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ABSTRACT. We show that for an orientable non-spin manifold with fundamental group Zs and
universal cover S? x S§3 the moduli space of metrics of nonnegative sectional curvature has
infinitely many path components. The representatives of the components are quotients of the
standard metric on S® x S* or metrics on Brieskorn varieties previously constructed using coho-
mogeneity one actions. The components are distinguished using the relative 7 invariant of the
spin® Dirac operator computed by means of a Lefschetz fixed point theorem.

1. INTRODUCTION

Manifolds with nonnegative curvature and finite fundamental group are rare and significant in
the study of Riemannian geometry. Most constructions involve Lie groups. Homogeneous spaces,
biquotients, and certain manifolds admitting actions with cohomogeneity one admit metrics with
nonnegative curvature. Such constructions often produce families of metrics, sometimes on a
single manifold M. We then investigate the moduli space

imseCZO(JW) = mseCZO(M)/Diﬂ:(M)

where Rgec>0(M) is the space of nonnegatively curved metrics on M and the diffeomorphism
group Diff(M) acts on Rsee>0(M) by pulling back metrics. We define MRpic>o(M) similarly for
metrics of positive Ricci curvature.

If M is 2- or 3-dimensional, Meec>0(M) and MRgic>o(M) are connected, as can be established
using the uniformization theorem or the Ricci flow. Little is known for 4-manifolds, but for
n > 5, we find examples of M™ for which the moduli spaces are not only disconnected, but have
infinitely many components. Specifically, Dessai and Gonzalez-Alvaro [DGA21] showed that if
M5 is homotopy equivalent to RP?, them Msec>0(M) and Mgic>o(M) have infinitely many path
components. The first named author [Goo20a] described an infinite class of total spaces N° of
nontrivial principal S' bundles over simply connected 4 manifolds such that 9Ric>o(/N°) has
infinitely many path components. Indeed, for every k > 2 authors have found examples of M2*+1
with finite fundamental group such that 9Mgee>0(M2*+1) and Myieso(M2*+1) have infinitely many
path components, see [DKT18; Des17; Des22; Goo20b; Wer22; Wrall]. In this paper, we identify
a new collection of 5-manifolds with that property:

THEOREM A. Let M® be an orientable, non-spin 5-manifold with m (M) = Zs and universal
cover diffeomorphic to S x S3. Then Msee>0(M) and Mpieo(M) have infinitely many path
components.

There are 10 diffeomorphism types of manifolds satisfying the hypotheses of Theorem A. The
only closed simply connected 5-manifolds known to admit metrics of nonnegative curvature are
S, 5%2x.83,SU(3)/SO(3) and the total space of the nontrivial S* bundle over S2, which we denote
by S2xS3. Those 4 diffeomorphism types include all five dimensional homogeneous spaces and
biquotients, and spaces admitting effective actions of a Lie group which is non-abelian or has rank
> 2 [ADF96; DeV14; GGS11; HoelO; Sim16]. The known methods to distinguish components
of Meec>0(M 5) require M to be an orientable non-spin manifold with a spin universal cover.
SU(3)/S0(3) and S2%S? are non-spin. Combining Theorem A with the results of [DGA21], we
conclude that Mgec>0 has infinitely many components for all orientable, non-spin Zs quotients
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of S° and S? x S3. That is, the property holds for all known examples within reach of current
methods.

In Section 3 we describe three families of nonnegatively curved 5-manifolds, and compute
topological invariants. The first two families, Xj; and Xy, are quotients of 53 x 83 by St
where S! is embedded with weights k and [ into a T2 action on S3 x S3. The families X %, and
X, differ by the T? action used. The manifolds are also total spaces of principal S' bundles

over CP?#CP? or CPQ#@Q; it was shown in [Goo20a] that for those manifolds, Mric~o has
infinitely many components.

The third family, Q5 (d), are Zs quotients of Brieskorn variteties, namely the intersection of S7
with the variety in C* defined by zg + 22+ 22+ z% = 0 for d even. They can be equipped with a
metric of nonnegative curvature using a cohomogeneity one action by S! x O(3) as in [Gro+06].

In Section 4, we sort those families into diffeomorphism types using Su’s classification [Sul2]
along with a computation of the primary diffeomorphism invariant for the families Xj; and Xy
from [Goo20a]. In particular, we see that any manifold satisfying the hypotheses of Theorem A
is diffeomorphic to infinitely many members of one of the three families. To prove Theorem A we
pull back nonnegatively curved metrics using those diffeomorphisms and show that the metrics
obtained represent infinitely many components of 9Mgec>0. Furthermore, we use the Ricci flow to
show that each metric has a neighbor with positive Ricci curvature, and those neighbors represent
infinitely many components of MRico.

We use the relative n invariant of a spin® Dirac operator to distinguish connected components of
Msec>0 and MRic>o0. The nonnegatively curved metric on each manifold M described in Section 3
can be lifted to a Zo invariant metric on the universal cover M which can in turn be extended
to a Zs invariant metric of positive scalar curvature on a 6-manifold W such that OW = M.
The relative n invariant of M can then be computed using a Lefschetz fixed point theorem for
manifolds with boundary, developed by Donnely in [Don78] based on the index theorem for
manifolds with boundary of [APS75a]. The invariant is given in terms of the index of a Dirac
operator, which vanishes because of the positive scalar curvature, and an integral over the fixed
point set of the Zy action on W.

2. PRELIMINARIES

2.1. Diffeomorphism Classification. Our result depends on a diffeomorphism classification
of quotients of S? x S3 due to Su. The key diffeomorphism invariant is the cobordism class of
a characteristic submanifold. Given a manifold X" with 7 (X") = Zy, let f : X™ — RP" be a
map which is an isomorphim on 7; and transverse to RPN~! ¢ RPN, Then P = f~} (RPN~ 1) is
a characteristic submanifold of X™. If X" is non-spin but has spin universal cover, P admits two

. . . . in+ int /g s .
Pin* structures which represent inverse classes in Q™. The class [P] € QL™ /+ is a diffeomor-

phism invariant. inrﬁ is isomorphic to Zjg, generated by [RP*], and we use the identification
inn+/:i: ~{0,1,...,8}. See [GT98; KT90; Med71; Sul2| for details.

The classification in [Sul2] uses two families of model manifolds. The family X(q), ¢ €
{0,2,4,6,8} are constructed from pairs of homotopy RP?’s by removing tubular neighborhoods
of generators of the fundamental group and gluing along the boundaries. The second family

, d € Ng, are quotients of Brieskorn varieties and will be described in Section 3.2.

2(d), deN i f Briesk ieti d will be described in Section 3.2

THEOREM 2.1. [Sul12]
Let M? be a smooth, orientable, non-spin 5-manifold with 7 (M) = Zy and universal cover
diffeomorphic to S? x S3. Let P C M be a characteristic submanifold.
(1) If mi (M) acts trivially on wo(M), then M is diffeomorphic to X(q) for q € {0,2,4,6,8}
such that [P] = q € QP /+.
(2) If w1 (M) acts non-trivially on wa(M), then M is diffeomorphic to Q}(d) ford € {0,2,4,6,8}
such that [P] = d € QP" /4

2.2. Relative n Invariants. The relative n invariant allows us to distinguish path components
in Meec>0 and MRgic>o. Specifically, the relative 7 invariant is constant on each path component
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of the space of positive scalar curvature metrics on a closed manifold. Here we define the relative
n invariant and present some of its properties. See [Wer21; DGA21; APS75b; Don78] for more
details.

Let Q> ! be a closed spin® manifold with finite fundamental group, Riemannian metric ¢
and a flat connection on the principal U(1) bundle associated to the spin® structure. Let M be
the universal cover of @ with the lifted spin® structure. Let a : 71(Q) — U(k) be a unitary
representation and E, := M X, CF the corresponding flat vector bundle over Q). Let Dg be
the spin® Dirac operator on @, Dg ® E, the twisted spin® Dirac operator, and Dj; the spin®
Dirac operator on M. For a self adjoint elliptic operator D with spectrum {A}, counted with
multiplicity, n(D) := n(0) is the analytic continuation to z = 0 of the function  : C — C,

sign(\)
(2) =2
! A% A

which is analytic when the real part of z is large.
The relative 1 invariant of Q) is defined as

(2.2) Na(Q,9) :==n(Dq ® Eo) — k-n(Dq).

The following result is the key to distinguish path components in the moduli spaces. See [DGA21,
Proposition 3.3] for the proof.

PROPOSITION 2.3. Let Q*"~! be a closed connected spin® manifold, o : m(Q) — U(k) a
unitary representation and E,, the associated flat complex vector bundle. Suppose that the prin-
cipal U(1)-bundle associated to the spin® structure on Q is given a flat connection. Let gy and
g1 be two metrics of scal > 0 which lie in the same path component in Rsea>0(Q). Then

7704(@7 gO) - na(Qa gl) .

By [APST75b, (2-14)], the twisted 7 invariant on ) can be computed in terms of the equivariant
7 invariant of M

(2.4) N(Dq ® Ey) = > ng(Dar) - Xal9)-

M@ =

Here x, is the character of a and the equivariant eta-invariant is defined as ny(Das) = 14(0),
the analytic continuation to z = 0 of

sign(\)tr (g7
ng(z) == Z WA ) (|;|z (g)\ )7
A#0
where the eigenvalues are counted without multiplicity, and gf is the map induced by g on the
eigenspace of D) corresponding to eigenvalue A.

We now discuss how to compute the relative 1 invariant in the context of this paper. Let 12"
be a compact spin® manifold with simply connected boundary M?"~! = 9W. Assume that W is
of product form near the boundary, that is, there is a an neighborhood of M which is isometric
to I x M, for an interval I. Equip the principal U(1) bundle associated to the spin® structure with
a connection which near the boundary is constant in the direction determined by the interval I.
The complex spinor bundle associated to the spin¢ structure on W decomposes as S = ST @ S~.
Let D}, : I'(ST) — T'(S™) be the spin® Dirac operator on W and D) the spin® Dirac operator
on M.

Next, let 7 be an involution on W which is fixed point free on M. Define Q?"~! := M /7 and
let o : Zy — U(1) be the nontrivial unitary representation of the fundamental group of (). By
(2.4)

1(Dq ® Ba) = 5 (n(Dar) — (D)
whereas for the trivial representation we have

1(Dg) = 5 (1(Dar) + e (Da).
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The relative 7 invariant is then given by 7,(Q,g) = —n-(Das).
By Donnelly’s equivariant index theory [Don78]

he (D) + n-(Dur)
2 bl

index(Dw,7) = Z a(N) —
NCWT

where index(Dyw,T) := tr(7|kerDy, ) — tr(T\kETD;V), N is a component of the fixed point set W7,
h-(Dpr) = tr(7|kerD,, ), and a(N) is a so-called local contribution, the integral over N of a
differential form depending on the metric on N and the action of 7 on the normal bundle to N. !

If we assume that the metric on W has scal > 0 everywhere, the connection on the principal
U(1) bundle associated to the spin® structure is flat, and the metrics on M and @ have scal > 0,
then by the usual Lichnerowicz argument (see [Lic63], [LM89], and [APS75b]) it follows that
index(Dyy, ) and h,(Djys) vanish. The relative 7 invariant is then given by

(2.5) Na(Q,9) = —n-(Dn) = =2 Z a(N).

NCWT

The computation of the local contribution depends on the situation and will be given in the
proofs of Lemma 5.2 and Lemma 5.3.

3. FAMILIES OF NONNEGATIVELY CURVED MANIFOLDS

In this section, we describe three families of nonnegatively curved five manifolds satisfying
the hypotheses of Theorem A. We calculate topological invariants of those manifolds, and the
bundles used to describe them, as required for the diffeomorphism classification in Section 4 and
the computation of the relative n invariants in Section 5.

3.1. The fundamental group acts trivially on higher homotopy groups. Given relatively
prime integers k, [, define the homomorphism

ik U(1) — T2, 2+ (zk,zl).

We describe two free actions of T2 on S3 x S3 by isometries of the product of round metrics. To
describe the actions we consider S3 x §3 C C? x C?.

Case I. Let T2 act on S3 x S? by means of the homomorphism

(3.1) T? 5 T?* x T2 cU(2) x U(2)

(z,w) — ((z, z2w), (w,w)).

The action is free. Define B* = S x S3/T2. For integers k,[, where k is odd, [ is even, and
ged(k,l) = 1, define Nl?,l = 93 x $3/i(U(1)). One can use the results of [DeV14] to identify
B* = CP?*#CP? and Nl?,l >~ 62 x 3. N,gl admits a free action by T2 /i (U(1)) = U(1) with
quotient B%. Let cx; € H?(B%,Z) be the first Chern class of the principal U(1) bundle Nl?,l — B4
Let X;;”l = N]?’Z/ZQ be the quotient of Nj; by the action of Zy = {£1} C U(1). Xl?,l admits a
free action by U(1)/Zs = U(1) with quotient BY. The first Chern class of that bundle is 2c .
By O’Neil’s formula, N, ,?71 admits an U(1) invariant Riemmanian metric of nonnegative sectional
and positive scalar curvature which descends to such a metric on X E’l.

IFor the precise definition of the local contribution a(N) see [Don78]. When N is a closed manifold, a(N) is
the integrand in the equivariant index theorem for closed manifolds; see [AS68, §3] and [LM8&9, §I11.14].



MODULI SPACE OF S2 x $3 QUOTIENTS BY INVOLUTIONS 5

Case II. Let T2 act on S x S% by means of the homomorphism

T? - T* x T* CU(2) x U(2)

(z,w) = ((2, zw), (w, 2°w)).

Define B' = S% x S3/T2, N;l = 83 x S3/ix,(U(1)), and Yi,l = NiJ/ZQ exactly as in Case I,
but with this distinct 7?2 action. One can use the results of [DeV14; Tot02] to identify B~ =
CP?#CP? and W;l >~ §2x S3. Let ¢y € H? (§4, Z) be the first Chern class of the principal U (1)
bundle N;l ~ B Again we have a principal U(1) bundle Y;l — Bwith first Chern class 2C -
By O’Neil’s formula, N;l admits an S! invariant Riemmanian metric of nonnegative sectional
and positive scalar curvature which descends to a such a metric on Y;l.

We compute the cohomology rings of B* and B in terms of generators with which it will be
straighforward to identify c,; and ¢ ;. Let p1 and wo denote the first Pontryagin and second
Stiefel-Whitney classes respectively.

LEMMA 3.2.
(1) H*(B*,Z) = Z[u,v]/(u® + uv, v?)
(2) p1(TB*) =0, we(TB*) = v mod 2, and ek = —lu+ kv.
(3) wa kl) =0 and wa(X},) # 0.
(4) H*(B",7Z) = Z[u,v]/(@? +ﬂ17,62+2ﬂ17)
(5) pi(T'B ) = 6u? 'UJQ(TB ) = v mod 2, and c;; = —lu + kv.
(6) w2(Nkl) =0 and w2(Xk:l) # 0.

Proof. Let ¢ : B* — BT? be the classifying map of the bundle 72 — S% x §3 — B* The
sequence of maps S° x §3 — B* — BT? is homotopy equivalent to the fibration
53 x 8% = ET? xp2 (8% x §%) — BT?.

The representation (3.1) is the product of representations

pr:T? = T?CUQ2): (z,w) = (2, 2w)
po:T? = T? CUQ2): (z,w) = (w,w).

For i = 1,2 we have bundle maps

S3x 83 —— ET? xp2 (8% x §3) —— BT?

| ! !

S ———————— FT? x,, S ———— BT?

induced by projections onto the first or second factor of 3 x S3. Let e; be the Euler class of the
sphere bundle ET? x ,, S3 — BT?. Using the spectral sequences of the fibrations above one sees
that ¢* induces an isomorphism

H*(B,Z) = H*(BT?)/(e1, 2).

Let 7 : H*(T?,Z) — H*(BT?,Z) be the transgression of the universal bundle. The weights
of p1 are (1,0) and (1,1) € Hom(Z?,Z) = Hom(m(T?),Z) = HY(T?,Z). By [BH58], e; =
(—7((1,0)))(—=7((1,1))). Let u = —7((1,0)) and v = —7((0,1)). Then e; = u? + uv. Similarly,
the weights of ps are both (0,1) and es = v2. We reuse the notation u, v for their images under
¢*. That completes the proof of statement (1) of the lemma.

It follows immediately that the signature of B is 0, and by Hirzebruch’s signature theorem
p1(TB) = 0. Since wy(TB)? = p1(TB) mod 2, we can further conclude that we(T'B) = v mod 2
or 0. However, B is not spin (this follows from the intersection form) and thus we(7'B) = v mod
2.
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One checks that U(1) — Nj; — B is the U(1)-bundle associated to 7% — S x S® — B by the

representation
T2 5 U®1) : (z,w) — 2z twk

which has weight (—I, k). Let 7, : H*(T?,Z) — H*(B,Z) be the transgression of 7% — $3x 53 —
B. Then again by [BH58] we have c;,; = 74((l, —k))). By naturality of the transgression, 74 = ¢*7,
so ¢y = —lu + kv. Since k is odd and [ is even, v mod 2 is in the kernel of the mod 2 Gysin
sequence for U(1) — Nj; — B, and thus wy(T'Ny;) = 0. By the same argument, the first
Chern class of U(1) — Xj; — B is 2¢,, and the corresponding map in the Gysin sequence is an
isomorphism, so wa (T X} ;) # 0.

The case of B follows similarly, with % and ¥ the images of generators of H*(7?,Z) under minus
the transgression of 7?2 — S x §3 — B. If we orient B such that <U2, [§]> = 1 the cohmology
ring implies that the signature of B is 2. So p1(TB) = 6u? and wy(TB) = v mod 2. The rest of

the lemma follows.
O

We remark that existence of a diffeomorphism between Ny ; or Nk,l and S? x S3 follows im-
mediately from the cohomology and second Stiefel Whitney class, by the work of Smale [Sma62].

3.2. The fundamental group acts non-trivially on higher homotopy groups. The follow-
ing spaces were first studied by Brieskorn [Bri66]. See also [HM68], [Bre72] and [BGO7, Chapter
9] for more details.

Let D® := {z € CY|20)% + |21]2 + |22]? + |23/> < 1} and ST := {z € CY||20|® + |21]® + |22|* +
|z3/2 = 1} be the unit disk and unit sphere in C* respectively. Let f; : C* — C be defined as
fa(z) =28 + 23 + 22 + 22, for d € Ny. For € € R, we define the Brieskorn varieties

W) := D1 f71(e),
M2(d) == S"n £, (e).

For € > 0, W5(d) is a smooth complex manifold with boundary OW5(d) = M?(d), whereas
for € = 0, MJ(d) is a smooth manifold but W¥(d) is a variety with an isolated singular point at
z = 0. M?(d) comes with a natural orientation as a link and is sometimes also called a Brieskorn

manifold. We summarize some properties of these spaces in the following theorem; see [HM68]
and [GT98] for details.

THEOREM 3.3.

(1) W5(d) is homotopy equivalent to a bouquet S®V ...V S3 with d — 1 summands.
(2) For e sufficiently small, M2 (d) is diffeomorphic to M (d).

(3) If d is odd, then M (d) is diffeomorphic to S°.

(4) If d is even, then M§(d) is diffeomorphic to S% x S3.

Cohomogeneity one action. An action of a compact Lie group G on a smooth manifold M
is said to be of cohomogeneity one if the orbit space M /G is one-dimensional (see for example
[AB15, §6.3] for more details on such actions).

For more details on the following cohomogeneity one action, see also [DGA21, §4.2] and
[Gro+06, §1]. Let U(1) x O(3) act on C* in the following way. For (w,A) € U(1) x O(3)
and z € C*, we set

(w, A) - z = (w20, (A(wlzy, whao, wlzz)T)T).
This restricts to an action by Zag x O(3) on W5(d) and M?(d) (e # 0), and by U(1) x O(3) on
W8(d) and M§(d). The action on M (d) is of cohomogeneity one. Indeed, each orbit is uniquely
identified by the value of |z, and the range of |zg| is [0, t], where ¢ is the unique positive solution
to t?4+¢2 = 1. The principal isotropy type, when |z| € (0, 1), is Zy x O(1). The singular isotropy
types are U(1) x O(1) when |z9| = 0 and Zgs x O(2) when |zg| = ¢t. The corresponding singular
orbits are both of codimension two.

Now consider 7 = (1, —Id) € U(1) x O(3). 7 is a holomorphic, orientation preserving involution
on W9(d), acting without fixed points on M3(d) for 0 < e < 1. For 0 < € < 1, the fixed points of
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the action of 7 on W9(d) are p; = (14,0,0,0), 1 < j < d, where )\; is a complex d-root of € for
all j. These isolated fixed points lie in the interior of W¢(d).

We call the quotient manifold Q?(d) := M?(d)/T a Brieskorn quotient. Q°(d) admits an action
by O(3)/(£Id) = SO(3). Some important properties of these quotients are summarized in the
following; see [Bro67] and [GT98].

THEOREM 3.4.
(1) For all € sufficiently small, Q2(d) is diffeomorphic to Q}(d).
(2) For d odd, Q§(d) is homotopy equivalent to RP®.
(3) For d even, m(Q3(d)) acts non-trivially on m2(Q3(d)) = Z, Ho(Q3(d);Z) = 0, and
w2(Qg(d)) # 0.

From now on, we will always assume that d is even, unless otherwise stated.

We can now use the construction of Grove-Ziller [GZ00] to equip Mg (d) with an U(1) x O(3)
invariant metric of nonnegative sectional curvature, which descends to nonnegatively curved
U(1) x SO(3) invariant metric on Q§(d). Using Cheeger deformations, one obtains a metric which
simultaneously has nonnegative sectional and positive scalar curvature on Q5(d) (see [Wer21,
§6.1.4]).

4. DIFFEOMORPHISM TYPES

In this section we identify the diffeomorphism types of the manifolds described in Section 3
using Theorem 2.1. For the family Q}(d), the following is immediate.

LEMMA 4.1. Let M satisfy the hypotheses of Theorem A. Assume further that m (M) acts
non-trivially on mo(M). For some d € {0,2,4,6,8}, M is diffeomorphic to Q3(d + 16k) for all
k € Np.

For the families X ; and X, since Zy C U(1) acts trivially on 72 (Ny;) and, m2(Ny), 71 (Xk1)
and 71 (X,) act trivially on ma(Xy,) and ma(Xy,) respectively. It follows from Lemma 3.2 and
Theorem 2.1 that the diffeomorphism types of X} ; and kal are determined by the cobordism
classes of characteristic submanifolds. Those cobordism classes can in turn be determined by a
result in [Goo20a] using topological invariants of the bundles X ; — B and Yk,l — B.

LEMMA 4.2. Let P C Xi:),z and P C Y;l be a characteristic submanifolds. Identifying Qfm
with Zyg, P and P admit Pint structures such that

[P] = (1 + %) (12 + 2ki) mod 16
and
[Pl = (1+5) (2 +2k0 + 2k?) — ¢ mod 16
where € € {1,—1} is an unknown constant.
Proof. As we saw in the proof of Lemma 3.2, the principal bundle U(1) — Xj; — B has first
Chern class 2c;. Furthermore, since [ is even and k is odd, ¢;; = v mod 2, so wo(T'B) = cj

mod 2. Lemmas 1.5 and 1.7 in [Goo20a] then imply that a characteristic submanifold P C Xy
admits a Pin™ structure such that

(P = (145) (ks [B)) = 5 sign(B).

Using Lemma 3.2 we can orient B such that (uv, B) = 1, and compute <C%,l7 [B]) = —1% — 2Ik.

The formula for [P] follows using the orientation of B such that (u?, [B]) = 1 and sign([B]) = 2.
g

We combine Lemma 4.2 and Theorem 2.1 to prove
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LEMMA 4.3. Let M satisfy the hypotheses of Theorem A. Assume further that w1 (M) acts
trivially on wo(M). Then M is diffeomorphic to either Xy o or Xy 4 for an infinitely many k € 7Z.

Proof. By Theorem 2.1, M is diffeomorphic to X (q) for some ¢ € {0,2,4,6,8}. So we need only
prove the lemma for those manifolds. Applying Lemma 4.2 and Theorem 2.1, we see that for all
rez

X(0) = X 1, X(2) = X0 2134
X(4) = X1 X(6) = Xirioe 14
X(8) = X3, 32
where € is the unkown constant in Lemma 4.2 O

We note that each X (q) is diffeomorphic to infinitely many X;:’ ; or Yi,l with [ different from
2 or 4, but the lists above suffice for our purpose.

5. COMPUTATION OF THE 7) INVARIANTS

In this section, we compute relative 7 invariants for the manifolds Q3(d), X Z,l and YZJ and

prove Theorem A. That proof will utilize the following lemma, which follows arguments of
[DGA21] and [Wer21].

LEMMA 5.1. Let M?"*! be a closed spin® manifold with finite fundamental group m (M) and
a:m(M) — U(k) a unitary representation. Let {M;} be an infinite set of spin® manifolds,
diffeomorphic to M, each equipped with a flat connection on the principal U(1) bundle associated
to the spin® structure. For each i let o : m(M;) — U(k) be a unitary representation which
pulls back to a and g; a nonnegatively curved Riemannian metric on M; with positive scalar
curvature. If {na,(M;, gi)} is infinite, then Msec>0(M) and Mpic>o(M) have infinitely many
path components.

Proof. We first make a reduction to facilitate the proof. Since the connections described in the
lemma are all flat, each spin® structure pulls back to a spin® structure on M with flat associated
U(1) bundle. There are finitely many isomorphism types of such bundles and finitely many spin®
structures corresponding to each type. Thus we can give M a spin® structure such that, restricting
the set {M;} if necessary, we may assume the diffeomorphisms between M and each M; are spin®
structure preserving, without changing the other hypotheses. We equip the principal U(1) bundle
associated to that spin® structure on M with a flat connection.

Next, let H C Diff(M) be the group of diffeomorphisms which preserve « and the spin®
structure. By the previous discussion the orbit of the spin® structure under Diff(M) is finite.
Since (M) is finite, the orbit of « is also finite. Thus H has finite index in Diff(M). It
follows that Msec>0 and MRric>o have infinitely many components if and only if Reee>0(M)/H
and RRpic>0(M)/H respectively have infinitely many components.

For each i reuse the notation g; for the pullback of that metric to M. Since the diffeomorphism
from M to M; is spin® preserving, «; pulls back to «, and any two flat connections on a principal
U(1) over a manifold with finite fundamental group are isomorphic, 1n4(M,g;) = na,(M;, g;).
Denote by [gi], [9;] the images of g;,g; in Reec>0(M)/H. Suppose [g;] and [g;] lie in the same
path component. By Ebin’s slice theorem, there exists a path « : [0,1] = Rgec>0(M) such that
7(0) = g; and and (1) = ¢*g; for some ¢ € H. As demonstrated in [BWO7], if we apply the
Ricci flow for any small positive amount of time to 7y, we obtain a path 7 : [0,1] — RRic>0(M).
Concatenating 4 with the path formed by applying the Ricci flow to g; and ¢*g; we get a path
in Rgcar>0(M) connecting g; and ¢*g;. Thus by Proposition 2.3

N (M, gi) = Na(M, gi) = oM, ¢*g5) = 1a(M, g;) = 1a, (Mj, g;)-

Thus since {7, (M;, gi)} is infinite, the metrics g; must represent infinitely many path compo-
nents of Reec>0(M)/H. The metrics of positive Ricci curvature obtained by applying the Ricci
flow to g; must represent infinitely many components of Rgic~o(M)/H. O



MODULI SPACE OF S2 x $3 QUOTIENTS BY INVOLUTIONS 9

The strategy in [DGA21] applies to compute the relative 7 invariants of Q5(d) (see also
[Wer21]). For e > 0, the coboundary W9(d) comes with a canonical spin® structure induced
by the complex manifold structure. By Theorem 3.3, H?(W5(d),Z) = 0, so the principal U(1)-
bundle associated to the spin® structure is isomorphic to the trivial bundle and admits a flat
connection. M3(d) inherits a spin® structure as the boundary of W9(d). The action of T,
which is holomorphic on W9(d), preserves the spin® structure and induces a spin® structure on
Q%(d) = M?(d)/7. The principal U(1) bundles associated to those spin¢ structures inherit flat
connections from the connection on W95(d). Let « : m(Q%(d)) — U(1) be the nontrivial unitary
representation.

LEMMA 5.2. Let g be an SO(3) invariant metric of positive scalar curvature on Q3(d). Then

1a(@3().9) =~
Proof. The lemma follows by the proof of claim 6.1 in [DGA21]. We give a short summary.
Consider the non-trivial flat line bundle E, = M?(d) x C over Q>(d). One shows using
Cheeger deformations, as described in [Wer21, Proposition 6.1.7], [Wer21, Proposition 7.1.3] and
[DGA21, §5 and pp.22-23]), that g lies in the same path component of Rsea=0(Q5(d)) as a
metric ¢*g., where ¢ : Q3(d) — Q3(d) is a diffeomorphism, and g, is a metric of positive scalar
curvature which lifts to a metric on M5 which in turn extends to a metric of nonnegtive scalar
curvature on W5(d). If we pull back the spin® structure and associated connection with ¢, then
Na(Q3(d), 9) = 1a(Q3(d), ge). ge satisfies the conditions such that the relative 1 invariant is given
by (2.5). 7 has fixed points p1,...,ps € WE(d), and the local contribution of each is a(p;) = %
as computed via the Dolbeault operator in[DGA21, Proposition 3.5] and [Wer21, Proposition
2.3.13], yielding

d
7704(@?(‘0796) = —QZa(pj) = —g.
j=1
g

It remains to compute the relative n invariant for X ;Z”l and Y;l. Let Eg?l — B* be the complex
line bundle associated to the principal U(1) bundle N, l?,l — B%. Let W,g 1 C Egl be the disc bundle,
so OWj,; = Ny The tangent bundle of Wy is the pullback of TB @ Ej;. Since wo(T'B) = cjy
mod 2, Wy is spin. Since W} is simply connected, the spin structure is unique. The action of
—1 €S on Ni, extends to an involution 7 on W} ; which acts as —1 on each D? fiber. Since
the spin structure is unique, the derivative dr acting on the frame bunlde Pso of W lifts to an
isomorphism dr of the Spin bundle Psp,in. Since the fixed point set of 7, which is the zero section
of Wi; — B, has codiminseion two, dr? must be the fiberwise action of —1 (see for instance
[AB68, Proposition 8.46]).

Let Pyy = Wiy x U(1) be the trivial principal U(1) bundle over Wy, equipped with the
trivial connection. Define an isomorphism 7" of Py (1), covering 7, by 7/(x, 2) = (7(x), —2). Then
Pspine = Pspin X7z, Pu(1) = Pso X Py(1) is a spin® structure for W, ; with associated bundle Py -
Here Zg acts on Pspin X Py(1) diagonally by the fiberwise action of £1. Furthermore, we can
define an involution 7" on Pgpipe:

m(p, 2, 2]) = [dr(p), 7(2), i2]
which covers the involution dr x 7" on Pso X Py(1). One checks that 7% =id, so 7" generates a
Zs action on Pspine which covers the Zo action on Wy ; generated by 7.

Pgpine restricts to a spin® structure on N ; on which Zs acts freely, and therefore induces a
spin® structure on Xy ;. Each spin® structure is equipped with a flat connection on the associ-
ated complex line bundle. Identically, the trivial connection on Py (1) induces the same on the
restriction of Py(1) to Ni, which in turn induces a flat connection on the quotient by Zsg, which
is the line bundle over X}, ; associated to the nontrivial representation o : w1 (Xy;) = Zs — U(1).
Using the spin® structure and connections defined in this way we have
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LEMMA 5.3. Let g be an U(1) invariant metric of positive scalar curvature on Xy ;. Let G be
an S' invariant metric of positive scalar curvature on Xy Then

1
Na(Xi1, 9) =+ (I +2Kk1)
- 1
Na(X k1, 9) = £ (241 + 2k1 + 217)

Proof. We give the argument for X ;, the reasoning being identical for Yk,l- See also [Wer21,
Proposition 7.1.5] for more details.

The metric g lifts to an U(1)-invariant metric § on Ni,;. Equip Ni; x D? with the product
of § and a U(1)-invariant metric of nonnegative curvature on D? which is product like near the
boundary. Give W} ; the metric which turns the projection Nj; x D? — Nig X1 D? = Wi
into a Riemannian submersion. This metric is of product form near the boundary, has scal > 0
everywhere and scal > 0 on the boundary. The metric induced on the boundary of W} ; can be
obtained from § by shrinking the U(1) fibers, and induces a metric on X}, ; which lies in the same
component of Rgca1>0(Xk,) as g.

Thus by (2.5), the relative n invariant is given by

noc(Xk,l?g) - —2(1(B4),
where B?* represents the fixed point set of the action of 7 on Wiy, the zero section of the disk
bundle W,Sl — B*. The local contribution is given by?

o(BY) = +i / O A (L) A(BY),
B4

where ¢ is the inclusion of the zero section into the disk bundle, c¢ is the canonical class of the
spin® structure on Wy, A(B%) is the usual Hirzebruch A genus and

. 1 1
Ar(Lg)) = =——————.
w(Lnt) 2i cosh(c,1/2)
Recall that c;; = —lu + kv by Lemma 3.2. Evaluation of the above integral amounts to de-
termining the coefficient of u? in the above polynomial, using the relations uv = —u? and v?

from Lemma 3.2. Note that ¢ = 0 since the corresponding connection is flat. Thus, we obtain
a(B*) = 45 (—1? — 2kl) and the result follows.
O

We can now prove Theorem A. Let M satisfy the hypotheses of Theorem A. If 71 (M) acts
nontrivialy on mo(M), then M is diffeomorphic to Q5(d + 16k) for all k € Ny by Lemma 4.1.
As discussed at the end of Section 3, Q3(d + 16k) admits a U(1) x SO(3) invariant metric gy
of nonnegative sectional and positive scalar curvature to which we can apply Lemma 5.2. Since
Na(Q5(d + 16k), g) = —% — 4k takes infinitely many values, Msec>0(M) and Mgicso(M) have
infinitely many components by Lemma 5.1. If 71 (M) acts trivially on mo(M), by Lemma 4.3,
M is diffeomorphic to either XI?,2 or YZA for infinitely many values of k. In either case, each
manifold admits a U(1) invariant metric of nonnegative sectional and positive scalar curvature
inherited from S x S3. By Lemma 5.3, the relative 7 invariant, computed for those metrics, is a
nontrivial polynomial in k& and again takes infinitely many values. Theorem A then follows from
Lemma 5.1.
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