

1
rhoDict = {(pi = — : d;) | Y ri € rootsDict}
ri

(4) To find the dominant term in [x™]g(x), the first step is to find
the maximum magnitude of all the p;, name it ppgx:
Pmax = max{|pil| | pi € rhoDict}.
Let m be the highest multiplicity of all the p; such that |p;| = pmax:
m =max{d; | ¥ |pi| = pmax}
Among all the p; such that |p;| = pmax, only consider the ones
with multiplicity m. Let
S ={pk | (dx =m) A (Ipk| = pmax)}-

(5) Then the aj can be computed for each py € S using the above
formula. That is,

A={a |¥Ypx €S,
_ P(1/p)
ap = 4
(dr = D'qo [T (1 = pji/pr)®
where p; € rhoDict}.

@

Note that qo is the constant term in Q(x). Further note that the
product includes all p; € rhoDict, not merely the p; € S.

(6) After computing all the ag, sum them to compute the coefficient

c= Z aj
ar€A
for the leading term of [x"]G(x). The leading term itself is the APC,
and it can be described by APC =¢-n™ 1. p .
Instead of computing path complexity and then obtaining its
asymptotic behavior to find the APC, this new method allows us to
go straight from the generating function directly to APC.

Example: partition. To further explain, we present as an example
an interprocedural partition function that calls a swap function.
We compute the APC starting from the generating function using
our new method.

The generating function for partition is computed by the meth-
ods we have already explained:

P(x) _ x
0x)  (x=1D(3+x4-1)

=20 7 x84+ x% 2610 4 2x 1 4 2012 4 2513 4 axc ! 4D
Then, the APC for partition can be computed using GETRGF.

6

g(x) =
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int partition(int arr[], int low, int high){
int pivot = arr[high];
int i = (low - 1);
for (int j = low; j <= high - 1; j++){
if (arr[j] < pivot){
i++;
swap(&arr[i], &arr[jl);
3}
}
swap(&arr[i + 1], &arr[highl);
return (i + 1);

Figure 9: Source code for partition function.

Step 1-2: The numerator is P(x) = x® and the denominator is
Q(x) = (x = 1)(x® + x* = 1). The degree of the numerator is less
than the denominator, so the generating function satisfy GETRGF
restriction. The roots of Q(x) are r{ = —0.887, rp = 0.887,r3 = 1,
rg = —0.798—-0.798i,r5 = —0.798+0.798i, r¢ = —0.887i, r7; = 0.8872i,
rg = 0.798 — 0.798i, r9 = 0.798 + 0.798i. They all have multiplicity 1.
Step 3: Compute the p’s by taking the reciprocal of the roots: p; =
—1.128, pp = 1.128, p3 = 1, pg = 0.627+0.627i, p5 = —0.627 — 0.627i,
pe = 1.128i, p7 = —1.128i, pg = 0.627 + 0.6271, pg = 0.627 — 0.627i.
Step 4: The maximum magnitude of p is pax = 1.128. Note that
P1, P2, Pe, p7 all have the same maximum magnitude. Among them,
the maximum multiplicity is 1, so m = 1. Thus, the S contains

S ={py € rhoDict \ (dp=m=1) A (|pr| = pmax = 1.128)}

= {,01,;02,/)6,/77}
={-1.128,1.128,1.128i,—1.128i}

Step 5: Compute the respective A = {a1, az, ag, a7}. To do this, the
constant term qo in Q(x) is needed, which is 1 for this example.
We use equation 2 with all dp. = 1, and go = 1. Below, we show a
detailed calculation of a; as an example.

@ = P(1/p1) _ (1/p1)®
(di = Dgo [T (1= pj/p)® (1= 1T (1= pj/p1)
(1/p1)®

Ca-Ha-HHa-tya-2

=0.047 — 3.968 - 10718}

With similar computation, we get ag = 0.776, ag = —0.049 + 0.044i,
and ay = —0.049 — 0.044i.
Step 6: Now we have

c= Z ap =0.724 —1.39- 1077 ~ 0.724
ar€A
Finally we calculate
apc=c-n™ 1. pt =0.724-n'71. 1.128" = 0.724 - 1.128"

Thus, the APC for partitionis 0.724 - 1.128". Alg 7 summarizes
the algorithm GETRGF to compute asymptotic path complexity
from the generating function.

4 EXPERIMENTS

We conducted a series of experiments to validate our new approach
APC-IP and compare to existing approaches.
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Algorithm 7 GETRGEF (g(x))

1: LET

()= 2
70w
2: if (deg(P(x)) > deg(Q(x))) then
3: P(x) « R(x) where > Make deg(P(x)) < deg(Q(x))
4: R(x) « remainder of P(x)/Q(x)
5: r « Roots(Q(x))
6: p < inverses of the roots in r
7: pmax < maximum magnitude of all the p
8: m « maximum multiplicity among the p such that |p;| = pyax
9: p < any p with magnitude pyax and multiplicity m
10: go < constant term for Q(x)
11: for each pj do > Compute with GETRGF Theorem

_ P(1/pi)
(m=1)'q0 [T (1 = pj/px)™"

ak

:C(—Zak
Pk

13:

14: return APC > Return asymptotic path complexity

4.1 Experimental Setup

4.1.1  APC Implementation Versions. To demonstrate that our ap-
proach subsumes and improves upon prior work, we investigate
multiple APC implementations:

APC-IP. This is our implementation of fully interprocedural and
optimized asymptotic path complexity (Algorithm 2). We imple-
mented this directly on top of the existing METRINOME software.
As part of our ablation studies (see next section), we investigate the
two modifications from NAPC-IP in APC-IP to evaluate the effects
of each one.

APC-R. This is the implementation of APC analysis from METRI-
NOME as given in the 2023 paper “Formalizing Symbolic Execution
Path Explosion for Recursive Functions via Asymptotic Path Com-
plexity” from the 2023 Formal Methods in Software Engineering
(FormaliSE) proceedings [19]. This constitutes the most recent ad-
vance in APC analysis available for comparison. APC-R is able to
perform intraprodecural APC analysis on single functions that do
not call any other functions or APC analysis on functions that only
make self-recursive function calls. That is, APC-R as implemented
did not handle interprocedural APC analysis.

NAPC-IP. This is a “naive,” non-optimized implementation of inter-
procedural asymptotic path complexity. This implementation takes
APC-R and adds the absolute minimum necessary modification to
apply APC-R to interprocedural code. APC-R solves a system of
equations derived from the control flow graph of the analyzed func-
tion to produce its result. Our minimal modification amounts to
relabelling variables in the several systems of equations created for
mutually dependent functions under analysis such that the APC-R
analysis can treat them as one large system of equations.

4.1.2  Summary of Experiments Conducted. We frame our experi-
mental analysis around the three aforementioned APC implemen-
tations. This allows us to isolate and measure the effects of each
optimization in our implementation, compare to prior implemen-
tations, and compare our approach to a naive but straightforward
baseline. To that end we conducted the following experiments:

Ablation Study 1. We compare the optimized variable elimina-
tion strategy of APC-IP (Algorithm 5 ELIMINATE-OPTIMIZED) to
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the naive variable elimination strategy of NAPC-IP (Algorithm 4
ELIMINATE-NAIVE).

Ablation Study 2. We compare APC-IP’s novel use and implemen-
tation of the generalized expansion theorem for regular generating
functions (GETRGF, Algorithm 7) to NAPC-IP’s symbolic calculus
approach to bounding generating functions, (SYMB-CALC).
Head-to-Head Comparisons. We run APC-IP, APC-R, and NAPC-
IP on the same code to compare runtimes and the resulting APCs.
KLEE Path Explosion and APC. We ran KLEE on a subset of
our benchmark to measure path explosion as symbolic execution
exploration depth increases and compare to APC-IP.

4.1.3  Benchmark Programs. We choose an externally sourced bench-
mark of C algorithms, found at https://github.com/TheAlgorithms/
C. This repository includes common C algorithms, such as sorting,
searching, and dynamic programming algorithms. We also chose
this repository for readability, documentation, and credibility. It
is reviewed with 17.4K stars on GitHub and has 4.2K forks. This
benchmark also contains programs which exercise various aspects
of the different implementations. First, the benchmark contains
non-recursive, recursive, and interprocedural functions. Second,
the benchmark has functions that well-represent a variety of in-
teracting control structures likely to yield variation in resulting
APC values: straight-line code, nested conditionals, nested loops,
loops and conditionals nested within one another, function calls in
loops, and so on. Our benchmark contains the 76 functions from
this repository, and we supplement it with three functions from our
running examples: an even or odd function, a partition function,
and a palindrome function, to create a benchmark of 79 functions.

4.1.4 Experiment Hardware Specifications. We performed the ex-
periments on a 12th Gen Intel 505 MHz i7-12700 computer with
Python v3.10.6, Ubuntu 22.04.2, and 16GB RAM.

4.2 Experimental Results

4.2.1 Ablation Experiments. To evaluate each of our two improve-
ments, we conduct ablation studies, isolating our changes in APC-IP
(Algorithm 2). Our first change is optimizing the elimination of vari-
ables in systems of equations (Algorithm 4) and the second is to
completely replace our algorithm bounding the generation func-
tion using GETRGF (Algorithm 7). We refer to these processes as
ELimINATE and GETRGF.
Ablation Study 1. For the ELIMINATE tests, we compare not only
the elimination, but the processing of the graphs into the system of
equations. This is because these two processes are tightly coupled
in Algorithm 5, which needs to do additional processing on the
graphs to create dictionaries of graph edges that we use to optimize
the variable elimination process. We compute the ratios of the
runtimes of the non-optimized elimination strategy to the optimized
elimination strategy for all benchmark functions. When this ratio
is below 1, the additional inital overhead of the optimized version
actually causes the runtime to be worse, and so the naive version is
better. When the ratio is greater than 1, then the additional overhead
of the optimization does indeed provide improvement.

Results of the first ablation study are in Figure 10. This graph
shows the runtime performance ratios for benchmark functions,
sorted by run-time of the non-optimized (naive) elimination method,
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Figure 10: Eliminate Ablation Study Results. Performance ratio of ELIMINATE-OPTIMIZED to ELIMINATE-NAIVE (y-axis, log

scale) for different run times in seconds (x-axis, linear scale).

with runtimes on the x-axis. Note that we ran the experiments with
a timeout of 6000s, and so for several programs, the optimized ver-
sion was able to complete quickly in cases where the non-optimized
version could not even finish; this is the rightmost column labeled
as 6000s. We see that APC-IP does add small overhead in processing
time, which is visible for simpler programs (those for which elim-
ination runtime is less than 1.273 seconds and where the ratio is
less than 1), but is substantially faster for more complex programs.
The optimized version completed well within the timeout for all
programs. Seen in the figure, our optimization of the elimination
method can result in significant performance improvements “when
it matters” Thus, we conclude that our new eliminate expands
METRINOME’s scope to more complex programs, with only a minor
cost in efficiency for programs that are already reasonably fast to
analyze using either method anyway.

Ablation Study 2. For our GETRGEF tests, we only compare the
subset of the benchmark functions that engage Case 1 of Algo-
rithm 2 (resp. Algorithm 1). Since in Case 2, both methods use the
same, quick method of bounding the generating function, we do
not compare the benchmark programs that fall into this case. This
leaves us with 67 benchmark programs in our GETRGF study. For
this study, we measure the runtime starting from directly after the
generating function g(z) has been computed to the time APC is
determined.

Results of this study are summarized in Table 1. In this table, we
show the time performance ratio of the naive approach which does
not use GETRGF to our new approach which does use GETRGF.
The table shows the number of functions from the benchmark that
resulted in buckets of ranges of performance ratios. That is, 10
functions resulted in a performance ratio between 1 and 10, 34
functions resulted in a performance ratio between 10 and 100, 19
functions resulted in a performance ratio of 100 to 1000, and 4
functions resulted in a ratio greater than 1000. Also included in this
table are the ranges of run times for the two different methods.

First we observe that the performance ratio is always greater
than 1, and so GETRGF is always faster. We also see that without
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Table 1: GETRGF Ablation Study Results

Performance Ratio | Count of | Naive GETRGF

(Naive/GETRGF) functions | time range (s) | time range (s)
1-10 10 0.014 - 0.208 0.008 - 0.043
10-100 34 0.129 - 9.442 0.009 - 0.127
100-1000 19 10.218- 58.034 0.065 - 0.191
>1000 4 50.089 -50.923 0.026 - 0.040

GETRGEF, the approach does not scale well to some functions, re-
quiring almost a minute of analysis time, whereas using GETRGF
was always in the range of 8 to 191 milliseconds.

4.2.2 APC-R, NAPC-IP vs APC-IP. We ran APC-IP, APC-R, and
NAPC-IP on 79 benchmark programs. We summarize results in
Table 2, highlight a representative subset of results in Table 3, and
compare performance ratios of APC-IP to APC-R and NAPC-IP in
Figures 11 and 12. All data is available and inspectable.

In the summarized results in Table 2 we separate functions
that are intraprocedural or self-recursive only (first line) and func-
tions that are interprocedural or may contain mutually recursive
calls (second line). For intraprocedural and self-recursive functions,
among 42 of them, APC-R runs the fastest in 7 of them, NAPC-IP
runs fastest in 5 of them, and APC-IP runs fastest for 30 of them.
For interprocedural functions or interprocedurally called recursive
functions (37 total) APC-R cannot compute APC as it is not imple-
mented to do so (NA for that column in the second line), NAPC-IP
was fastest for 3 functions and APC-IP was fastest for 34 functions.

Specific outcomes from a subset of the summarized experimental
results of Table 2 are shown in Table 3. The results are chosen to
holistically represent our benchmark with the goal of showing a
variety of functions and performing result comparisons. In all 79
functions, all three methods produces the same APC values. For
example, we can look at lines 6 (Fibonacci Search) and line 10 (Mul-
tikey Quick Sort). We see that APCs are consistant with the value
of 2.33 x 1.22", and that APC-IP was fastest as 0.88s compared over
two seconds for the other two approaches. Furthermore, APC-IP
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Table 2: Summary Results for APC-IP vs. APR-R vs. NAPC-IP.
Table entries indicate how many times the given method was
fastest for a specific benchmark function.

’ Function type \ APC-R \ NAPC-IP \ APC-IP H Count ‘

Intraproc. / Recursive 7 5 30 42
Interprocedural NA 3 34 37
[ Total [ 7 [ 8 1 e [ 71 ]

elimination algorithm was slightly slower than a naive approach,
and that using the GETRGF method for APC-IP was much faster.
For line 10, APC-R does not apply, since that function makes in-
terprocedural calls. NAPC-IP and APC-IP has the same result, but
APC-IP is almost 9 times faster, the APC-IP elimination time saves
us a lot of time.

In Figure 11, we show runtime performance ratios for APC-R
compared to APC-IP. The x-axis is performance ratio ranges and
the y-axis is the number of functions resulting in that performance
ratio. We also indicate in blue the cases in which APC-R’s runtime
was under 1 second and in red the times when it was greater than 1
second. Note that the first bar with ratios 0.4 to 1 are cases in which
APC-R does better than APC-IP, since the performance ratio is less
than 1, and there are 10 such cases. What we see is that when the
simple APC-R method is already quite fast, APC-IP does not help
as much, but when APC-R is slower, the benefit of our innovations
in APC-IP is more pronounced. Similar analysis and interpretation
applies to Figure 12, which compares the performance of APC-IP
and NAPC-IP on all 79 benchmark functions. Overall we conclude
that APC-IP outperforms the other two methods in situations where
analysis is more costly and so the benefits pay off for source code
that is more difficult to analyze using path complexity analysis.

Performance of APC-IP vs. APC-R

‘DAPC-R time < 1 sec ] APC-R time > 1 sec
15
|}
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a
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Performance Ratio (APC-R time:APC-IP time)

Figure 11: Performance of APC-IP vs APC-R

4.2.3 APC-IP vs KLEE. KLEE is a popular symbolic execution tool
for C programs [6]. Previous work [3, 19] showed that intraproce-
dural asymptotic path complexity bounds the complexity class of
the growth rate of number of paths found by KLEE for increasing
symbolic exploration depth. That is, if the asymptotic path com-
plexity of a function is, say, quadratic, then the number of paths
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Performance of APC-IP vs. NAPC-IP
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Figure 12: Performance of APC-IP vs NAPC-IP

explored by KLEE is no worse than quadratic for that function as
the exploration depth of KLEE increases. And, if APC is exponential,
then KLEE’s path explosion is no worse than exponential, and in
most cases actually does become exponential. Further, APC can be
computed faster than it takes to run KLEE, so APC can be used to
predict the path explosion behavior of KLEE before running it.

Though the relation between APC and symbolic execution has
been established, we still seek to confirm that our new APC-IP
predicts KLEE path explosion growth rates for interprocedural func-
tions. It is important to note that symbolic execution discards infea-
sible paths through the code, while our APC-IP does not consider
the actual path conditions. As such, APC-IP in some cases returns
a non-strict upper bound of the complexity class of KLEE’s path
explosion. Further, APC-IP uses path depth as a basis for its metric,
while KLEE uses branch count, causing mismatches in the exact co-
efficients. However, overall, APC-IP achieves its goal of predicting
a coarse complexity class bound on KLEE’s path explosion.

We were able to run Klee on 57 out of our 79 benchmark func-
tions. We were not able to meaningfully run KLEE under its standard
configurations on our entire benchmark due to limitations in the
constraint solver backend, which prevents us from getting results
from KLEE, e.g. when complex floating point constraints are encoun-
tered during symbolic exploration. We tracked the number of paths
explored by KLEE for increasing exploration depths and found the
best-fit curve through that data, as in prior works [19], to compute
the growth rate of KLEE’s path explosion. We compared these path
explosion rates to the APC values of the functions computed using
APC-IP. While we do not provide all of the results directly in this
paper, a hand-selected sample of representative results is given in
Table 4, and the complete data is provided in our artifact.

In all but one case of Table 4, APC-IP bounds or matches the best
fit for KLEE. APC lies in the same complexity class as the KLEE best
fit expression in 4 of the 7 cases, and upper bounds it in 2 more.
The exponent base is not expected to match KLEE exactly because
KLEE bounds exploration by branch count, not CFG edge count. In
our full data, in 46 out of the 57 programs, APC-IP is in the same
complexity class as the KLEE best fit line, and in 53 out of 57, we
bound the KLEE best fit line. In 3 cases, we do not have enough data
for KLEE to determine a best fit line, and in the one case shown in
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Table 3: APC data on C files showing asymptotic path complexity (APC-R: recursive, NAPC-IP: naive interprocedural, APC-IP:
interprocedural, APC runtime, ablation runtime, the best APC).

Program Fastest APCR | NAPCIP | Apcap | APCIP | NAPC-IP - ppip | on-GETRGF
Name Metric! APCR NAPC-IP APCIP time(s) | time(s) time e.l iminate e.hmmate time(s) time(s)
time(s) time(s)
1 | EvenOdd § APC-IP NA n/3 n/3 NA 0.22 0.14 0.08 0.01 0.01 0.16
2 | Fibonacci (DP) APC-IP n/3 n/3 n/3 0.31 0.32 0.26 0.15 0.05 0.02 0.21
3 | Palindrome (R) APC-R n/2 n/2 nj/2 0.11 0.11 0.12 0.05 0.01 0.01 0.06
4 | Partition § APC-IP NA 0.72 % 1.13"7 | 0.72 % 1.13" NA 1.10 0.40 0.21 0.05 0.06 0.69
5 | Shaker Sort § APC-IP NA 0.12 % 1.26" [ 0.12x 1.26” NA 32.04 1.51 0.92 0.27 0.09 30.69
6 | Fibonacci Search APC-IP 2.33%1.22" | 2.33%1.22"7 | 2.33%1.22" 2.14 2.18 0.88 0.63 0.16 0.05 1.54
7 | Insertion Sort (R) T APC-IP 0.11 % 1.35" [ 0.11%1.35" | 0.11 % 1.35" 2.06 2.08 0.52 0.33 0.10 0.03 1.52
8 | Cycle Sort § APC-IP NA 0.04 % 1.36" [ 0.04 x 1.36” NA 63.76 5.07 4.01 30.36 0.14 31.46
9 | Bucket Sort § APC-IP NA NA 0.004 * 1.397 NA >6000 42.39 36.53 NA 0.20 NA
10 | Multikey Quick Sort § APC-IP NA 1.46" 1.46" NA 5242.50 102.10 5.39 3489.53 case 2 32.24

1 The "Fastest Metric" column shows the fastest APC metric applicable to the function.
T This version of the function is implemented recursively.

§ This version of the function involves interprocedual calls.

* In each row, the best time is highlighted in bold.

Table 4: APC and KLEE data on C files showing APC-IP and
best fit curve for KLEE path explosion.

APC KLEE

Index | Function APC-IP A,PC-IP Best Fit APC-IP K.LEE

Time(s) Time(s)
1 Even-Odd § n/3 0.144 n yes 24.95
2 GCD 1 n/3 0.223 n yes 2.58
3 Floyd Alg. § 0.125 % n® 0.635 9.58 * 1.06™ no, but close 34.06
4 Catalan § n’ 0.272 n upper bound 215.5
5 Fib. Search 2.33 % 1.227 0.88 5.71 * 1.28" yes 63.69
6 Bead Sort 0.37 * 1.30™ 4.91 1.90 * 1.54" yes 23.31
7 Fib. (R) T 1.347 0.123 n upper bound 1682.06

§ represents that the source code is interprocedural.
T This version of the function is implemented recursively.

Row 3 of Table 4, the APC-IP is quadratic while the KLEE best fit
line is exponential, though we suspect that this is due to overfitting
in our bext-curve-fitting function. Overall, APC-IP predicts KLEE
path explosion behavior.

4.3 Experimental Takeaways

We demonstrated that APC-IP efficiently computes asymptotic path
complexity, and provides a sound upper bound on the degree of
KLEE’s path explosion when testing simple, recursive, or interpro-
cedural programs. It successfully computes path complexity for
interprocedural functions, which the previous APC-R could not. For
intraprocedural functions, APC-IP matches APC-R’s results, with
faster runtime on complex functions. For interprocedural functions,
by optimizing the elimination step and implementing GETRGF to
bound the generating function, APC-IP efficiently computes correct
APC for complex interprocedural functions, usually in under 10
seconds. APC-IP thus subsumes earlier APC work, and with drastic
improvements on performance cost.

5 RELATED WORK

APC-IP builds on the 2023 recursive path complexity research[19],
which itself extended earlier studies on non-recursive functions [2,
3]. Our approach covers both interprocedural and intraprocedural
code, including recursive and mutually recursive functions. In the
broader field, code complexity research measures the complexity
of programs [9, 18, 20] including cognitive complexity focused on
human code comprehension [7, 23, 25]. Other complexity metrics
include Halstead complexity, based on code size and code element
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uniqueness [13] and Dependency degree for measuring code cou-
pling complexity [4]. Control flow graph-based metrics like Mc-
Cabe’s cyclomatic [16] complexity and NPATH complexity [17]
quantify different aspects of code complexity.

6 CONCLUSION

We described our work on computing asymptotic path complexity
for interprocedural functions (APC-IP). Prior methods could not
handle the theoretical complications or complexity and scale of
interprocedural code. Our work provides algorithmic and mathe-
matical formalization that not only allows for the computation of
path complexity in the presence of interprocedural calls but also
subsumes all previous methods in terms of runtime and accuracy
to make asymptotic path complexity tractable for a wider range of
programs.

APC-IP serves as a useful tool to compute code complexity of
medium-sized programs in the context of automated software test-
ing. Future work involves continuing to scale APC to meet the
scale of today’s industry code-bases. We also hope to extend APC
to process programs in more common programming languages,
such as Python and Java. Finally, we hope to conduct more robust
experiments directly comparing the performance and refinement
of the APC-IP algorithm with other complexities, such as NPATH
and cyclomatic complexity.

7 DATA AVAILABILITY

The source code of APC-IP is avaialable along with our experimental
results, benchmark programs, and scripts for reproducing our data.
An explanation on how to run APC-IP and how to replicate these
experiments is included in the provided artifact as a README file.
The most up-to-date information about METRINOME can be found
at our public repository.!
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