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ABSTRACT. We use the 7 invariants of spin® Dirac operators to distinguish connected com-
ponents of moduli spaces of Riemannian metrics with positive Ricci curvature. We then find
infinitely many non-diffeomorphic five dimensional manifolds for which these moduli spaces each
have infinitely many components. The manifolds are total spaces of principal S* bundles over
#2CP?#PCP? and the metrics are lifted from Ricci positive metrics on the bases. Along the
way we classify 5-manifolds with fundamental group Zs admitting free S' actions with simply
connected quotients.

Many closed manifolds are known to admit Riemannian metrics of positive Ricci curvature, for
example, all compact, simply connected homogeneous spaces, biquotients, and cohomogeneity one
manifolds, see [Ber|, [GZ2], [ST]. Systematic methods for constructing such metrics on certain
connected sums and bundles have been explored in [CG], [GPT], [N], [SW], [SY1], [Wr2].

Once we know that a manifold admits positive Ricci curvature we ask how many such metrics
it admits. The space of geometrically distinct metrics of positive Ricci curvature on a manifold M
is the moduli space Mpic>0(M) = Rric>o(M)/Diff(M), where Rpicso(M) is the set of positive
Ricci curvature metrics on M and Diff(M) is the diffomorphism group, acting by pullbacks.
The number of path components of Mp;c~ serves as a coarse measure of distinct positive Ricci
curvature metrics on M.

We identify an infinite family of 5-manifolds M with m (M) = Zg such that MRgic>o(M) has
infinitely many path components.

THEOREM A. Let B* = #°CP2*#°CP2?, a +b > 2, and let S' — M® — B* be a principal
bundle with first Chern class 2d, where d € H*(B*,Z) is primitive and wy(TB*) = d mod 2.
Then Mpieso(M?) has infinitely many path components.

Here wo is the second Stiefel-Whitney class and a primitive class is one that is not a positive integer
multiple of any other. We will see that for each 4-manifold B there are 2, 3 or 4 diffeomorphism
types of such total spaces M, depending on the value of |a — b| mod 4, each of which admits
infinitely many inequivalent free S' actions with quotient B. The only other five dimensional
manifolds for which 9MR;c~¢ is known to have infinitely many components are the four homotopy
real projective spaces recently described by Dessai and Gonzélez-Alvaro [DG] and five quotients
of 5% x S3 recently described by Wermelinger [We].

The conditions on the first Chern class in Theorem A are equivalent to the statement that
71 (M®) = Zy, M? is non-spin, and the universal cover of M? is spin. M® can be constructed by
taking five dimensional homotopy real projective spaces, removing tubular neighborhoods of gen-
erators of the fundamental group, and gluing along the boundaries of the tubular neighborhoods.
By the classification of Smale [Sm] and Barden [Ba], the universal cover M? is diffeomorphic to
#N‘”b_lb“g x S2. But we do not know an explicit description of the deck group action by Zs on
M5,

Our second theorem identifies conditions under which M® admits one, and infinitely many, free
S1 actions. As an application, we will show that the manifolds in Theorem A admit infinitely
many free S actions. We construct the metrics used in Theorem A by lifting metrics from the
quotients of M? by those actions. Here by(M) is the second Betti number of M.
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THEOREM B. Let M® be a 5-manifold with w1 = Zo. Then M admits a free S action with a
simply connected quotient if and only if M is orientable, Ho(M,Z) is torsion free and w1 (M) acts
trivially on mo(M). Furthermore if bo(M) = 0 then M is diffeomorphic to RP°. If by(M) > 0
and M admits a free ST action with simply connected quotient B* then M admits infinitely many
inequivalent free S1 actions with quotients diffeomorphic to B*.

Note that here B? can be any simply connected 4-manifold, and need not be one of the
manifolds of Theorem A. Theorem 1.11 provides greater detail about the correspondence between
a 5 manifold M and the set Q(M) of possible quotients B* = M?>/S'. Given M? satisfying the
hypotheses of Theorem B, we give conditions on the cohomology ring of a 4-manifold B* which are
necessary and sufficient for B to be in Q(M). In particular, any smooth manifold homeomorphic
to a manifold in Q(M) is in Q(M). In Corollary 1.12 we see that for any such M, Q(M) contains
either #¢52 x S% or #*CP2#°CP? for some a,b,c¢ € Z. Those manifolds admit metrics with
positive Ricci curvature, which can be lifted to M. Thus we have:

COROLLARY. Let M be a 5 manifold with m (M) = Zs admitting a free S* action with a
simply connected quotient. Then M admits a metric with positive Ricci curvature.

Furthermore, it follows from Theorem 1.11 that given a simply connected 4-manifold B*, the set
of diffeomorphism types of total spaces M® with 71(M?®) = Zy of S! bundles over B* depends
only on the cohomology ring of B*. In particular Theorem A would describe the same set of
5-manifolds if we replaced #*CP2#*CP? with one of the manifolds homeomorphic to it.

We first review previous work with methods and results relevant to Theorem A. In [KS3]
Kreck and Stolz invented a moduli space invariant s(M,g) € Q for a metric g of positive scalar
curvature on a closed spin manifold M. The metric is based on the n spectral invariant of the
Dirac operator defined in [APS1]. If s(M,g1) # s(M,g2) then g1 and g2 represent elements in
different path components of Mcai>0. The authors use the invariant to prove that for M#+3 with
a unique spin structure and vanishing rational Pontryagin classes 9Mgca>0(M) is either empty or
has infinitely many components.

Since a path of Riemannian metrics which maintains positive Ricci curvature maintains positive
scalar curvature as well, the s invariant can detect connected components of Mr;c~o. Kreck and
Stolz calculated s for the Einstein metrics on S* bundles N, ,ZJ over CP! x CP? described by Wang
and Ziller [WZ]. Using the diffeomorphism classification in [KS1], they showed that when k& is
even and ged(k,l) = 1, Ny is diffeomorphic to infinitely many manifolds in the same family.
As the s invariant takes infinitely many values on those metrics, the authors concluded that
MRic>0(Ng,) has infinitely many components. Similar results have since been proved for St
bundles over CP! x CP?" n > 1, see [DKT].

Wraith showed that for a homotopy sphere o**~1 bounding a parallelisable manifold, Mgicso (0)
has infinitely many components. The procedure known as plumbing with disc bundles over
spheres produces infinitely many parallelisable manifolds with boundaries diffeomorphic to o.
Wraith constructed metrics of positive Ricci curvature on each boundary in [Wrl] and calculated
the s invariant of each metric in in [Wr3].

Dessai [D] and the author [G] used the s invariant to find several infinite families of 7-
dimensional sphere bundles M7 such that Mgjc=o(M) and Mee>0(M) have infinitely many path
components. Grove and Ziller [GZ1, GZ3] constructed metrics of nonnegative sectional curvature
on the manifolds in those families, and the diffeomorphism classifications in [CE] and [EZ] show
that each manifold is diffeomorphic to infinitely many other members of the family.

More recently, Dessai and Gonzalez-Alvaro [DG] showed that if M? is one of the four closed
manifolds homotopy equivalent to RP® then Mgec>0(M) and MRgie~o(M) have infinitely many
path components. Lépez de Medrano [L] showed that each such M?° admits infinitely many
descriptions as a quotient of a Brieskorn variety, and Grove and Ziller showed the each quotient



MODULI SPACES OF RICCI POSITIVE METRICS IN DIMENSION FIVE 3

admits a metric of nonnegative sectional curvature [GZ2]. Dessai and Gonzélez- Alvaro calculated
the relative n invariant for those metrics to distinguish the path components. Wermelinger
extended their method to prove the same conclusion for five Zy quotients of S? x S% in [We].

We now outline the proof of Theorem A. We use Theorem B to show that each manifold
M?3 in Theorem A admits infinitely many inequivalent free S' actions with quotient B* =
#2CP?#°CP2. We modify a result of Perelman [P] to show that B admits a metric of posi-
tive Ricci curvature. That metric can be lifted to a metric of positive Ricci curvature on M by
[GPT]. The lifted metrics depend on the S* action, and we get infinitely many distinct metrics
on M.

We show that in dimensions 4k+1, the 5 invariant of a certain spin® Dirac operator constructed
for a positive Ricci curvature metric ¢ depends only on the connected component of the class of g
in MRgic>o. To complete the proof we calculate 7 for each metric on M and show that it obtains
infinitely many values. This is the most intricate part of our proof.

The standard method for calculating the 7 invariant of a spin Dirac operator on a manifold M
with positive scalar curvature is to extend the metric over a manifold W with 9W = M such that
the extension has positive scalar curvature as well. When M is not spin but spin®, both the metric
and a unitary connection on the complex line bundle associated to the spin¢ structure must be
extended. The desired condition then involves the curvatures of both metric and connection. In
their work, Dessai and Gonzélez-Alvaro passed to the universal cover to find a suitable W over
which the connection could be extended to a flat connection. They use equivariant n invariants
on the cover to compute the n invariant on the quotient.

In this paper we work directly on M and use a manifold with boundary W over which the
connection cannot be extended to a flat connection, but the curvature of the extension can be
explicitly controlled. To be specific, we extend the metric and connection on M to a metric h
and connection V on the disc bundle W = M x g1 D? associated to the S! bundle. We then use
the Atiyah-Patodi-Singer index theorem [APSI1] to obtain a formula for 7 in terms of the index
of the spin® Dirac operator on W and topological data on W. The index will vanish as long as

scal(h) > 2|FV |,

where FV is the curvature form of the connection V. We accomplish the extension for a general
class of S! invariant metrics of positive scalar curvature. This is more general than we need but
may be of independent interest. In fact we construct A and V such that

scal(h) > £|FV |,

where ¢ is a positive integer such that the first Chern class of the S' bundle is ¢ times the
canonical class of a spin® structure on the quotient.

Sha and Yang constructed metrics of positive Ricci curvature on the 4-manifolds #* °CP2#25% x
S%2 a > b, in [SY2]. Those manifolds are diffeomorphic to #*CP?*#°CP?2, and so a man-
ifold M satisfying the hypotheses of Theorem A also admits a free S' action with quotient
#3=0CP24b 82 % §2. One can lift the Sha-Yang metric to M, and there is no reason to expect
that the resulting metric lies in the same component as the metric lifted from #*CP?#*CP? in
the proof of Theorem A. We will see, however, that the computation of the n invariant involves
only the cohomology ring of the quotient, and we cannot distinguish any new components in this
way.

In [SY1] Sha and Yang also found metrics of positive Ricci curvature on #°52 x S2. One might
expect our methods to yield a similar result in this case. The 5-manifolds, however, would be
spin, and the eta invariant of the spin Dirac operator in dimension 4k+1 vanishes, even when
twisted with certain complex line bundles, see [BoG1].

We now discuss Theorem B. In [HS|, Hambleton and Su find a complete diffeomorphism
classification of 5-manifolds M with 71 (M) = Zs when M is orientable, Hy(M,7Z) is torsion free,
and 71 (M) acts trivially on mo(M ). They apply the classification to investigate the diffeomorphism
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type of the total space of an S' bundle over a simply connected 4-manifold. When the total space
is non-spin but has a spin universal cover, as is the case in Theorem A, they can only restrict
the diffeomorphism type to two possibilities. Furthermore, an error is present in that calculation,
which we correct in Lemma 1.7.

To prove Theorem B, we use the data of a principal S' bundle, namely the base and the first
Chern class, to compute the diffeomorphism invariants used by Hambleton and Su for the total
space. One, the second Betti number, is calculated easily. When the total space is non-spin
but has a spin universal cover, we show how the other invariant can be computed by applying
a map from Qipmc — Q}firﬁ to the base. While a two-fold ambiguity remains in determining
which diffeomorphism type corresponds to a specific first Chern class, we are nonetheless able to
determine which pairs of invariants are achieved, and achieved infinitely many times, by bundles
over a given 4-manifold.

The paper is organized as follows. In Section 1 we examine S! actions on 5-manifolds with
m = Zs and prove Theorem B. In Section 2 we discuss the 7 invariant of a spin® Dirac operator
and show that it can be used to detect connected components of the moduli space in the context
of Theorem A. In Section 3 we compute n in the case of certain 4n + 1—manifolds admitting free
S1 actions and prove Theorem A. In Section 4 we construct the metrics and connections used in
the computations of Section 3.

Acknowledgments. 1 would like to acknowledge my PhD advisor Wolfgang Ziller for all his
help, as well as Anand Dessai, David Gonzélez—Alvaro, Fernando Galaz-Garcia, and Diego Corro
for helpful discussions. I am further grateful to Yang Su for pointing out how to work around
an error in [HS] and for other useful insights. This research was partially supported by National
Science Foundation grant DMS-2001985.

1. S' ACTIONS ON 5 MANIFOLDS WITH 7] = Zo

Our methods for constructing metrics with positive Ricci curvature and for calculating 7 use
the structure of a principal S' bundle. In this section we prove Theorem 1.11, which classifies 5-
manifolds with 7y = Zy admitting one, or infinitely many, free S! actions with simply connected
quotients. Theorem 1.11 also identifies those quotients. In particular, we prove Theorem B
and show that a manifold M? satisfying the hypotheses of Theorem A admits infinitely many
inequivalent S' actions with the same quotient. Our proof relies on a diffeomorphism classification
of 5-manifolds with fundamental group Zsy carried out by Hambleton and Su [HS].

Given a manifold M with m (M) = Zs, a characteristic submanifold P C M is defined as
follows. For N sufficiently large let f : M — RPY be a classifying map of the universal covering
M — M. We can choose f to be transverse to RPY =1 and hence P = f~1(RPN~1) is a smooth
manifold. One checks that any two manifolds defined in this way are cobordant.

Alternatively, assume that P C M is a submanifold such that the inverse image P C M under
the universal covering splits M into two components Ml and Mz. Furthermore 8M1 = 8M2 =P
and the covering transformation acting on M switches M; and Ms. One can then construct a
map f: M — RPY such that P = f~1(RPV~1). For details see [GT] and [L].

The key invariant of the classification in [HS] is the class of P in an appropriate cobordism
group. The appropriate structure on P depends on the second Stiefel-Whitney classes wo of M
and M. Hambleton and Su use the following labels for a manifold M with 71(M) = Zo and
universal cover M:

Type I wy(TM) # 0
Type 11 wy(TM) =0
Type III  wo(T'M) # 0 and wa(TM) = 0.
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A characteristic submanifold P of a Type III manifold admits a pin™* structure, and all such P
are pinT cobordant. Here Pin™(n) is the extension of O(n) by Zy such that a preimage of a
reflection squares to +1 and ngi is the cobordism group of n—manifolds with pin* structures.
For details, see [HS], [GT].

We review the construction of a pin™ structure on P as we will use it later. Let u = M xz, R
be the unique nontrivial real line bundle over M. Recall that M = M; U p M> and the covering
transformation exchanges the components. Thus the normal bundle NP of P is trivial and the
covering transformation reverses the orientation of the fibers. The normal bundle NP of P
satisfies

NP =NP/Zy = P xz, R = ylp.
Since M is orientable,
w1 (NP) = wi(TP) = wi(det(T'P))
so NP = det(TP). Thus
(1.1) (TM @2u)|lp=TP®3NP =TP @ 3det(TP).

Using [GT, Lemma 9] and [HS, Lemma 2.3| , one checks that wy(TM & 2u) = 0. We can apply
[KT, Lemma 1.7] to see that a spin structure on TP & 3det(TP) induces a pin™ structure on
TP. A similar argument on a cobordism shows that any two characteristic submanifolds are pin™
cobordant.

Let by(M) denote the second Betti number of a manifold M. The main theorem for Type III
manifolds is [HS, Theorem 3.1] :

THEOREM 1.2. [HS]| Let My, Ms be Type III 5-manifolds such that 71 (M;) = Zs acts trivially
on mo(M;) and Ho(M;,Z) is torsion free for i = 1,2. Then M is diffeomorphic to My if and
only if

by(My) = by(My) and [Py] = £[Py] € QF™"
where P; is a characteristic submanifold of M;.

We will take the data of a principal S bundle, namely the base and the first Chern class, and
identify the diffeomorphism type of the total space. In particular, we will identify when the total
space satisfies the hypotheses of Theorem 1.2, and then compute by and [P]. That computation
combined with the classification of Type I and II total spaces in [HS, Theorems 6.5, 6.8] finishes
the proof of Theorem 1.11, which in turn implies Theorem B.

A straightforward computation using the long exact homotopy and Gysin sequences proves the
following; see for instance [HS, Proposition 6.1] .

LEMMA 1.3. Let B™ be a simply connected manifold and let M™' — B™ be a non-trivial
principal S* bundle with first Chern class kd, where d is a primitive element of H*(B,Z) and
k # 0 is an integer. Then M is orientable, Ho(M,Z) is torsion free and ba(M) = by(B) — 1.
71 (M) = Zy, is generated by any S* fiber and acts trivially on mo(M). The universal cover of M
is the total space of an S* bundle over B with first Chern class d. If k =2, M is type III if and
only if and wo(TB) = d mod 2.

The condition we(T'B) = d mod 2 implies the existence of a spin® structure on B. We call d
the canonical class of that spin® structure. On a simply connected manifold a spin® structure is
uniquely determined by its canonical class. Thus in the Type III case, given a simply connected
spin® 4-manifold B* with primitive canonical class d, we want to know the diffeomorphism type of
the total space M® of the S* bundle over B* with first Chern class 2d. Since by(M) is determined
by Lemma 1.3, it remains to find the pin™ cobordism class of a characteristic submanifold P* C
M?5. In fact, the spin® structure on B* will naturally induce a pint structure on P?.
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To see this let p : M — B be the bundle map and let A — B be a complex line bundle with
first Chern class d. p*d is the unique nontrivial torsion element of H2(M,Z). Let u — M be the
unique nontrivial real line bundle over M. As in the proof that a characteristic submanifold of M
will admit a pin™ structure, see [GT, Lemma 9 ] and [HS, Lemma 2.3] , wa (1t ® p) = wi(p)? # 0.
So @ p with its natural orientation is a nontrivial complex line bundle. Since p ® p is trivial,
c1(p @ p) is torsion, and we conclude that p*\ = u @ p.

The S' action on M splits TM into a horizontal bundle isomorphic to p*TB and a vertical
bundle, trivialized by an action field, which we call T'S*. The spin® structure on B is equivalent
to a spin structure on T'B ¢ A. That spin structure induces a spin structure on

(1.4) pP*(TBON)STS'XTM S udp

and in turn a pin™ structure on P C M using (1.1). Denote by 8(B,d) € Q4Pm+ the cobordism
class of P with this pin™ structure. We synthesize the construction with the results of Lemma 1.3
as follows:

LEMMA 1.5. Let B* be a simply connected 4-manifold and let M® be the total space of a
principal S' bundle over B with first Chern class 2d € H*(B,Z) where d is a primitive element
such that we(TB) = d mod 2. Then M satisfies the conditions of Theorem 1.2 with by(M) =
ba(B) — 1 and [P] = B(B,d).

In the next lemma, we will see that 5 is a spin® cobordism invariant whenever it is defined.

LEMMA 1.6. Let By, B be spin® manifolds with primitive canonical classes dy,do respectively.

a) B(B1 U By, dy + d2) = B(B1,d1) + B(B2,dz)
b) If By is spin® cobordant to B then 3(Bi,d1) = B(Ba,d2).

Proof. Part a follows immediately since the total space of the relevant bundle and the character-
istic submanifold of that total space will be disjoint unions.

To prove part b, let W be a simply connected spin® cobordism between B; and By with
canonical class d. The d|p, = d; for each i = 1,2, and d must be a primitive class. Let 7: N — B
be the principal S' bundle over W with first Chern class 2d. By Lemma 1.3 7 (N) = Zo.
ON = 77 Y(By) U7~ Y(By) and M; = 7—(B;) — B is the principal S! bundle with first Chern
class 2d;.

Let f : N — RPY be a classifying map for the universal cover of N which is transverse
to RPN=1. By Lemma 1.3, 7;(N) is generated by any S' orbit, so m(M;) — 71(N) is an
isomorphism, and f|yy, is a classifying map for the universal cover of M;. Thus P, = f~}(RPN~1)N
M; is a characteristic submanifold of M; and f~'(RPV¥~!) is a cobordism between P; and P;.
The argument before Lemma 1.5 proves that the spin® structure on W induces a pin™ structure
on f~Y(RPN-1). That pint structure restricts to the pin™ structures induced on P; by the spin®
structures on B;. To see this one must simply note that the nontrivial real line bundle over N
restricts to the nontrivial real line bundle over M;. We conclude that

B(Bi,d1) = [P1] = [P2] = B(B2,da).
O

We now see that 8 defines a map between the spin® and pin™ cobordism groups. The 4
dimensional spin® cobordism group Qipm is isomorphic to Z?. The isomorphism takes a spin®
manifold B with canonical class d to the characteristic numbers

(@,1B]) and { ((¢,[B]) ~ sian(B)) .

Here sign(B) is the signature, and the second integer is the index of the spin® Dirac operator,
which we denote by ind(B, d). See [BaG], [St] for details. To construct generators of Q5™ let
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x € H*(CP?,Z) be the generator which is the first Chern class of the Hopf bundle. Give X = CP?
the spin® structure with canonical class = and Y = CP?#CP?#CP? the spin® structure with
canonical class dy = (3z,z,z) € H2(Y,Z) = &*H2(CP?,Z). Then [X],[Y] € Q"™ represent
(1,0) and (9, 1) under the isomorphism with Z? and form a minimal generating set of Qipinc. Since
X and Y have primitive canonical classes, and their inverses in the cobordism group are given

by reversing orientation, we conclude that every class in Qipmc can be represented by a simply
connected manifold B with primitive canonical class d. Lemma 1.6 implies that by mapping the
cobordism class of such a pair to 8(B,d) we can define a homomorphism £ : Qipmc — Q4Pin+.

Using the isomorphism Q4P it o Z16 generated by a pint structure on RP* we prove the
following :

LEMMA 1.7.
B(B,d) = (d?, [B]) + 4¢ ind(B, d) mod 16

for an unkown sign € = £1.

This lemma corrects a mistake in the statement of [HS, Theorem 6.7]. Our argument uses
ideas from the proof in [HS] as well as corrections suggested to the author by Yang Su.

Proof. We will see that 5(X,z) =1 and S(Y,dy) = 5 or 13. The lemma then follows since 3 is
. Spin€ ~ 2
a homomorphism and €2 =7-.
The principal S* bundle RP®> — CP? which is a Zy quotient of the Hopf bundle has first Chern
class 2x. Since RP* is a characteristic submanifold of RP?, it follows that

B(X,z) =[RPY =1eQfm"

The second calculation is more involved. We use the notation [zq, 21, 22] € CP? and [z0, 21, 22|+ €
R P> for the respective images of the point (2, 21, 22) € S° C C3. Let p: M — Y be the principal
S! bundle with first Chern class 2dy € H?(Y,Z) as defined above. By Lemma 1.3, the double
cover M of M is the total space of a principal S* bundle 5 : M — Y with first Chern class
dy. Let g : Y — CP? be a classifying map for p which is transverse to CP' ¢ CP? and has a
regular value [1,0,0] € CP'. Then g*x = dy and the pullback of 7 : RP> — CP? by f has first
Chern class 2dy. There is a map of principal S! bundles f : M — RP° covering g, that is, an S!
equivariant map making the following diagram commute:

M—L . rps

bl
y —2 cp?

Since the fundamental groups of M and RP° are generated by S! orbits (see Lemma 1.3),
fe : m(M) — m(RP®) is an isomorphism and f is a classifying map for the double cover
M — M. Thus if we show that f is transverse to RP* ¢ RP®, we can conclude that P =
f~YRP*) is a characteristic submanifold of M. Then given the correct pin* structure on P,
B(Y,dy) = [P] € Q™"

To see that f is transverse to RP* = {[z0,21,7]+ € RP?|r € R} note that at points in
71 (CP?\CP'), RP* is transverse to the S! orbits, which are contained in the image of the
equivariant map f. At points in 7~ }(CP'), we associate the horizontal space of the S' action
with TCP?. By assumption on g, f is transverse to TCP', and TCP! c TRP*.

For later, we also note that f is transverse to RP? = {[z9,7,0] € RP®|r € R} since TCP! C
TRP? except at [1,0,0] which is a regular value of f by assumption on g.

There is a short exact sequence

(1.8) 0= Zy — QPR 4 qPin™ g
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where ¢ is given by taking the cobordism class of a submanifold dual to w?; see [HS, page 172]
and [KT, page 217 | for details. Thus QQPm’ is isomorphic to Zg with generator [RP2]. We now
compute ¢([P]) = 5, which restricts the possible values of 5(Y,dy) =5 or 13 as desired.

We need to find a submanifold of P dual to w?(TP). Denote by NRP* the normal bundle of
RP* in RP? and by NP the normal bundle of P in M. Then f*NRP* = NP. Since RP® and M
are orientable,

w1 (TP) = wi(NP) = f*w;(NRP*) = f*w,(TRP?).

Since wy (TRP*)? is dual to RP?2 ¢ RP*, as long as the mod 2 degree of f : f~(RP?) — RP?
is 1, it follows that f~1(RP?) is dual to wi(TP)?. For convenience let ¥ = f~1(RP?). Since
[1,0,0] is a regular point of g, [1,0, 0]+ is a regular point of f, and the degree of f is the same as
the degree of f|y. The degree of f is the same as the degree of g. The degree of g is given by

<g*x2,Y> = <d2 , [Y]> =9.

Thus the mod 2 degree of f|x is 1 and ¢([P]) = [X] € QY.

Let U be a tubular neighborhood of the S* orbit of [1,0,0]+ and V = RP?\U. Since [1,0, 0]
is a regular value of g we can choose U to be made up of regular values of f. Then f| 1)
is a covering map. Since f maps S fibers to S fibers, f, : w1 (f~1(U)) — 71 (U) is surjective
and the covering is trivial. Thus f~1(U) is the disjoint union of deg(f) = 9 copies of U and
f~HU NRP?) is 9 copies of U NRP2. The S! orbit of [1,0,0]+ is a nontrivial loop in RP?, and
U NRP? is a tubular neighborhood of that loop, diffeomorphic to RP?\D? (the Mobius band).
The local inverses to f| f-1(u) are equivariant embeddings of the oriented tubular neighborhood
U and are all isotopic. It follows that the 9 embedding of RP?\ D? making up f~1(U NRP?) are
all isotopic. Thus the process by which T'M induces a pin™ structure on P, which in turn induces
a pin~ structure on X, will induce the same pin~ structure on each of the 9 copies of RP2\ D2,

Since m(RP?) = CP! and 7(U) N CP! is diffeomorphic to a disc D? around [1,0, 0] made up
of regular values of g, g~ (7(U) NCP') is 9 copies of D? and 7(V) = CP*\D?. ©t|gpe is injective
away from the orbit of [1,0,0]+, and thus is injective on V. It follows that p maps f~1(V)
injectively onto g~ !(m(V)). Thus f~1(V) is diffeomorphic to g~!(CP?) with 9 discs removed
while f~1(U NRP?) is 9 copies of RP?\D2. In other words,

(1.9) ¥ = g HCPY#RP?*#... #R P>

and the nine summands of R P? all have the same pin~ structure. Q5™ is generated by [RP?],
and so it remains to compute the value of [¢~1(CP1)].

Let x = g~ '(CP?). We will use a general method to define a pin~ structure called ry on x and
compute [x] € Q™" with this structure. We will then show that r,, is the correct pin~ structure
to use, that is, r, is compatible under (1.9) with the pin~ structure used to identify [¥] with
o([P]), which we will call 7.

Consider a simply connected spin® 4-manifold B with canonical class d and v the complex line
bundle with ¢;(v) = d. Let N C B be a smooth submanifold dual to d. Then v|y is isomorphic
to the normal bundle of N. The spin® structure on B is equivalent to a spin structure, called
s, on T'B & v. Restricted to N, this is a spin structure on TN @ 2v. The transition functions
for 2v admit a canonical lift from SO(4) to Spin(4); simply multiply two copies of any lift for
the transition functions of v, and the sign ambiguities cancel. Note that the identity lifts to the
identity in this way. Using this lift, s induces a spin structure sy on N.

The spin cobordism class of N depends only on the spin® cobordism class of B. To see this,
note that the dual to the canonical class of a spin® cobordism will be a spin cobordism between
the two relevant submanifolds. Thus we have a homomorphism

g - O L S & 7,
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defined by ¥([B]) = [IN]. Indeed, there is a long exact sequence

— szi“ — Qipinc — Qgpi“(BU(l)) — Qgpin =0
as in [HS, page 154] and [HKT, page 654]. We see that v is surjective by noting that 1 is the
composition of Q{P™ — QSP™(BU(1)) with the surjective map Q5P™(BU(1)) — Q5P™ which
ignores the map to BU(1) .

Recall that X,Y generate Qipm . The canonical class of X is dual to CP' ¢ CP?, which is
nullcobordant, so ¢([X]) = 0. Since ¢ is surjective, 1([Y]) generates Q5P™. Since CP! contains
a regular value of g, the degree of g|, equals the degree of g and x is dual to g*z = dy. Giving
X the spin structure s, used to define 9, ¥([Y]) = [x] # 0.

Spin(n) embeds naturally into both Pin®(n), so a spin structure induces a natural pin~ struc-
ture. Kirby and Taylor show that in dimension 2, the corresponding map

Qgpm ~ 7, - Qgin_ >~ 7q
is injective, see [KT, Proposition 3.8]. Let ry be the Pin™ structure on x induced by s,. Using
that structure [x] = 4 € Q5™ . Once we confirm that r, is the correct structure, we conclude
with (1.9) that ¢([P]) = 5, completing the proof of Lemma 1.7.

Let r be the pin~ structure on ¥ used to define ¢([P]). Recall that p is a diffeomorphism
between the open set O = f~1(V) C ¥ and p(O), which is x with 9 discs removed. It remains
only to check that r = p*r, on O.

We first recall the definition of r. Let p be the nontrivial real line bundle over M and let
E = TM @ 2u. Let A be the complex line bundle over Y with ¢;(\) = dy and let s be spin
structure on TY @& A used in the definition of 1. With the isomorphism (1.4), s induces a spin
structure on E called sg. Then (1.1) shows

E|p = TP @ 3det(TP)

and we induce a pin™ structure on T'P using a canonical lift of the transition functions of 3det (7 P)
from O(3) to Pin™(3). In turn,
TPy, =T% & 2det(T)

and using a canonical lift of the transition functions of 2det(T'Y) from O(2) to Pin™(2) we induce
the pin~ structure r on Y. Note that the normal bundle of ¥ in P is orientable and thus

w1 (det(TE)) = w1 (det(TP) |2)
In this way we can combine the two steps and see that sg induces r on T3 using the isomorphism
(1.10) Ely = TY. @ 5det(TX)

and a canonical lift of the transition functions of 5det(7T'Y) from O(5) to Pin™(5). The details of
the canonical lifts involved can be found in [KT, Lemma 1.7]; the salient fact is that each lifts
the identity to the identity.

Next, we note that det(73) and p*A are trivial over O. The former follows because because
O is an open set in X, but is orientable since it is diffeomorphic to an open set in x. As for
the latter, we have seen that p*\ = 2u, u|p = det(T'P), and det(TP)|s, = det(TX). Since p is a
diffeomorphism on O and p*\ is trivial, A is trivial on p(O).

Let t;; be transition functions with values in SO(2) for T'x. As we saw in the definition of 1,
for points in Yy,

TY @A Tx P 2.

Thus on p(O) the transition functions for A can be chosen to be the identity and the transition
functions for (TY @ A)|, can be chosen to be ¢;;. The spin structure s gives a lift of ¢;; to #;; in
Spin(2). Since the canonical lift of the transition functions for 2) will also be the identity, ¢;; is
also the lift given by s, and r,.
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Furthermore, using (1.4), t;; o p are transition functions for E on O. By definition, sg gives
the lift fij o p. Using (1.10), t;; o p are transition functions for both E|p and 7%, compatible by
picking trivial transition functions for 5det(7'Y). The canonical lift of the transition functions
for 5det(T'Y) will also be trivial, and the lift given by r will simply be the inclusion of #;; o p into
Pin™(2). Thus r = p*ry on O. This completes the proof of Lemma 1.7.

O

We can now prove Theorem B. In fact, we prove the following more detailed theorem which
includes the statement of Theorem B. Here we use the notation of Hambleton and Su, where # g1
is gluing along the boundary of a tubular neighborhood of a generator of 7. X(q),q = 1,3,5,7 are
the 4 closed manifolds homotopy equivalent to RP5, with X (1) = RP?, and X(q),q = 0,2,4,6,8
are constructed from pairs of homotopy RP®’s using the operation # gi. The labeling is such that
a characteristic submanifold P C X(q) has class ¢ € Q4Pin+/ + = {0,...,8}. See the discussion
before [HS, Theorem 3.7] for details.

THEOREM 1.11. Let M be a 5-manifold with my = Zo. Let P C M be a characteristic subman-
ifold.

1) M admits a free S* action with a simply connected quotient if and only if M is orientable,
Hy(M,7Z) is torsion free, and m (M) acts trivially on mwo(M). Furthermore if bo(M) =0
then M is diffeomorphic to RP°.

2) Suppose M® satisfies the conditions in 1). Let Q(M) be the set of quotients of M by free
St actions. The following table gives necessary and sufficient conditions for a 4-manifold
to be in Q(M). S is a set of four exceptional Type I 5-manifolds described in the final
two rows. If ba(M) > 0 then for each B € Q(M), M admits infinitely many inequivalent
St actions with quotients diffeomorphic to B.

M5 Q(M?®)= simply connected 4-manifolds B* such that

Type 11 B is spin and by(B) = by(M) + 1

Type III B is non-spin, be(B) = ba(M) + 1 and sign(B) = £[P] mod 4
Typeland M ¢ S B is non-spin and by = bo(M) + 1

X(q)#51(CP?x S'), ¢ =0,4 | B is non-spin, by = 3 and [sign(B)| =1
X(q)#4:1(S? xRP3) ¢ =0,4 | B is non-spin, by = 4 and [sign(B)| < 4

Thus given M? satisfying the hypotheses of 1) and matching the description of one of the rows
in the left column, a 4-manifold B* is diffeomorphic to a quotient of M?® by a free S' action if
and only if it satisfies the conditions given in the corresponding row of the right column.

Proof. We prove 2) first. Let M be an orientable 5-manifold with 7; (M) = Zs acting trivially on
mo(M), Ho(M,Z) torsion free, and by(M) > 0 unless M = RP?. Let P C M be a characteristic
submanifold.

Note that if M — B is a principal S* bundle, the long exact homotopy sequence implies that
71 (M) — m1(B) is surjective. If m(B) = Zs, then the Gysin sequence implies that H3(B) —
H3(M) is injective. Since M, and thus B, is orientable, H3(B) = Zs and Hs(M) would not be
torsion free. Thus any quotient of M by a free S! action is simply connected.

M is Type II. First, suppose M — B is a principal S bundle. By Lemma 1.3, b(B) = bo(M)+1
and by [HS, Proposition 6.1] B is spin.

Conversely, Let B be a simply connected spin 4-manifold with bg(B) = ba(M)+1. Then by [HS,
Proposition 6.1] , all of the total spaces of principal S! bundle over B with 71y = Zs are Type II and
have second Betti number bo(B)—1. By [HS, Theorem 3.1] all such total spaces are diffeomorphic
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to M. If by(M) > 1 there are infinitely many primitive elements of H?(B,Z) = Z*(M)+1 and
thus infinitely many non-isomorphic such bundles.

M is Type III. Suppose M — B is a principal S' bundle. By Lemma 1.3, b1(B) = by (M) + 1
and the first Chern class of the bundle is 2d, where d is a primitive element of H?(B,Z) such
that we(TB) = d mod 2. It follows that B is non-spin, and by [LM, Corollary I1.2.12] the
intersection form of B is odd. By the classification of integral forms and Donaldson’s Theorem,
[DK, page 5 and Theorem 1.3.1] the intersection form of B is diagonal, and so H*(B,Z) =
H*(#CP?#CP2,7Z) for some integers a,b. Then using [LM, Corollary 11.2.12] again we see
that
wo(B) = (1,1, ...,1) € H*(B, Zy) = 73T,

Thus d = (dy, ..., days) € H*(B,Z) = 7%t where each d; is an odd integer. This completes the
proof of one direction of 2) since

a b
[P]=B8(B,d)={(d”,[B]y=> di = Y di =sign(B) mod 4.
i=1 j=a+1
Conversely, Let B be a non-spin simply connected 4-manifold with be(B) = by(M)+1. Assume
further that sign(B) = [P] € Z4/ £ . Again, H*(B,Z) = H*(#*CP2#*CP?,7) where by(B) =
a + b and sign(B) = a — b. Choose ¢ € {0,1,2,3} such that £[P] = a — b + 4c¢ mod 16. If
ba(M) > 0, choose k such that

(44 2¢)k(k + 1) = 4c mod 16
where € = £1 is the sign from Lemma 1.7. If by(M) = 0 then choose k = 0. Set
di = (14 2k,1,...,1) € HXB,Z) = 7

Then d is primitive and as above, we see that wy(T'B) = d mod 2. Using Lemma 1.7 we have

B(B,dy) = sign(B) + (4 4 2¢)k(k + 1) = +[P] mod 16.
Hence by Lemma 1.5 and Theorem 1.2 M is diffeomorphic to the total space of an S' bundle
over B with first Chern class 2dj. In the case where ba(M) > 1, there are infinitely many choices
of k yielding distinct classes d, and M is diffeomorphic to infinitely many total spaces of non-
isomorphic S' bundles over B.

M is Type I. Suppose M — B is a principal S! bundle. By Lemma 1.3, by(B) = b1 (M) +1 and
by [HS, Proposition 6.1] B is non-spin and and the first Chern class of the bundle is 2d, where d
is a primitive element of H?(B,Z) such that wy(TB) # d mod 2.

If M = X(q)#s1(CP?x S'), ¢ =0,4 then by(B) = 3 and by [HS, Theorem 6.8] (d?, [B]) = +q
mod 8. If sign(B) = 43, then up to orientation as above H*(B,Z) = H*(#3CP? Z) and
wa(TB) = (1,1,1). Thus

d=(di,ds,d3) € H*(B,Z) 2 Z*
and some d; must be even. Since d is primitive, some d; must be odd. One easily checks that
under these conditions, (d?, [B]) # 0,4 mod 8. So sign(B) = =+1.

If M = X(q)#41(S?xRP3), ¢=0,4 then by(B) = 4 and <d2, [B]> = +q mod 8. If sign(B) =
+4, then up to orientation by the argument in the Type III case, H*(B,Z) = H*(#*CP?,Z) and

d= (d17d27d37d4) S HQ(B,Z) = ZS

with at least one d; even and at least one d; odd. Again (d?,[B]) # 0,4 mod 8, so [sign(B)| < 4.

Conversely, Let B be a simply connected non-spin 4-manifold satisfying the conditions given
by the table for Q(M). Then H*(B,Z) = H*(#CP?*#°CP2,Z) for some integers a, b such that
a+b=">0b(M)+1. Let (q,8) € Zg @ Zy represent the cobordism class of P C M in the pin®
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cobordism group Q™ = Zg @ Zy; see [HS, page 154]. By [HS, Theorem 3.6] g + s = by(M) + 1
mod 2.

If ¢ = 0,4 then [HS, Theorem 3.7] implies that a + b > 3, so we can assume that up to
orientation a > 2 and using the table either a + b > 5 or [sign(B)| < ba(B), which implies b > 0.
Define the following elements dy, € H?(B,7) = 7% @ 7" for each k € Z.

¢q=0: d=(1+8k0,..,0,1)ifb>0 dy=(2+8k1,1,1,1,0,...,0)ifb=0
g=4: dp=(2+8k1,0,..,0,1)ifb>0 dj=(1+8k1,1,1,0,..,0)if b=0

If ¢ = 2, [HS, Theorem 3.7] implies that a + b > 3 and we can assume a > 2 and define
q=2: dy=(1+8k1,0,..,0)
If ¢ is odd, By [HS, Theorem 3.7] a + b > 2, and we can assume a > 1. Define

g=1: dp=(1+48k,4,0,...,0)

gq=3: dr=(1+8k2,0,..,0).
In each case dj, is primitive, we(T'B) # dy mod 2, and ¢ = + <d%, [B]> mod 8. By [HS, Theorem
6.8] the S bundle over B with first Chern class 2dy, is diffeomorphic to M. Again infinitely many
k yield distinct classes dj an thus non-isomorphic bundles.

To prove 1), first assume M is a 5-manifold with 7 (M) = Zs admitting a free S! action with
simply connected quotient B. By Lemma 1.3, M is orientable, 71 (M) acts trivially on mo (M)
and Hy(M,Z) is torsion free. If by(M) = 0, then ba(B) = 1 and up to orientation H*(B,Z) =
H*(CP?,Z) and wy(TB) is non-zero. There are only two primitive classes +d € H?(B,Z) & Z,
each restricting to wa(B) mod 2. Thus B is of Type III and §([B,d]) = £1. By Theorem 1.2 M
is diffeomorphic to RP>.

To prove the converse, suppose M is an orientable 5-manifold with w1 (M) = Zg acting trivially
on mo(M) and Hy(M,Z) torsion free. Let P C M be a characteristic submanifold. Since RP?
admits a free S! action induced by the Hopf action we assume by(M) > 0. We must show the
set Q(M) described in the table in 2) is nonempty.

If M is Type II, by [HS, Theorem 3.6] by(M) is odd. Then B = #2(M+1)/262 5 62 ¢ Q(M). If
M is Type I then B = #2(MCP2#CP2 € Q(M). If M is Type II1, let 0 < ¢ < 16 be an integer
such that [P] = ¢ mod 16. By [HS, Theorem 3.6] we see that ¢ = bo(M) + 1 mod 2. Choose [
such that

0<c—4l < 4.
hen ba(M) +1 41 ba(M) + 1 41
. = b2 )—|—2+c— and b= 2 )—1—2—c+
are nonnegative integers. Let B = #*CP?#°CP2. Then by(B) = by(M) + 1 and sign(B) = [P] €
Zi/ + . So B € Q(M). 0

We note that the final paragraph of the proof above in fact shows the following, which we will
make use of later.

COROLLARY 1.12. Let M be a 5-manifold with m = Zo admitting a free S' action with a
simply connected quotient. Then M admits a free S action with quotient diffeomorphic to either
#¢S82 x S? or #*CP*#*CP?2 for some a,b,c € Z.

Combining Theorem 1.11 with [HS, Theorem 3.7] we can characterize the manifolds satisfying
Theorem A.
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COROLLARY 1.13. Let M? be a 5-manifold. The following are equivalent:

1) M® is Type III and admits a free S' action with a simply connected quotient.

2) There exists B* = #2CP?#°CP2, a,b € Z>o such that M? is the total space of a principal
bundle S' — M® — B* with first Chern class 2d, where d € H?>(B*,Z) is primitive and
wo(TB*) = d mod 2.

3) There exits k € Z>o and q € {0,1,...,8}, with k > 0 if q is 3,5, or 7, such that M° is
diffeomorphic to

X (q)#ts1 (#(5% x §%) x 81).
If those conditions are satisfied then Mpie~o(M?>) has infinitely many path components.

Proof. 1) implies 2) by Lemma 1.3 and Corollary 1.12 . If we assume 2), Lemma 1.3 implies that
M is a Type III manifold with 7 acting trivially on mo and Ha(M,Z) torsion free. [HS, Theorem
3.7] shows that every such manifold is diffeomorphic to X (q)#g¢1 (#F(S? x S?) x S1) for some
q €{0,...,8} and some k € Z>o. If k=0 and ¢ is odd, b2(X(¢q)) = 0 and using Theorem 1.11 M
must be diffeomorphic to RP®> = X(1).

By [HS, Theorem 3.7], M = X (q)#g1 (#"(S? x S?) x S!) is an orientable Type III manifold
with 71 (M) acting trivially on 7o(M), Ho(M,Z) torsion free, and bo(M) = 2k + (14 (—1)7)/2.
Thus by Theorem 1.11 3) implies 1).

Now assume M satisfies the conditions. If (M) > 0, then by Lemma 1.3 the integers a,b in
2) must satisfy a + b > 2. Then Theorem A implies that Mgic~o(M) has infinitely many path
components. By Theorem 1.11, if by(M) = 0, then 1) implies that M = RP5. Mgic~o(RP?) is
shown to have infinitely many path components in [DG]. O

Remark 1.14.

e By the discussion proceeding [HS, Theorem 3.7] the manifolds described in Corollary 1.13
can also be constructed by applying #g¢: to the homotopy RP%’s. For instance

X(@)#g1 (#5(5% x 8%) x 1) 2 X (q)#51 X (0)# 51 H.51 X (0).

e It is shown in [DG] that MRric~o also has infinitely many components for the homotopy
RP5%s X (3),X(5) and X (7) .

e A characteristic submanifold P C X (q)#g1 (#%(5% x S?) x S') has class q € inﬁ/:i: =
{0, ..., 8}. If we fix a non-spin simply connected 4-manifold B*, then a Type III total space
of a principal S! bundle over B will be diffeomorphic to X (¢)# g1 (#%(5? x $?) x S1). Using
the table in Theorem 1.11 we see that ¢ must satisfy ¢ = +sign(B) mod 4. It follows that
there are 2,3 or 4 choices of ¢, and the same number of diffeomorphism types of Type III
total spaces, if sign(B) is 2, 0, or =1 mod 4 respectively. The value of ¢ can be determined,
up to two possibilities, using Lemma 1.7. The set of diffeomorphism types of Type I total
spaces is more complicated, but can be computed using Theorem 1.11 and [HS, Theorem
3.7]. If B*is a simply connected spin 4-manifold there exists a unique diffeomorphism type
of total spaces with m; = Zs , represented by (52 x RP3)# g1 (#02(B)=2)/2(82 x §2) x §1).

Using a result of Gilkey, Park and Tuschmann, we can lift metrics from the quotients described
by Corollary 1.12 to prove the following:

COROLLARY 1.15. Let M be a 5 manifold with m (M) = Zo admitting a free S* action with a
simply connected quotient. Then M admits a metric with positive Ricci curvature.

Proof. In [SY1] Sha and Yang put a metric of positive Ricci curvature on #¢5% x S2. A modifi-
cation of Perelman’s construction in [P] puts such a metric on #*CP?#°CP?, see Lemma 3.10.

Corollary 1.12 shows that M admits a free S' action with quotient B* diffeomorphic to one of
those manifolds. Gilkey, Park, and Tuschmann [GPT] showed that if B admits Ric> 0, M? is the
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total space of a principal bundle over B* with compact connected structure group G, and 1 (M?)
is finite, then M admits a G invariant metric with Ric> 0. In this case G = S!, 71 (M) = Z3 and
the corollary follows. O

The corresponding result in the simply connected case was proved by Corro and Galaz-Garcia
in [CG]. By Lichnerowicz’s theorem, many simply connected 4-manifolds, such as a K3 surface,
do not admit even positive scalar curvature . It is interesting to note that Corollary 1.15 and
the results of [CG] imply that total spaces with m; = 0 or Zs of principal S! bundles over such
manifolds nonetheless admit metrics of positive Ricci curvature.

2. n INVARIANT

We use the n invariant of the spin® Dirac operator, which we define in this section, to distinguish
components of geometric moduli spaces. A manifold M is spin® if there exists a complex line
bundle A over M such that the frame bundle of TM @ A, a principal SO(n) x U(1) bundle, lifts
to a principal Spin®(n) = Spin(n) xz, U(1) bundle. A manifold is spin® if and only if the second
Stiefel-Whitney class wo(T'M) is the image of an integral class ¢ € H?(M,Z) under the map
H?(M,Z) — H*(M,7Zs). In this case ¢, which we call the canonical class of the spin® structure,
is the first Chern class of A, which we call the canonical bundle.

Using complex representations of Spin®(n) we form spin® spinor bundles and equip them with
actions of the complex Clifford algebra bundle CI(T'M). When the dimension of M is even there
is a unique irreducible such bundle S with a natural grading S = ST @® S~. Given a metric g on
M and a unitary connection V on A we can construct a spinor connection V?® on .S, compatible
with Clifford multiplication, and a spin¢ Dirac operator D;V acting on sections of S. See [LM,
Appendix D] for details. The Bochner-Lichnerowicz identity for this operator is

C S\ * S ]' 1’
(2.1) (D)2 = (V9)*V* + ;scal(g) + 5FV

where the complex two-form FV is the curvature of V. This form acts on the spinor bundle S
by way of the vector bundle isomorphism AT*M — AT M — CI(T'M) given by g. The operator
(V*)*V* is nonnegative definite with respect to the L? inner product on a closed manifold or a
compact manifold with boundary on which the Atiyah-Patodi-Singer boundary conditions have
been applied. See [APS2, Theorem 3.9] for details. The remaining term %Scal(g) + %F V is positive
definite if

(2.2) scal(g) > 2|FV|,,

where the norm | - |4 is the operator norm on CI(T'M) acting on S. In particular, ker(Df o) = 0

if (2.2) is satisfied. For a later purpose we note that for w € Q?(M,C) and an orthonormal basis
{e;} of TM with respect to g, we have

(2.3) wlg <D lwler e5)l.
i<j

Suppose W is a spin® manifold with boundary W = M, with A and ¢ defined on W as above.
W induces a spin® structure on M with canonical class ¢|gy and canonical bundle A|gy . Choose
a metric h on W and a connection V on A which are product-like near OW | i.e.

h = hlaw + dr?

and

V = projy (Vlow)
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on a collar neighborhood U = M x I where I is an interval with coordinate r. Applying the Atiyah-
Patodi-Singer boundary conditions, the Atiyah-Patodi-Singer index theorem [APS1] states that

. dim(ker(D¢ )) +n(D5 )
(2.4) ind(Dj, g|g+) = / e V2 A(p(g)) — hlow V'@V; hlow Vlow)

w
Here ¢;(V) and p(g) are the Chern-Weil Chern and Pontryagin forms constructed from the
curvature tensors of the connection and metric respectively. A is the polynomial in the Pontryagin
forms and Dh\a Ylow is the spin® Dirac operator on M constructed using the induced metric

and connection.
7 is an analytic invariant of the spectrum of an elliptic operator defined in [APS1]. Given an
elliptic differential operator D with spectrum {\;} we define a complex function

Z sign(A;)| A %,

Py
One shows that the function is analytic when the real part of s is large and Atiyah, Patodi and
Singer showed that it can be analytically continued to a meromorphic function which is analytic
at 0. Thus we define n(D) = n(D,0). If a diffeomorphism ¢ preserves the spin® structure, then
Dy, p+v 1s conjugate to Df ¢ and hence they have the same spectrum and the same values of 7.
We will use (2.4) to calculate n for an operator D, ¢ on a manifold M by finding a suitable W
with OW = M and extending g, V to product like » and V on W.

Kreck and Stolz combined the 7 invariant with information about the Chern-Weil forms of the
metric to get an invariant for metrics on 4n + 3 dimensional spin manifolds. We prove that the
71 invariant alone provides the desired invariant for certain 4n 4 1 dimensional spin® manifolds.

THEOREM 2.5. Let M**! be a closed spin® manifold with canonical class ¢ € H*(M, Z) and
canonical bundle \. Suppose ¢ and the Pontryagin classes p;(T M) are torsion and g, t € [0, 1]
is a smooth path of metrics on M with scal(g:) > 0. If Vo and V1 are flat unitary connections
on A, then

n(Dg, v,) = n(Dg, v,)-

go,V 91,V

Proof. Modifying g, if necessary we assume it is a constant path for ¢ near 0 and 1. Given
L € R, define a smooth metric g on M x [0,1] by

g = g + L2dt*.

Then g is product-like near M x {0,1}. One sees that scal(g) differs from scal(g;) by terms
depending on the second fundamental form of each slice M x {t}, but the second fundamental
form tends to 0 as L — oo, so for large L we have scal(g) > 0.

The difference of unitary connections on a complex line bundle is an imaginary one form.

Define o € Q(M) such that

o= V1 - Vo.
Since both connections are flat, dae = 0. Let m : M x [0,1] — M be the projection and let
f M x[0,1] — [0,1] be the projection onto [0, 1] followed by a smooth function which is 0 in a
neighborhood of 0 and 1 in a neighborhood of 1. Define a connection on 7*A by

V =7"Vo+ifr*a.
Then, since V is flat,
=idf N

Let e; be an orthonormal frame for g at a point (p,t), such that e; = +9;. Then

QZ]df/\a (i, €j)] 28tfz

1<j 1>1
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Since e;, i > 2, is tangent to M x {t}, it does not depend on L. Using (2.3), for large L we have
scal(g) > 2|FV|,.

The definition of f ensures that V is product-like near (M x I). Then by (2.1) D{  has trivial
kernel and ind(Dj ¢|s+) = 0.
Since FVi =0 for i = 1,2
scal(g;) > 0 = 2|FVi|,,

and hence (2.1) implies kerDy ¢ = {0}. We now apply the Atiyah-Patodi-Singer index theorem
(2.4). The boundary of M x I is two copies of M with opposite orientations. The spectrum of
the Dirac operator on M x {0,1} is the union of the spectra on M x {0} and M x {1}, and
the n invariant is the sum of the two 7 invariants. When we change the orientation of an odd
dimensional manifold, the Dirac operator changes by a sign. Thus the Atiyah-Patodi-Singer
theorem yields

ind(DS g s+) = / 192 A(p(g))
M x[0,1]

1 . c . c C Cc
_5 (dlm(ker(Dgo,Vo)) + dlm(ker(Dgl,V1)) + n( go,Vo) - n(Dg1,V1))

and hence

WD) = 1Dguw) =2 [ e Aip(g))
Mx10,1]
Since 7jc is torsion, ¢1(V) is exact. Because V is flat near the boundary c1(V)|sarxr) = 0.
Furthermore g is product-like near the boundary so p(g)|arx{;} = p(g:). Since the real Pontryagin
classes of M vanish p;(g;) is exact for j > 0. By Stokes’ theorem, and since the dimension of M
is 4n + 1, the integral vanishes. O

As a corollary we show how to use the 7 invariant to detect path components of moduli spaces
of metrics with curvature conditions no weaker than positive scalar curvature.

COROLLARY 2.6. Let M be as in Theorem 2.5. Let (g;,V;) be a sequence of Riemannian
metrics g; with Ric(g;) > 0, and flat connections V; on A such that {n(Dj, ¢.)}i is infinite. Then
MRic>0(M) and Msea1>0(M) have infinitely many path components.

Proof. Let Diff°(M) be the set of diffeomorphisms of M which fix the spin® structure. For
g € Racal>o let [g] represent the image in Mgea1=0 and [g]¢ the image in Rgearso/Diff(M). It follows
from Ebin’s slice theorem ([E], [Bo]), that if [g;], [g;] are in the same connected component of
Rgcal>0/Diff (M) then g;, ¢*g; are in the same path component of Rycalso for some ¢ € Diff*(M).
Then there is a path between them maintaining positive scalar curvature, and by Theorem 2.5
and the spin® diffeomorphism invariance of n we have n(Dj ,) = n(Djg- gj7¢*Vj) = U(D;j,vj)'
Since {n(Dj, v,)} is infinite, Rsca>0/Diff*(M) has infinitely many components.

Any diffeomorphism ¢ pulls back the spin® structure to another one with canonical class ¢*c,
a torsion class in H?(M,Z). There are finitely many such classes. The finite group H'(M,Zs)
indexes the spin® structures associated to each class. Thus the orbit of the spin€ structure under
Diff(M) and the set Diff(M)/Diff¢(M) are finite. The fibers of Rscar>o/Diff(M) — Mcar>o are
no larger than Diff(M)/Diff*(M), implying that 9Msca>o has infinitely many components.

The proof is identical for MRp;ic>o since Ric > 0 implies scal > 0. O
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3. ) INVARIANT IN DIMENSION 4n + 1 WITH FREE S! ACTIONS

In this section we prove Theorem A. We want to use the Atiyah-Patodi-Singer index theorem to
calculate the n invariant of a metric on M. Many authors have computed 7 and related invariants
on spin manifolds M by extending metrics to manifolds W with boundary diffeomorphic to M.
If the extension has positive scalar curvature, the index of the Dirac operator will vanish. In the
spin® case, we must also extend an auxiliary connection. A difficulty arises when the extended
connection cannot be flat because the canonical class of the spin® structure on W is not torsion.
Then the metric and connection must satisfy (2.2). The following theorem, which we prove in
Section 4 illustrates how to use certain free S actions on M to accomplish this.

THEOREM 3.1. Let St act freely on M by isometries of a Riemannian metric gy with scal(gns) >
0 and assume w1 (M) is finite. Let B = M/S"' be the quotient and p: W = M x g1 D?> — B the
associated disc bundle. Suppose the first Chern class of the principal S* bundle 7 : M — B is {d
ford € H*(B,Z) and { € Z. If X is the complex line bundle over W with first Chern class p*d,
then there exists a metric gww on W and a connection V on A such that

(3.2) scal(gw) > I|FV gy -

Furthermore there is a collar neighborhood V = M x [0, N] of OW = M such that for t € [0, N|
near 0, gw is a product metric

(3:3) gw = gy + dit?
and
(3.4) V = projy vV

where V is any flat unitary connection on \|gw .

Notice that here there are no restrictions on the dimension or Pontryagin classes of M, d need not
be primitive, and no spin® structure is required. We next use Theorem 3.1 and (2.4) to calculate
n for S' invariant metrics on certain spin® manifolds in dimensions 4n + 1.

THEOREM 3.5. Let S' act freely on a 4n+1 manifold M by isometries of a Riemannian metric
g with scal(g) > 0. Assume w1 (M) is finite and let B = M/S' be the quotient. Suppose the first
Chern class of the principal bundle S* — M 5 B is ¢d where { is a positive even integer and
wo(TB) = d mod 2. Finally assume the real Pontryagin classes of M wvanish. Then M admits a
spin® structure with canonical class 7*d. If V is a flat connection on the canonical bundle of this
spin€ structure and D;ﬁ 1s the spin® Dirac operator, then

. . /sinh(d/2)A(TB)
n(Dg,v)—< sinh(¢d/2) 7[B}>.

When n =1,
2 2
(3.6) WD o) = <_(£ 1)d24J£P1(TB)7[B]>_

Proof. Since T'M is the direct sum of 7*T'B and a trivial bundle generated by the action field of
the S! action,

wa(TM) = 7*we(TB) = 7*d mod 2.
Let 1 be the complex line bundle over B associated to 7 : M — B. Let W = M x g1 D? and let
p: W — B be the disc bundle associated to 7 : M — B. Then TW = p*(TB & ) and since ¢ is

even
wo(TW) = p*(d + £d) mod 2 = p*d mod 2.



18 MCFEELY JACKSON GOODMAN

It follows that W admits a spin® structure with canonical class p*d. We call the canonical bundle
A. The spin€ structure on W induces one on M with canonical class 7*d.

Then M, W, and X satisfy the hypotheses of Theorem 3.1. We construct the metric gy on W
and connection V on A as in the theorem such that gy|ys = gar and V| = V. Define the spin®

Dirac operator D;W7V on W and D;M o asin Section 2. Given that gy and V are product-like

near OW, we can apply (2.4). Since V is flat
scal(gar) > 2]F6]9M =0

and by (3.2)
scal(gw ) > K!Fv\gw > 2]FV\9W.

Then (2.1) implies that ind(Dj ) =0 and ker(D;Mﬁ) = {0}. It follows from (2.4) that

(3.7) WDg 00 =2 [ e lp(qw).

To evaluate that integral, we use [KS2, Lemma 2.7]:

LEMMA 3.8. [KS3| Let W be a manifold with boundary, and let o, 8 be closed forms on W
such that algw = d& and Blaw = dp. Then

/ anB= | ang+ (i La)ujii(8), W,aW])
w 101%%

L represents any preimage under the long exact sequence map

j:H'(W,0W;Q) — H*(W, Q).

where -

To apply Lemma 3.8 to (3.7), let o = e1(V)/2 and § = A(p(gw)). Since gy is product like
near the boundary, p;(gw)|sw = pi(ganr). For i > 0 p;(gar) is exact by the assumption on the
Pontryagin classes of M. Since ¢1(V)|sw = ¢1(V) and V is flat, we can choose & = 0. The form
¢1(V) represents the cohomology class ¢1(\) = p*d. Thus

n(Dsg) =2 (57 [ 2 u it [Arw)|, (W ow))

The following cup product diagram commutes:

Hs(W,0W) & HY(W,0W) —2— HsTH(W,0W)

|aad) |
HS(W,0W) & HY(W) —2— HsH(W,0W)
Thus
(3.9) (DS o) =2 < L [ep*d/ﬂ U [A(TW)} (W, aW]> .

Since the terms of A(T W) have degree 4k, k € Z, and the dimension of W is 4n + 2, only
terms of degree 4k + 2 in e” 2 will contribute. In those degrees, e? /2 = sinh(p*d/2) as power
series.

Since TW = p*(TB & p), A(TW) = p*(A(TB)A(p)). For the complex line bundle , we have
(1) = c1(p)/2 _ ld
P = sinh(er(n)/2) ~ 2sinh(€d/2)
as a formal power series. The series sinh(d/2) is divisible by d, so

(42 < )
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Let ® € H*(W,0W,Z) be the Thom class of p: W — B. Then j(®) = p*c1(u) = p*(¢d). By
means of another commutative diagram
H*(W,0W) @& H*(W) —2— H*(W,0W)

|G s

H*(W)® H*(W) —=—— H*(W)

J <<I> Up* <Sinhéj/2)>> =p" <£du Smh;;””) = p*sinh(d/2).

we see

Substituting into (3.9)

0 -2 {0 () e (AT )

(o0 () o)

The Thom isomorphism yields

ooy sinh(d/2)A(TB)
n(Dg,v)—< sinh(ld/2) ’[B}>'

When n =1 the dimension of B is four and we have, as series in H*(B,Z)

Ay =1- 2B
24
sinh(d/2) 1 (1 (- 1)d2>
sinh(id/2) ¢ 24 ‘
Multiplying and isolating terms of degree four yields (3.6). O

We are now ready to prove Theorem A. We first construct metrics of Ric> 0 on #%CP2#*CP2,
Perelman [P] constructed a metric with Ric> 0 on arbitrary connected sums of CP? with its
standard orientation. More details on Perelman’s proof can be found in [Bu] and [BWW]. With
a slight adjustment to the construction one can reverse the orientation on some of the copies of
CP?, proving the following:

LEMMA 3.10. #°CP2#°CP? admits a metric with positive Ricci curvature for all a,b.

Proof. In [P], Perelman puts a metric on #°CP? for all values of c. The construction involves ¢
copies of CP? attached to a central S* by “necks” S3 x I. The metric on the necks is of the form

ds® = dt? + A%(t, z)dz® + B%(t, z)do?

where ¢ is the coordinate on the interval I (see [P, page 159]). Furthermore, S2 is represented as
the product of S? and an interval with the top and bottom each identified to a point, and z is
the coordinate on that interval, while do? is the standard metric on S2.

An orientation reversing isometry of do?, such as the antipodal map, extends naturally to
a diffeomorphism of ¢ : S* — S3 which induces an isometry of ds?. Let ¢ = a + b, and take
Perelman’s metric on #°CP2. For b of the necks, we cut along a copy of S% and re-glue with ¢
rather than the identity. Because ¢ reverses orientation, the resulting manifold is #2CP2#*CP2.
Because ¢ induces an isometry on S3 x I, the same metrics on the pieces extend smoothly over
the gluing, completing the proof of the lemma. O
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Let M? satisfy the hypotheses of Theorem A. By Lemma 1.3, M is Type III and by Theo-
rem 1.11 M is the total space of infinitely many non-isomorphic principal S* bundles 7, : M° —
B* = #CP?#PCP2. From the proof of Theorem 1.11 we see that the first Chern class of 7, is
2dy,, where

di, = (142K, 1,...,1) € HX(#CP*#°CP?,7) = 7°+?

for a certain infinite set of integers k.

Using the result of [GPT] (see Lemma 1.15) we see that since B admits a metric of positive
Ricci curvature by Lemma 3.10, 7, : M — B is a principal S bundle, and 71 (M) is finite, then
for each k& M admits a metric g; with Ric(gx) > 0 such that the S' action corresponding to the
principal bundle 7 : M — B acts by isometries of gy.

Using the Gysin sequence it follows that H*(M,R) = 0 and M, g, and B satisfy the hypotheses
of Theorem 3.5 with grs = g, d = dj, £ = 2 and V any flat connection on the canonical bundle
of the spin® structure. By (3.6) we have

N5, ¢) =~ (. [B]) + sign(B))

1
T (+£4k” + 4k + 2sign(B))

using the fact that (p1(T'B)/3,[B]) = (L(TB), [B]) is equal to the signature of B.
Thus n(D;k o) is a nontrivial polynomial in k and takes on infinitely many values for the

infinite set of integers k. Theorem 2.6 implies that 9Mgic~o(M) has infinitely many components,
completing the proof of Theorem A. ]

Note that Theorem 2.6 also implies that Ms.a1=0(M) has infinitely many components.

4. METRIC AND CONNECTION

In this section we prove Theorem 3.1. We first set up notation for the tangent space to W.
We consider D? to be the unit disc in C. Let o : M x D?> — W be the quotient map so
o(p,z) = [p,z]. Then p([p,x]) = m(p). The metric gp; and the S' action induce an orthogonal
splitting 1), M = flp @ Vp into horizontal space ﬁp and vertical space Vp of w. Define horizontal
and vertical spaces of p to be

H[p,a:] = U*(Hp ® {0})
and
Vip.a) = 0:({0} ® T:D?)
for p € M and = € D?.

These is well defined since for z € ST, ﬁzp = z*ﬁp and T,,D? = 2,T,D?. One can use a local
section of o to see that H,,; and V|, ;) are smooth distributions on W. Note that V}, ;; is the

tangent space to the fiber p~!(7(p)) = o({p} x D?) and Tip o)W = Hpp o) ® Vi 2)- Away from the
zero section of p, V], ;] is spanned by

W, = 0.(0,0,) and Wy = 0,(0, ).
These are well defined smooth vector fields since 9y, 9, are S' invariant vector fields on D?.
Fix 0 < L < 1 and define a diffeomorphism
7:Mx[L,1] = MxD* 5 W

of M x [L, 1] to a collar neighborhood U of W. Let ¢ be the coordinate on [L, 1] and, in a slight
abuse of notation, let projy; ; : M x [L, 1] — M be the projection. Thus
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poOT =T Oprojy
T (I:Ip @ {0}) = H[p,x]
Tx (O, 8t) = Wr
Let X*(p) = %‘t:o e - p be the action field of the S! action on M, which spams V,,. Then,
since 0, (X™*,0p) =0,
T (X*,0) = —Wp.
Furthermore 7|7,y identifies M and OW, sending lEIp to Hp,q) and X* to —Wp.
We keep track of the maps in the following diagram.

M x D?

7

Mx] ——— W
prOjU,Ml lﬁ
M —" B

To construct gy and V we will use two smooth functions on the interval [0, 1]. Let f; : [0,1] —
[0, 1] be a smooth monotone function which is 0 in a neighborhood of 0 and 1 in a neighborhood
of [L,1].

For a constant € > 0, let

1 T
fa(r) = -3 / fi(t)dt — er® 4+ 7.
0
One easily sees that fo > 0 on (0, 1] for small e.

4.1. Metric. We define a Riemannian metric at a point (p, (r,6)) € M x D?, where r, # are polar
coordinates on D?, by

_ 20 v () |2 2 f2(7")2 2
Invxp2(p, (r,0)) = gn(p) + €| X (p) gnM dr® + 1— 62f2(7“)2d9 :

By converting to Cartesian coordinates on D? , one sees that gj;« p2 is smooth as long as

(5
rd \1—e2f3
3

is a smooth function of r € [0,1]. This is easily seen to hold since for r near 0, fa(r) =r — ere.
Since gp;«p2 is invariant under the diagonal action of S' on M x D2, it induces a metric gy
on W such that g,;.p2 and gy make o into a Riemannian submersion. Similarly, let gp be the
metric on B such that gps and gg make 7 into a Riemannian submersion.

LEMMA 4.1. gw and gp make p into a Riemannian submersion.

Proof. With respect to gy p2, H,®{0} is orthogonal to X* and T'D?. Thus H,®{0} is orthogonal
to the vertical space of o, which is spanned by (X*,dy), and to the horizontal projection of T D?
as well. It follows that with respect to gw, Hp, ) is orthogonal to Vj, ) and is the horizontal
space of p. Finally, we have

gwlny,.. = 9vuxp2lme(y = 9mlm, = 981, B-

We first describe the induced metric on the D? fibers of p.
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LEMMA 4.2.
gW|p 1(r(p)) = 62|X*(p)’9M (dT’2 + fg(T)QdQQ)

Proof. olgpyxp2 D? — p~l(n(p)) is a diffeomorphism such that 0,,8y are mapped to W,., Wy.
Since o is a Riemannian submersion with vertical space generated by (X*,dg), we calculate

|Wr|gw = |(Ova7“)|g2]MXp2 = 62|X*|521M

((0,09), (X, 89)>gM b2
Imxp2 ((X*,09),(X*,09))

(Wol,, = 1(0,09);

IM x D2

:€2|X*‘2 ( f2(7’)2 ) —64|X*’4 < fg(T)Q )2 1
o \ 7 2 2 Y ) 2 2
1= @R L=@R0R) \xp, + e, (55)
= X 3, fa(r)?
(Wr, W) g, = ((0,0r), (0, 0p)) =0.

In x D2

g

We next modify gy to have the desired product structure near OW. We use a technique of
Wraith, which allows deformations of metrics with positive mean curvature at the boundary.

LEMMA 4.3. OW has positive mean curvature with respect to an inward normal vector.

Proof. Let X; be local Sl-invariant vector ﬁelds extending an orthonormal frame of H, and
deﬁne X; = 0.(X;,0). At a point [p, 1], {X; 7 Wo} is an orthonormal basis of T@W and

) e\X*|
— I X*I W is an inward pointing unit normal Vector Since
[Xia WT] = [U*(Xiao)va*(oaar)] = O-*[(Xiao)v (0781”)] =
and | X;| =1,
VX W) = (X VW) = —— (X, Vi Xi) = 0
AX g T X gy T X, T
Thus
1 1 f>(1)
Sers g YweWe, —Wr) = * W, (|Wel?) = T )
63|‘)( g]y[f (1)2 ’ 2 3|X g]\/jf (1) |X |g]\/1f2( )
Evaluating that quantity at » = 1 we see the the mean curvature is
1/2 -3
% >0
G‘X |91V1f2(1)
for sufficiently small e. O

We see that gy |sw is obtained from gp; by shrinking the S! fibers of 7, a process which
preserves positive scalar curvature.

LEMMA 4.4. There exists a smooth path of metrics gp(s) on M, s € [€2f2(1)2,1], such that
an (€2 f2(1)2) = gwlow, gr (1) = g, and scal(gar(s)) > 0 for all s.

Proof. We recall that 7|pyq1) : M — OW is a diffeomorphism. We see that

((Tlarxgry)” ow)la, = gwlmy,., = 9umla,

and

XOE L g = Wollp B, = ELAPIX GIE,:
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Thus defining
gm(s) = gumlm, + sgumly,

we have, for e small enough, that €2fo(1)? < 1, gar(€2f2(1)?) = (T|M><{1})*gw, and gy (1) =
g - Since the metric is not changing on the horizontal space of 7, each gps(s) makes 7 into a
Riemannian submersion with gg. The O’Neil formula [Bes] then implies

scal(gns(s)) = scal(gp) — s|Ax|? — |T7r]2 - ]Nﬂ\z — 20N, > scal(gy) >0
where A, Ty, N, are the tensors defined for the Riemannian submersion 7 with respect to gps. O

Use the normal exponential map from W to define a collar neighborhood V 2 M x [0, N],
where ¢t € [0, N] is the distance to OW. We choose N small such that V' C U. Using this
identification, gy has the form

gw = g(t) + dt?
where g(t) = gw|mx¢ is @ smooth path of metrics on M. Since ¢g(0) = gw|gw has positive scalar
curvature, we can choose N small such that scal(g(¢)) > 0 for all ¢ € [0, N].

LEMMA 4.5. We can alter gy inside of V' such that it is product like near OW with gw |ow =
gm and scal(gw|v) > 0

Proof. We use the paths gas(s) and g(s) and the following lemma from [Wr3] to replace gy near
the boundary with a product metric restricting to gps at the boundary.

LEMMA 4.6. [Wr3] Let g(t) + dt? be a metric of positive scalar curvature on M x [0, N| such
that scal(g(t)) > 0 and M x {0} has positive mean curvature with respect to the inward normal
vector 0. Let g(t) be a smooth path of metrics on M such that scal(g(t)) > 0 fort € [0, N] and
g(t) = g(t) for t in a neighborhood of N. Then there exists a function 3 : [0, N] — R such
that § =1 for t in a neighborhood of N, 5 = [3(0) is constant for t in a neighborhood of 0, and
g(t) + B(t)dt? has positive scalar curvature.

To define our replacement path g, we define two smooth functions.

X1 : [0, N/2] = [€%f2(1)?,1] such that x1(t) = 1 for ¢ near 0 and x;(t) = €*fo(1)? for t near N/2
X2 : [N/2,N] — [0, 1] such that x2(t) = 0 for ¢ near N/2 and x2(t) = ¢ for t near N.

We then define a smooth path of metrics

3(t) = { gumoxi(t) telfo,N/2]

goxa(t) te[N/2,N]
By Lemma 4.4 and the definition of g, scal(g(¢)) > 0 for all t. Then Lemma 4.3 and Lemma 4.6
imply that g(t) + 8(t)dt? has positive scalar curvature for the function 3(t) given by Lemma 4.6.
For ¢ near N, g(t) = g(t) and B(t) = 1, so g(t) + B(t)dt* = gw. Thus replacing gw |y with this
metric results in a new smooth metric, for which we reuse the notation gy . Since g(t) = g and
B(t) is constant for ¢ near 0, g(t) + B(t)dt? has the desired product structure (3.3). This proves

Lemma 4.5.
O

4.2. Connection. Let 5 € Q%(B) represent the image of ¢d in H?(B,R). The Gysin sequence
for an S! bundle shows that 7*Id = 0, so we can choose o € Q' (M) such that 7*3 = da. Since
7*f3 is S' invariant, we can choose a to be S! invariant by averaging.

LEMMA 4.7. o(X*) = —5-
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Proof. Let ® € Q%(W) be a Thom form of the disc bundle p : W — B. Since
[®] — p*ld
under the long exact sequence map H?(W,0W) — H?(W), We have
p*B—®=da
for some a € Q' (W). Since ® vanishes near W,
daly = p*Blu =78 = da.

Since 71 (M) is finite, &|y — « is exact. By the defining property of the Thom form, for any
point ¢ € B, fp,l(q) ® = 1. We use Stokes’ theorem to compute

—1:/ ,0*5—@:/ da:/ a:/ a = 2ra(X™).
) ) 7=1(q) 7=1(q)

We next construct a form v € Q' (W) extending 27a/¢. We first define a form 5 € Q(M x D?).
At (p,x) € M x D? x #0, set

g

Y 2m ~(X* Ja(r
FYIpr{()}ZTOéHp H(X*,0) = — é)

fi(r)

7
where 7 is the radial coordinate on D?. This form extends smoothly to the origin of D? since f;
is zero in a neighborhood of r = 0. Since r, H, ® {0}, a, 9, 9p, X* are all preserved by the S*

action, 4 is S! invariant. The vertical space of ¢ is generated by (X*,dy), and so 7 vanishes on
the vertical space. It follows that there is a unique form ~ € Q(W) such that o*y = 4.

7(0,8:) =0 3(0,0) =

LEMMA 4.8. 7%y = 2TWproj*U’Ma

Proof. Recall that f1(r) = 1 for r in the image of 7 and note that 7%y = (6Y)|arx(,1] = VM ([L,1]-
Thus:
2 fi(r) 2w

T*V‘ﬁp@{O} = :Y‘Hp@{O} = Talilpa T*’Y(X*,O) = W(X*7O) = = / - TQ(X*)

2 .
and  777(0,0¢) =%(0,0,) =0 = %a(proJM*(Oﬁt))'
g

Let Ap be the complex line bundle with ¢;(Ag) = d. Given a differential form in the de Rahm
cohomology class of 27 times the first Chern class of a complex line bundle, there is a unitary
connection on the line bundle whose curvature is that differential form. Thus, since [ represents
ld, let Vg be a unitary connection on A\p with curvature

8.

21

FVE =
0

We now define a connection on A
V= ,O*V B — Z"y.

LEMMA 4.9. V is flat on U.
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Proof. We need to show that F™ vV = 0. Using Lemma 4.8 it follows that
TV = 1*p*Vp —it™y

27
= pI‘Oj;}’M (W*VB - EO()
and hence the curvature of the term in the parentheses is

21 21
/ e 7 a=10

0

We finish the construction of V by modifying it so that it is product like near W and restricts
to V at OW. Let proj*V7M : V' — M be the projection defined by the identification V' = M x [0, N]
from Section 4.1. Note that while V' C U, projy,,; and projy 5, will not in general agree (the
later was defined independently of h and the former using h.) Since V' C U, V is flat on V. Since
projy,y and the inclusion of OW = M x {0} are homotopy inverses, projy, v (Alar) = Aly. Thus
Vv and projy, 17V are both flat unitary connections on A|y and

proj{‘/’M(?) —Vl|y =1ié
for some closed form 6 € Q*(V). Since 71(V) = (M) is finite, § = df for a smooth function f
on V. We modify f to a function f which is equal to f near OW = M x {0} and equal to 0 near
M x {N}. We then replace V with V +idf on V. We see that V is still smooth, flat on V', and
near OW, V = projy, \,/V, satisfying (3.4)

4.3. Curvature. We complete the proof of Theorem 3.1 by showing that (3.2) holds. On V, V
is flat and by Lemma 4.5 scal(gy) > 0, so the inequality is satisfied. For the remainder of the
proof we consider W\V. Then scal(gy ) is given by Lemma 4.1 and the O’Neil formula for the
scalar curvature of Riemannian submersion

scal(gw ) = scal (gW|p—1(,r(p))) +scal(gp) — |4, — | T, — |N,|* — 20N,
As € = 0, |A,| — 0, while the final three terms remain constant. By Lemma 4.2,

2 1
scal (gW,p*l(W(p))) = _62|X* g <f22> :
M

Therefore, as € — 0,

2 i
scal(gw) = — 55— (2> +O(1).
o) =~ () +OW
Let X; be an orthonormal basis of f_Ip with respect to gns. Let X; = 0.(X;,0). Then {X;}
is an orthonormal basis of Hy,,; with respect to gw outside of V. Away from the zero section

{e|X*1\g W, e‘X*ﬁg 7 Wy} is an orthonormal basis of V], ;. Neither the X; nor V depend on e.
M M
Then as € — 0, using (2.3)
1
v

am

1
E|X*|9M

1
€|X*|ng2

|FY (W, Wo) |+ \FY (W,, Xi)|+ |FY (W, Xi)|+0(1).

LEMMA 4.10. EY(W,,Wy) = —ifi(r)/t , F¥N (W,, X;) = FV (W, X;) = 0.

Proof. Since p W, = p.Wy =0,
FN (W, Wy) = —idy(W,, Wy) = —idy(0.(0,d,), 5.(0,0p))

filr)

= —’iU*d’y((O, ar)v (0’ 89)) = —zdﬁ((O, 87”)7 (07 a@)) = —i&@((), a@) =—1 /
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similarly

FY (W, X;) = —id7((0,0,), (X, 0)) = —i <ar <2Zoz()_(i)> _ X (flér)» —0

and
2

FY (Wy, X;) = —id5((0,8), (X;,0)) = —i <ag <£a()_(i)>) = 0.

Lemma 4.10 implies that as € — 0,

1 -9 " gl
scal(gw) —€|FV = < 2= N

‘91\4 - GZ‘X* 2 f2

am
12 T
= ave (5) row

9mMm

) +0(1)

From the definition of f, one sees that r/fo — 1 as r — 0. It follows that we can choose €
small enough that (3.2) holds, completing the proof of Theorem 3.1. O

In [KS3, Lemma 4.2] , Kreck and Stolz constructed positive scalar curvature metrics on associ-
ated disc bundles in order to calculate their invariant for spin manifolds with free S! actions. In
their proof, they needed to assume that the S* orbits were geodesics. The metric gy constructed
in Theorem 3.1 generalizes their method to a free isometric S' action without the geodesic con-
dition.
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