

1 **RESEARCH ARTICLE**

2 **Title:** Sulfur oxidation and reduction are coupled to nitrogen fixation in the roots of the salt marsh
3 foundation plant *Spartina alterniflora*

4 **Author list:** Rolando, J.L.¹; Kolton, M.^{1,2}; Song, T.¹, Liu, Y.^{1,3}; Pinamang, P.¹, Conrad, R.¹;
5 Morris, J.T.⁴, Konstantinidis, K.T.^{1,5}, Kostka, J.E. ^{1,6,7}

6 **Affiliations:**

7 ¹Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA

8 ²French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion

9 University of the Negev, Beer Sheva, Israel

10 ³The Pennsylvania State University, Department of Civil & Environmental Engineering,
11 University Park, PA, 16802

12 ⁴Belle Baruch Institute for Marine & Coastal Sciences, University of South Carolina, Columbia,
13 SC, 29201

14 ⁵Georgia Institute of Technology, School of Civil and Environmental Engineering, Atlanta, GA
15 30332, USA

16 ⁶Georgia Institute of Technology, School of Earth and Atmospheric Sciences, Atlanta, GA 30332,
17 USA

18 ⁷Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA
19 30332, USA

20

21 **Corresponding author:**

22 Kostka, JE. e-mail: joel.kostka@biology.gatech.edu

23 **Abstract**

24 Heterotrophic activity, primarily driven by sulfate-reducing prokaryotes, has traditionally been
25 linked to nitrogen fixation in the root zone of coastal marine plants, leaving the role of
26 chemolithoautotrophy in this process unexplored. Here, we show that sulfur oxidation coupled to
27 nitrogen fixation is a previously overlooked process providing nitrogen to coastal marine
28 macrophytes. In this study, we recovered 239 metagenome-assembled genomes from a salt marsh
29 dominated by the foundation plant *Spartina alterniflora*, including diazotrophic sulfate-reducing
30 and sulfur-oxidizing bacteria. Abundant sulfur-oxidizing bacteria encode and highly express genes
31 for carbon fixation (*RuBisCO*), nitrogen fixation (*nifHDK*) and sulfur oxidation (oxidative-*dsrAB*),
32 especially in roots stressed by sulfidic and reduced sediment conditions. Stressed roots exhibited
33 the highest rates of nitrogen fixation and expression level of sulfur oxidation and sulfate reduction
34 genes. Close relatives of marine symbionts from the *Candidatus Thiodiazotropha* genus
35 contributed ~30% and ~20% of all sulfur-oxidizing *dsrA* and nitrogen-fixing *nifK* transcripts in
36 stressed roots, respectively. Based on these findings, we propose that the symbiosis between *S.*
37 *alterniflora* and sulfur-oxidizing bacteria is key to ecosystem functioning of coastal salt marshes.

38

39

40

41

42

43

44 **Introduction:**

45 The microbial communities closely associated with plant hosts (i.e., plant microbiota) have
46 received substantial attention due to their role in plant nutrient acquisition, phytohormone
47 synthesis, prevention of soil-borne disease, and detoxification of the rhizosphere and root
48 environment (Bulgarelli et al., 2013; Trivedi et al., 2020). Most plant microbiome studies have
49 been performed in terrestrial ecosystems with an emphasis on agricultural plants (Trivedi et al.,
50 2020). Plant microbiota from vegetated coastal ecosystems (i.e., seagrass meadows, mangroves,
51 and salt marshes) remain understudied, even though they play a key role in global climate
52 regulation and the cycling of major nutrients (Barbier et al., 2011; Duarte et al., 2013). Despite
53 their high ecological value, little is known about how plant-microbe interactions contribute to the
54 functioning of coastal marine ecosystems, their resilience to climate change, and provisioning of
55 ecosystem services.

56 Previous studies have shown that the root zone of coastal marine plants is a hotspot for the cycling
57 of carbon, nitrogen, and sulfur (Gandy and Yoch, 1988; Welsh et al., 1996; Spivak and Reeve,
58 2015; Thomas et al., 2014; Crump et al., 2018; Kolton et al., 2020). Furthermore, sulfate-reducing
59 and sulfur-oxidizing bacteria have been shown to be overrepresented in the core root and
60 rhizosphere microbiome of seagrass and salt marsh plants, including that of the foundation salt
61 marsh plant *Spartina alterniflora* (Cúcio et al., 2016; Rolando et al., 2022). Sulfate reduction, an
62 anaerobic respiration pathway, represents a dominant terminal electron-accepting process coupled
63 to the breakdown of organic matter in marine ecosystems (Kostka et al., 2002; Jørgensen et al.,
64 2019). Evidence from experimental and field research indicates that rhizospheric sulfate-reducing
65 bacteria assimilate photosynthates from *S. alterniflora*, while fueling nitrogen fixation (Gandy and
66 Yoch, 1988; Spivak and Reeve, 2015). Similarly, rates of nitrogen fixation have been closely

67 associated with organic matter degradation mainly by sulfate reduction in seagrass meadows
68 (Capone, 1982; McGlathery et al., 1998; Herbert, 1999; Nielsen et al., 2001; Welsh et al., 1996).
69 Conversely, the oxidation of reduced sulfur compounds is a chemolithotrophic process requiring
70 terminal electron acceptors such as oxygen, nitrate, or oxidized metals. Sulfide is a known
71 phytotoxin, and its belowground oxidation is considered a detoxifying reaction for plants
72 inhabiting coastal marine ecosystems (Lamers et al., 2013). Based only on amplicon sequencing
73 of the 16S rRNA gene, sulfur oxidation coupled with nitrogen fixation was recently hypothesized
74 as an important process for plant growth under sulfidic conditions (Rolando et al., 2022). Nitrogen
75 is often the limiting nutrient for salt marsh plants, and stress from sulfide toxicity and anoxia
76 further impairs root active acquisition of nitrogen (Mendelssohn and Morris, 2000). Close relatives
77 of diazotrophic sulfur-oxidizing symbionts from the *Sedimenticolaceae* family (genus: *Candidatus*
78 *Thiodiazotropha*) have been shown to inhabit the roots of seagrasses and marsh plants in coastal
79 marine ecosystems (Martin et al., 2020a, Rolando et al., 2022). The *Ca. Thiodiazotropha* genus
80 was first discovered as bacterial symbionts of lucinid clams, where they provide both fixed carbon
81 and nitrogen to their animal host by sulfur-mediated chemolithoautotrophy (Petersen et al., 2016;
82 König et al., 2016). Most studies assessing the ecology and function of sulfur chemosymbiosis
83 have been performed within marine invertebrate hosts (Petersen et al., 2016; Osvatic et al., 2021,
84 2023; Lim et al., 2019a, 2019b). Cúcio et al. (2018) binned genomes from four bacterial species
85 associated with seagrass roots, including a chemolithoautotrophic sulfur-oxidizing bacteria.
86 However, none of these genomes harbored genes for nitrogen fixation. Thus, strong evidence is
87 lacking for the coupling of sulfur oxidation with nitrogen fixation in the roots of coastal marine
88 plants due to the fact that the genomes, metabolic potential, and activity of diazotrophic sulfur-
89 oxidizing bacteria have not been characterized. Limited studies have investigated the composition

90 and abundance of sulfur-oxidizing bacteria present in the roots of coastal marine plants. Previous
91 studies relied on microscopy-, DNA/RNA amplicon-based community analyses or independent
92 metagenomic and metatranscriptomic analyses (Thomas et al., 2014; Crump et al., 2018; Cúcio et
93 al., 2018; Martin et al., 2020a; Kolton et al., 2020; Rolando et al., 2022). Because a multi-omics
94 approach has not yet been applied to the roots of coastal plants, genome-wide gene expression
95 profiles of uncultured sulfur-oxidizing bacteria and the coupling of sulfur oxidation with other
96 biogeochemical processes are still to be deciphered. In addition, although the coupling of sulfate
97 reduction to nitrogen fixation is well established in the roots of marine plants, the metabolically-
98 active sulfate-reducers that mediate this process and their metabolic potential have not been
99 explored with a genome-centric approach.

100 Ecosystem models and empirical evidence indicate that climate change is altering the hydrology,
101 biogeochemistry, and plant community composition of coastal wetlands (Guimond et al., et al.,
102 2020; Donnelly and Bertness, 2001; Noyce et al., 2023). Thus, a mechanistic understanding of
103 how environmental perturbations impact plant-microbe interactions will be critical to forecasting
104 the resilience of coastal marine ecosystems to climate change. We hypothesize that beneficial
105 plant-microbe interactions related to plant stress amelioration will be more prevalent in plants
106 experiencing higher levels of salinity, reduced redox conditions, and sulfide toxicity. *S.*
107 *alterniflora*-dominated salt marsh ecosystems represent an ideal natural laboratory in which to
108 study the effects of stress on plant-microbe interactions because steep gradients in plant
109 productivity are formed within short distances (Mendelssohn and Morris, 2000). The productivity
110 gradient is the result of decreased soil redox potential, along with increased salinity and anoxia,
111 extending from vegetated tidal creek banks towards the interior of the marsh (Figure 1). Higher
112 primary productivity is reflected in tall *S. alterniflora* plants (> 80 cm) growing adjacent to tidal

113 creek banks, while smaller plants (< 50 cm) inhabit the interior of the marsh. Furthermore, *S.*
114 *alterniflora* physiological impairment along the stress gradient has been widely studied and
115 evidenced by lower aboveground biomass and photosynthesis rates, decreased leaf area, and
116 reduced energy status for root nitrogen uptake due to root anaerobic metabolism (Giurgevich and
117 Dunn, 1979; Pezeshki and DeLaune, 1988; Mendelssohn and Morris, 2000). Since the root zone
118 of the stressed short phenotype establishes an oxic-anoxic interface conducive for sulfur oxidation,
119 we hypothesize a stronger relationship between plant roots and diazotrophic sulfur
120 chemosymbionts. The present study closely couples biogeochemistry with a multi-omics approach
121 to address the following objectives: (i.), to demonstrate the coupling of sulfur oxidation with
122 nitrogen fixation in the root environment of *S. alterniflora*, (ii.) to evaluate the effect of
123 environmental stress on the assembly, activity, and ecological interactions of the *S. alterniflora*
124 root microbiome, and (iii.) to infer the extent of the interaction between diazotrophic sulfur-cycling
125 bacteria in the roots of coastal marine plants.

126 Here, we present metagenome-assembled genomes (MAGs) from sulfate-reducing and sulfur-
127 oxidizing bacteria that contain and highly express genes for nitrogen fixation in the roots of *S.*
128 *alterniflora*. Further, we reveal that the most dominant and active sulfur-oxidizing bacteria in the
129 *S. alterniflora* root are closely related to lucinid clam symbionts from the *Ca. Thiodiazotropha*
130 genus. A meta-analysis of amplicon datasets from terrestrial and coastal marine ecosystems shows
131 that seagrass meadows, salt marshes and mangroves plants assemble similar root microbiomes,
132 with a high abundance of *Ca. Thiodiazotropha* species. Our results indicate that sulfur oxidation
133 coupled to nitrogen fixation is a previously overlooked global process providing nitrogen to coastal
134 marine ecosystems.

135 **2. Results**

136 2.1 Study site and environmental stress description

137 We studied the root microbiome of the salt marsh foundation species of the US Atlantic and Gulf
138 of Mexico coastlines, *Spartina alterniflora*, at Sapelo Island, GA during the summers of 2018,
139 2019 and 2020. A combination of prokaryotic DNA and RNA quantification, shotgun
140 metagenomics, metatranscriptomics, and rate measurements of nitrogen fixation were performed
141 at two contrasting environmental conditions within three compartments: sediment, rhizosphere and
142 root (Figure 1). The short and tall *S. alterniflora* phenotypes represent the extremes of the plant
143 biomass gradient formed by stress from salinity, sulfide toxicity and anoxia (Figure 1). Four
144 biological replicates per compartment and *S. alterniflora* phenotype were sequenced for both
145 metagenomic and metatranscriptomic analysis. Rhizosphere samples were only used for
146 metagenomic analysis due to limited samples for RNA extractions (Further details regarding
147 sequencing can be found in the Methods section and Supplementary Data File S1).

148 Sediment and root microbiomes showed contrasting diversity, abundance, and functional profiles
149 in both *S. alterniflora* phenotypes. Prokaryotic alpha diversity was greater in the sediment and
150 rhizosphere compared to the root compartment in both *S. alterniflora* phenotypes (Figure 2a).
151 Similarly, quantification of the 16S rRNA gene by qPCR showed statistically lower prokaryotic
152 abundance in root tissue compared to the sediment and rhizosphere (Figure 2a). A stronger barrier
153 for prokaryotic root colonization, evidenced by a steeper decrease in prokaryotic abundance in the
154 rhizosphere-root interface, was observed in the less stressed tall *S. alterniflora* phenotype (Figure
155 2a). Conversely, the root compartment of both *S. alterniflora* phenotypes presented a higher
156 transcript copy number of the prokaryotic 16S rRNA than their sediment counterparts, indicating
157 greater prokaryotic activity in the root zone (Figure 2a). PERMANOVA and principal coordinate
158 analysis of metagenomic and metatranscriptomic functional profiles indicate that environmental

159 stress significantly affected the microbiome's potential and expressed functional repertoire (Figure
160 2b, Supplementary Table S1). Differences in potential and expressed functional metabolism were
161 evidenced in terminal oxidases and biogeochemical pathways in the carbon, nitrogen, and sulfur
162 cycles (Supplementary Figure S1).

163 2.2 Genome-centric multi-omics approach reveals prokaryotic sulfur metabolism is coupled to
164 nitrogen fixation in the roots of a foundation salt marsh plant

165 Using a custom-designed bioinformatics pipeline, we binned 239 metagenome assembled
166 genomes (MAGs). Only MAGs with greater than 50 quality score (QS: Completeness –
167 5*Contamination) were retained. The 16S rRNA gene was binned in 68 of the 239 MAGs
168 (Supplementary Data File S2). MAGs were dereplicated into 160 genomospecies (gsp, plural:
169 gspp) by grouping them according to 95% average nucleotide identity (ANI) (Figure 3). The
170 median percentage of non-eukaryotic short reads mapping back to MAGs was 6% and 22% in the
171 tall and short roots, respectively. High prokaryotic diversity and sequencing of eukaryotic DNA
172 prevented the assembly and binning of a large diversity still to be described in this ecosystem.
173 MAGs were assigned to 19 phyla. Almost half of the recovered genomes were taxonomically
174 affiliated with the *Proteobacteria* or *Desulfobacterota* phyla (Figure 3, further MAGs taxonomic
175 and statistical information in Supplementary Data File S2). Taxonomic novelty was assessed using
176 GTDB-Tk v2.1.0 with the reference database R07-RS207 (Chaumeil et al., 2022). Recovered
177 MAGs included 1 gspp from a previously undescribed order, 10 gspp from undescribed families,
178 52 gspp from undescribed genera, 94 gspp from undescribed species, and only 3 gspp from
179 previously described species. In order to assess the MAGs' genetic potential to perform important
180 biogeochemical functions in the salt marsh environment, we annotated their open reading frames

181 (ORFs) using the eggNOG database, and focused on predicted genes involved in the
182 biogeochemical cycling of carbon, nitrogen, and sulfur (Supplementary Data File S3).

183 A large proportion of binned *Proteobacteria*, including members of the *Ca. Thiodiazotropha*
184 genus, contained genes for nitrogen fixation, carbon fixation through RuBisCO, as well as for
185 dissimilatory sulfur metabolism, and thiosulfate oxidation using the soxABXYZ complex (Figure
186 3). Most MAGs from the *Desulfobacterota* phylum presented genes for dissimilatory metabolism
187 of sulfur, including members of the *Desulfosarcinaceae* family (Figure 3). Because the
188 dissimilatory sulfite reductase enzyme (dsrAB) can function in either sulfur reduction or oxidation,
189 we performed a phylogenetic analysis to identify the dsrAB type encoded in our MAGs. We
190 aligned recovered *dsrAB* genes to a reference alignment (Müller et al., 2015) and annotated the
191 *dsrAB* type based on placement in an approximately-maximum-likelihood phylogenetic tree
192 (Supplementary Figure S2). All *dsrAB* genes retrieved from *Proteobacteria* gspp (*Alpha-* and
193 *Gammaproteobacteria* gspp) were placed within the oxidative type; while *dsrAB* genes recovered
194 from *Acidobacteriota*, *Bacteroidota*, *Chloroflexota*, *Desulfobacterota*, *Gemmatimonadota*, and
195 *Nitrospirota* gspp clustered within the reductive bacterial *dsrAB* type (Supplementary Figures S2,
196 S3).

197 We measured rates of N fixation under oxic and anoxic conditions in sediment, a rhizosphere-root
198 mix, and root samples using the $^{15}\text{N}_2$ stable isotope tracing technique. Rates were measured under
199 oxic and anoxic conditions to capture the oxygen fluctuation experienced by microorganisms in
200 the root-zone of *S. alterniflora*. The two *S. alterniflora* phenotypes exhibited significantly higher
201 N fixation rates in their root tissue compared to the sediment or rhizosphere-root mix under both
202 aerobic and anaerobic conditions (Figure 4a). Root tissue from the stressed short *S. alterniflora*
203 phenotype showed 1.9- and 5.1-times greater N fixation rates than roots of the tall phenotype under

204 aerobic and anaerobic conditions, respectively (Figure 4a). In addition, natural abundance isotopic
205 composition revealed a depletion of $\delta^{15}\text{N}$ in the short phenotype compared to the tall phenotype in
206 all assessed compartments, providing further evidence of greater nitrogen fixation in this zone of
207 the marsh (Figure 4a).

208 We used metagenomic and metatranscriptomic short reads to relate nitrogen fixation activity with
209 multi-omics functional information. Metagenomic and metatranscriptomic reads were functionally
210 annotated using the eggNOG database. We normalized the functional profile of each library to
211 account for differences in sequencing effort and genome size by dividing the count matrix against
212 the median abundance of 10 universal single-copy phylogenetic marker genes as in Salazar et al.
213 (2019). Statistical difference between the normalized gene expression of the nitrogenase gene *nifK*
214 and the oxidative and reductive *dsrA* types was calculated between *S. alterniflora* phenotypes
215 across all compartments. Since gene expression within metabolic pathways was highly correlated,
216 we used *nifK* and *dsrA* as marker genes (Supplementary Figure S4). Even though nitrogen fixation
217 rates were the greatest in the root compartment of the short *S. alterniflora* phenotype, no statistical
218 significance was found in the nitrogenase gene expression between the two phenotypes (Figure
219 4b). Conversely, the root compartment of the short *S. alterniflora* phenotype had the highest
220 normalized transcript abundance of both reductive and oxidative *dsrA* gene types (Figure 4b). To
221 infer which members of the *S. alterniflora* root microbiome contributed the most to nitrogen
222 fixation, as well as to test if nitrogen fixation was coupled to sulfur metabolism, we mapped all
223 metatranscriptomic short reads annotated as *nifK* and *dsrA* back to our MAGs as well as ORFs
224 from assembled but not binned scaffolds. Sulfur-oxidizing *Ca. Thiodiazotropha* unbinned
225 scaffolds and gspp (i.e., dereplicated MAGs) in the short phenotype of *S. alterniflora* contributed
226 approximately 30% and 20% of all oxidative *dsrA* and *nifK* functionally-annotated short reads,

227 respectively (Figure 4c). In addition, the most active sulfur-oxidizing and sulfate-reducing gspp in
228 roots of the short phenotype (gsp 31 and gsp 68) had a positive correlation between nitrogen
229 fixation and sulfur oxidation/reduction gene expression, respectively (Supplementary Figure S5,
230 Supplementary Figure S6). In the tall phenotype, *Desulfosarcinaceae* gsp 134, and unbinned
231 scaffolds from the *Deltaproteobacteria* class and *Desulfatitalea* genus contributed the most
232 transcripts of the reductive *dsrA* gene (Figure 4c). However, in the tall phenotype we were not able
233 to map most *nifK* transcripts to MAGs, due to high diversity preventing assembly and binning.
234 Nevertheless, using short read analysis, we found that the majority of the *nifK* transcripts in the
235 roots of the tall phenotype were assigned to bacteria from the *Desulfobacterota* phylum, while in
236 the short phenotype most *nifK* transcripts were affiliated with bacteria from the
237 *Gammaproteobacteria* class or the *Desulfobacterota* phylum (Supplementary Figure S7).
238 Oxidative *dsrA* transcripts in the roots of the short phenotype were mostly affiliated with the
239 *Gammaproteobacteria* class, while the reductive *dsrA* affiliated mainly with the *Desulfobacterales*
240 and *Desulfovibrionales* orders in both phenotypes (Supplementary Figures S8 and S9). Similarly,
241 16S rRNA amplicon analysis from the same sample set used for metatranscriptomic analysis
242 showed the highest transcript abundance of gammaproteobacterial *Ca. Thiodiazotropha* in the
243 roots of the short *S. alterniflora* phenotype when compared to the sediment of the two phenotypes
244 and root of the tall phenotype (Supplementary Figure S10).

245 2.3 Phylogeny, genetic potential and gene expression of microorganisms enriched in the *S.*
246 *alterniflora* root microbiome

247 To assess the phylogenetic novelty and relation of *Sedimenticolaceae* sulfur-oxidizing MAGs from
248 the present study in comparison to that of marine invertebrate chemosymbionts, we retrieved all
249 publicly available *Sedimenticolaceae* genomes as reported by GTDB release R07-RS207, as well

250 as all *Ca. Thiodiazotropha* spp. analyzed by Osvatic et al. (2023). A maximum-likelihood
251 phylogenetic tree using 382 genes from a 400 universal marker genes database was performed in
252 PhyloPhlAn. The phylogenetic tree used a concatenated alignment containing 14,693 amino-acid
253 positions. We found that *S. alterniflora* root symbionts assigned to the *Ca. Thiodiazotropha* genus
254 and an unknown genus from the *Sedimenticolaceae* family formed a monophyletic clade with
255 lucinid clam chemosymbionts (Figure 5). All recovered MAGs that were phylogenetically related
256 to marine invertebrate chemosymbionts were highly abundant in the root compartment of the *S.*
257 *alterniflora* short phenotype, where sulfidic conditions are found in the marsh environment (Figure
258 1). To conserve phylogenetic coherence, we propose that *S. alterniflora* root symbionts assigned
259 to the *Sedimenticolaceae* family and that formed a monophyletic group with *Ca. Thiodiazotropha*
260 spp. are also members of this genus (Figure 5). All *Ca. Thiodiazotropha* symbionts of *S.*
261 *alterniflora* are distinct species from those previously found in lucinid clam hosts (ANI < 82% for
262 all pairwise comparisons). Out of the 7 recovered *Ca. Thiodiazotropha* gspp, 6 had genes for
263 carbon fixation (*RuBisCO*), 5 had the complete or partial *nifHDK* nitrogenase genes for nitrogen
264 fixation, and all of them harbor the complete or at least partial genes for dissimilatory sulfite
265 reductase (oxidative *dsrAB* type), and sulfur oxidation by the SOX complex (*soxABXYZ*). All of
266 the *Ca. Thiodiazotropha* gspp contained genes for carbon metabolism through the TCA cycle, and
267 only two *Ca. Thiodiazotropha* gspp harbored genes for nitrate reduction (gsp 32 and gsp 33). It is
268 possible, however, that the absence of functional genes in recovered MAGs is due to the
269 incomplete nature of the genomes.

270 We calculated the gene expression profile of the most active *Ca. Thiodiazotropha* gspp (gsp 31
271 and gsp 33), finding that genes for sulfur oxidation through the oxidative *dsrAB*, *soxABXYZ*
272 complex, and cytochrome c oxidase cbb3-type genes, as well as genes for carbon and nitrogen

273 fixation (*RuBisCO* and *nifHDK*) were among the most highly transcribed (Supplementary Data
274 Files S4 and S5). Microaerophilic oxygen reductases (i.e., cytochrome c oxidase cbb3-type and
275 cytochrome bd ubiquinol oxidase) showed higher transcript levels compared to nitrate reductase
276 in gsp 33 (Supplementary Data File S5).

277 We also found that sulfate-reducing MAGs from the *Desulfosarcinaceae* family were enriched in
278 the root compartment of *S. alterniflora* (Supplementary Figure S11). *Desulfosarcinaceae* gspp had
279 contrasting preferences for root colonization, with gsp 68 mostly enriched in the roots of the short
280 phenotype, gsp 134 preferentially enriched in the root of the tall phenotype, and gsp 80 equally
281 abundant in both phenotypes (Supplementary Figure S11). Of the three *Desulfosarcinaceae* gspp,
282 all contained the complete or partial genes for nitrogen fixation, and only gsp 80 did not have the
283 reductive *dsrAB* gene. The most transcribed genes from both gsp 68 and gsp 134 were related to
284 dissimilatory sulfate reduction (*dsrAB* and *aprAB*, Supplementary Data Files S6 and S7).

285 2.4 Plant species from coastal marine ecosystems harbor unique root microbiomes

286 We compiled and curated a 16S rRNA gene amplicon database from root microbiomes comprising
287 2,911 amplicon samples from 56 plant species (complete dataset in Supplementary Data File S8).
288 Our aim was to assess the applicability of our study's findings to global coastal vegetated
289 ecosystems and to compare the assembly of root microbiomes in coastal marine macrophytes to
290 that of well-studied terrestrial plants. We grouped amplicon samples into 4 broad ecosystem types:
291 seagrass meadows, coastal wetlands (i.e., salt marshes and mangroves), freshwater wetlands, and
292 terrestrial ecosystems. Species exchange based on the Bray-Curtis dissimilarity indices was largely
293 explained by ecosystem type, with coastal wetland and seagrass meadow plants clustering together
294 in an NMDS ordination (Figure 6a). PERMANOVA analysis revealed that ecosystem type alone
295 significantly explained 13.2% of the variation of the species exchange between analyzed samples

296 (Supplementary Table S2). Furthermore, to explore two functional guilds that may explain the
297 difference in microbiome assembly among ecosystem types, we assigned putative sulfate reduction
298 and sulfur oxidation functions to our taxonomy table as performed by Rolando et al. (2022).
299 Putative function was inferred based on homology at the genus level with prokaryotic species with
300 known sulfur oxidation or sulfate reduction metabolism (Supplementary Data File S9). We found
301 that the root microbiomes of both seagrass meadow and coastal wetland ecosystems were highly
302 enriched in putative sulfate-reducing and sulfur-oxidizing bacteria (Figure 6b, 6c). Furthermore,
303 we discovered that in both seagrass meadows and coastal wetland ecosystems, amplicons showing
304 high sequence identity to sulfur-oxidizing bacteria with the capability for nitrogen fixation
305 (*Sedimenticolaceae* family: *Ca. Thiodiazotropha* genus) were highly abundant (Supplementary
306 Figure S12). In addition, amplicons showing high sequence identity to sulfate reducers from the
307 *Desulfosarcinaceae* family, particularly those from the genus *Desulfatitalea*, were highly enriched
308 in the roots of coastal wetland plants (Supplementary Figure S12). The taxonomic identity of
309 highly abundant ASVs in the root compartment of coastal marine plants match those of
310 diazotrophic MAGs retrieved from Sapelo Island, GA, such as sulfur oxidizers of the
311 *Sedimenticolaceae* family, and sulfate reducers of the *Desulfosarcinaceae* family.

312 3. Discussion

313 Nitrogen fixation in belowground coastal vegetated ecosystems has been mainly associated with
314 heterotrophy, and particularly with sulfate reduction (Gandy and Yoch, 1988; McGlathery et al.,
315 1998; Herbert, 1999; Nielsen et al., 2001; Welsh et al., 1996). The linkage of sulfate reduction to
316 nitrogen fixation was proposed based on studies quantifying rates of diazotrophy with and without
317 sulfate reduction inhibition by molybdate (Capone, 1982; McGlathery et al., 1998; Nielsen et al.,
318 2001; Welsh et al., 1996). Here, we show that highly-abundant sulfur-oxidizing bacteria in the

319 roots of *S. alterniflora* also encode and highly express genes for nitrogen fixation. Furthermore,
320 the MAG with the highest nitrogenase gene expression in our study is a novel sulfur-oxidizing
321 bacterium from the *Ca. Thiodiazotropha* genus that also showed high expression of sulfur
322 oxidation genes. It is possible that when sulfate reduction was inhibited in previous studies
323 (McGlathery et al., 1998; Nielsen et al., 2001; Welsh et al., 1996), it disrupted the redox cycling
324 of sulfur by impeding the flow of reduced sulfur for bacterial sulfur oxidation. Thus, not only was
325 nitrogen fixation mediated by sulfate-reducing microorganisms inhibited, but also nitrogen
326 fixation coupled to sulfur oxidation was likely impaired. Further evidence supporting the
327 significance of the cycling of sulfur on nitrogen fixation is that members of the
328 *Gammaproteobacteria* class and *Desulfobacterota* phylum contributed the majority of nitrogenase
329 and oxidative/reductive *dsrAB* transcripts in the root compartment of *S. alterniflora*. Previous work
330 employing DNA and RNA amplicons or short read ‘omics analysis in seagrass and other coastal
331 wetland plant species, showed nitrogen fixation genes and their expression to be affiliated with
332 microorganisms closely related to sulfate-reducing and sulfur-oxidizing bacteria (Thomas et al.,
333 2014; Crump, et al. 2018; Kolton et al., 2020). However, very few genomes for these sulfur cycling
334 organisms were available and a genome-centric analysis had not yet been applied. Here, we present
335 MAGs from diazotrophic sulfate-reducing and sulfur-oxidizing bacteria that highly express genes
336 for both nitrogen fixation and dissimilatory sulfur reactions. Thus, we propose that both
337 dissimilatory sulfur reduction and oxidation, and more importantly, the rapid redox cycling of
338 sulfur, stimulate nitrogen fixation in the root environment of *S. alterniflora*. Since we show that
339 coastal wetland plants and seagrasses assemble similar root microbiomes, and macrophyte activity
340 boosts both nitrogen fixation and the cycling of sulfur, this is most likely a common phenomenon

341 in the root zone of coastal marine plants worldwide (Whiting et al., 1986; McGlathery et al., 1998;
342 Welsh et al., 1996; Fahimipour et al., 2017).

343 In most coastal marine ecosystems, water saturated sediments are often depleted in oxygen within
344 the first few millimeter's depth (Jørgensen et al., 2019). Because coastal marine ecosystems are
345 bathed in seawater containing high sulfate concentrations (28 mM), sulfate-reducing
346 microorganisms often perform the terminal step of organic matter decomposition (Jørgensen et al.,
347 2019). Unlike aerobic respiration, energy flow during sulfate reduction is decoupled from the
348 carbon cycle, with most of the free energy conserved in reduced sulfur compounds (Howarth,
349 1984). The chemically stored energy is subsequently released by biotic and abiotic oxidation
350 reactions at oxic-anoxic interfaces coupled to the reduction of electron acceptors (oxygen, nitrate,
351 or oxidized metals) (Howarth, 1984). Surface sediments of vegetated coastal marine ecosystems
352 experience rapid re-oxidation of most reduced sulfur compounds. This process is highly
353 concentrated in the microaerophilic root zone, which serves as a hotspot for the reaction (Holmer
354 et al., 2002; Kristensen and Alongi, 2006; Koop-Jakobsen et al., 2018). Our results showing that
355 the root compartment of coastal marine ecosystems is highly enriched in microorganisms with the
356 capability for both sulfur reduction and oxidation provides further evidence for rapid sulfur cycling
357 in the root zone. Furthermore, to the best of our knowledge, this is the first study to employ a
358 multi-omics approach to reconstruct genomes and determine gene expression of uncultivated
359 sulfate-reducing and sulfur-oxidizing microorganisms living in the roots of coastal wetland plants.
360 Our findings also reveal that genes that catalyze oxidative and reductive reactions in the sulfur
361 cycle along with those of nitrogen fixation are highly transcribed in the root environment,
362 particularly in the stressed *S. alterniflora* phenotype that thrives in a sulfidic environment (Rolando
363 et al. 2022). This is consistent with previous studies of salt marsh and seagrass ecosystems, in

364 which genes of sulfur-oxidation pathways were shown to be highly expressed in the root
365 compartment of *S. alterniflora* and *Zostera* seagrass spp., respectively (Thomas et al. 2014, Crump
366 et al., 2018). Thus, we propose that in contrast to terrestrial ecosystems, coastal marine plants rely
367 on the rapid cycling of sulfur in their root zone for the breakdown of organic matter and recycling
368 of nutrients through sulfate reduction along with the re-oxidation of terminal electron acceptors by
369 sulfur oxidation. Furthermore, we propose that rapid rates of both oxidative and reductive sulfur
370 reactions represent a key mechanism to sustain high rates of energetically-expensive nitrogen
371 fixation in the root zone of coastal wetland and seagrass plants.

372 In this study, we reveal the genomes, phylogeny, function, and gene expression of
373 chemolithoautotrophic symbionts discovered in the roots of *S. alterniflora*. Endosymbionts from
374 the *Ca. Thiodiazotropha* genus were initially discovered living in symbiosis with lucinid clams,
375 where they fix carbon and serve as a source of carbon and nitrogen to the animal host using energy
376 gained from the oxidation of reduced forms of sulfur (Petersen et al., 2016). Recent studies using
377 fluorescence in situ hybridization (FISH) microscopy and SSU rRNA gene metabarcoding have
378 shown that *Ca. Thiodiazotropha* bacteria also inhabit the roots of a diverse array of seagrass species
379 along with that of the coastal cordgrass *S. alterniflora* (Martin et al., 2020a; Rolando et al., 2022).
380 Here, we show that close relatives of diazotrophic sulfur chemosymbionts associated with lucinid
381 clams were highly abundant and active in the roots of *S. alterniflora*. We report genomes and gene
382 expression profiles from *Ca. Thiodiazotropha* retrieved from macrophyte root samples and show
383 that our MAGs formed a monophyletic clade with those from previously described marine
384 invertebrate animals. Similar to what has been reported in their symbiosis with lucinid clams, the
385 *S. alterniflora* symbionts highly expressed genes for sulfur oxidation, carbon fixation, and nitrogen
386 fixation (Petersen et al., 2016; Lim et al., 2019a). However, the presence and expression of genes

387 for glycolysis and the TCA cycle point to a mixotrophic lifestyle, akin to what is observed in their
388 symbiosis with lucinid clams (Petersen et al., 2016; Lim et al., 2021). High expression of high-
389 affinity oxygen reductases, such as the cytochrome c oxidase cbb3-type and cytochrome bd
390 ubiquinol oxidase, may serve as adaptations for oxygen respiration under sulfidic conditions as
391 well as an oxygen scavenging strategy for nitrogen fixation (Dincturk et al., 2011; Borisov et al.,
392 2021). Moreover, the fluctuation of the redox state in the root zone of macrophytes during diel and
393 tidal cycles may influence how *Ca. Thiodiazotropha* gspp partition aerobic and anaerobic
394 metabolic processes (Taillefert et al., 2007; Koop-Jakopsen et al., 2018; Marzocchi et al., 2019).
395 Further investigation is warranted to uncover the biogeography, host specificity, and temporal
396 dynamics of *Ca. Thiodiazotropha* in association with macrophyte roots.

397 Studies of lucinid clams have shown that the *Ca. Thiodiazotropha* symbionts are horizontally
398 transmitted (Petersen and Yuen, 2021). Furthermore, invertebrate colonization by *Ca.*
399 *Thiodiazotropha* symbionts is not restricted by either the host or symbiont species (Lim et al.,
400 2019a). The flexibility of this symbiotic relationship could explain the evolution of *Ca.*
401 *Thiodiazotropha* colonization in macrophyte roots. Previous studies have suggested that the root
402 zone of seagrass species serves as a reservoir of chemosymbionts for marine invertebrates (Cúcio
403 et al., 2018). However, our studied marsh lacks lucinid clams or any marine invertebrate known to
404 harbor bacterial chemosymbionts. Further, application of a genome-centric approach to both
405 macrophyte plant and lucinid clam hosts is needed to better interrogate if chemosymbiont
406 populations are restricted by host biology at the kingdom level (i.e., to either plant or animal hosts),
407 or if symbionts are shared and horizontally transferred between plant and invertebrate species. In
408 contrast to what is observed in lucinid clams, where a single or few bacterial species dominates
409 the gill microbiome; in *S. alterniflora* and seagrass species, *Ca. Thiodiazotropha* spp. do not

410 outcompete other microbial species in the root compartment (Lim et al., 2019a, 2019b). However,
411 the symbionts comprise a large proportion of the microbial community, and are amongst the most
412 active species (Rolando et al., 2022).

413 We propose that the symbiosis between *S. alterniflora* and sulfur-oxidizing bacteria represents a
414 key adaptation supporting the resilience of coastal salt marsh ecosystems to environmental
415 perturbations. Intertidal wetland ecosystems are vulnerable to climate change because they are
416 located in a narrow elevation range determined by tidal amplitude (Morris et al., 2021). The
417 Intergovernmental Panel on Climate Change (IPCC) has projected an increase in sea level between
418 0.38 m and 0.77 m by 2100 (IPCC-AR6, Fox-Kemper et al., 2021). Although coastal wetland
419 ecosystems are dynamic and adapt to sea level rise by increasing sediment accretion rates,
420 ecosystem models predict that a large area of present-day marsh will drown because of accelerated
421 sea level rise (Kirwan et al., 2016). Increased hydroperiods will impact the redox balance of
422 vegetated sediments, imposing more severe anoxia and physiological stress from sulfide toxicity
423 to wetland plants. Under this scenario, a symbiosis of coastal vegetated plants with sulfur-
424 oxidizing bacteria could alleviate sulfide stress while at the same time coupling it to carbon and
425 nitrogen fixation for potential plant uptake. However, the mechanism for carbon and/or nitrogen
426 transfer between sulfur-oxidizing symbionts and the host plants still remains elusive and requires
427 further research. Similar to Thomas et al. (2014), we showed the transcription of sulfur oxidation
428 genes was greater in the stressed *S. alterniflora* short phenotype. In seagrass ecosystems, Martin
429 et al. (2020b) also found that the seagrass root microbiome was more enriched in *Ca.*
430 *Thiodiazotropha* spp. under stress conditions. Thus, we suggest that the *S. alterniflora* – *Ca.*
431 *Thiodiazotropha* symbiosis is an adaptive interaction to anoxic soil conditions, whereby the host
432 plant responds to stress from elevated dissolved sulfide concentrations. Further, we show that the

433 short *S. alterniflora* phenotype, which harbors a greater nitrogenase transcript abundance of *Ca.*
434 Thiodiazotropha chemosymbionts, also displayed the greatest rates of N fixation of all assessed
435 marsh compartments. Stressed plants benefit from the symbiotic relationship through reduced
436 sulfide toxicity and the coupling of sulfide oxidation to nitrogen fixation, with nitrogen likely
437 transferred to the plant host. Conversely, the tall *S. alterniflora* phenotype showed a greater
438 expression of genes involved in the internal cycling of nitrogen, which is consistent with previous
439 studies showing greater rates of nitrogen mineralization in this zone of the ecosystem (Rolando et
440 al., 2022).

441 **4. Methods**

442 4.1 Study site, field sampling and sample processing

443 All field sampling was performed within the United States in the state of Georgia. Sampling was
444 performed with authorization from the Georgia Department of Natural Resources (File:
445 LOP20190067). Specifically, we sampled salt marsh ecosystems within the Georgia Coastal
446 Ecosystem - Long Term Ecological Research (GCE-LTER) site 6, located on Sapelo Island, GA
447 (Lat: 31.389° N, Long: 81.277° W). Four ~100 m transects along the tall to short *Spartina*
448 *alterniflora* gradient were studied in July 2018, 2019, and 2020 (Figure 1, further site description
449 in Rolando et al., 2022). A combination of multi-omics approaches and biogeochemical rate
450 measurements were performed across different salt marsh compartments and phenotypes of *S.*
451 *alterniflora*.

452 The microbiome of *S. alterniflora* was analyzed using shotgun metagenomics from three
453 compartments: sediment, rhizosphere, and root. The tall and short *S. alterniflora* extremes of the
454 four studied transects were sampled (n: 4 transects * 2 *S. alterniflora* phenotypes * 3 compartments

455 = 24). Samples from transects 1 and 2 were collected in July 2018, while those from transects 3
456 and 4 were collected in July 2019. All sampling was performed at the 0-5 cm depth profile. Root-
457 associated samples were washed two times with creek water in the field to remove coarse chunks
458 of sediment attached to the plant. All samples were immediately flash-frozen in an ethanol and dry
459 ice bath, and stored at -80°C until DNA extraction.

460 Samples for metatranscriptomic analysis and biogeochemical rate measurements were collected in
461 July 2020 only from transect 4 to reduce plant disturbance time before flash freezing and
462 incubations, respectively. Five independent plants at least 3 meters apart were sampled with a
463 shovel at the two *S. alterniflora* biomass extremes. Sampling was performed in the morning (~9:00
464 am) during low tide. A 25-cm diameter marsh section including several *S. alterniflora* shoots,
465 undisturbed root system, and sediment was sampled up to at least 20 cm depth and transferred to
466 a 5 gallons bucket. Plant samples were immediately transported to the field lab with no evidence
467 of physiological stress noted after sampling. For each plant, a paired sample of sediment was
468 collected. In the lab, roots were washed with creek water two times. After the first wash, roots with
469 sediment attached were collected and defined as the rhizosphere + root compartment. Live,
470 sediment-free roots were sampled after the second wash and defined as the root compartment. Top
471 5 cm from each sample were homogenized and used for total RNA extractions and measurements
472 of nitrogen fixation rates. Root samples for RNA extractions were washed in an epiphyte removal
473 buffer in ice, as in Simmons et al. (2018). Sediment and root samples for RNA analysis were
474 immediately flash-frozen in an ethanol dry ice bath, and stored at -80 °C until extraction. Total
475 root processing time since washing to flash-freezing was about 1.5 hours due to *S. alterniflora*
476 intertwined root system with plant debris. Due to limited sample amount, we did not prepare
477 rhizosphere libraries for metatranscriptomic analysis.

478 4.2 Nitrogen fixation rates

479 Rates of N fixation were calculated in $^{15}\text{N}_2$ incubations in 14 ml serum vials as in Leppänen et al.
480 (2013). Rate measurements were started at the same day of plant collection, within 8 hours after
481 plant sampling. Rates were measured for all samples under both oxic and anoxic conditions. About
482 2 g, and 1 g of wet weight was used for tracer gas incubations of sediment and root samples,
483 respectively. An additional subsample of 2 g was immediately oven-dried at 60 °C for 72 hours to
484 be used as a pre-incubation control. In all vials containing root samples, 4 ml of autoclaved and
485 0.22 μm filter-sterilized artificial seawater was added to avoid tissue desiccation. No artificial
486 seawater was added to sediment and rhizosphere samples since they were already water-saturated.
487 In anoxic incubations, vials were flushed with N_2 gas for 5 minutes. After sealing all incubation
488 vials, 2.8 ml of gas was removed and immediately replaced with 2.8 ml of $^{15}\text{N}_2$ (98% enriched,
489 Cambridge Isotope Laboratories Inc, USA). Vials were overpressured by adding 0.3 ml of air or
490 N_2 gas in oxic or anoxic incubations, respectively. The incubations were carried out in the dark
491 and at room temperature for 24 hours. At the end of the incubation, samples were oven dried at 60
492 °C for 72 hours, and ground using a PowerGen high throughput homogenizer (Fisherbrand,
493 Pittsburgh, PA). Ground samples were sent to the University of Georgia Center for Applied Isotope
494 Studies (<https://cais.uga.edu/>) for carbon and nitrogen elemental analysis and ^{13}C and ^{15}N stable
495 isotope analysis. Elemental analysis was performed by the micro-Dumas method, while isotopic
496 analysis by isotope ratio mass spectrometry. Rates of ^{15}N incorporation were calculated per dry
497 weight basis (DW) as in Leppänen et al. (2013):

498 N uptake rate (nmol g⁻¹ DW h⁻¹) =

$$499 \frac{\frac{1}{100} \times \frac{\% \text{N}}{100} \times \left[\frac{\text{atom\%}_{\text{sample}} - \text{atom\%}_{\text{control}}}{\text{MW}(\text{N}_2)} \right] \times 10^9 \times \frac{100}{\text{atom\%}_{\text{headspace}}}}{\text{hours}} \quad [1]$$

500 Where %N is the N percent concentration of the oven-dried sample, and MW(N₂) is the molecular
501 weight of N₂ (28.013446).

502 4.3 Nucleic acid extractions and multi-omics library preparation

503 For DNA extractions, compartment separation of the rhizosphere and root microbiomes was
504 performed by sonication in an epiphyte removal buffer, as detailed in Simmons et al. (2018).
505 Extracellular dissolved or sediment-adsorbed DNA was removed from bulk sediment samples
506 according to the Lever et al. (2015) procedure. DNA extractions from all samples were performed
507 using the DNeasy PowerSoil kit (Qiagen, Valencia, CA) following the manufacturer's instructions.
508 Shotgun metagenome sequencing was performed on an Illumina NovaSeq 6000 S4 2x150 Illumina
509 flow cell at the Georgia Tech Sequencing Core (Atlanta, GA).

510 RNA from 4 biological replicates of both the sediment and root compartments from the tall and
511 short phenotypes of *S. alterniflora* was extracted using the ZymoBIOMICS RNA Miniprep (Zymo
512 Research Corp) kit according to the manufacturer's protocol (n: 4 replicates * 2 *S. alterniflora*
513 phenotypes * 2 compartments = 16 samples). Rigorous DNA digestion was done with the TURBO
514 DNase kit (Invitrogen), and eukaryotic mRNA was removed by binding and discarding the
515 eukaryotic mRNA polyA region to oligo d(T)25 magnetic beads (England Biolabs). Finally, rRNA
516 from both plant and prokaryotic organisms was depleted using the QIAseq FastSelect -rRNA Plant,
517 and -5S/16S/23S kits, respectively (Qiagen, Valencia, CA). Metatranscriptomic libraries were
518 sequenced in two lanes of Illumina's NovaSeq 6000 System flow cell utilizing the NovaSeq Xp
519 workflow (SE 120bp) at the Georgia Tech Sequencing Core (Atlanta, GA). We retrieved 203, and
520 415 Gpb of metagenomic and metatranscriptomic raw sequences, respectively; with a median
521 sequencing effort of 7.8, and 25.3 Gbp per metagenomic and metatranscriptomic library
522 (Supplementary Data File S1). After quality control and *in silico* removal of host and rRNA reads,

523 median sequencing effort decreased to 5.2 and 8.3 Gbp per metagenomic and metatranscriptomic
524 library, respectively (Supplementary Data File S1).

525 4.4 Gene and transcript quantification of the prokaryotic 16S rRNA gene

526 Prokaryotic abundance and a proxy of prokaryotic activity were measured by quantitative
527 polymerase chain reaction (qPCR) and Reverse Transcription-qPCR (RT-qPCR) of the SSU rRNA
528 gene, respectively. All samples used for metagenome and metatranscriptome analysis were
529 quantified by qPCR and RT-qPCR, respectively. Samples were analyzed in triplicate using the
530 StepOnePlus platform (Applied Biosystems, Foster City, CA, USA) and PowerUp SYBR Green
531 Master Mix (Applied Biosystems, Foster City, CA, USA). Reactions were performed in a final
532 volume of 20 μ l using the standard primer set for the prokaryotic SSU rRNA gene: 515F (5'-
533 GTGCCAGCMGCCGCGGTAA') and 806R (5'-GGACTACHVGGGTWTCTAAT') (Caporaso
534 et al., 2011, Rolando et al., 2022). To avoid plant plastid and mitochondrial DNA/cDNA
535 amplification from root samples, peptide nucleic acid PCR blockers were added to all qPCR and
536 RT-qPCR reactions at a concentration of 0.75 μ M (Lundberg et al., 2013). Standard calibration
537 curves were performed using a 10-fold serial dilution (10³ to 10⁸ molecules) of standard pGEM-T
538 Easy plasmids (Promega, Madison, WI, USA) containing target sequences from *Escherichia coli*
539 K12. Melting curve analyses was used to check for PCR specificity. Prokaryotic gene and
540 transcript abundance of the SSU rRNA gene were calculated as gene and transcript copy number
541 g⁻¹ of fresh weight, respectively.

542 4.5 Metagenomic and metatranscriptomic quality control

543 Metagenomic and metatranscriptomic raw reads were quality trimmed (quality phred score < 20),
544 and filtered for Illumina artifacts, PhiX, duplicates, optical duplicates, homopolymers, and

545 heteropolymers using JGI's BBTools toolkit v.38.84 (Bushnell, 2014). Reads shorter than 75 bp
546 were removed, and the quality of both metagenomic and metatranscriptomic libraries was assessed
547 with FastQC (Andrews, 2010). Remaining reads were mapped against the only publicly available
548 *S. alterniflora* genome (NCBI BioProject: PRJNA479677) with bowtie2 v.2.4.2 (Langmead and
549 Salzberg, 2012), followed by removal of short reads that aligned to the *S. alterniflora* genome
550 using samtools (parameters: view -u -f 12 -F256, Li et al., 2009). In addition, rRNA reads from
551 metatranscriptomic samples were removed using sortMeRNA v.4.3.4 (Kopylova et al., 2012).
552 Finally, DNA contamination in metatranscriptomic samples was assessed as indicated by Johnston
553 et al. (2019). Short-read transcripts were mapped to all assembled contigs, and strand-specificity
554 (consistency in sense/antisense orientation) was calculated for all genes with more than 100 hits.
555 All assessed samples had a greater than 95% average strand-specificity; thus, considered to be free
556 of DNA contamination (Supplementary Data File S1). Filtered, quality-trimmed, and host-free
557 reads were utilized for subsequent analyses.

558 4.6 Metagenomic and metatranscriptomic short reads functional analysis and nonpareil diversity

559 Short reads from all metagenomic and metatranscriptomic samples were aligned against the
560 eggNOG protein database (release 5.0.2) using eggnog-mapper v.2.1.9 (Cantalapiedra et al., 2021).
561 The DIAMOND tabular outputs were filtered by retrieving only the best hit based on bitscore. Hits
562 with less than 30% identity, less than 30% match of the read length, or that did not match a
563 prokaryotic domain were removed from the analysis. Gene profiles for each metagenomic and
564 metatranscriptomic library were constructed by counting hits of predicted KEGG orthology. Due
565 to differences in sequencing effort and genome size between multi-omics libraries, the count
566 matrixes were normalized by dividing them by their median count of 10 universal single-copy
567 phylogenetic marker genes (K06942, K01889, K01887, K01875, K01883, K01869, K01873,

568 K01409, K03106, and K03110) as in Salazar et al. (2019). Functional gene and transcript profiles
569 were analyzed by principal coordinate analysis utilizing the Bray-Curtis dissimilarity distance.
570 Further, for both metagenomic and metatranscriptomic profiles, multivariate variation of the Bray-
571 Curtis dissimilarity matrix was partitioned to compartment (sediment, rhizosphere, and root) and
572 *S. alterniflora* phenotype, based on a permutational multivariate analysis of variance
573 (PERMANOVA) with 999 permutations performed in vegan v. 2.5.7 (Oksanen et al., 2013). The
574 normalized relative abundance of selected terminal oxidases and genes/transcripts from the carbon,
575 nitrogen, and sulfur cycles were assessed by compartment and *S. alterniflora* phenotype.

576 After removing reads annotated as Eukaryotic by eggnog-mapper, we calculated nonpareil
577 diversity from all metagenomic samples using nonpareil v. 3.401 (Rodriguez-R et al., 2018b).
578 Nonpareil diversity is a metric estimated from the redundancy of whole genome sequencing reads,
579 and has been shown to be closely related to classic metrics of microbial alpha diversity such as the
580 Shannon index.

581 4.7 Recovery of metagenome assembled genomes (MAGs)

582 The following binning approach was motivated by a recently proposed method of iteratively
583 subtracting reads mapping to MAGs, re-assembling, and re-binning metagenomic libraries to
584 increase the number of recovered genomes (Rodriguez-R et al., 2020). An initial assembly using
585 idba-ud v1.1.3 with pre-error-correction for highly uneven sequencing depth was performed for
586 all individual metagenomic libraries (default parameters), as well as co-assemblies grouping
587 libraries from the same *S. alterniflora* phenotype and compartment (--mink 40 --maxk 120 --step
588 20 --min_contig 300) (Peng et al., 2012). The resulting contigs from both individual and co-
589 assemblies were binned using three different algorithms with default options: MaxBin v.2.2.7,
590 MetaBAT v.2.15, and CONCOCT v1.1.0 (Alneberg et al., 2014; Wu et al., 2016; Kang et al.,

591 2019). Recovered bins were dereplicated with DAS Tool v1.1.2 (Sieber et al., 2018), and the output
592 was refined for putative contamination with MAGPurify v2.1.2 (Nayfach et al., 2019).
593 Completeness, contamination, and quality score (Completeness – 5*Contamination) were
594 calculated with MiGA v0.7 (Rodriguez-R et al., 2018a). Recovered MAGs with a quality score
595 less than 50 were considered low quality and discarded. A second round of assembly and binning
596 was performed after discarding short reads that mapped against MAGs. Metagenomic libraries
597 were mapped against MAGs using bowtie2 v2.4.2 with default parameters. Paired reads that
598 mapped against MAGs were discarded using samtools v1.9 (parameters: view -F 2, Li et al., 2009).
599 Filtered metagenomic libraries were co-assembled once again using idba-ud v1.1.3 with pre-error-
600 correction for highly uneven sequencing depth (parameters: --mink 40 --maxk 120 --step 20 --
601 min_contig 300) in four groups: i) tall *S. alterniflora* root, ii) short *S. alterniflora* root, iii) tall *S.*
602 *alterniflora* sediment and rhizosphere, and iv) short *S. alterniflora* sediment and rhizosphere.
603 Binning, MAGs' refinement, and quality control were performed as explained for the first
604 iteration. Finally, MAGs from both iterations were grouped into genomospecies (gspp, singular
605 gsp) by clustering MAGs with ANI > 95% using the MiGA v0.7 derep_wf workflow (Rodriguez-
606 R et al., 2018a). MAGs with the highest quality score were selected as representatives of their gsp,
607 and most downstream analyses were performed with them.

608 Genomospecies relative abundance was estimated for each metagenomic library as in Rodriguez-
609 R et al. (2020). Sequencing depth was calculated per position using bowtie2 v2.4.2 with default
610 parameters (Langmead and Salzberg, 2012), and bedtools genomecov v2.29.2 (parameters: -bga,
611 Quinlan and Hall, 2010). Bedtools output was truncated to keep only the central 80% values, and
612 the mean of all retained positions was calculated using BedGraph.tad.rb from the enveomics
613 collection, a metric defined as TAD₈₀ (truncated average sequencing depth) (Rodriguez-R and

614 Konstantinidis, 2016). Relative abundance of each gsp was calculated by dividing TAD₈₀ by
615 genome equivalents estimated for each metagenomic library with MicrobeCensus v1.1.0 (Nayfach
616 and Pollard, 2015).

617 4.8 MAGs taxonomy, phylogenetic analysis, and gene functional annotation and expression

618 Taxonomic classification of all MAGs was performed by GTDB-Tk v2.1.0 using the reference
619 database GTDB R07-RS207 (Chaumeil et al., 2022). A maximum likelihood phylogenetic tree of
620 all gspp was constructed using a 400 universal marker genes database in PhyloPhlAn v3.0.58
621 (parameters: -d phylophlan, --msa mafft, --trim trimal, --map_dna diamond, --map_aa diamond, -
622 -tree1 iqtree, --tree2 raxml, --diversity high, --fast, Asnicar et al., 2020). The phylogenetic tree was
623 decorated and visualized in ggtree v2.0.4 (Yu et al., 2018).

624 Protein-encoding genes from all binned MAGs were predicted with Prodigal v2.6.3 using default
625 parameters (Hyatt et al., 2010), and resulting amino acid sequences aligned against the eggNOG
626 database (release 5.0.2) using eggNOG-mapper v2.1.9 (Cantalapiedra et al., 2021). The DIAMOND
627 tabular output was filtered by retrieving only the best hit based on bitscore, and removing hits with
628 less than 30% identity and/or less than 50% match length.

629 Metagenomic and metatranscriptomic short reads were mapped against functionally annotated
630 ORFs of all gspp using megablast v2.10.1. Only hits with greater than 95% percent identity and
631 90% read alignment were retained. The roots from the short and tall phenotype had a median of
632 17.4% and 5.4% reads mapping back to the MAGs, respectively. Percent contribution of genes
633 and transcripts to the total microbial community was assessed by dividing the number of hits from
634 each gsp against the total number of functionally annotated short reads (from section 4.7). When
635 assessing the transcript expression profile of a specific gsp, the number of mapped hits per

636 annotated transcript was normalized by dividing it by gene length (bp) and the median abundance
637 of 10 universal single-copy phylogenetic marker genes of the prokaryotic community (K06942,
638 K01889, K01887, K01875, K01883, K01869, K01873, K01409, K03106, and K03110).

639 Finally, since the phylogeny of the *dsrAB* gene allows to discriminate between the oxidative and
640 reductive *dsrAB* types, we aligned all recovered genes from our binned gspp to a reference
641 alignment (Müller et al., 2015) with Clustal Omega v1.2.4 (Sievers et al., 2011), and built an
642 approximately-maximum-likelihood phylogenetic tree with FastTree v2.1.11 (Price et al., 2010).
643 Gene type was inferred based on placement in the phylogenetic tree.

644 **4.9 Non binned scaffold analysis**

645 Scaffold-level analysis from all assemblies and co-assemblies was conducted to enhance the
646 representation of short reads mapping back to the nitrogenase and dissimilatory sulfite reductase
647 genes. Prodigal v2.6.3, with default parameters, was used for predicting ORFs (Hyatt et al., 2010).
648 Functional annotation of predicted ORFs was carried out using eggNOG-mapper v2.1.9 (database
649 release 5.0.2, --pident 30, --query_cover 50, Cantalapiedra et al., 2021). All ORFs annotated as
650 *dsrA* or *nifK* were clustered at 95% nucleotide identity using cd-hit-est v4.8.1 (Li and Godzik,
651 2006). Metatranscriptomic short reads were aligned against the representatives from *dsrA* and *nifK*
652 cd-hit-est clusters using megablast, similar to MAGs ORFs (section 4.8). The taxonomy of ORFs
653 not associated with MAGs was classified at the genus level using kaiju v1.10 against the NCBI-nr
654 database (retrieved on May 10th, 2023) (Menzel et al., 2016). In cases where an ORF was not
655 classified by kaiju, the higher taxonomic classification according to eggNOG-mapper was used.

656 **4.10 Phylogenetic reconstruction of the *Sedimenticolaceae* family**

657 Publicly available genomes from all species from the *Sedimenticolaceae* family, according to
658 GTDB R07-RS207 and all *Candidatus* Thiodiazotropha genomes from the Osvatic et al. (2023)
659 study, were retrieved from NCBI. A full list and characteristics of genomes used for this analysis
660 is found in Supplementary Data File S10. A phylogenetic tree of all retrieved genomes and binned
661 genomes from this study was constructed in PhyloPhlAn v3.0.58 using 382 out of the PhyloPhlAn
662 400 universal marker genes database (parameters: -d phylophlan, --msa mafft, --trim trimal, --
663 map_dna diamond, --map_aa diamond, --tree1 fasttree, --tree2 raxml, --diversity low, --accurate,
664 Asnicar et al., 2020). The phylogenetic tree was decorated and visualized using ggtree v2.0.4 (Yu
665 et al., 2018).

666 4.11 Amplicon analysis of the 16S rRNA

667 RNA extractions performed for quantification of the 16S rRNA (section 4.4) were reverse
668 transcribed using the SuperScript IV First-Strand Synthesis System kit (Invitrogen) following
669 manufacturer instructions. Amplicon sequencing of the 16S rRNA was performed on cDNA as in
670 Rolando et al. (2022). Amplicons were amplified for the 16S rRNA V4 region using primers 515F
671 (5'- GTGYCAGCMGCCGCGGTAA') and 806R (5'- GGACTACNVGGGTWTCTAAT') (Parada
672 et al., 2016; Apprill et al., 2015). Reactions were performed in 5- μ g cDNA template in a solution
673 containing DreamTaq buffer, 0.2 mM dNTPs, 0.5 μ M of each primer, 1.25 U DreamTaq DNA
674 polymerase, and 0.75 μ M of each mitochondrial (mPNA) and plastid (pPNA) peptide nucleic acid
675 (PNA) clamps to reduce plant plastid and mitochondrial cDNA amplification. Amplicons were
676 sequenced on an Illumina MiSeq2000 platform using a 500-cycle v2 sequencing kit (250 paired-
677 end reads) at Georgia Tech Sequencing Core (Atlanta, GA). Cutadapt v3.7 was employed to
678 remove primers from raw fastq files (Martin, 2011). We inferred Amplicon Sequence Variants
679 (ASVs) from quality-filtered reads using DADA2 version 1.10 (Callahan et al., 2016). Chimeric

680 sequences were removed using the removeBimeraDenovo function in DADA2. Taxonomic
681 assignment was performed utilizing the Ribosomal Database Project (RDP) Naive Bayesian
682 Classifier (Wang et al., 2007) in conjunction with the SILVA SSU rRNA reference alignment
683 (Release 138, Quast et al., 2012). The relative abundance of the *Sedimenticolaceae* and
684 *Desulfosarcinaceae* families, as well as *Ca. Thiodiazotropha* and *Desulfatitalea* genera was
685 estimated by plant compartment and *S. alterniflora* phenotype.

686 4.12 Analysis of root microbiomes from contrasting ecosystems

687 Publicly available 16S rRNA gene amplicon datasets, generated from next-generation sequencing,
688 were used to characterize the community assembly of root microbiomes from coastal marine
689 ecosystems. Studies were selected based on google scholar queries using a combination of the
690 following keywords: "salt marsh", "coastal", "wetland", "mangrove", "seagrass", "seabed", "crop",
691 "bog", "plant", "root", "endosphere", "microbial community", "microbiome", "amplicon", "next-
692 generation sequencing", "16S rRNA", and "SSU rRNA", as well as based on the authors prior
693 knowledge. Only studies that collected environmental samples were included (i.e., no greenhouse
694 or plants grown on potting media were included). When available, paired soil/sediment and
695 rhizosphere samples were also retrieved. Twenty-two studies that met our requirements were
696 selected, collecting a total of 2,911 amplicon samples, with 1,182 of them being from the root
697 compartment across 56 different plant species. Selected plants were categorized into 4 different
698 ecosystem types: seagrass meadows, coastal wetlands, freshwater wetlands, and other terrestrial
699 ecosystems. A complete list of selected amplicon samples with accompanying metadata is
700 available in Supplementary Data File S8.

701 Cutadapt v3.7 was used to detect and remove primer sequences from all datasets (Martin, 2011).
702 Primer-free sequences were quality filtered using DADA2's filterAndTrim function [options:

703 `truncLen=c(175,150), maxN=0, maxEE=c(2,2), truncQ=10, rm.phix=TRUE]` (Callahan et al.,
704 2016). Trimmed reads were randomly subsampled to a maximum of 20,000 reads using `seqtk` v.1.3
705 (Li, 2012) and used as input for `dada2` amplicon sequence variant (ASV) calling (Callahan et al.,
706 2016). Chimeras were removed using the `removeBimeraDenovo` function from the `DADA2`
707 package. Taxonomy was assigned to ASVs utilizing the Ribosomal Database Project (RDP) Naive
708 Bayesian Classifier (Wang et al., 2007) against the SILVA SSU rRNA reference alignment
709 [Release 138, (Quast et al., 2012)]. Sequences classified as chloroplast, mitochondrial, and
710 eukaryotic or that did not match any taxonomic phylum were excluded from the dataset. Samples
711 that had less than 5,000 reads were removed at this stage. After all quality filtering steps, we kept
712 on average 13,157 reads from the initial 20,000 subsampled reads per sample (65.8% reads). In
713 order to merge studies from different sequence runs and primer sets, we grouped ASVs at the
714 genus level before merging all studies into a single dataset in `phyloseq` v1.36 (McMurdie and
715 Holmes, 2013). All selected studies targeted the 16S rRNA gene V3-V4 region, with 55% of them
716 using the 515F/806R primer set.

717 Microbial community assembly of the root microbiome was analyzed by performing a non-metric
718 multidimensional scaling (NMDS) ordination utilizing the Bray-Curtis dissimilarity distance.
719 Multivariate variation of the Bray-Curtis dissimilarity matrix was partitioned to ecosystem type,
720 and compartment (soil/sediment, rhizosphere, and root), based on a PERMANOVA with 999
721 permutations performed in `vegan` v2.5.7 (Oksanen et al., 2013). Finally, putative function for
722 sulfate reduction and sulfur oxidation was assigned based on taxonomic identity at the genus level
723 as in Rolando et al. (2022). Taxa with known sulfate reducing and sulfur oxidizing capability is
724 found in Supplementary Data File S9.

725 **Data availability**

726 The raw metagenomic and metatranscriptomic sequences generated in this study have been
727 deposited in the BioProject database (<http://ncbi.nlm.nih.gov/bioproject>) under accession codes
728 PRJNA703972 (<https://www.ncbi.nlm.nih.gov/bioproject/PRJNA703972/>) and PRJNA950121
729 (<https://www.ncbi.nlm.nih.gov/bioproject/PRJNA950121/>), respectively. The metagenome-
730 assembled genomes generated in this study have been deposited in the BioProject database under
731 accession code PRJNA703972 (<https://www.ncbi.nlm.nih.gov/bioproject/PRJNA703972/>). The
732 amplicon 16S rRNA raw reads generated in this study have been deposited in the BioProject
733 database under accession code PRJNA1034039
734 (<https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1034039/>). The nitrogen fixation rates
735 generated in this study have been deposited in a Zenodo repository under accession code 7883423
736 <https://doi.org/10.5281/zenodo.7883423> (Kostka Lab, 2023). All accompanying metadata
737 generated in this study are provided in the Supplementary Data Files and the Zenodo repository
738 (Kostka Lab, 2023).

739 **Code availability**

740 Custom scripts used in the present study are publicly available in a Zenodo repository:
741 <https://doi.org/10.5281/zenodo.7883423>

742 **References:**

- 743 1. Bulgarelli, D., Schlaepi, K., Spaepen, S., Van Themaat, E.V.L., Schulze-Lefert, P., 2013. 744 Structure and functions of the bacterial microbiota of plants. Annual review of plant 745 biology, 64:807-838.
- 746 2. Trivedi, P., Leach, J.E., Tringe, S.G., Sa, T., Singh, B.K., 2020. Plant–microbiome 747 interactions: from community assembly to plant health. Nature reviews microbiology, 748 18:607-621.
- 749 3. Barbier, E.B., Hacker, S.D., Kennedy, C., Koch, E.W., Stier, A.C. and Silliman, B.R., 750 2011. The value of estuarine and coastal ecosystem services. Ecological monographs, 751 81(2), pp.169-193.

752 4. Duarte, C.M., Losada, I.J., Hendriks, I.E., Mazarrasa, I., Marbà, N., 2013. The role of
753 coastal plant communities for climate change mitigation and adaptation. *Nature climate
754 change*, 3:961-968.

755 5. Gandy, E.L., Yoch, D.C., 1988. relationship between nitrogen-fixing sulfate reducers and
756 fermenters in salt marsh sediments and roots of *Spartina alterniflora*. *Applied and
757 Environmental Microbiology*, 54:2031-2036.

758 6. Welsh, D.T., Bourgues, S., de Wit, R., Herbert, R.A., 1996. Seasonal variations in nitrogen-
759 fixation (acetylene reduction) and sulphate-reduction rates in the rhizosphere of *Zostera
760 noltii*: nitrogen fixation by sulphate-reducing bacteria. *Marine Biology*, 125:619-628.

761 7. Spivak, A.C., Reeve, J., 2015. Rapid cycling of recently fixed carbon in a *Spartina
762 alterniflora* system: a stable isotope tracer experiment. *Biogeochemistry*, 125:97-114.

763 8. Thomas, F., Giblin, A.E., Cardon, Z.G., Sievert, S.M., 2014. Rhizosphere heterogeneity
764 shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh
765 sediments. *Frontiers in microbiology*, 5:309.

766 9. Crump, B.C., Wojahn, J.M., Tomas, F., Mueller, R.S., 2018. Metatranscriptomics and
767 amplicon sequencing reveal mutualisms in seagrass microbiomes. *Frontiers in
768 microbiology*, 9:388.

769 10. Kolton, M., Rolando, J.L. and Kostka, J.E., 2020. Elucidation of the rhizosphere
770 microbiome linked to *Spartina alterniflora* phenotype in a salt marsh on Skidaway Island,
771 Georgia, USA. *FEMS Microbiology Ecology*, 96(4), p.fiaa026.

772 11. Cúcio, C., Engelen, A.H., Costa, R., Muyzer, G., 2016. Rhizosphere microbiomes of
773 European seagrasses are selected by the plant, but are not species specific. *Frontiers in
774 microbiology*, 7:440.

775 12. Rolando, J.L., Kolton, M., Song, T., Kostka, J.E., 2022. The core root microbiome of
776 *Spartina alterniflora* is predominated by sulfur-oxidizing and sulfate-reducing bacteria in
777 Georgia salt marshes, USA. *Microbiome*, 10:37.

778 13. Kostka, J.E., Gribsholt, B., Petrie, E., Dalton, D., Skelton, H., Kristensen, E., 2002. The
779 rates and pathways of carbon oxidation in bioturbated saltmarsh sediments. *Limnology
780 and Oceanography*, 47:230-240.

781 14. Jørgensen, B.B., Findlay, A.J., Pellerin, A., 2019. The biogeochemical sulfur cycle of
782 marine sediments. *Frontiers in microbiology*, 10:849.

783 15. Capone, D.G., 1982. Nitrogen fixation (acetylene reduction) by rhizosphere sediments of
784 the eelgrass *Zostera marina*. *Marine Ecology Progress Series*, 10:67-75.

785 16. McGlathery, K.J., Risgaard-Petersen, N., Christensen, P.B., 1998. Temporal and spatial
786 variation in nitrogen fixation activity in the eelgrass *Zostera marina* rhizosphere. *Marine
787 Ecology Progress Series*, 168:245-258.

788 17. Herbert, R.A., 1999. Nitrogen cycling in coastal marine ecosystems. *FEMS microbiology
789 reviews*, 23:563-590.

790 18. Nielsen, L.B., Finster, K., Welsh, D.T., Donelly, A., Herbert, R.A., De Wit, R., Lomstein,
791 B.A., 2001. Sulphate reduction and nitrogen fixation rates associated with roots, rhizomes
792 and sediments from *Zostera noltii* and *Spartina maritima* meadows. *Environmental
793 Microbiology*, 3:63-71.

794 19. Lamers, L.P., Govers, L.L., Janssen, I.C., Geurts, J.J., Van der Welle, M.E., Van Katwijk,
795 M.M., Van der Heide, T., Roelofs, J.G., Smolders, A.J., 2013. Sulfide as a soil
796 phytotoxin—a review. *Frontiers in plant science*, 4:268.

797 20. Mendelssohn, I.A. and Morris, J.T., 2000. Eco-physiological controls on the primary
798 productivity of *Spartina alterniflora*. Concepts and Controversies in Tidal Marsh Ecology,
799 pp.59-80.

800 21. Martin, B.C., Middleton, J.A., Fraser, M.W., Marshall, I.P., Scholz, V.V., Hausl, B. and
801 Schmidt, H., 2020a. Cutting out the middle clam: lucinid endosymbiotic bacteria are also
802 associated with seagrass roots worldwide. The ISME journal, 14:2901-2905.

803 22. Petersen, J.M., Kemper, A., Gruber-Vodicka, H., Cardini, U., Van Der Geest, M.,
804 Kleiner, M., Bulgheresi, S., Mußmann, M., Herbold, C., Seah, B.K., Antony, C.P., 2016.
805 Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen
806 fixation. Nature microbiology, 2:16195.

807 23. König, S., Gros, O., Heiden, S.E., Hinzke, T., Thuermer, A., Poehlein, A., Meyer, S., Vatin,
808 M., Tocny, J., Ponnudurai, R. Daniel, R., 2016. Nitrogen fixation in a chemoaustrophic
809 lucinid symbiosis. Nature microbiology, 2:16193.

810 24. Osvatic, J.T., Wilkins, L.G., Leibrecht, L., Leray, M., Zauner, S., Polzin, J., Camacho, Y.,
811 Gros, O., van Gils, J.A., Eisen, J.A., Petersen, J.M., 2021. Global biogeography of
812 chemosynthetic symbionts reveals both localized and globally distributed symbiont groups.
813 Proceedings of the National Academy of Sciences, 118:e2104378118.

814 25. Osvatic, J.T., Yuen, B., Kunert, M., Wilkins, L., Hausmann, B., Girguis, P., Lundin, K.,
815 Taylor, J., Jospin, G., Petersen, J.M., 2023. Gene loss and symbiont switching during
816 adaptation to the deep sea in a globally distributed symbiosis. The ISME Journal, 17:453-
817 466.

818 26. Lim, S.J., Alexander, L., Engel, A.S., Paterson, A.T., Anderson, L.C., Campbell, B.J.,
819 2019a. Extensive thioautotrophic gill endosymbiont diversity within a single *Ctena*
820 *orbiculata* (Bivalvia: Lucinidae) population and implications for defining host-symbiont
821 specificity and species recognition. MSystems, 4:e00280-19.

822 27. Lim, S.J., Davis, B.G., Gill, D.E., Walton, J., Nachman, E., Engel, A.S., Anderson, L.C.,
823 Campbell, B.J., 2019b. Taxonomic and functional heterogeneity of the gill microbiome in
824 a symbiotic coastal mangrove lucinid species. The ISME journal, 13:902-920.

825 28. Cúcio, C., Overmars, L., Engelen, A.H., Muyzer, G., 2018. Metagenomic analysis shows
826 the presence of bacteria related to free-living forms of sulfur-oxidizing
827 chemolithoautotrophic symbionts in the rhizosphere of the seagrass *Zostera marina*.
828 Frontiers in Marine Science, 5:171.

829 29. Guimond, J.A., Yu, X., Seyfferth, A.L., Michael, H.A., 2020. Using hydrological-
830 biogeochemical linkages to elucidate carbon dynamics in coastal marshes subject to
831 relative sea level rise. Water Resources Research, 56:e2019WR026302.

832 30. Donnelly, J.P., Bertness, M.D., 2001. Rapid shoreward encroachment of salt marsh
833 cordgrass in response to accelerated sea-level rise. Proceedings of the National Academy
834 of Sciences, 98:14218-14223.

835 31. Noyce, G.L., Smith, A.J., Kirwan, M.L., Rich, R.L., Megonigal, J.P., 2023. Oxygen
836 priming induced by elevated CO₂ reduces carbon accumulation and methane emissions in
837 coastal wetlands. Nature Geoscience, 16:63-68.

838 32. Giurgevich, J.R. and Dunn, E.L., 1979. Seasonal patterns of CO₂ and water vapor exchange
839 of the tall and short height forms of *Spartina alterniflora* Loisel in a Georgia salt marsh.
840 Oecologia, 43:139-156.

841 33. Pezeshki, S.R. and DeLaune, R.D., 1988. Carbon assimilation in contrasting streamside
842 and inland *Spartina alterniflora* salt marsh. Vegetatio:55-61.

843 34. Chaumeil, P.A., Mussig, A.J., Hugenholtz, P., Parks, D.H., 2022. GTDB-Tk v2: memory
844 friendly classification with the genome taxonomy database. *Bioinformatics*, 38:5315-5316.

845 35. Müller, A.L., Kjeldsen, K.U., Rattei, T., Pester, M., Loy, A., 2015. Phylogenetic and
846 environmental diversity of DsrAB-type dissimilatory (bi) sulfite reductases. *The ISME
847 journal*, 9:1152-1165.

848 36. Salazar, G., Paoli, L., Alberti, A., Huerta-Cepas, J., Ruscheweyh, H.J., Cuenca, M., Field,
849 C.M., Coelho, L.P., Cruaud, C., Engelen, S., Gregory, A.C., 2019. Gene expression
850 changes and community turnover differentially shape the global ocean
851 metatranscriptome. *Cell*, 179:1068-1083.

852 37. Whiting, G.J., Gandy, E.L., Yoch, D.C., 1986. Tight coupling of root-associated nitrogen
853 fixation and plant photosynthesis in the salt marsh grass *Spartina alterniflora* and carbon
854 dioxide enhancement of nitrogenase activity. *Applied and environmental microbiology*,
855 52:108-113.

856 38. Fahimipour, A.K., Kardish, M.R., Lang, J.M., Green, J.L., Eisen, J.A., Stachowicz, J.J.,
857 2017. Global-scale structure of the eelgrass microbiome. *Applied and environmental
858 microbiology*, 83:e03391-16.

859 39. Howarth, R.W., 1984. The ecological significance of sulfur in the energy dynamics of salt
860 marsh and coastal marine sediments. *Biogeochemistry*, 1:5-27.

861 40. Holmer, M., Gribsholt, B., Kristensen, E., 2002. Effects of sea level rise on growth of
862 *Spartina anglica* and oxygen dynamics in rhizosphere and salt marsh sediments. *Marine
863 Ecology Progress Series*, 225:197-204.

864 41. Kristensen, E., Alongi, D.M., 2006. Control by fiddler crabs (*Uca vocans*) and plant roots
865 (*Avicennia marina*) on carbon, iron, and sulfur biogeochemistry in mangrove sediment.
866 *Limnology and Oceanography*, 51:1557-1571.

867 42. Koop-Jakobsen, K., Mueller, P., Meier, R.J., Liebsch, G., Jensen, K., 2018. Plant-Sediment
868 Interactions in Salt Marshes—An Optode Imaging Study of O₂, pH, and CO₂ Gradients in
869 the Rhizosphere. *Frontiers in plant science*, 9:541.

870 43. Lim, S.J., Davis, B., Gill, D., Swetenburg, J., Anderson, L.C., Engel, A.S., Campbell, B.J.,
871 2021. Gill microbiome structure and function in the chemosymbiotic coastal lucinid
872 *Stewartia floridana*. *FEMS Microbiology Ecology*, 97(4), p.fiab042.

873 44. Dincturk, H.B., Demir, V., Aykanat, T., 2011. *Bd* oxidase homologue of photosynthetic
874 purple sulfur bacterium *Allochromatium vinosum* is co-transcribed with a nitrogen fixation
875 related gene. *Antonie van Leeuwenhoek*, 99:211-220.

876 45. Borisov, V.B., Siletsky, S.A., Paiardini, A., Hoogewijs, D., Forte, E., Giuffre, A., Poole,
877 R.K., 2021. Bacterial oxidases of the cytochrome *bd* family: Redox enzymes of unique
878 structure, function, and utility as drug targets. *Antioxidants & redox signaling*, 34(16),
879 pp.1280-1318.

880 46. Taillefert, M., Neuhuber, S., Bristow, G., 2007. The effect of tidal forcing on
881 biogeochemical processes in intertidal salt marsh sediments. *Geochemical Transactions*,
882 8:1-15.

883 47. Marzocchi, U., Benelli, S., Larsen, M., Bartoli, M. and Glud, R.N., 2019. Spatial
884 heterogeneity and short-term oxygen dynamics in the rhizosphere of *Vallisneria spiralis*:
885 Implications for nutrient cycling. *Freshwater Biology*, 64:532-543.

886 48. Petersen, J.M., Yuen, B., 2021. The symbiotic “all-rounders”: partnerships between
887 marine animals and chemosynthetic nitrogen-fixing bacteria. *Applied and Environmental
888 Microbiology*, 87:e02129-20.

889 49. Morris, J. T., Cahoon, D. R., Callaway, J. C., Craft, C., Neubauer, S. C., Weston, N. B.,
890 2021. Marsh Equilibrium Theory: Implications for Responses to Rising Sea Level. In:
891 FitzGerald, D. M. and Hughes, Z. J. (eds) *Salt Marshes: Function, Dynamics, and*
892 *Stresses*. Cambridge: Cambridge University Press, pp. 157–177.

893 50. Fox-Kemper, B., Hewitt, H.T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S.S., et al. 2021. Ocean, cryosphere and sea level change. In *Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change*, ed. V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan, et al., pp. 1211–362. Cambridge, UK: Cambridge Univ. Press

894 51. Kirwan, M.L., Temmerman, S., Skeehan, E.E., Guntenspergen, G.R., Fagherazzi, S.,
895 2016. Overestimation of marsh vulnerability to sea level rise. *Nature Climate Change*,
896 6:253-260.

897 52. Martin, B.C., Alarcon, M.S., Gleeson, D., Middleton, J.A., Fraser, M.W., Ryan, M.H.,
898 Holmer, M., Kendrick, G.A., Kilminster, K., 2020b. Root microbiomes as indicators of
899 seagrass health. *FEMS Microbiology Ecology*, 96:fiz201.

900 53. Simmons, T., Caddell, D.F., Deng, S., Coleman-Derr, D., 2018. Exploring the root
901 microbiome: extracting bacterial community data from the soil, rhizosphere, and root
902 endosphere. *Journal of visualized experiments: JoVE*, 135.

903 54. Leppänen, S.M., Salemaa, M., Smolander, A., Mäkipää, R., Tirola, M., 2013. Nitrogen
904 fixation and methanotrophy in forest mosses along a N deposition gradient. *Environmental
905 and Experimental Botany*, 90:62-69.

906 55. Lever, M.A., Torti, A., Eickenbusch, P., Michaud, A.B., Šantl-Temkiv, T., Jørgensen,
907 B.B., 2015. A modular method for the extraction of DNA and RNA, and the separation of
908 DNA pools from diverse environmental sample types. *Frontiers in Microbiology* 6:476.

909 56. Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh,
910 P.J., Fierer, N., Knight, R., 2011. Global patterns of 16S rRNA diversity at a depth of
911 millions of sequences per sample. *Proceedings of the national academy of sciences*,
912 108:4516-4522.

913 57. Lundberg, D.S., Yourstone, S., Mieczkowski, P., Jones, C.D., Dangl, J.L., 2013. Practical
914 innovations for high-throughput amplicon sequencing. *Nature methods*, 10:999-1002.

915 58. Bushnell, B., 2014. BBTools software package. URL <http://sourceforge.net/projects/bbmap>.

916 59. Andrews, S., 2010. FastQC: a quality control tool for high throughput sequence data.
917 Available online at: <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>

918 60. Langmead, B., Salzberg S., 2012. Fast gapped-read alignment with Bowtie 2. *Nature
919 Methods*, 9:357-359.

920 61. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis,
921 G., Durbin, R., 2009. The sequence alignment/map format and SAMtools. *Bioinformatics*,
922 25:2078-2079.

923 62. Kopylova, E., Noé, L., Touzet, H., 2012. SortMeRNA: fast and accurate filtering of
924 ribosomal RNAs in metatranscriptomic data. *Bioinformatics*, 28:3211-3217.

925 63. Johnston, E.R., Kim, M., Hatt, J.K., Phillips, J.R., Yao, Q., Song, Y., Hazen, T.C., Mayes,
926 M.A., Konstantinidis, K.T., 2019. Phosphate addition increases tropical forest soil
927 respiration primarily by deconstraining microbial population growth. *Soil Biology and
928 Biochemistry*, 130:43-54.

934 64. Cantalapiedra, C.P., Hernández-Plaza, A., Letunic, I., Bork, P., Huerta-Cepas, J., 2021.
935 eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction
936 at the metagenomic scale. *Molecular biology and evolution*, 38:5825-5829.

937 65. Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin,
938 P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H.,
939 2020. *vegan: Community Ecology Package*. R package version 2.5-7. <https://CRAN.R-project.org/package=vegan>

940 66. Rodriguez-R, L. M., Gunturu, S., Tiedje, J. M., Cole, J. R., Konstantinidis, K. T., 2018b.
941 Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. *MSystems*,
942 3:e00039-18.

943 67. Rodriguez-R, L.M., Tsementzi, D., Luo, C., Konstantinidis, K.T., 2020. Iterative
944 subtractive binning of freshwater chronoseries metagenomes identifies over 400 novel
945 species and their ecologic preferences. *Environmental Microbiology*, 22:3394-3412.

946 68. Peng, Y., Leung, H.C., Yiu, S.M., Chin, F.Y., 2012. IDBA-UD: a de novo assembler for
947 single-cell and metagenomic sequencing data with highly uneven depth. *Bioinformatics*,
948 28:1420-1428.

949 69. Alneberg, J., Bjarnason, B.S., De Bruijn, I., Schirmer, M., Quick, J., Ijaz, U.Z., Lahti, L.,
950 Loman, N.J., Andersson, A.F. and Quince, C., 2014. Binning metagenomic contigs by
951 coverage and composition. *Nature methods*, 11(11), pp.1144-1146.

952 70. Wu, Y.W., Simmons, B.A., Singer, S.W., 2016. MaxBin 2.0: an automated binning
953 algorithm to recover genomes from multiple metagenomic datasets. *Bioinformatics*,
954 32:605-607.

955 71. Kang, D.D., Li, F., Kirton, E., Thomas, A., Egan, R., An, H. and Wang, Z., 2019. MetaBAT
956 2: an adaptive binning algorithm for robust and efficient genome reconstruction from
957 metagenome assemblies. *PeerJ*, 7, p.e7359.

958 72. Sieber, C.M., Probst, A.J., Sharrar, A., Thomas, B.C., Hess, M., Tringe, S.G., Banfield,
959 J.F., 2018. Recovery of genomes from metagenomes via a dereplication, aggregation and
960 scoring strategy. *Nature microbiology*, 3:836-843.

961 73. Nayfach, S., Shi, Z.J., Seshadri, R., Pollard, K.S. and Kyrpides, N.C., 2019. insights from
962 uncultivated genomes of the global human gut microbiome. *Nature*, 568:505-510.

963 74. Rodriguez-R, L.M., Gunturu, S., Harvey, W.T., Rosselló-Mora, R., Tiedje, J.M., Cole,
964 J.R., Konstantinidis, K.T., 2018a. The Microbial Genomes Atlas (MiGA) webserver:
965 taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level.
966 *Nucleic acids research*, 46:W282-W288.

967 75. Quinlan, A.R., Hall, I.M., 2010. BEDTools: a flexible suite of utilities for comparing
968 genomic features. *Bioinformatics*, 26:841-842.

969 76. Rodriguez-R, L.M., Konstantinidis, K.T., 2016. The enveomics collection: a toolbox for
970 specialized analyses of microbial genomes and metagenomes. *PeerJ Prepr* 4: e1900v1.

971 77. Nayfach, S., Pollard, K.S. 2015. Average genome size estimation improves comparative
972 metagenomics and sheds light on the functional ecology of the human microbiome.
973 *Genome Biology*, 16:51.

974 78. Yu, G., Lam, T.T.Y., Zhu, H., Guan, Y., 2018. Two methods for mapping and visualizing
975 associated data on phylogeny using ggtree. *Molecular biology and evolution*, 35:3041-
976 3043.

977

978 79. Hyatt, D., Chen, G.L., LoCascio, P.F., Land, M.L., Larimer, F.W. and Hauser, L.J., 2010.
979 Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC
980 bioinformatics, 11(1), p.119.

981 80. Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam,
982 H., Remmert, M., Söding, J., Thompson, J.D., 2011. Fast, scalable generation of high-
983 quality protein multiple sequence alignments using Clustal Omega. Molecular systems
984 biology, 7:539.

985 81. Price, M.N., Dehal, P.S. and Arkin, A.P., 2010. FastTree 2—approximately maximum-
986 likelihood trees for large alignments. PloS one, 5:e9490.

987 82. Li, W., Godzik, A., 2006. Cd-hit: a fast program for clustering and comparing large sets of
988 protein or nucleotide sequences. Bioinformatics, 22:1658-1659.

989 83. Menzel, P., Ng, K.L., Krogh, A., 2016. Fast and sensitive taxonomic classification for
990 metagenomics with Kaiju. Nature communications, 7:11257.

991 84. Asnicar, F., Thomas, A.M., Beghini, F., Mengoni, C., Manara, S., Manghi, P., Zhu, Q.,
992 Bolzan, M., Cumbo, F., May, U., Sanders, J.G., 2020. Precise phylogenetic analysis of
993 microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nature
994 communications, 11:1-10.

995 85. Parada, A.E., Needham, D.M., Fuhrman, J.A., 2016. Every base matters: assessing small
996 subunit rRNA primers for marine microbiomes with mock communities, time series and
997 global field samples. Environmental microbiology, 18:1403-1414.

998 86. Apprill, A., McNally, S., Parsons, R. and Weber, L., 2015. Minor revision to V4 region
999 SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton.
1000 Aquatic Microbial Ecology, 75:129-137.

1001 87. Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing
1002 reads. EMBnet. journal, 17:10-12.

1003 88. Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P.,
1004 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature
1005 methods, 13:581-583.

1006 89. Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R., 2007. Naive Bayesian classifier for
1007 rapid assignment of rRNA sequences into the bacterial taxonomy. Applied and
1008 environmental microbiology, 73:5261-5267.

1009 90. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner,
1010 F.O., 2012. The SILVA ribosomal RNA gene database project: improved data processing
1011 and web-based tools. Nucleic acids research, 41:D590-D596.

1012 91. Li, H., 2012. seqtk Toolkit for processing sequences in FASTA/Q formats. GitHub.

1013 92. McMurdie, P.J. and Holmes, S., 2013. phyloseq: an R package for reproducible
1014 interactive analysis and graphics of microbiome census data. PloS one, 8:e61217.

1015 93. Kostka Lab. (2023). kostka-lab/Spartina_root_diazotrophy: Data associated with
1016 diazotrophic symbionts of *Spartina alterniflora* (Spartina). Zenodo.
1017 <https://doi.org/10.5281/zenodo.7883423>

1018 **Acknowledgements**

1019 This work was supported in part by an institutional grant (NA18OAR4170084) to the Georgia Sea
1020 Grant College Program from the National Sea Grant Office, National Oceanic and Atmospheric

1021 Administration, US Department of Commerce, and by a grant from the National Science
1022 Foundation (DEB 1754756). Any opinions, findings, and conclusions or recommendations
1023 expressed in this material are those of the authors and do not necessarily reflect the views of the
1024 National Science Foundation.

1025 **Author information**

1026 Contributions

1027 Conceptualization: J.L.R., M.K., J.T.M., and J.E.K. Field sampling and analysis: J.L.R., M.K.,
1028 T.S., Y.L., and J.E.K. Bioinformatic analysis: J.L.R., M.K., P.P., R.C., and K.T.K. Funding
1029 acquisition: J.E.K. Writing—original draft: J.L.R. with inputs from all authors.

1030 Corresponding author

1031 Correspondence to Joel E. Kostka

1032 **Competing Interests Statement**

1033 The authors declare no competing interests.

1034 **Figure Legends**

1035 **Figure 1.** *Spartina alterniflora* biomass gradient as a natural laboratory. A gradient in *S.*
1036 *alterniflora* aboveground biomass is commonly observed with tall plants growing at the levees
1037 next to large tidal creeks and a short phenotype of *S. alterniflora* dominating the interior of the
1038 marsh. Sediments from the tall *S. alterniflora* zone are characterized as a more oxidized
1039 environment with higher levels of iron, coupled nitrification-denitrification as well as higher
1040 rates of organic matter hydrolysis and mineralization. Conversely, sediments from the short
1041 phenotype tend to be more chemically reduced, with higher rates of sulfate reduction, elevated
1042 porewater salinity, and less bioturbation and tidal flushing. Roots from the short *S. alterniflora*
1043 phenotype have been proposed to harbor sulfur-oxidizing bacteria (SOB) that benefit the plant by
1044 detoxifying the root environment.

1045

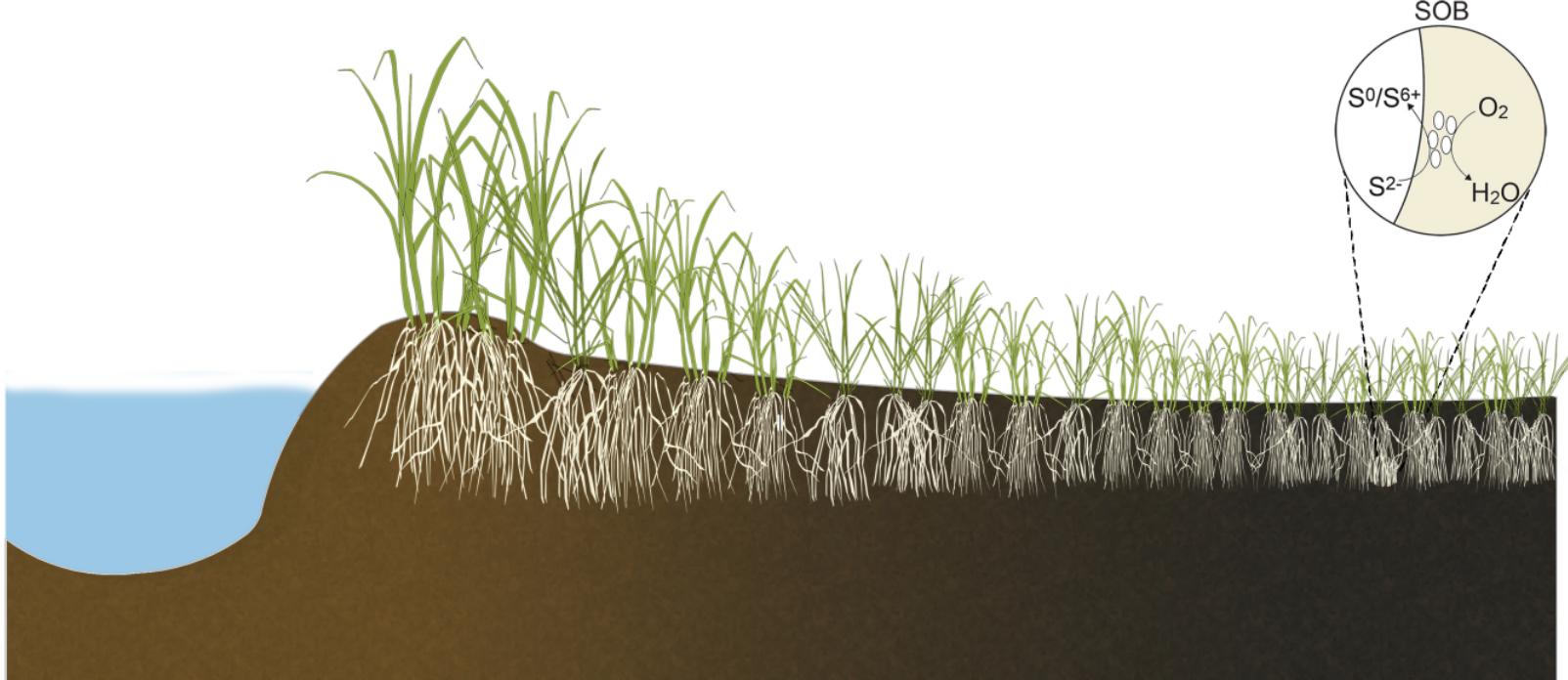
1046 **Figure 2.** Prokaryotic abundance, functional diversity, and activity are determined by *Spartina*
1047 *alterniflora* phenotype and microbiome compartment. Metagenomic nonpareil diversity, 16S
1048 rRNA gene and transcript abundance as quantified by qPCR and RT-qPCR, respectively (n = 4
1049 per compartment and *S. alterniflora* phenotype) (a). Principal coordinate analysis (PCoA)
1050 ordination plot based on the Bray-Curtis dissimilatory index of functional profiles from KEGG
1051 orthology annotations (KO level) of metagenome and metatranscriptome libraries (b). In
1052 boxplots, boxes are defined by the upper and lower interquartile; the median is represented as a
1053 horizontal line within the boxes; whiskers extend to the most extreme data point which is no
1054 more than 1.5 times the interquartile range. Different letter indicates statistical difference based
1055 on pairwise Mann-Whitney tests (two-sided, p-value < 0.05).

1056

1057 **Figure 3.** Phylogenetic reconstruction of 160 dereplicated metagenome assembled genomes
1058 (MAGs, > 50 quality-score) binned from *Spartina alterniflora* sediment, rhizosphere, and root
1059 samples. Outer rim shows the presence/absence of genes for carbon fixation (*RuBisCO*), nitrogen
1060 fixation (*nifHDK*), thiosulfate oxidation (*soxABXYZ*), dissimilatory sulfite reduction/oxidation
1061 (*dsrAB*), nitrification (*amoCAB*), denitrification, and dissimilatory nitrate reduction to
1062 ammonium (DNRA). *Desulfosarcinaceae* and *Candidatus Thiodiazotropha* genospecies are
1063 highlighted within pink and orange polygons, respectively.

1064

1065 **Figure 4.** Drivers and metagenome assembled genomes (MAGs) associated with rates of N
1066 fixation in the salt marsh environment. Rates of N fixation (under anoxic and oxic conditions)
1067 and ^{15}N isotopic natural abundance per microbiome compartment and *Spartina alterniflora*
1068 phenotype (n = 4 per compartment and *S. alterniflora* phenotype) (a). ^{15}N natural abundance was
1069 expressed as the per mille (‰) deviation from air $^{15}\text{N} : ^{14}\text{N}$ ratio ($\delta^{15}\text{N}$). Normalized transcript
1070 relative abundance of the nitrogenase gene (*nifK*), and the reductive and oxidative *dsrA* types per
1071 microbiome compartment and *S. alterniflora* phenotype (b). Percentage contribution of
1072 nitrogenase (*nifK*), reductive, and oxidative types of *dsrA* short read transcripts mapping to the
1073 most active MAGs and open reading frames (ORFs) obtained from unbinned scaffolds (c). In
1074 boxplots, boxes are defined by the upper and lower interquartile; the median is represented as a
1075 horizontal line within the boxes; whiskers extend to the most extreme data point which is no
1076 more than 1.5 times the interquartile range. Statistical significance based on non-parametric
1077 pairwise Mann-Whitney tests (two-sided). n.s. = p-value > 0.05, * p-value < 0.05, ** p-value <
1078 0.01.


1079

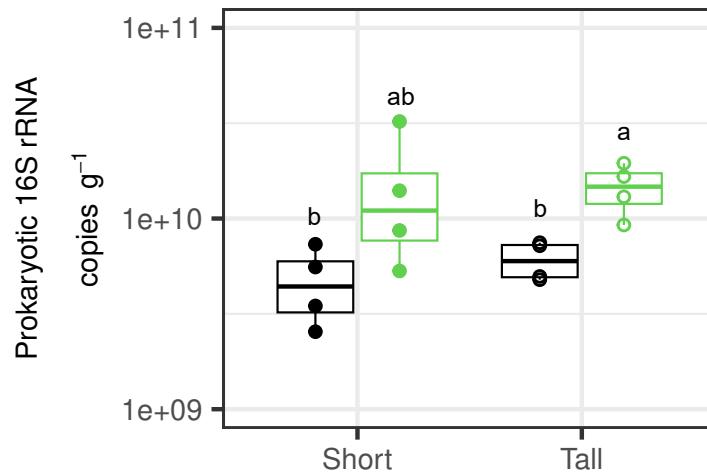
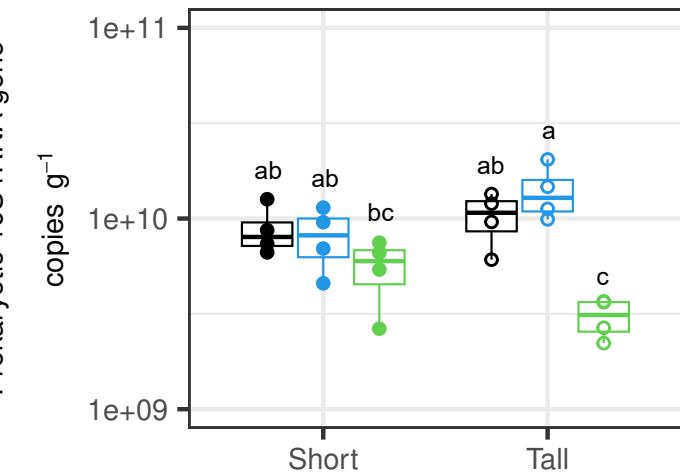
1080 **Figure 5.** Phylogenetic tree of the *Sedimenticolaceae* family. Taxonomic annotation of the
1081 *Candidatus Thiodiazotropha* genus was based on Osvatic et al. (2023). The diagram next to the
1082 species name recognizes genomes recovered as symbionts of eukaryotic organisms. The average
1083 relative abundance of the metagenome assembled genomes (MAGs) from the present study is
1084 shown in the adjacent panels per microbiome compartment and *Spartina alterniflora* phenotype.
1085 Relative abundance was calculated at the DNA-level based on average coverage per position in

1086 metagenomic libraries. Purple sulfur bacteria *Allochromatium vinosum* was used as an outgroup
1087 for the phylogenetic tree.

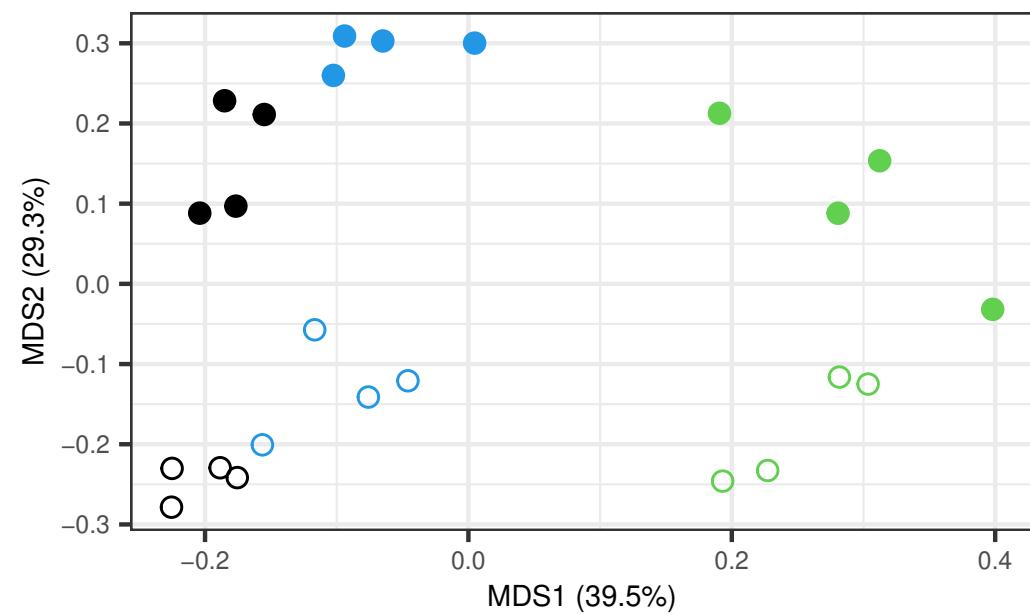
1088

1089 **Figure 6:** Roots from marine influenced ecosystems assemble a distinct microbial community
1090 enriched by bacteria known to conserve energy from sulfur metabolism. Non-metric
1091 multidimensional scaling (NMDS) ordination plot based on the Bray-Curtis dissimilarity index
1092 of root-associated prokaryotic communities at the genus level, colored by ecosystem type (a).
1093 Relative abundance of putative sulfur-oxidizing (b) and sulfate-reducing root bacteria (c) by
1094 ecosystem type. Prokaryotic communities were characterized by analyzing an SSU rRNA gene
1095 amplicon dataset of 1,182 samples assessing roots from 56 plant species. In boxplots, boxes are
1096 defined by the upper and lower interquartile; the median is represented as a horizontal line within
1097 the boxes; whiskers extend to the most extreme data point which is no more than 1.5 times the
1098 interquartile range. Different letter indicates statistical difference based on pairwise Mann-
1099 Whitney tests (two-sided, p-value < 0.05). NMDS stress: 0.10.

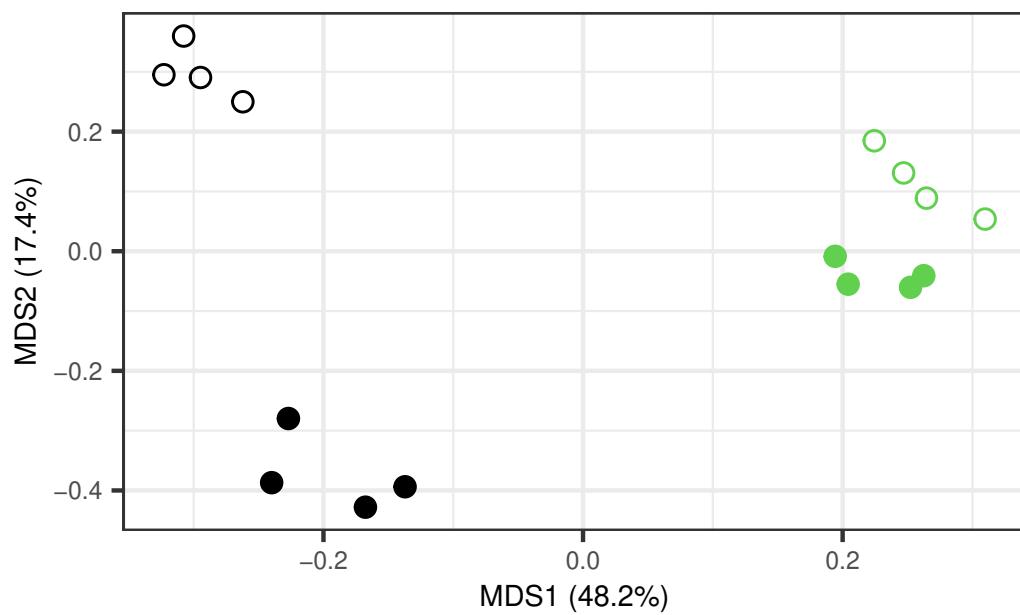
- ↑ Interstitial $[Fe^{2+}]$
- ↑ Rates of Fe^{3+} reduction
- ↑ Bioturbation and tidal flushing
- ↑ Rates of coupled nitrification-denitrification
- ↑ Rates of SOM hydrolysis and mineralization

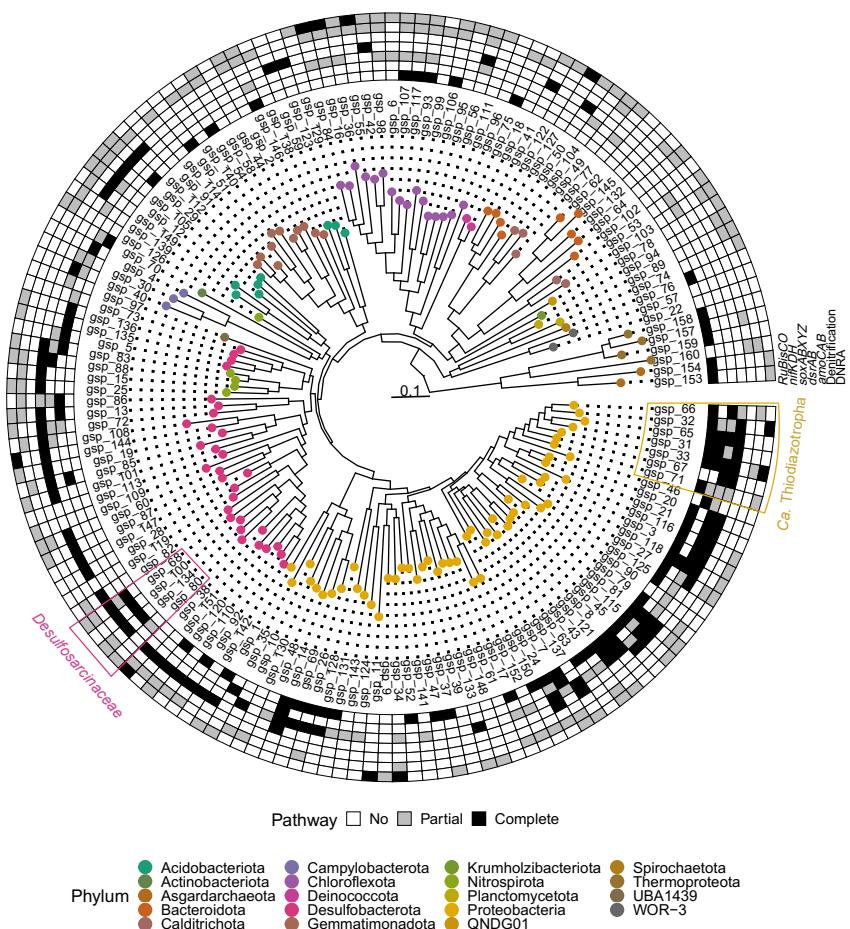


- ↑ Interstitial $[HS^-]$
- ↑ Porewater salinity
- ↑ Rates of SO_4^{2-} reduction

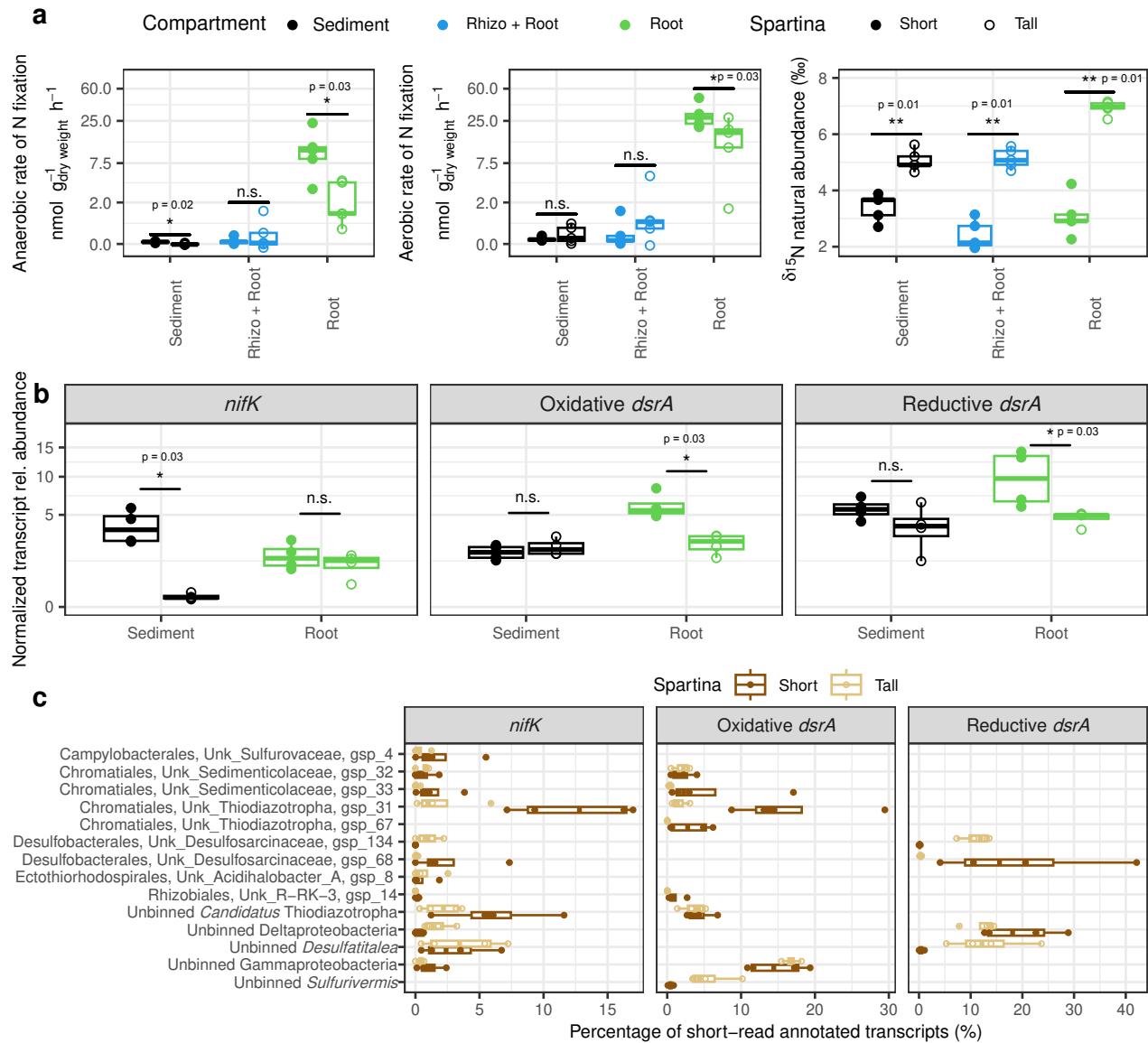
Compartment

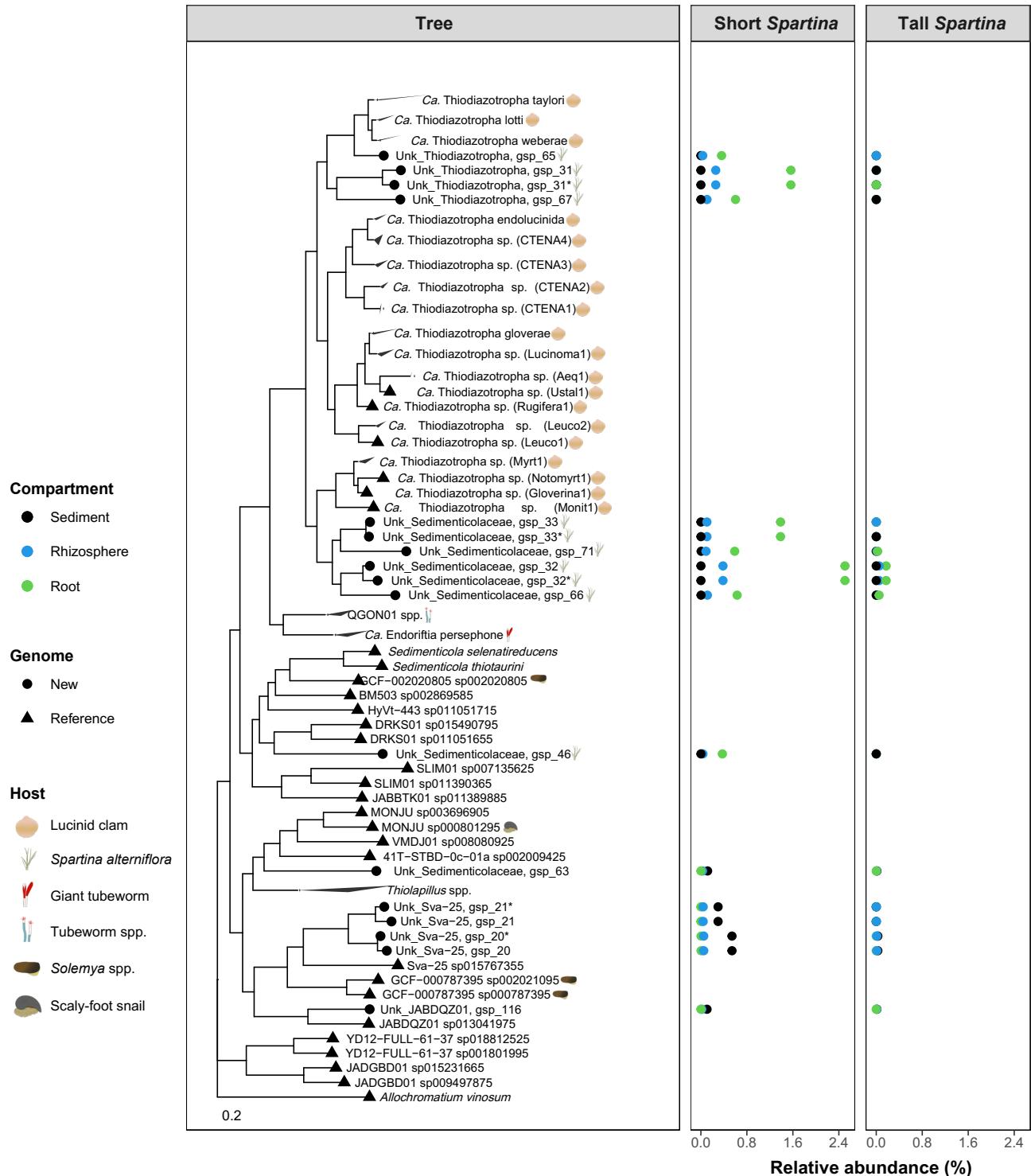


Sediment Rhizosphere Root

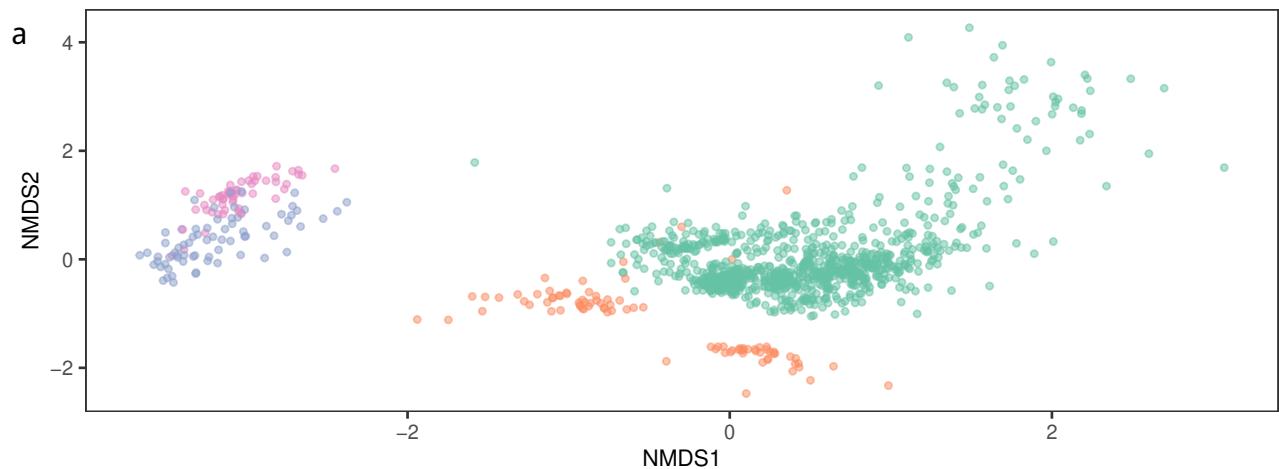

A

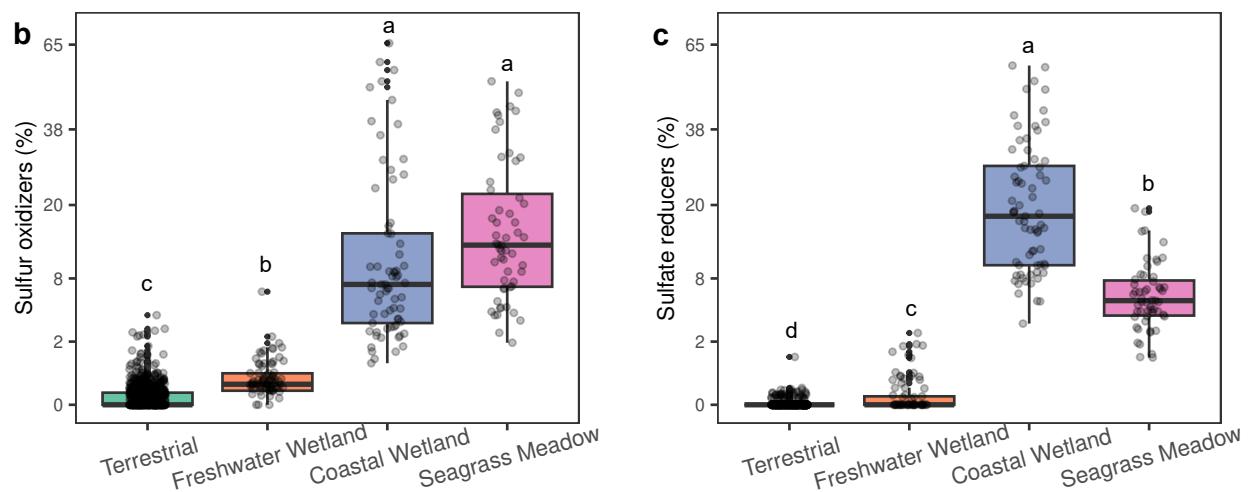



B MetaG



MetaT





● Terrestrial ● Freshwater Wetland ● Coastal Wetland ● Seagrass Meadow

■ Terrestrial ■ Freshwater Wetland ■ Coastal Wetland ■ Seagrass Meadow

