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Abstract. We use the η invariants of spinc Dirac operators to distinguish connected com-
ponents of moduli spaces of Riemannian metrics with positive Ricci curvature. We then find
infinitely many non-diffeomorphic five dimensional manifolds for which these moduli spaces each
have infinitely many components. The manifolds are total spaces of principal S1 bundles over
#aCP 2#bCP 2 and the metrics are lifted from Ricci positive metrics on the bases. Along the
way we classify 5-manifolds with fundamental group Z2 admitting free S1 actions with simply
connected quotients.

Many closed manifolds are known to admit Riemannian metrics of positive Ricci curvature, for
example, all compact, simply connected homogeneous spaces, biquotients, and cohomogeneity one
manifolds, see [Ber], [GZ2], [ST]. Systematic methods for constructing such metrics on certain
connected sums and bundles have been explored in [CG], [GPT], [N], [SW], [SY1], [Wr2].

Once we know that a manifold admits positive Ricci curvature we ask how many such metrics
it admits. The space of geometrically distinct metrics of positive Ricci curvature on a manifold M
is the moduli space MRic>0(M) = RRic>0(M)/Diff(M), where RRic>0(M) is the set of positive
Ricci curvature metrics on M and Diff(M) is the diffomorphism group, acting by pullbacks.
The number of path components of MRic>0 serves as a coarse measure of distinct positive Ricci
curvature metrics on M .

We identify an infinite family of 5-manifolds M with π1(M) = Z2 such that MRic>0(M) has
infinitely many path components.

Theorem A. Let B4 = #aCP 2#bCP 2, a + b ≥ 2, and let S1 → M5 → B4 be a principal
bundle with first Chern class 2d, where d ∈ H2(B4,Z) is primitive and w2(TB4) = d mod 2.
Then MRic>0(M5) has infinitely many path components.

Here w2 is the second Stiefel-Whitney class and a primitive class is one that is not a positive integer
multiple of any other. We will see that for each 4-manifold B there are 2, 3 or 4 diffeomorphism
types of such total spaces M , depending on the value of |a − b| mod 4, each of which admits
infinitely many inequivalent free S1 actions with quotient B. The only other five dimensional
manifolds for which MRic>0 is known to have infinitely many components are the four homotopy
real projective spaces recently described by Dessai and González-Álvaro [DG] and five quotients
of S2 × S3 recently described by Wermelinger [We].

The conditions on the first Chern class in Theorem A are equivalent to the statement that
π1(M5) = Z2, M5 is non-spin, and the universal cover of M5 is spin. M5 can be constructed by
taking five dimensional homotopy real projective spaces, removing tubular neighborhoods of gen-
erators of the fundamental group, and gluing along the boundaries of the tubular neighborhoods.
By the classification of Smale [Sm] and Barden [Ba], the universal cover M̃5 is diffeomorphic to
#a+b−1S3 × S2. But we do not know an explicit description of the deck group action by Z2 on

M̃5.
Our second theorem identifies conditions under which M5 admits one, and infinitely many, free

S1 actions. As an application, we will show that the manifolds in Theorem A admit infinitely
many free S1 actions. We construct the metrics used in Theorem A by lifting metrics from the
quotients of M5 by those actions. Here b2(M) is the second Betti number of M .
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Theorem B. Let M5 be a 5-manifold with π1 = Z2. Then M admits a free S1 action with a
simply connected quotient if and only if M is orientable, H2(M,Z) is torsion free and π1(M) acts
trivially on π2(M). Furthermore if b2(M) = 0 then M is diffeomorphic to RP 5. If b2(M) > 0
and M admits a free S1 action with simply connected quotient B4 then M admits infinitely many
inequivalent free S1 actions with quotients diffeomorphic to B4.

Note that here B4 can be any simply connected 4-manifold, and need not be one of the
manifolds of Theorem A. Theorem 1.11 provides greater detail about the correspondence between
a 5 manifold M5 and the set Q(M) of possible quotients B4 = M5/S1. Given M5 satisfying the
hypotheses of Theorem B, we give conditions on the cohomology ring of a 4-manifold B4 which are
necessary and sufficient for B to be in Q(M). In particular, any smooth manifold homeomorphic
to a manifold in Q(M) is in Q(M). In Corollary 1.12 we see that for any such M , Q(M) contains

either #cS2 × S2 or #aCP 2#bCP 2 for some a, b, c ∈ Z. Those manifolds admit metrics with
positive Ricci curvature, which can be lifted to M . Thus we have:

Corollary. Let M be a 5 manifold with π1(M) = Z2 admitting a free S1 action with a
simply connected quotient. Then M admits a metric with positive Ricci curvature.

Furthermore, it follows from Theorem 1.11 that given a simply connected 4-manifold B4, the set
of diffeomorphism types of total spaces M5 with π1(M5) = Z2 of S1 bundles over B4 depends
only on the cohomology ring of B4. In particular Theorem A would describe the same set of
5-manifolds if we replaced #aCP 2#bCP 2 with one of the manifolds homeomorphic to it.

We first review previous work with methods and results relevant to Theorem A. In [KS3]
Kreck and Stolz invented a moduli space invariant s(M, g) ∈ Q for a metric g of positive scalar
curvature on a closed spin manifold M . The metric is based on the η spectral invariant of the
Dirac operator defined in [APS1]. If s(M, g1) 6= s(M, g2) then g1 and g2 represent elements in
different path components of Mscal>0. The authors use the invariant to prove that for M4k+3 with
a unique spin structure and vanishing rational Pontryagin classes Mscal>0(M) is either empty or
has infinitely many components.

Since a path of Riemannian metrics which maintains positive Ricci curvature maintains positive
scalar curvature as well, the s invariant can detect connected components of MRic>0. Kreck and
Stolz calculated s for the Einstein metrics on S1 bundles N7

k,l over CP 1×CP 2 described by Wang

and Ziller [WZ]. Using the diffeomorphism classification in [KS1], they showed that when k is
even and gcd(k, l) = 1, Nk,l is diffeomorphic to infinitely many manifolds in the same family.
As the s invariant takes infinitely many values on those metrics, the authors concluded that
MRic>0(Nk,l) has infinitely many components. Similar results have since been proved for S1

bundles over CP 1 × CP 2n, n ≥ 1, see [DKT].
Wraith showed that for a homotopy sphere σ4k−1 bounding a parallelisable manifold, MRic>0(σ)

has infinitely many components. The procedure known as plumbing with disc bundles over
spheres produces infinitely many parallelisable manifolds with boundaries diffeomorphic to σ.
Wraith constructed metrics of positive Ricci curvature on each boundary in [Wr1] and calculated
the s invariant of each metric in in [Wr3].

Dessai [D] and the author [G] used the s invariant to find several infinite families of 7-
dimensional sphere bundles M7 such that MRic>0(M) and Msec≥0(M) have infinitely many path
components. Grove and Ziller [GZ1, GZ3] constructed metrics of nonnegative sectional curvature
on the manifolds in those families, and the diffeomorphism classifications in [CE] and [EZ] show
that each manifold is diffeomorphic to infinitely many other members of the family.

More recently, Dessai and González-Álvaro [DG] showed that if M5 is one of the four closed
manifolds homotopy equivalent to RP 5 then Msec≥0(M) and MRic>0(M) have infinitely many
path components. López de Medrano [L] showed that each such M5 admits infinitely many
descriptions as a quotient of a Brieskorn variety, and Grove and Ziller showed the each quotient



MODULI SPACES OF RICCI POSITIVE METRICS IN DIMENSION FIVE 3

admits a metric of nonnegative sectional curvature [GZ2]. Dessai and González-Álvaro calculated
the relative η invariant for those metrics to distinguish the path components. Wermelinger
extended their method to prove the same conclusion for five Z2 quotients of S2 × S3 in [We].

We now outline the proof of Theorem A. We use Theorem B to show that each manifold
M5 in Theorem A admits infinitely many inequivalent free S1 actions with quotient B4 =
#aCP 2#bCP 2. We modify a result of Perelman [P] to show that B admits a metric of posi-
tive Ricci curvature. That metric can be lifted to a metric of positive Ricci curvature on M by
[GPT]. The lifted metrics depend on the S1 action, and we get infinitely many distinct metrics
on M .

We show that in dimensions 4k+1, the η invariant of a certain spinc Dirac operator constructed
for a positive Ricci curvature metric g depends only on the connected component of the class of g
in MRic>0. To complete the proof we calculate η for each metric on M and show that it obtains
infinitely many values. This is the most intricate part of our proof.

The standard method for calculating the η invariant of a spin Dirac operator on a manifold M
with positive scalar curvature is to extend the metric over a manifold W with ∂W = M such that
the extension has positive scalar curvature as well. When M is not spin but spinc, both the metric
and a unitary connection on the complex line bundle associated to the spinc structure must be
extended. The desired condition then involves the curvatures of both metric and connection. In
their work, Dessai and González-Álvaro passed to the universal cover to find a suitable W over
which the connection could be extended to a flat connection. They use equivariant η invariants
on the cover to compute the η invariant on the quotient.

In this paper we work directly on M and use a manifold with boundary W over which the
connection cannot be extended to a flat connection, but the curvature of the extension can be
explicitly controlled. To be specific, we extend the metric and connection on M to a metric h
and connection ∇ on the disc bundle W = M ×S1 D2 associated to the S1 bundle. We then use
the Atiyah-Patodi-Singer index theorem [APS1] to obtain a formula for η in terms of the index
of the spinc Dirac operator on W and topological data on W . The index will vanish as long as

scal(h) > 2|F∇|h
where F∇ is the curvature form of the connection ∇. We accomplish the extension for a general
class of S1 invariant metrics of positive scalar curvature. This is more general than we need but
may be of independent interest. In fact we construct h and ∇ such that

scal(h) > `|F∇|h
where ` is a positive integer such that the first Chern class of the S1 bundle is ` times the
canonical class of a spinc structure on the quotient.

Sha and Yang constructed metrics of positive Ricci curvature on the 4-manifolds #a−bCP 2#bS2×
S2, a > b, in [SY2]. Those manifolds are diffeomorphic to #aCP 2#bCP 2, and so a man-
ifold M satisfying the hypotheses of Theorem A also admits a free S1 action with quotient
#a−bCP 2#bS2 × S2. One can lift the Sha-Yang metric to M , and there is no reason to expect
that the resulting metric lies in the same component as the metric lifted from #aCP 2#bCP 2 in
the proof of Theorem A. We will see, however, that the computation of the η invariant involves
only the cohomology ring of the quotient, and we cannot distinguish any new components in this
way.

In [SY1] Sha and Yang also found metrics of positive Ricci curvature on #bS2×S2. One might
expect our methods to yield a similar result in this case. The 5-manifolds, however, would be
spin, and the eta invariant of the spin Dirac operator in dimension 4k+1 vanishes, even when
twisted with certain complex line bundles, see [BoG1].

We now discuss Theorem B. In [HS], Hambleton and Su find a complete diffeomorphism
classification of 5-manifolds M with π1(M) = Z2 when M is orientable, H2(M,Z) is torsion free,
and π1(M) acts trivially on π2(M). They apply the classification to investigate the diffeomorphism
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type of the total space of an S1 bundle over a simply connected 4-manifold. When the total space
is non-spin but has a spin universal cover, as is the case in Theorem A, they can only restrict
the diffeomorphism type to two possibilities. Furthermore, an error is present in that calculation,
which we correct in Lemma 1.7.

To prove Theorem B, we use the data of a principal S1 bundle, namely the base and the first
Chern class, to compute the diffeomorphism invariants used by Hambleton and Su for the total
space. One, the second Betti number, is calculated easily. When the total space is non-spin
but has a spin universal cover, we show how the other invariant can be computed by applying

a map from ΩSpinc

4 → ΩPin+

4 to the base. While a two-fold ambiguity remains in determining
which diffeomorphism type corresponds to a specific first Chern class, we are nonetheless able to
determine which pairs of invariants are achieved, and achieved infinitely many times, by bundles
over a given 4-manifold.

The paper is organized as follows. In Section 1 we examine S1 actions on 5-manifolds with
π1 = Z2 and prove Theorem B. In Section 2 we discuss the η invariant of a spinc Dirac operator
and show that it can be used to detect connected components of the moduli space in the context
of Theorem A. In Section 3 we compute η in the case of certain 4n+ 1−manifolds admitting free
S1 actions and prove Theorem A. In Section 4 we construct the metrics and connections used in
the computations of Section 3.

Acknowledgments. I would like to acknowledge my PhD advisor Wolfgang Ziller for all his
help, as well as Anand Dessai, David González-Álvaro, Fernando Galaz-Garćıa, and Diego Corro
for helpful discussions. I am further grateful to Yang Su for pointing out how to work around
an error in [HS] and for other useful insights. This research was partially supported by National
Science Foundation grant DMS-2001985.

1. S1 actions on 5 manifolds with π1 = Z2

Our methods for constructing metrics with positive Ricci curvature and for calculating η use
the structure of a principal S1 bundle. In this section we prove Theorem 1.11, which classifies 5-
manifolds with π1 = Z2 admitting one, or infinitely many, free S1 actions with simply connected
quotients. Theorem 1.11 also identifies those quotients. In particular, we prove Theorem B
and show that a manifold M5 satisfying the hypotheses of Theorem A admits infinitely many
inequivalent S1 actions with the same quotient. Our proof relies on a diffeomorphism classification
of 5-manifolds with fundamental group Z2 carried out by Hambleton and Su [HS].

Given a manifold M with π1(M) = Z2, a characteristic submanifold P ⊂ M is defined as
follows. For N sufficiently large let f : M → RPN be a classifying map of the universal covering
M̃ →M . We can choose f to be transverse to RPN−1, and hence P = f−1(RPN−1) is a smooth
manifold. One checks that any two manifolds defined in this way are cobordant.

Alternatively, assume that P ⊂M is a submanifold such that the inverse image P̃ ⊂ M̃ under
the universal covering splits M̃ into two components M̃1 and M̃2. Furthermore ∂M̃1 = ∂M̃2 = P̃
and the covering transformation acting on M̃ switches M̃1 and M̃2. One can then construct a
map f : M → RPN such that P = f−1(RPN−1). For details see [GT] and [L].

The key invariant of the classification in [HS] is the class of P in an appropriate cobordism
group. The appropriate structure on P depends on the second Stiefel-Whitney classes w2 of M
and M̃ . Hambleton and Su use the following labels for a manifold M with π1(M) = Z2 and

universal cover M̃ :

Type I w2(TM̃) 6= 0
Type II w2(TM) = 0

Type III w2(TM) 6= 0 and w2(TM̃) = 0.
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A characteristic submanifold P of a Type III manifold admits a pin+ structure, and all such P
are pin+ cobordant. Here Pin±(n) is the extension of O(n) by Z2 such that a preimage of a

reflection squares to ±1 and ΩPin±
n is the cobordism group of n−manifolds with pin± structures.

For details, see [HS], [GT].

We review the construction of a pin+ structure on P as we will use it later. Let µ = M̃ ×Z2 R
be the unique nontrivial real line bundle over M. Recall that M̃ = M̃1 ∪P̃ M̃2 and the covering

transformation exchanges the components. Thus the normal bundle NP̃ of P̃ is trivial and the
covering transformation reverses the orientation of the fibers. The normal bundle NP of P
satisfies

NP = NP̃/Z2
∼= P̃ ×Z2 R = µ|P .

Since M is orientable,
w1(NP ) = w1(TP ) = w1(det(TP ))

so NP ∼= det(TP ). Thus

(1.1) (TM ⊕ 2µ)|P = TP ⊕ 3NP = TP ⊕ 3det(TP ).

Using [GT, Lemma 9] and [HS, Lemma 2.3] , one checks that w2(TM ⊕ 2µ) = 0. We can apply
[KT, Lemma 1.7] to see that a spin structure on TP ⊕ 3det(TP ) induces a pin+ structure on
TP. A similar argument on a cobordism shows that any two characteristic submanifolds are pin+

cobordant.
Let b2(M) denote the second Betti number of a manifold M. The main theorem for Type III

manifolds is [HS, Theorem 3.1] :

Theorem 1.2. [HS] Let M1,M2 be Type III 5-manifolds such that π1(Mi) ∼= Z2 acts trivially
on π2(Mi) and H2(Mi,Z) is torsion free for i = 1, 2. Then M1 is diffeomorphic to M2 if and
only if

b2(M1) = b2(M2) and [P1] = ±[P2] ∈ ΩPin+

4

where Pi is a characteristic submanifold of Mi.

We will take the data of a principal S1 bundle, namely the base and the first Chern class, and
identify the diffeomorphism type of the total space. In particular, we will identify when the total
space satisfies the hypotheses of Theorem 1.2, and then compute b2 and [P ]. That computation
combined with the classification of Type I and II total spaces in [HS, Theorems 6.5, 6.8] finishes
the proof of Theorem 1.11, which in turn implies Theorem B.

A straightforward computation using the long exact homotopy and Gysin sequences proves the
following; see for instance [HS, Proposition 6.1] .

Lemma 1.3. Let Bn be a simply connected manifold and let Mn+1 → Bn be a non-trivial
principal S1 bundle with first Chern class kd, where d is a primitive element of H2(B,Z) and
k 6= 0 is an integer. Then M is orientable, H2(M,Z) is torsion free and b2(M) = b2(B) − 1.
π1(M) ∼= Zk is generated by any S1 fiber and acts trivially on π2(M). The universal cover of M
is the total space of an S1 bundle over B with first Chern class d. If k = 2, M is type III if and
only if and w2(TB) = d mod 2.

The condition w2(TB) = d mod 2 implies the existence of a spinc structure on B. We call d
the canonical class of that spinc structure. On a simply connected manifold a spinc structure is
uniquely determined by its canonical class. Thus in the Type III case, given a simply connected
spinc 4-manifold B4 with primitive canonical class d, we want to know the diffeomorphism type of
the total space M5 of the S1 bundle over B4 with first Chern class 2d. Since b2(M) is determined
by Lemma 1.3, it remains to find the pin+ cobordism class of a characteristic submanifold P 4 ⊂
M5. In fact, the spinc structure on B4 will naturally induce a pin+ structure on P 4.
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To see this let ρ : M → B be the bundle map and let λ → B be a complex line bundle with
first Chern class d. ρ∗d is the unique nontrivial torsion element of H2(M,Z). Let µ→M be the
unique nontrivial real line bundle over M. As in the proof that a characteristic submanifold of M
will admit a pin+ structure, see [GT, Lemma 9 ] and [HS, Lemma 2.3] , w2(µ⊕µ) = w1(µ)2 6= 0.
So µ ⊕ µ with its natural orientation is a nontrivial complex line bundle. Since µ ⊗ µ is trivial,
c1(µ⊕ µ) is torsion, and we conclude that ρ∗λ ∼= µ⊕ µ.

The S1 action on M splits TM into a horizontal bundle isomorphic to ρ∗TB and a vertical
bundle, trivialized by an action field, which we call TS1. The spinc structure on B is equivalent
to a spin structure on TB ⊕ λ. That spin structure induces a spin structure on

(1.4) ρ∗(TB ⊕ λ)⊕ TS1 ∼= TM ⊕ µ⊕ µ

and in turn a pin+ structure on P ⊂ M using (1.1). Denote by β(B, d) ∈ ΩPin+

4 the cobordism
class of P with this pin+ structure. We synthesize the construction with the results of Lemma 1.3
as follows:

Lemma 1.5. Let B4 be a simply connected 4-manifold and let M5 be the total space of a
principal S1 bundle over B with first Chern class 2d ∈ H2(B,Z) where d is a primitive element
such that w2(TB) = d mod 2. Then M satisfies the conditions of Theorem 1.2 with b2(M) =
b2(B)− 1 and [P ] = β(B, d).

In the next lemma, we will see that β is a spinc cobordism invariant whenever it is defined.

Lemma 1.6. Let B1, B2 be spinc manifolds with primitive canonical classes d1, d2 respectively.

a) β(B1 qB2, d1 + d2) = β(B1, d1) + β(B2, d2)
b) If B1 is spinc cobordant to B2 then β(B1, d1) = β(B2, d2).

Proof. Part a follows immediately since the total space of the relevant bundle and the character-
istic submanifold of that total space will be disjoint unions.

To prove part b, let W be a simply connected spinc cobordism between B1 and B2 with
canonical class d. The d|Bi = di for each i = 1, 2, and d must be a primitive class. Let π : N → B
be the principal S1 bundle over W with first Chern class 2d. By Lemma 1.3 π1(N) = Z2.
∂N = π−1(B1) q π−1(B2) and Mi = π−1(Bi) → Bi is the principal S1 bundle with first Chern
class 2di.

Let f : N → RPN be a classifying map for the universal cover of N which is transverse
to RPN−1. By Lemma 1.3, π1(N) is generated by any S1 orbit, so π1(Mi) → π1(N) is an
isomorphism, and f |Mi is a classifying map for the universal cover of Mi. Thus Pi = f−1(RPN−1)∩
Mi is a characteristic submanifold of Mi and f−1(RPN−1) is a cobordism between P1 and P2.
The argument before Lemma 1.5 proves that the spinc structure on W induces a pin+ structure
on f−1(RPN−1). That pin+ structure restricts to the pin+ structures induced on Pi by the spinc

structures on Bi. To see this one must simply note that the nontrivial real line bundle over N
restricts to the nontrivial real line bundle over Mi. We conclude that

β(B1, d1) = [P1] = [P2] = β(B2, d2).

�

We now see that β defines a map between the spinc and pin+ cobordism groups. The 4

dimensional spinc cobordism group ΩSpinc

4 is isomorphic to Z2. The isomorphism takes a spinc

manifold B with canonical class d to the characteristic numbers〈
d2, [B]

〉
and

1

8

(〈
d2, [B]

〉
− sign(B)

)
.

Here sign(B) is the signature, and the second integer is the index of the spinc Dirac operator,

which we denote by ind(B, d). See [BaG], [St] for details. To construct generators of ΩSpinc

4 let
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x ∈ H∗(CP 2,Z) be the generator which is the first Chern class of the Hopf bundle. Give X = CP 2

the spinc structure with canonical class x and Y = CP 2#CP 2#CP 2 the spinc structure with

canonical class dY = (3x, x, x) ∈ H2(Y,Z) ∼= ⊕3H2(CP 2,Z). Then [X], [Y ] ∈ ΩSpinc

4 represent

(1, 0) and (9, 1) under the isomorphism with Z2 and form a minimal generating set of ΩSpinc

4 . Since
X and Y have primitive canonical classes, and their inverses in the cobordism group are given

by reversing orientation, we conclude that every class in ΩSpinc

4 can be represented by a simply
connected manifold B with primitive canonical class d. Lemma 1.6 implies that by mapping the

cobordism class of such a pair to β(B, d) we can define a homomorphism β : ΩSpinc

4 → ΩPin+

4 .

Using the isomorphism ΩPin+

4
∼= Z16 generated by a pin+ structure on RP 4 we prove the

following :

Lemma 1.7.
β(B, d) =

〈
d2, [B]

〉
+ 4ε ind(B, d) mod 16

for an unkown sign ε = ±1.

This lemma corrects a mistake in the statement of [HS, Theorem 6.7]. Our argument uses
ideas from the proof in [HS] as well as corrections suggested to the author by Yang Su.

Proof. We will see that β(X,x) = 1 and β(Y, dY ) = 5 or 13. The lemma then follows since β is

a homomorphism and ΩSpinc

4
∼= Z2.

The principal S1 bundle RP 5 → CP 2 which is a Z2 quotient of the Hopf bundle has first Chern
class 2x. Since RP 4 is a characteristic submanifold of RP 5, it follows that

β(X,x) = [RP 4] = 1 ∈ ΩPin+

4 .

The second calculation is more involved. We use the notation [z0, z1, z2] ∈ CP 2 and [z0, z1, z2]± ∈
RP 5 for the respective images of the point (z0, z1, z2) ∈ S5 ⊂ C3. Let ρ : M → Y be the principal
S1 bundle with first Chern class 2dY ∈ H2(Y,Z) as defined above. By Lemma 1.3, the double

cover M̃ of M is the total space of a principal S1 bundle ρ̃ : M̃ → Y with first Chern class
dY . Let g : Y → CP 2 be a classifying map for ρ̃ which is transverse to CP 1 ⊂ CP 2 and has a
regular value [1, 0, 0] ∈ CP 1. Then g∗x = dY and the pullback of π : RP 5 → CP 2 by f has first
Chern class 2dY . There is a map of principal S1 bundles f : M → RP 5 covering g, that is, an S1

equivariant map making the following diagram commute:

M RP 5

Y CP 2

f

ρ π

g

Since the fundamental groups of M and RP 5 are generated by S1 orbits (see Lemma 1.3),
f∗ : π1(M) → π1(RP 5) is an isomorphism and f is a classifying map for the double cover

M̃ → M. Thus if we show that f is transverse to RP 4 ⊂ RP 5, we can conclude that P =
f−1(RP 4) is a characteristic submanifold of M. Then given the correct pin+ structure on P,

β(Y, dY ) = [P ] ∈ ΩPin+

4 .
To see that f is transverse to RP 4 = {[z0, z1, r]± ∈ RP 5|r ∈ R} note that at points in

π−1(CP 2\CP 1), RP 4 is transverse to the S1 orbits, which are contained in the image of the
equivariant map f. At points in π−1(CP 1), we associate the horizontal space of the S1 action
with TCP 2. By assumption on g, f is transverse to TCP 1, and TCP 1 ⊂ TRP 4.

For later, we also note that f is transverse to RP 2 = {[z0, r, 0] ∈ RP 5|r ∈ R} since TCP 1 ⊂
TRP 2 except at [1, 0, 0] which is a regular value of f by assumption on g.

There is a short exact sequence

(1.8) 0→ Z2 → ΩPin+

4
φ−→ ΩPin−

2 → 0
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where φ is given by taking the cobordism class of a submanifold dual to w2
1; see [HS, page 172]

and [KT, page 217 ] for details. Thus Ω
Pin−
2 is isomorphic to Z8 with generator [RP 2]. We now

compute φ([P ]) = 5, which restricts the possible values of β(Y, dY ) = 5 or 13 as desired.
We need to find a submanifold of P dual to w2

1(TP ). Denote by NRP 4 the normal bundle of
RP 4 in RP5 and by NP the normal bundle of P in M . Then f∗NRP4 = NP. Since RP5 and M
are orientable,

w1(TP ) = w1(NP ) = f∗w1(NRP4) = f∗w1(TRP4).

Since w1(TRP4)2 is dual to RP 2 ⊂ RP 4, as long as the mod 2 degree of f : f−1(RP 2)→ RP 2

is 1, it follows that f−1(RP 2) is dual to w1(TP )2. For convenience let Σ = f−1(RP 2). Since
[1, 0, 0] is a regular point of g, [1, 0, 0]± is a regular point of f, and the degree of f is the same as
the degree of f |Σ. The degree of f is the same as the degree of g. The degree of g is given by〈

g∗x2, Y
〉

=
〈
d2
Y , [Y ]

〉
= 9.

Thus the mod 2 degree of f |Σ is 1 and φ([P ]) = [Σ] ∈ ΩPin−
2 .

Let U be a tubular neighborhood of the S1 orbit of [1, 0, 0]± and V = RP 2\U. Since [1, 0, 0]
is a regular value of g we can choose U to be made up of regular values of f. Then f |f−1(U)

is a covering map. Since f maps S1 fibers to S1 fibers, f∗ : π1(f−1(U)) → π1(U) is surjective
and the covering is trivial. Thus f−1(U) is the disjoint union of deg(f) = 9 copies of U and
f−1(U ∩ RP 2) is 9 copies of U ∩ RP 2. The S1 orbit of [1, 0, 0]± is a nontrivial loop in RP 2, and
U ∩ RP 2 is a tubular neighborhood of that loop, diffeomorphic to RP 2\D2 (the Mobius band).
The local inverses to f |f−1(U) are equivariant embeddings of the oriented tubular neighborhood

U and are all isotopic. It follows that the 9 embedding of RP 2\D2 making up f−1(U ∩RP 2) are
all isotopic. Thus the process by which TM induces a pin+ structure on P, which in turn induces
a pin− structure on Σ, will induce the same pin− structure on each of the 9 copies of RP 2\D2.

Since π(RP 2) = CP 1 and π(U) ∩ CP 1 is diffeomorphic to a disc D2 around [1, 0, 0] made up
of regular values of g, g−1(π(U)∩CP 1) is 9 copies of D2 and π(V ) = CP 1\D2. π|RP 2 is injective
away from the orbit of [1, 0, 0]±, and thus is injective on V. It follows that ρ maps f−1(V )
injectively onto g−1(π(V )). Thus f−1(V ) is diffeomorphic to g−1(CP 2) with 9 discs removed
while f−1(U ∩ RP 2) is 9 copies of RP 2\D2. In other words,

(1.9) Σ ∼= g−1(CP 1)#RP 2#...#RP 2

and the nine summands of RP 2 all have the same pin− structure. ΩPin−
2 is generated by [RP 2],

and so it remains to compute the value of [g−1(CP 1)].
Let χ = g−1(CP 2). We will use a general method to define a pin− structure called rχ on χ and

compute [χ] ∈ ΩPin−
2 with this structure. We will then show that rχ is the correct pin− structure

to use, that is, rχ is compatible under (1.9) with the pin− structure used to identify [Σ] with
φ([P ]), which we will call r.

Consider a simply connected spinc 4-manifold B with canonical class d and ν the complex line
bundle with c1(ν) = d. Let N ⊂ B be a smooth submanifold dual to d. Then ν|N is isomorphic
to the normal bundle of N . The spinc structure on B is equivalent to a spin structure, called
s, on TB ⊕ ν. Restricted to N, this is a spin structure on TN ⊕ 2ν. The transition functions
for 2ν admit a canonical lift from SO(4) to Spin(4); simply multiply two copies of any lift for
the transition functions of ν, and the sign ambiguities cancel. Note that the identity lifts to the
identity in this way. Using this lift, s induces a spin structure sN on N.

The spin cobordism class of N depends only on the spinc cobordism class of B. To see this,
note that the dual to the canonical class of a spinc cobordism will be a spin cobordism between
the two relevant submanifolds. Thus we have a homomorphism

ψ : ΩSpinc

4 → ΩSpin
2
∼= Z2
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defined by ψ([B]) = [N ]. Indeed, there is a long exact sequence

→ ΩSpin
4 → ΩSpinc

4 → ΩSpin
2 (BU(1))→ ΩSpin

3 = 0

as in [HS, page 154] and [HKT, page 654]. We see that ψ is surjective by noting that ψ is the

composition of ΩSpinc

4 → ΩSpin
2 (BU(1)) with the surjective map ΩSpin

2 (BU(1)) → ΩSpin
2 which

ignores the map to BU(1) .

Recall that X,Y generate ΩSpinc

4 . The canonical class of X is dual to CP 1 ⊂ CP 2, which is

nullcobordant, so ψ([X]) = 0. Since ψ is surjective, ψ([Y ]) generates ΩSpin
2 . Since CP 1 contains

a regular value of g, the degree of g|χ equals the degree of g and χ is dual to g∗x = dY . Giving
χ the spin structure sχ used to define ψ, ψ([Y ]) = [χ] 6= 0.

Spin(n) embeds naturally into both Pin±(n), so a spin structure induces a natural pin− struc-
ture. Kirby and Taylor show that in dimension 2, the corresponding map

ΩSpin
2
∼= Z2 → ΩPin−

2
∼= Z8

is injective, see [KT, Proposition 3.8]. Let rχ be the Pin− structure on χ induced by sχ. Using

that structure [χ] = 4 ∈ ΩPin−
2 . Once we confirm that rχ is the correct structure, we conclude

with (1.9) that φ([P ]) = 5, completing the proof of Lemma 1.7.
Let r be the pin− structure on Σ used to define φ([P ]). Recall that ρ is a diffeomorphism

between the open set O = f−1(V ) ⊂ Σ and ρ(O), which is χ with 9 discs removed. It remains
only to check that r = ρ∗rχ on O.

We first recall the definition of r. Let µ be the nontrivial real line bundle over M and let
E = TM ⊕ 2µ. Let λ be the complex line bundle over Y with c1(λ) = dY and let s be spin
structure on TY ⊕ λ used in the definition of ψ. With the isomorphism (1.4), s induces a spin
structure on E called sE . Then (1.1) shows

E|P = TP ⊕ 3det(TP )

and we induce a pin+ structure on TP using a canonical lift of the transition functions of 3det(TP )
from O(3) to Pin−(3). In turn,

TP |Σ = TΣ⊕ 2det(TΣ)

and using a canonical lift of the transition functions of 2det(TΣ) from O(2) to Pin+(2) we induce
the pin− structure r on Σ. Note that the normal bundle of Σ in P is orientable and thus

w1(det(TΣ)) = w1(det(TP )|Σ).

In this way we can combine the two steps and see that sE induces r on TΣ using the isomorphism

(1.10) E|Σ = TΣ⊕ 5det(TΣ)

and a canonical lift of the transition functions of 5det(TΣ) from O(5) to Pin+(5). The details of
the canonical lifts involved can be found in [KT, Lemma 1.7]; the salient fact is that each lifts
the identity to the identity.

Next, we note that det(TΣ) and ρ∗λ are trivial over O. The former follows because because
O is an open set in Σ, but is orientable since it is diffeomorphic to an open set in χ. As for
the latter, we have seen that ρ∗λ ∼= 2µ, µ|P = det(TP ), and det(TP )|Σ = det(TΣ). Since ρ is a
diffeomorphism on O and ρ∗λ is trivial, λ is trivial on ρ(O).

Let tij be transition functions with values in SO(2) for Tχ. As we saw in the definition of ψ,
for points in χ,

TY ⊕ λ ∼= Tχ⊕ 2λ.

Thus on ρ(O) the transition functions for λ can be chosen to be the identity and the transition
functions for (TY ⊕ λ)|χ can be chosen to be tij . The spin structure s gives a lift of tij to t̃ij in
Spin(2). Since the canonical lift of the transition functions for 2λ will also be the identity, t̃ij is
also the lift given by sχ and rχ.
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Furthermore, using (1.4), tij ◦ ρ are transition functions for E on O. By definition, sE gives
the lift t̃ij ◦ ρ. Using (1.10), tij ◦ ρ are transition functions for both E|O and TΣ, compatible by
picking trivial transition functions for 5det(TΣ). The canonical lift of the transition functions
for 5det(TΣ) will also be trivial, and the lift given by r will simply be the inclusion of t̃ij ◦ ρ into
Pin−(2). Thus r = ρ∗rχ on O. This completes the proof of Lemma 1.7.

�

We can now prove Theorem B. In fact, we prove the following more detailed theorem which
includes the statement of Theorem B. Here we use the notation of Hambleton and Su, where #S1

is gluing along the boundary of a tubular neighborhood of a generator of π1. X(q), q = 1, 3, 5, 7 are
the 4 closed manifolds homotopy equivalent to RP 5, with X(1) = RP 5, and X(q), q = 0, 2, 4, 6, 8
are constructed from pairs of homotopy RP 5’s using the operation #S1 . The labeling is such that

a characteristic submanifold P ⊂ X(q) has class q ∈ ΩPin+

4 /± = {0, ..., 8}. See the discussion
before [HS, Theorem 3.7] for details.

Theorem 1.11. Let M be a 5-manifold with π1 = Z2. Let P ⊂M be a characteristic subman-
ifold.

1) M admits a free S1 action with a simply connected quotient if and only if M is orientable,
H2(M,Z) is torsion free, and π1(M) acts trivially on π2(M). Furthermore if b2(M) = 0
then M is diffeomorphic to RP 5.

2) Suppose M5 satisfies the conditions in 1). Let Q(M) be the set of quotients of M by free
S1 actions. The following table gives necessary and sufficient conditions for a 4-manifold
to be in Q(M). S is a set of four exceptional Type I 5-manifolds described in the final
two rows. If b2(M) > 0 then for each B ∈ Q(M), M admits infinitely many inequivalent
S1 actions with quotients diffeomorphic to B.

M5 Q(M5)= simply connected 4-manifolds B4 such that
Type II B is spin and b2(B) = b2(M) + 1
Type III B is non-spin, b2(B) = b2(M) + 1 and sign(B) = ±[P ] mod 4
Type I and M /∈ S B is non-spin and b2 = b2(M) + 1
X(q)#S1(CP 2 × S1), q = 0, 4 B is non-spin, b2 = 3 and |sign(B)| = 1
X(q)#S1(S2 × RP 3) q = 0, 4 B is non-spin, b2 = 4 and |sign(B)| < 4

Thus given M5 satisfying the hypotheses of 1) and matching the description of one of the rows
in the left column, a 4-manifold B4 is diffeomorphic to a quotient of M5 by a free S1 action if
and only if it satisfies the conditions given in the corresponding row of the right column.

Proof. We prove 2) first. Let M be an orientable 5-manifold with π1(M) = Z2 acting trivially on
π2(M), H2(M,Z) torsion free, and b2(M) > 0 unless M ∼= RP 2. Let P ⊂ M be a characteristic
submanifold.

Note that if M → B is a principal S1 bundle, the long exact homotopy sequence implies that
π1(M) → π1(B) is surjective. If π1(B) = Z2, then the Gysin sequence implies that H3(B) →
H3(M) is injective. Since M, and thus B, is orientable, H3(B) = Z2 and H2(M) would not be
torsion free. Thus any quotient of M by a free S1 action is simply connected.

M is Type II. First, supposeM → B is a principal S1 bundle. By Lemma 1.3, b2(B) = b2(M)+1
and by [HS, Proposition 6.1] B is spin.

Conversely, Let B be a simply connected spin 4-manifold with b2(B) = b2(M)+1. Then by [HS,
Proposition 6.1] , all of the total spaces of principal S1 bundle over B with π1 = Z2 are Type II and
have second Betti number b2(B)−1. By [HS, Theorem 3.1] all such total spaces are diffeomorphic
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to M. If b2(M) ≥ 1 there are infinitely many primitive elements of H2(B,Z) = Zb2(M)+1 and
thus infinitely many non-isomorphic such bundles.

M is Type III. Suppose M → B is a principal S1 bundle. By Lemma 1.3, b1(B) = b1(M) + 1
and the first Chern class of the bundle is 2d, where d is a primitive element of H2(B,Z) such
that w2(TB) = d mod 2. It follows that B is non-spin, and by [LM, Corollary II.2.12] the
intersection form of B is odd. By the classification of integral forms and Donaldson’s Theorem,
[DK, page 5 and Theorem 1.3.1] the intersection form of B is diagonal, and so H∗(B,Z) =

H∗(#aCP 2#bCP 2,Z) for some integers a, b. Then using [LM, Corollary II.2.12] again we see
that

w2(B) = (1, 1, ..., 1) ∈ H2(B,Z2) ∼= Za+b
2 .

Thus d = (d1, ..., da+b) ∈ H2(B,Z) ∼= Za+b where each di is an odd integer. This completes the
proof of one direction of 2) since

[P ] = β(B, d) =
〈
d2, [B]

〉
=

a∑
i=1

d2
i −

b∑
j=a+1

d2
j = sign(B) mod 4.

Conversely, Let B be a non-spin simply connected 4-manifold with b2(B) = b2(M)+1. Assume

further that sign(B) = [P ] ∈ Z4/ ± . Again, H∗(B,Z) = H∗(#aCP 2#bCP 2,Z) where b2(B) =
a + b and sign(B) = a − b. Choose c ∈ {0, 1, 2, 3} such that ±[P ] = a − b + 4c mod 16. If
b2(M) > 0, choose k such that

(4 + 2ε)k(k + 1) = 4c mod 16

where ε = ±1 is the sign from Lemma 1.7. If b2(M) = 0 then choose k = 0. Set

dk = (1 + 2k, 1, ..., 1) ∈ H2(B,Z) ∼= Za+b.

Then d is primitive and as above, we see that w2(TB) = d mod 2. Using Lemma 1.7 we have

β(B, dk) = sign(B) + (4 + 2ε)k(k + 1) = ±[P ] mod 16.

Hence by Lemma 1.5 and Theorem 1.2 M is diffeomorphic to the total space of an S1 bundle
over B with first Chern class 2dk. In the case where b2(M) > 1, there are infinitely many choices
of k yielding distinct classes dk, and M is diffeomorphic to infinitely many total spaces of non-
isomorphic S1 bundles over B.

M is Type I. Suppose M → B is a principal S1 bundle. By Lemma 1.3, b1(B) = b1(M)+1 and
by [HS, Proposition 6.1] B is non-spin and and the first Chern class of the bundle is 2d, where d
is a primitive element of H2(B,Z) such that w2(TB) 6= d mod 2.

If M = X(q)#S1(CP 2×S1), q = 0, 4 then b2(B) = 3 and by [HS, Theorem 6.8]
〈
d2, [B]

〉
= ±q

mod 8. If sign(B) = ±3, then up to orientation as above H∗(B,Z) = H∗(#3CP 2,Z) and
w2(TB) = (1, 1, 1). Thus

d = (d1, d2, d3) ∈ H2(B,Z) ∼= Z3

and some di must be even. Since d is primitive, some di must be odd. One easily checks that
under these conditions,

〈
d2, [B]

〉
6= 0, 4 mod 8. So sign(B) = ±1.

If M = X(q)#S1(S2 ×RP 3), q = 0, 4 then b2(B) = 4 and
〈
d2, [B]

〉
= ±q mod 8. If sign(B) =

±4, then up to orientation by the argument in the Type III case, H∗(B,Z) = H∗(#4CP 2,Z) and

d = (d1, d2, d3, d4) ∈ H2(B,Z) ∼= Z3

with at least one di even and at least one di odd. Again
〈
d2, [B]

〉
6= 0, 4 mod 8, so |sign(B)| < 4.

Conversely, Let B be a simply connected non-spin 4-manifold satisfying the conditions given
by the table for Q(M). Then H∗(B,Z) = H∗(#aCP 2#bCP 2,Z) for some integers a, b such that
a + b = b1(M) + 1. Let (q, s) ∈ Z8 ⊕ Z2 represent the cobordism class of P ⊂ M in the pinc
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cobordism group ΩPinc
4
∼= Z8 ⊕ Z2; see [HS, page 154]. By [HS, Theorem 3.6] q + s = b2(M) + 1

mod 2.
If q = 0, 4 then [HS, Theorem 3.7] implies that a + b ≥ 3, so we can assume that up to

orientation a ≥ 2 and using the table either a+ b ≥ 5 or |sign(B)| < b2(B), which implies b > 0.
Define the following elements dk ∈ H2(B,Z) ∼= Za ⊕ Zb for each k ∈ Z.

q = 0 : dk = (1 + 8k, 0, ..., 0, 1) if b > 0 dk = (2 + 8k, 1, 1, 1, 1, 0, ..., 0) if b = 0
q = 4 : dk = (2 + 8k, 1, 0, ..., 0, 1) if b > 0 dk = (1 + 8k, 1, 1, 1, 0, ..., 0)if b = 0

.

If q = 2, [HS, Theorem 3.7] implies that a+ b ≥ 3 and we can assume a ≥ 2 and define

q = 2 : dk = (1 + 8k, 1, 0, ..., 0)

If q is odd, By [HS, Theorem 3.7] a+ b ≥ 2, and we can assume a ≥ 1. Define

q = 1 : dk = (1 + 8k, 4, 0, ..., 0)
q = 3 : dk = (1 + 8k, 2, 0, ..., 0).

In each case dk is primitive, w2(TB) 6= dk mod 2, and q = ±
〈
d2
k, [B]

〉
mod 8. By [HS, Theorem

6.8] the S1 bundle over B with first Chern class 2dk is diffeomorphic to M . Again infinitely many
k yield distinct classes dk an thus non-isomorphic bundles.

To prove 1), first assume M is a 5-manifold with π1(M) = Z2 admitting a free S1 action with
simply connected quotient B. By Lemma 1.3, M is orientable, π1(M) acts trivially on π2(M)
and H2(M,Z) is torsion free. If b2(M) = 0, then b2(B) = 1 and up to orientation H∗(B,Z) ∼=
H∗(CP 2,Z) and w2(TB) is non-zero. There are only two primitive classes ±d ∈ H2(B,Z) ∼= Z,
each restricting to w2(B) mod 2. Thus B is of Type III and β([B, d]) = ±1. By Theorem 1.2 M
is diffeomorphic to RP 5.

To prove the converse, suppose M is an orientable 5-manifold with π1(M) = Z2 acting trivially
on π2(M) and H2(M,Z) torsion free. Let P ⊂ M be a characteristic submanifold. Since RP 5

admits a free S1 action induced by the Hopf action we assume b2(M) > 0. We must show the
set Q(M) described in the table in 2) is nonempty.

If M is Type II, by [HS, Theorem 3.6] b2(M) is odd. Then B = #(b2(M)+1)/2S2×S2 ∈ Q(M). If

M is Type I then B = #b2(M)CP 2#CP 2 ∈ Q(M). If M is Type III, let 0 ≤ c < 16 be an integer
such that [P ] = c mod 16. By [HS, Theorem 3.6] we see that c = b2(M) + 1 mod 2. Choose l
such that

0 ≤ c− 4l < 4.

Then

a =
b2(M) + 1 + c− 4l

2
and b =

b2(M) + 1− c+ 4l

2

are nonnegative integers. Let B = #aCP 2#bCP 2. Then b2(B) = b2(M) + 1 and sign(B) = [P ] ∈
Z4/± . So B ∈ Q(M). �

We note that the final paragraph of the proof above in fact shows the following, which we will
make use of later.

Corollary 1.12. Let M be a 5-manifold with π1 = Z2 admitting a free S1 action with a
simply connected quotient. Then M admits a free S1 action with quotient diffeomorphic to either
#cS2 × S2 or #aCP 2#bCP 2 for some a, b, c ∈ Z.

Combining Theorem 1.11 with [HS, Theorem 3.7] we can characterize the manifolds satisfying
Theorem A.
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Corollary 1.13. Let M5 be a 5-manifold. The following are equivalent:

1) M5 is Type III and admits a free S1 action with a simply connected quotient.

2) There exists B4 = #aCP 2#bCP 2, a, b ∈ Z≥0 such that M5 is the total space of a principal
bundle S1 → M5 → B4 with first Chern class 2d, where d ∈ H2(B4,Z) is primitive and
w2(TB4) = d mod 2.

3) There exits k ∈ Z≥0 and q ∈ {0, 1, ..., 8}, with k > 0 if q is 3,5, or 7, such that M5 is
diffeomorphic to

X(q)#S1(#k(S2 × S2)× S1).

If those conditions are satisfied then MRic>0(M5) has infinitely many path components.

Proof. 1) implies 2) by Lemma 1.3 and Corollary 1.12 . If we assume 2), Lemma 1.3 implies that
M is a Type III manifold with π1 acting trivially on π2 and H2(M,Z) torsion free. [HS, Theorem
3.7] shows that every such manifold is diffeomorphic to X(q)#S1(#k(S2 × S2) × S1) for some
q ∈ {0, ..., 8} and some k ∈ Z≥0. If k = 0 and q is odd, b2(X(q)) = 0 and using Theorem 1.11 M
must be diffeomorphic to RP 5 = X(1).

By [HS, Theorem 3.7], M = X(q)#S1(#k(S2 × S2) × S1) is an orientable Type III manifold
with π1(M) acting trivially on π2(M), H2(M,Z) torsion free, and b2(M) = 2k + (1 + (−1)q)/2.
Thus by Theorem 1.11 3) implies 1).

Now assume M satisfies the conditions. If b2(M) > 0, then by Lemma 1.3 the integers a, b in
2) must satisfy a + b ≥ 2. Then Theorem A implies that MRic>0(M) has infinitely many path
components. By Theorem 1.11, if b2(M) = 0, then 1) implies that M ∼= RP 5. MRic>0(RP 5) is
shown to have infinitely many path components in [DG]. �

Remark 1.14.

• By the discussion proceeding [HS, Theorem 3.7] the manifolds described in Corollary 1.13
can also be constructed by applying #S1 to the homotopy RP 5’s. For instance

X(q)#S1(#k(S2 × S2)× S1) ∼= X(q)#S1X(0)#S1 ...#S1X(0).

• It is shown in [DG] that MRic>0 also has infinitely many components for the homotopy
RP 5’s X(3), X(5) and X(7) .

• A characteristic submanifold P ⊂ X(q)#S1(#k(S2 × S2)× S1) has class q ∈ ΩPin+

4 /± =
{0, ..., 8}. If we fix a non-spin simply connected 4-manifold B4, then a Type III total space
of a principal S1 bundle over B will be diffeomorphic to X(q)#S1(#k(S2×S2)×S1). Using
the table in Theorem 1.11 we see that q must satisfy q = ±sign(B) mod 4. It follows that
there are 2,3 or 4 choices of q, and the same number of diffeomorphism types of Type III
total spaces, if sign(B) is 2, 0, or ±1 mod 4 respectively. The value of q can be determined,
up to two possibilities, using Lemma 1.7. The set of diffeomorphism types of Type I total
spaces is more complicated, but can be computed using Theorem 1.11 and [HS, Theorem
3.7]. If B4 is a simply connected spin 4-manifold there exists a unique diffeomorphism type

of total spaces with π1 = Z2 , represented by (S2×RP 3)#S1(#(b2(B)−2)/2(S2×S2)×S1).

Using a result of Gilkey, Park and Tuschmann, we can lift metrics from the quotients described
by Corollary 1.12 to prove the following:

Corollary 1.15. Let M be a 5 manifold with π1(M) = Z2 admitting a free S1 action with a
simply connected quotient. Then M admits a metric with positive Ricci curvature.

Proof. In [SY1] Sha and Yang put a metric of positive Ricci curvature on #cS2 × S2. A modifi-

cation of Perelman’s construction in [P] puts such a metric on #aCP 2#bCP 2, see Lemma 3.10.
Corollary 1.12 shows that M5 admits a free S1 action with quotient B4 diffeomorphic to one of
those manifolds. Gilkey, Park, and Tuschmann [GPT] showed that if B4 admits Ric> 0, M5 is the
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total space of a principal bundle over B4 with compact connected structure group G, and π1(M5)
is finite, then M admits a G invariant metric with Ric> 0. In this case G = S1, π1(M) = Z2 and
the corollary follows. �

The corresponding result in the simply connected case was proved by Corro and Galaz-Garcia
in [CG]. By Lichnerowicz’s theorem, many simply connected 4-manifolds, such as a K3 surface,
do not admit even positive scalar curvature . It is interesting to note that Corollary 1.15 and
the results of [CG] imply that total spaces with π1 = 0 or Z2 of principal S1 bundles over such
manifolds nonetheless admit metrics of positive Ricci curvature.

2. η Invariant

We use the η invariant of the spinc Dirac operator, which we define in this section, to distinguish
components of geometric moduli spaces. A manifold M is spinc if there exists a complex line
bundle λ over M such that the frame bundle of TM ⊕ λ, a principal SO(n)× U(1) bundle, lifts
to a principal Spinc(n) = Spin(n)×Z2 U(1) bundle. A manifold is spinc if and only if the second
Stiefel-Whitney class w2(TM) is the image of an integral class c ∈ H2(M,Z) under the map
H2(M,Z) → H2(M,Z2). In this case c, which we call the canonical class of the spinc structure,
is the first Chern class of λ, which we call the canonical bundle.

Using complex representations of Spinc(n) we form spinc spinor bundles and equip them with
actions of the complex Clifford algebra bundle Cl(TM). When the dimension of M is even there
is a unique irreducible such bundle S with a natural grading S = S+ ⊕ S−. Given a metric g on
M and a unitary connection ∇ on λ we can construct a spinor connection ∇s on S, compatible
with Clifford multiplication, and a spinc Dirac operator Dc

g,∇ acting on sections of S. See [LM,

Appendix D] for details. The Bochner-Lichnerowicz identity for this operator is

(2.1) (Dc
g,λ)2 = (∇s)∗∇s +

1

4
scal(g) +

i

2
F∇

where the complex two-form F∇ is the curvature of ∇. This form acts on the spinor bundle S
by way of the vector bundle isomorphism ΛT ∗M → ΛTM → Cl(TM) given by g. The operator
(∇s)∗∇s is nonnegative definite with respect to the L2 inner product on a closed manifold or a
compact manifold with boundary on which the Atiyah-Patodi-Singer boundary conditions have
been applied. See [APS2, Theorem 3.9] for details. The remaining term 1

4scal(g)+ i
2F
∇ is positive

definite if

(2.2) scal(g) > 2|F∇|g,

where the norm | · |g is the operator norm on Cl(TM) acting on S. In particular, ker(Dc
g,∇) = 0

if (2.2) is satisfied. For a later purpose we note that for ω ∈ Ω2(M,C) and an orthonormal basis
{ei} of TM with respect to g, we have

(2.3) |ω|g ≤
∑
i<j

|ω(ei, ej)|.

Suppose W is a spinc manifold with boundary ∂W = M, with λ and c defined on W as above.
W induces a spinc structure on M with canonical class c|∂W and canonical bundle λ|∂W . Choose
a metric h on W and a connection ∇ on λ which are product-like near ∂W , i.e.

h = h|∂W + dr2

and

∇ = proj∗M (∇|∂W )
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on a collar neighborhood U ∼= M×I where I is an interval with coordinate r. Applying the Atiyah-
Patodi-Singer boundary conditions, the Atiyah-Patodi-Singer index theorem [APS1] states that

(2.4) ind(Dc
h,∇|S+) =

∫
W
ec1(∇)/2Â(p(g))−

dim(ker(Dc
h|∂W ,∇|∂W )) + η(Dc

h|∂W ,∇|∂W )

2
.

Here c1(∇) and p(g) are the Chern-Weil Chern and Pontryagin forms constructed from the

curvature tensors of the connection and metric respectively. Â is the polynomial in the Pontryagin
forms and Dc

h|∂W ,∇|∂W is the spinc Dirac operator on M constructed using the induced metric

and connection.
η is an analytic invariant of the spectrum of an elliptic operator defined in [APS1]. Given an

elliptic differential operator D with spectrum {λi} we define a complex function

η(D, s) =
∑
λi 6=0

sign(λi)|λi|−s.

One shows that the function is analytic when the real part of s is large and Atiyah, Patodi and
Singer showed that it can be analytically continued to a meromorphic function which is analytic
at 0. Thus we define η(D) = η(D, 0). If a diffeomorphism φ preserves the spinc structure, then
Dc
φ∗g,φ∗∇ is conjugate to Dc

g,∇ and hence they have the same spectrum and the same values of η.

We will use (2.4) to calculate η for an operator Dg,∇̄ on a manifold M by finding a suitable W

with ∂W = M and extending g, ∇̄ to product like h and ∇ on W.
Kreck and Stolz combined the η invariant with information about the Chern-Weil forms of the

metric to get an invariant for metrics on 4n + 3 dimensional spin manifolds. We prove that the
η invariant alone provides the desired invariant for certain 4n+ 1 dimensional spinc manifolds.

Theorem 2.5. Let M4n+1 be a closed spinc manifold with canonical class c ∈ H2(M,Z) and
canonical bundle λ. Suppose c and the Pontryagin classes pi(TM) are torsion and gt, t ∈ [0, 1]
is a smooth path of metrics on M with scal(gt) > 0. If ∇0 and ∇1 are flat unitary connections
on λ, then

η(Dc
g0,∇0

) = η(Dc
g1,∇1

).

Proof. Modifying gt if necessary we assume it is a constant path for t near 0 and 1. Given
L ∈ R>0, define a smooth metric g on M × [0, 1] by

g = gt + L2dt2.

Then g is product-like near M × {0, 1}. One sees that scal(g) differs from scal(gt) by terms
depending on the second fundamental form of each slice M × {t}, but the second fundamental
form tends to 0 as L→∞, so for large L we have scal(g) > 0.

The difference of unitary connections on a complex line bundle is an imaginary one form.
Define α ∈ Ω(M) such that

iα = ∇1 −∇0.

Since both connections are flat, dα = 0. Let π : M × [0, 1] → M be the projection and let
f : M × [0, 1]→ [0, 1] be the projection onto [0, 1] followed by a smooth function which is 0 in a
neighborhood of 0 and 1 in a neighborhood of 1. Define a connection on π∗λ by

∇ = π∗∇0 + ifπ∗α.

Then, since ∇0 is flat,

F∇ = idf ∧ π∗α.
Let ei be an orthonormal frame for g at a point (p, t), such that e1 = 1

L∂t. Then

2
∑
i<j

|(df ∧ α)(ei, ej)| =
2∂tf

L

∑
i>1

α(ei).
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Since ei, i > 2, is tangent to M × {t}, it does not depend on L. Using (2.3), for large L we have

scal(g) > 2|F∇|g.

The definition of f ensures that ∇ is product-like near ∂(M × I). Then by (2.1) Dc
g,∇ has trivial

kernel and ind(Dc
g,∇|S+) = 0.

Since F∇i = 0 for i = 1, 2

scal(gi) > 0 = 2|F∇i |gi
and hence (2.1) implies kerDc

gi,∇i = {0}. We now apply the Atiyah-Patodi-Singer index theorem

(2.4). The boundary of M × I is two copies of M with opposite orientations. The spectrum of
the Dirac operator on M × {0, 1} is the union of the spectra on M × {0} and M × {1}, and
the η invariant is the sum of the two η invariants. When we change the orientation of an odd
dimensional manifold, the Dirac operator changes by a sign. Thus the Atiyah-Patodi-Singer
theorem yields

ind(Dc
g,∇|S+) =

∫
M×[0,1]

ec1(∇)/2Â(p(g))

−1

2

(
dim(ker(Dc

g0,∇0
)) + dim(ker(Dc

g1,∇1
)) + η(Dc

g0,∇0
)− η(Dc

g1,∇1
)
)

and hence

η(Dc
g1,∇1

)− η(Dc
g0,∇0

) = 2

∫
M×[0,1]

ec1(∇)Â(p(g)).

Since π∗1c is torsion, c1(∇) is exact. Because ∇ is flat near the boundary c1(∇)|∂(M×I) = 0.
Furthermore g is product-like near the boundary so p(g)|M×{i} = p(gi). Since the real Pontryagin
classes of M vanish pj(gi) is exact for j > 0. By Stokes’ theorem, and since the dimension of M
is 4n+ 1, the integral vanishes. �

As a corollary we show how to use the η invariant to detect path components of moduli spaces
of metrics with curvature conditions no weaker than positive scalar curvature.

Corollary 2.6. Let M be as in Theorem 2.5. Let (gi,∇i) be a sequence of Riemannian
metrics gi with Ric(gi) > 0, and flat connections ∇i on λ such that {η(Dc

gi,∇i)}i is infinite. Then

MRic>0(M) and Mscal>0(M) have infinitely many path components.

Proof. Let Diffc(M) be the set of diffeomorphisms of M which fix the spinc structure. For
g ∈ Rscal>0 let [g] represent the image in Mscal>0 and [g]c the image in Rscal>0/Diffc(M). It follows
from Ebin’s slice theorem ([E], [Bo]), that if [gi], [gj ] are in the same connected component of
Rscal>0/Diffc(M) then gi, φ

∗gj are in the same path component of Rscal>0 for some φ ∈ Diffc(M).
Then there is a path between them maintaining positive scalar curvature, and by Theorem 2.5
and the spinc diffeomorphism invariance of η we have η(Dc

gi,∇i) = η(Dc
φ∗gj ,φ∗∇j ) = η(Dc

gj ,∇j ).

Since {η(Dc
gi,∇i)} is infinite, Rscal>0/Diffc(M) has infinitely many components.

Any diffeomorphism φ pulls back the spinc structure to another one with canonical class φ∗c,
a torsion class in H2(M,Z). There are finitely many such classes. The finite group H1(M,Z2)
indexes the spinc structures associated to each class. Thus the orbit of the spinc structure under
Diff(M) and the set Diff(M)/Diffc(M) are finite. The fibers of Rscal>0/Diffc(M) →Mscal>0 are
no larger than Diff(M)/Diffc(M), implying that Mscal>0 has infinitely many components.

The proof is identical for MRic>0 since Ric > 0 implies scal > 0. �
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3. η invariant in dimension 4n+ 1 with free S1 actions

In this section we prove Theorem A. We want to use the Atiyah-Patodi-Singer index theorem to
calculate the η invariant of a metric on M . Many authors have computed η and related invariants
on spin manifolds M by extending metrics to manifolds W with boundary diffeomorphic to M .
If the extension has positive scalar curvature, the index of the Dirac operator will vanish. In the
spinc case, we must also extend an auxiliary connection. A difficulty arises when the extended
connection cannot be flat because the canonical class of the spinc structure on W is not torsion.
Then the metric and connection must satisfy (2.2). The following theorem, which we prove in
Section 4 illustrates how to use certain free S1 actions on M to accomplish this.

Theorem 3.1. Let S1 act freely on M by isometries of a Riemannian metric gM with scal(gM ) >
0 and assume π1(M) is finite. Let B = M/S1 be the quotient and ρ : W = M ×S1 D2 → B the
associated disc bundle. Suppose the first Chern class of the principal S1 bundle π : M → B is `d
for d ∈ H2(B,Z) and ` ∈ Z. If λ is the complex line bundle over W with first Chern class ρ∗d,
then there exists a metric gW on W and a connection ∇ on λ such that

(3.2) scal(gW ) > l|F∇|gW .
Furthermore there is a collar neighborhood V ∼= M × [0, N ] of ∂W ∼= M such that for t ∈ [0, N ]
near 0, gW is a product metric

(3.3) gW ∼= gM + dt2

and

(3.4) ∇ ∼= proj∗V,M∇̄

where ∇̄ is any flat unitary connection on λ|∂W .

Notice that here there are no restrictions on the dimension or Pontryagin classes of M , d need not
be primitive, and no spinc structure is required. We next use Theorem 3.1 and (2.4) to calculate
η for S1 invariant metrics on certain spinc manifolds in dimensions 4n+ 1.

Theorem 3.5. Let S1 act freely on a 4n+1 manifold M by isometries of a Riemannian metric
g with scal(g) > 0. Assume π1(M) is finite and let B = M/S1 be the quotient. Suppose the first

Chern class of the principal bundle S1 → M
π−→ B is `d where ` is a positive even integer and

w2(TB) = d mod 2. Finally assume the real Pontryagin classes of M vanish. Then M admits a
spinc structure with canonical class π∗d. If ∇̄ is a flat connection on the canonical bundle of this
spinc structure and Dc

g,∇̄ is the spinc Dirac operator, then

η(Dc
g,∇̄) =

〈
sinh(d/2)Â(TB)

sinh(`d/2)
, [B]

〉
.

When n = 1,

(3.6) η(Dc
g,∇̄) =

〈
−(`2 − 1)d2 + p1(TB)

24`
, [B]

〉
.

Proof. Since TM is the direct sum of π∗TB and a trivial bundle generated by the action field of
the S1 action,

w2(TM) = π∗w2(TB) = π∗d mod 2.

Let µ be the complex line bundle over B associated to π : M → B. Let W = M ×S1 D2 and let
ρ : W → B be the disc bundle associated to π : M → B. Then TW = ρ∗(TB ⊕ µ) and since ` is
even

w2(TW ) = ρ∗(d+ `d) mod 2 = ρ∗d mod 2.
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It follows that W admits a spinc structure with canonical class ρ∗d. We call the canonical bundle
λ. The spinc structure on W induces one on M with canonical class π∗d.

Then M,W, and λ satisfy the hypotheses of Theorem 3.1. We construct the metric gW on W
and connection ∇ on λ as in the theorem such that gW |M = gM and ∇|M = ∇̄. Define the spinc

Dirac operator Dc
gW ,∇ on W and Dc

gM ,∇̄
as in Section 2. Given that gW and ∇ are product-like

near ∂W , we can apply (2.4). Since ∇̄ is flat

scal(gM ) > 2|F ∇̄|gM = 0

and by (3.2)

scal(gW ) > `|F∇|gW ≥ 2|F∇|gW .
Then (2.1) implies that ind(Dc

gW ,∇) = 0 and ker(Dc
gM ,∇̄

) = {0}. It follows from (2.4) that

(3.7) η(Dc
gM ,∇̄) = 2

∫
W
ec1(∇)/2Â(p(gW )).

To evaluate that integral, we use [KS2, Lemma 2.7]:

Lemma 3.8. [KS3] Let W be a manifold with boundary, and let α, β be closed forms on W

such that α|∂W = dα̂ and β|∂W = dβ̂. Then∫
W
α ∧ β =

∫
∂W

α̂ ∧ β +
〈
j−1(α) ∪ j−1(β), [W,∂W ]

〉
where j−1 represents any preimage under the long exact sequence map

j : H∗(W,∂W ;Q)→ H∗(W,Q).

To apply Lemma 3.8 to (3.7), let α = ec1(∇)/2 and β = Â(p(gW )). Since gW is product like
near the boundary, pi(gW )|∂W = pi(gM ). For i > 0 pi(gM ) is exact by the assumption on the
Pontryagin classes of M . Since c1(∇)|∂W = c1(∇̄) and ∇̄ is flat, we can choose α̂ = 0. The form
c1(∇) represents the cohomology class c1(λ) = ρ∗d. Thus

η(Dc
g,∇̄) = 2

〈
j−1

[
eρ
∗d/2

]
∪ j−1

[
Â(TW )

]
, [W,∂W ]

〉
The following cup product diagram commutes:

Hs(W,∂W )⊕Ht(W,∂W ) Hs+t(W,∂W )

Hs(W,∂W )⊕Ht(W ) Hs+t(W,∂W )

∪

(Id,j)

∪

.

Thus

(3.9) η(Dc
g,∇̄) = 2

〈
j−1

[
eρ
∗d/2

]
∪
[
Â(TW )

]
, [W,∂W ]

〉
.

Since the terms of Â(TW ) have degree 4k, k ∈ Z, and the dimension of W is 4n + 2, only

terms of degree 4k + 2 in eρ
∗d/2 will contribute. In those degrees, eρ

∗d/2 = sinh(ρ∗d/2) as power
series.

Since TW = ρ∗(TB ⊕ µ), Â(TW ) = ρ∗(Â(TB)Â(µ)). For the complex line bundle µ, we have

Â(µ) =
c1(µ)/2

sinh(c1(µ)/2)
=

`d

2 sinh(`d/2)

as a formal power series. The series sinh(d/2) is divisible by d, so

ρ∗
(

sinh(d/2)

`d

)
∈ H∗(W,Q).
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Let Φ ∈ H2(W,∂W,Z) be the Thom class of ρ : W → B. Then j(Φ) = ρ∗c1(µ) = ρ∗(`d). By
means of another commutative diagram

H∗(W,∂W )⊕H∗(W ) H∗(W,∂W )

H∗(W )⊕H∗(W ) H∗(W )

∪

(j,Id) j

∪

we see

j

(
Φ ∪ ρ∗

(
sinh(d/2)

`d

))
= ρ∗

(
`d ∪ sinh(d/2)

`d

)
= ρ∗ sinh(d/2).

Substituting into (3.9)

η(Dc
g,∇̄) = 2

〈
Φ ∪ ρ∗

(
sinh(d/2)

`d

)
∪ ρ∗

(
Â(TB) · `d
2 sinh(`d/2)

)
, [W,∂W ]

〉
.

=

〈
Φ ∪ ρ∗

(
sinh(d/2)Â(TB)

sinh(`d/2)

)
, [W,∂W ]

〉
.

The Thom isomorphism yields

η(Dc
g,∇̄) =

〈
sinh(d/2)Â(TB)

sinh(ld/2)
, [B]

〉
.

When n = 1 the dimension of B is four and we have, as series in H∗(B,Z)

Â(TB) = 1− p1(TB)

24

sinh(d/2)

sinh(ld/2)
=

1

`

(
1− (`2 − 1)d2

24

)
.

Multiplying and isolating terms of degree four yields (3.6). �

We are now ready to prove Theorem A. We first construct metrics of Ric> 0 on #aCP 2#bCP 2.
Perelman [P] constructed a metric with Ric> 0 on arbitrary connected sums of CP 2 with its
standard orientation. More details on Perelman’s proof can be found in [Bu] and [BWW]. With
a slight adjustment to the construction one can reverse the orientation on some of the copies of
CP 2, proving the following:

Lemma 3.10. #aCP 2#bCP 2 admits a metric with positive Ricci curvature for all a, b.

Proof. In [P], Perelman puts a metric on #cCP 2 for all values of c. The construction involves c
copies of CP 2 attached to a central S4 by “necks” S3× I. The metric on the necks is of the form

ds2 = dt2 +A2(t, x)dx2 +B2(t, x)dσ2

where t is the coordinate on the interval I (see [P, page 159]). Furthermore, S3 is represented as
the product of S2 and an interval with the top and bottom each identified to a point, and x is
the coordinate on that interval, while dσ2 is the standard metric on S2.

An orientation reversing isometry of dσ2, such as the antipodal map, extends naturally to
a diffeomorphism of φ : S3 → S3 which induces an isometry of ds2. Let c = a + b, and take
Perelman’s metric on #cCP 2. For b of the necks, we cut along a copy of S3 and re-glue with φ
rather than the identity. Because φ reverses orientation, the resulting manifold is #aCP 2#bCP 2.
Because φ induces an isometry on S3 × I, the same metrics on the pieces extend smoothly over
the gluing, completing the proof of the lemma. �
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Let M5 satisfy the hypotheses of Theorem A. By Lemma 1.3, M is Type III and by Theo-
rem 1.11 M is the total space of infinitely many non-isomorphic principal S1 bundles πk : M5 →
B4 = #aCP 2#bCP 2. From the proof of Theorem 1.11 we see that the first Chern class of πk is
2dk, where

dk = (1 + 2k, 1, ..., 1) ∈ H2(#aCP 2#bCP 2,Z) ∼= Za+b

for a certain infinite set of integers k.
Using the result of [GPT] (see Lemma 1.15) we see that since B admits a metric of positive

Ricci curvature by Lemma 3.10, πk : M → B is a principal S1 bundle, and π1(M) is finite, then
for each k M admits a metric gk with Ric(gk) > 0 such that the S1 action corresponding to the
principal bundle πk : M → B acts by isometries of gk.

Using the Gysin sequence it follows that H4(M,R) = 0 and M, gk, and B satisfy the hypotheses
of Theorem 3.5 with gM = gk, d = dk, ` = 2 and ∇̄ any flat connection on the canonical bundle
of the spinc structure. By (3.6) we have

η(Dc
gk,∇̄) = − 1

16

(〈
c2
k, [B]

〉
+ sign(B)

)
= − 1

16

(
±4k2 ± 4k + 2sign(B)

)
using the fact that 〈p1(TB)/3, [B]〉 = 〈L(TB), [B]〉 is equal to the signature of B.

Thus η(Dc
gk,∇̄

) is a nontrivial polynomial in k and takes on infinitely many values for the

infinite set of integers k. Theorem 2.6 implies that MRic>0(M) has infinitely many components,
completing the proof of Theorem A. �

Note that Theorem 2.6 also implies that Mscal>0(M) has infinitely many components.

4. metric and connection

In this section we prove Theorem 3.1. We first set up notation for the tangent space to W .
We consider D2 to be the unit disc in C. Let σ : M × D2 → W be the quotient map so
σ(p, x) = [p, x]. Then ρ([p, x]) = π(p). The metric gM and the S1 action induce an orthogonal
splitting TpM = H̄p ⊕ V̄p into horizontal space H̄p and vertical space V̄p of π. Define horizontal
and vertical spaces of ρ to be

H[p,x] = σ∗(H̄p ⊕ {0})
and

V[p,x] = σ∗({0} ⊕ TxD2)

for p ∈M and x ∈ D2.

These is well defined since for z ∈ S1, H̄zp = z∗H̄p and TzxD
2 = z∗TxD

2. One can use a local
section of σ to see that H[p,x] and V[p,x] are smooth distributions on W . Note that V[p,x] is the

tangent space to the fiber ρ−1(π(p)) = σ({p} ×D2) and T[p,x]W = H[p,x] ⊕ V[p,x]. Away from the
zero section of ρ, V[p,x] is spanned by

Wr = σ∗(0, ∂r) and Wθ = σ∗(0, ∂θ).

These are well defined smooth vector fields since ∂θ, ∂r are S1 invariant vector fields on D2.
Fix 0 < L < 1 and define a diffeomorphism

τ : M × [L, 1] ↪→M ×D2 σ−→W

of M × [L, 1] to a collar neighborhood U of ∂W . Let t be the coordinate on [L, 1] and, in a slight
abuse of notation, let projU,M : M × [L, 1]→M be the projection. Thus
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ρ ◦ τ = π ◦ projU,M

τ∗(H̄p ⊕ {0}) = H[p,x]

τ∗(0, ∂t) = Wr

Let X∗(p) = d
dt

∣∣
t=0

eit · p be the action field of the S1 action on M , which spams V̄p. Then,
since σ∗(X

∗, ∂θ) = 0,

τ∗(X
∗, 0) = −Wθ.

Furthermore τ |M×{1} identifies M and ∂W , sending H̄p to H[p,1] and X∗ to −Wθ.
We keep track of the maps in the following diagram.

M ×D2

M × I W

M B

σ

τ

projU,M ρ

π

To construct gW and ∇ we will use two smooth functions on the interval [0, 1]. Let f1 : [0, 1]→
[0, 1] be a smooth monotone function which is 0 in a neighborhood of 0 and 1 in a neighborhood
of [L, 1].

For a constant ε > 0, let

f2(r) = −1

2

∫ r

0
f1(t)dt− εr3 + r.

One easily sees that f2 > 0 on (0, 1] for small ε.

4.1. Metric. We define a Riemannian metric at a point (p, (r, θ)) ∈M×D2, where r, θ are polar
coordinates on D2, by

gM×D2(p, (r, θ)) = gM (p) + ε2|X∗(p)|2gM

(
dr2 +

f2(r)2

1− ε2f2(r)2
dθ2

)
.

By converting to Cartesian coordinates on D2 , one sees that gM×D2 is smooth as long as

1

r4

(
f2

2

1− ε2f2
2

− r2

)
is a smooth function of r ∈ [0, 1]. This is easily seen to hold since for r near 0, f2(r) = r − εr3.
Since gM×D2 is invariant under the diagonal action of S1 on M × D2, it induces a metric gW
on W such that gM×D2 and gW make σ into a Riemannian submersion. Similarly, let gB be the
metric on B such that gM and gB make π into a Riemannian submersion.

Lemma 4.1. gW and gB make ρ into a Riemannian submersion.

Proof. With respect to gM×D2 , H̄p⊕{0} is orthogonal to X∗ and TD2. Thus H̄p⊕{0} is orthogonal
to the vertical space of σ, which is spanned by (X∗, ∂θ), and to the horizontal projection of TD2

as well. It follows that with respect to gW , H[p,x] is orthogonal to V[p,x] and is the horizontal
space of ρ. Finally, we have

gW |H[p,x]
∼= gM×D2 |H̄p⊕{0} ∼= gM |H̄p ∼= gB|Tπ(p)B.

�

We first describe the induced metric on the D2 fibers of ρ.
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Lemma 4.2.
gW |ρ−1(π(p))

∼= ε2|X∗(p)|gM
(
dr2 + f2(r)2dθ2

)
Proof. σ|{p}×D2 : D2 → ρ−1(π(p)) is a diffeomorphism such that ∂r, ∂θ are mapped to Wr,Wθ.
Since σ is a Riemannian submersion with vertical space generated by (X∗, ∂θ), we calculate

|Wr|2gW = |(0, ∂r)|2gM×D2
= ε2|X∗|2gM

|Wθ|2gW = |(0, ∂θ)|2gM×D2
−
〈(0, ∂θ), (X∗, ∂θ)〉2gM×D2

〈(X∗, ∂θ), (X∗, ∂θ)〉gM×D2

= ε2|X∗|2gM

(
f2(r)2

1− ε2f2(r)2

)
− ε4|X∗|4gM

(
f2(r)2

1− ε2f2(r)2

)2
 1

|X∗|2gM + ε2|X∗|2gM
(

f2(r)2

1−ε2f2(r)2

)


= ε2|X∗|2gM f2(r)2

〈Wr,Wθ〉gW = 〈(0, ∂r), (0, ∂θ)〉gM×D2
= 0.

�

We next modify gW to have the desired product structure near ∂W. We use a technique of
Wraith, which allows deformations of metrics with positive mean curvature at the boundary.

Lemma 4.3. ∂W has positive mean curvature with respect to an inward normal vector.

Proof. Let X̄i be local S1-invariant vector fields extending an orthonormal frame of H̄p and
define Xi = σ∗(X̄i, 0). At a point [p, 1], {Xi,

1
ε|X∗|gM f2

Wθ} is an orthonormal basis of T∂W and

− 1
ε|X∗|gM

Wr is an inward pointing unit normal vector. Since

[Xi,Wr] = [σ∗(X̄i, 0), σ∗(0, ∂r)] = σ∗[(X̄i, 0), (0, ∂r)] = 0

and |Xi| = 1,

1

ε|X∗|gM
〈∇XiXi,−Wr〉 =

1

ε|X∗|gM
〈Xi,∇XiWr〉 =

1

ε|X∗|gM
〈Xi,∇WrXi〉 = 0.

Thus

1

ε3|X∗|3gM f2(1)2
〈∇Wθ

Wθ,−Wr〉 =
1

2ε3|X∗|3gM f2(1)2
Wr(|Wθ|2) =

f ′2(1)

ε|X∗|gM f2(1)
.

Evaluating that quantity at r = 1 we see the the mean curvature is

1/2− 3ε

ε|X∗|gM f2(1)
> 0

for sufficiently small ε. �

We see that gW |∂W is obtained from gM by shrinking the S1 fibers of π, a process which
preserves positive scalar curvature.

Lemma 4.4. There exists a smooth path of metrics gM (s) on M , s ∈ [ε2f2(1)2, 1], such that
gM (ε2f2(1)2) = gW |∂W , gM (1) = gM , and scal(gM (s)) > 0 for all s.

Proof. We recall that τ |M×{1} : M → ∂W is a diffeomorphism. We see that

(
(
τ |M×{1}

)∗
gW )|H̄p = gW |H[p,1]

= gM |H̄p
and

|X∗(p)|2
(τ |M×{1})

∗
gW

= |Wθ([p, 1])|2gW = ε2f2(1)2|X∗(p)|2gM .
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Thus defining

gM (s) = gM |H̄p + sgM |V̄p
we have, for ε small enough, that ε2f2(1)2 < 1, gM (ε2f2(1)2) =

(
τ |M×{1}

)∗
gW , and gM (1) =

gM . Since the metric is not changing on the horizontal space of π, each gM (s) makes π into a
Riemannian submersion with gB. The O’Neil formula [Bes] then implies

scal(gM (s)) = scal(gB)− s|Aπ|2 − |Tπ|2 − |Nπ|2 − 2δNπ ≥ scal(gM ) > 0

where Aπ, Tπ, Nπ are the tensors defined for the Riemannian submersion π with respect to gM . �

Use the normal exponential map from ∂W to define a collar neighborhood V ∼= M × [0, N ],
where t ∈ [0, N ] is the distance to ∂W . We choose N small such that V ⊂ U . Using this
identification, gW has the form

gW = g(t) + dt2

where g(t) = gW |M×t is a smooth path of metrics on M . Since g(0) = gW |∂W has positive scalar
curvature, we can choose N small such that scal(g(t)) > 0 for all t ∈ [0, N ].

Lemma 4.5. We can alter gW inside of V such that it is product like near ∂W with gW |∂W =
gM and scal(gW |V ) > 0

Proof. We use the paths gM (s) and g(s) and the following lemma from [Wr3] to replace gW near
the boundary with a product metric restricting to gM at the boundary.

Lemma 4.6. [Wr3] Let g(t) + dt2 be a metric of positive scalar curvature on M × [0, N ] such
that scal(g(t)) > 0 and M × {0} has positive mean curvature with respect to the inward normal
vector ∂t. Let ḡ(t) be a smooth path of metrics on M such that scal(ḡ(t)) > 0 for t ∈ [0, N ] and
ḡ(t) = g(t) for t in a neighborhood of N . Then there exists a function β : [0, N ] → R+ such
that β = 1 for t in a neighborhood of N, β = β(0) is constant for t in a neighborhood of 0, and
ḡ(t) + β(t)dt2 has positive scalar curvature.

To define our replacement path ḡ, we define two smooth functions.

χ1 : [0, N/2]→ [ε2f2(1)2, 1] such that χ1(t) = 1 for t near 0 and χ1(t) = ε2f2(1)2 for t near N/2

χ2 : [N/2, N ]→ [0, 1] such that χ2(t) = 0 for t near N/2 and χ2(t) = t for t near N.

We then define a smooth path of metrics

ḡ(t) =

{
gM ◦ χ1(t) t ∈ [0, N/2]
g ◦ χ2(t) t ∈ [N/2, N ]

.

By Lemma 4.4 and the definition of g, scal(ḡ(t)) > 0 for all t. Then Lemma 4.3 and Lemma 4.6
imply that ḡ(t) + β(t)dt2 has positive scalar curvature for the function β(t) given by Lemma 4.6.
For t near N , ḡ(t) = g(t) and β(t) = 1 , so ḡ(t) + β(t)dt2 = gW . Thus replacing gW |V with this
metric results in a new smooth metric, for which we reuse the notation gW . Since ḡ(t) = g and
β(t) is constant for t near 0, ḡ(t) + β(t)dt2 has the desired product structure (3.3). This proves
Lemma 4.5.

�

4.2. Connection. Let β ∈ Ω2(B) represent the image of `d in H2(B,R). The Gysin sequence
for an S1 bundle shows that π∗ld = 0, so we can choose α ∈ Ω1(M) such that π∗β = dα. Since
π∗β is S1 invariant, we can choose α to be S1 invariant by averaging.

Lemma 4.7. α(X∗) = − 1
2π
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Proof. Let Φ ∈ Ω2(W ) be a Thom form of the disc bundle ρ : W → B. Since

[Φ] 7→ ρ∗ld

under the long exact sequence map H2(W,∂W )→ H2(W ), We have

ρ∗β − Φ = dᾱ

for some ᾱ ∈ Ω1(W ). Since Φ vanishes near ∂W,

dᾱ|M = ρ∗β|M = π∗β = dα.

Since π1(M) is finite, ᾱ|M − α is exact. By the defining property of the Thom form, for any
point q ∈ B,

∫
ρ−1(q) Φ = 1. We use Stokes’ theorem to compute

−1 =

∫
ρ−1(q)

ρ∗β − Φ =

∫
ρ−1(q)

dᾱ =

∫
π−1(q)

ᾱ =

∫
π−1(q)

α = 2πα(X∗).

�

We next construct a form γ ∈ Ω1(W ) extending 2πα/`. We first define a form γ̄ ∈ Ω(M ×D2).
At (p, x) ∈M ×D2, x 6= 0, set

γ̄|H̄p×{0} =
2π

`
αH̄p γ̄(X∗, 0) = −f1(r)

`

γ̄(0, ∂r) = 0 γ̄(0, ∂θ) =
f1(r)

`
.

where r is the radial coordinate on D2. This form extends smoothly to the origin of D2 since f1

is zero in a neighborhood of r = 0. Since r, H̄p ⊕ {0}, α, ∂r, ∂θ, X
∗ are all preserved by the S1

action, γ̄ is S1 invariant. The vertical space of σ is generated by (X∗, ∂θ), and so γ̄ vanishes on
the vertical space. It follows that there is a unique form γ ∈ Ω(W ) such that σ∗γ = γ̄.

Lemma 4.8. τ∗γ = 2π
` proj∗U,Mα

Proof. Recall that f1(r) = 1 for r in the image of τ and note that τ∗γ = (σ∗γ)|M×[L,1] = γ̄|M×[L,1].
Thus:

τ∗γ|H̄p⊕{0} = γ̄|H̄p⊕{0} =
2π

`
αH̄p , τ∗γ(X∗, 0) = γ̄(X∗, 0) = −f1(r)

`
=

2π

`
α(X∗)

and τ∗γ(0, ∂t) = γ̄(0, ∂r) = 0 =
2π

`
α(projM∗(0, ∂t)).

�

Let λB be the complex line bundle with c1(λB) = d. Given a differential form in the de Rahm
cohomology class of 2πi times the first Chern class of a complex line bundle, there is a unitary
connection on the line bundle whose curvature is that differential form. Thus, since β represents
`d, let ∇B be a unitary connection on λB with curvature

F∇B =
2πi

`
β.

We now define a connection on λ

∇ = ρ∗∇B − iγ.

Lemma 4.9. ∇ is flat on U.
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Proof. We need to show that F τ
∗∇ = 0. Using Lemma 4.8 it follows that

τ∗∇ = τ∗ρ∗∇B − iτ∗γ

= proj∗U,M

(
π∗∇B −

2πi

`
α

)
and hence the curvature of the term in the parentheses is

2πi

`
π∗β − 2πi

`
dα = 0.

�

We finish the construction of ∇ by modifying it so that it is product like near ∂W and restricts
to ∇̄ at ∂W . Let proj∗V,M : V →M be the projection defined by the identification V ∼= M× [0, N ]

from Section 4.1. Note that while V ⊂ U, projV,M and projU,M will not in general agree (the
later was defined independently of h and the former using h.) Since V ⊂ U, ∇ is flat on V. Since
projV,M and the inclusion of ∂W ∼= M × {0} are homotopy inverses, proj∗M,V (λ|M ) = λ|V . Thus

∇|V and proj∗V,M∇̄ are both flat unitary connections on λ|V and

proj∗V,M (∇̄)−∇|V = iδ

for some closed form δ ∈ Ω1(V ). Since π1(V ) = π1(M) is finite, δ = df for a smooth function f
on V . We modify f to a function f̄ which is equal to f near ∂W ∼= M ×{0} and equal to 0 near
M × {N}. We then replace ∇ with ∇+ idf̄ on V. We see that ∇ is still smooth, flat on V , and
near ∂W , ∇ = proj∗V,M∇̄, satisfying (3.4)

4.3. Curvature. We complete the proof of Theorem 3.1 by showing that (3.2) holds. On V, ∇
is flat and by Lemma 4.5 scal(gW ) > 0, so the inequality is satisfied. For the remainder of the
proof we consider W\V . Then scal(gW ) is given by Lemma 4.1 and the O’Neil formula for the
scalar curvature of Riemannian submersion

scal(gW ) = scal
(
gW |ρ−1(π(p))

)
+ scal(gB)− |Aρ|2 − |Tρ|2 − |Nρ|2 − 2δNρ.

As ε→ 0, |Aρ| → 0, while the final three terms remain constant. By Lemma 4.2,

scal
(
gW |ρ−1(π(p))

)
= − 2

ε2|X∗|2gM

(
f ′′2
f2

)
.

Therefore, as ε→ 0,

scal(gW ) = − 2

ε2|X∗|2gM

(
f ′′2
f2

)
+O(1).

Let X̄i be an orthonormal basis of H̄p with respect to gM . Let Xi = σ∗(X̄i, 0). Then {Xi}
is an orthonormal basis of H[p,x] with respect to gW outside of V . Away from the zero section

{ 1
ε|X∗|gM

Wr,
1

ε|X∗|gM f2
Wθ} is an orthonormal basis of V[p,x]. Neither the X̄i nor ∇ depend on ε.

Then as ε→ 0, using (2.3)∣∣F∇∣∣
gM
≤ 1

ε2|X∗|2gM f2
|F∇(Wr,Wθ)|+

∑
i

1

ε|X∗|gM
|F∇(Wr, Xi)|+

1

ε|X∗|gM f2
|F∇(Wθ, Xi)|+O(1).

Lemma 4.10. F∇(Wr,Wθ) = −if ′1(r)/` , F∇(Wr, Xi) = F∇(Wθ, Xi) = 0.

Proof. Since ρ∗Wr = ρ∗Wθ = 0,

F∇(Wr,Wθ) = −idγ(Wr,Wθ) = −idγ(σ∗(0, ∂r), σ∗(0, ∂θ))

= −iσ∗dγ((0, ∂r), (0, ∂θ)) = −idγ̄((0, ∂r), (0, ∂θ)) = −i∂rγ̄(0, ∂θ) = −if
′
1(r)

`
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similarly

F∇(Wr, Xi) = −idγ̄((0, ∂r), (X̄i, 0)) = −i
(
∂r

(
2π

`
α(X̄i)

)
− X̄i

(
f1(r)

`

))
= 0

and

F∇(Wθ, Xi) = −idγ̄((0, ∂θ), (X̄i, 0)) = −i
(
∂θ

(
2π

`
α(X̄i)

))
= 0.

�

Lemma 4.10 implies that as ε→ 0,

scal(gW )− `|F∇|gM =
1

ε2|X∗|2gM

(
−2f ′′2 − f ′1

f2

)
+O(1)

=
12

ε|X∗|2gM

(
r

f2

)
+O(1)

From the definition of f2 one sees that r/f2 → 1 as r → 0. It follows that we can choose ε
small enough that (3.2) holds, completing the proof of Theorem 3.1. �

In [KS3, Lemma 4.2] , Kreck and Stolz constructed positive scalar curvature metrics on associ-
ated disc bundles in order to calculate their invariant for spin manifolds with free S1 actions. In
their proof, they needed to assume that the S1 orbits were geodesics. The metric gW constructed
in Theorem 3.1 generalizes their method to a free isometric S1 action without the geodesic con-
dition.
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