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How to Assess Uncertainty-Aware Frameworks for
Power System Planning?
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Abstract—Computational advances along with the profound
impact of uncertainty on power system investments have mo-
tivated the creation of power system planning frameworks
that handle long-run uncertainty, large number of alternative
plans, and multiple objectives. Planning agencies seek guidance
to assess such frameworks. This article addresses this need
in two ways. First, we augment previously proposed criteria
for assessing planning frameworks by including new criteria
such as stakeholder acceptance to make the assessments more
comprehensive, while enhancing the practical applicability of
assessment criteria by offering criterion-specific themes and
questions. Second, using the proposed criteria, we compare two
widely used but fundamentally distinct frameworks: an ‘agree-
on-plans’ framework, Robust Decision Making (RDM), and an
‘agree-on-assumptions’ framework, centered around Stochastic
Programming (SP). By comparing for the first time head-to-head
the two distinct frameworks for an electricity supply planning
problem under uncertainties in Bangladesh, we conclude that
RDM relies on a large number of simulations to provide ample
information to decision makers and stakeholders, and to facilitate
updating of subjective inputs. In contrast, SP is a highly dimen-
sional optimization problem that identifies plans with relatively
good probability-weighted performance in a single step, but even
with computational advances remains subject to the curse of
dimensionality.

Index Terms—Robust Decision Making, Stochastic Program-
ming, Power System Planning, Deep Uncertainty, Risk Analysis

I. INTRODUCTION

Global investments in generation and transmission assets
are expected at unprecedentedly high rates to enable the
transition to low CO2-emitting electricity systems [1]. Power
system planning procedures facilitate investment decisions by
recommending when to invest in which assets or types of assets
and at what level. In vertically integrated utilities, planning
considers investments in both transmission and generation sub-
ject to regulatory approval; meanwhile in unbundled markets,
grid owners only plan transmission assets, although they also
use supply planning models to project how the market might
respond to policy initiatives and grid reinforcements [2].

In both settings, planning processes help agencies to assess
and compare investments in terms of ‘attributes’ that describe
the performance on objectives that users care about. These
processes usually employ a mathematical model or an en-
semble of such models that estimate attributes of investment
plans under various possible future states of the system and
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the world [3], [4]. These attributes can literally number in the
dozens, encompassing a diverse set of economic, financial,
social, environmental, risk, and other concerns that decision
makers, stakeholders, and regulators have. Crucially, in a
deeply uncertain planning environment, investors try to avoid
near-term commitments that may tie their hands in the future,
and instead prioritize plans that can flexibly adjust to different
possible future environmental, socio-economic, technical, or
policy developments or ‘states’. Thus, plans should be re-
garded as strategies that recognize that investments in later
years will be contingent on future developments [4], [5].

The combination of multiple states of the world and system,
multiple feasible plans at multiple decision stages, and multi-
ple attributes makes planning complex and highly dimensional.
To deal with the complexity of multiple states and stages,
power system planners either ignore long-run uncertainties
and focus on near-term decisions without explicitly consid-
ering alternative ways in which flexibility might be exercised
depending on later developments [6]; or they identify a set of
possible scenarios that describe future states. In the latter case,
they often further simplify the consideration of uncertainty
in one of several ways [7]. These include narrowing the
problem by either focusing on: one scenario at a time to
identify scenario-specific investment plans (this approach is
often called scenario planning) [8]; one fixed plan and estimate
the sensitivity of the plan’s benefits to which scenario is
considered [9]; or a small set of plans under a small set of
scenarios [10]. Similarly, the dimensionality introduced by the
wide range of possible attributes can be reduced by various
means, for instance by limiting the number of attributes or
plans considered or by weighting and combining attributes
into a few aggregate performance indices (e.g., cost versus
environment) or even just one overall utility index [4].

Simplifications such as scenario planning and use of ag-
gregate attribute indices can risk failing to identify invest-
ment plans that could be good compromises among attributes
[11] while providing robustness and flexibility in the face
of uncertain and changing conditions [12], [13]. To address
this risk of failure, several frameworks have been devised
that indeed consider multiple plans, scenarios, and attributes,
and how early decisions constrain later choices or open up
possibilities. Most frameworks start by encouraging planners
to ‘agree’ either on a framework’s assumptions or on the plans
themselves [14]. On one hand, ‘agree-on-assumptions’ frame-
works such as stochastic programming and robust optimization
[15] assume that planners can describe (1) uncertainty through
scenarios or possible ranges for uncertain parameters; (2) plans
by defining a feasible region; (3) preferences for attributes
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through constraints or by using weighting to combine them
into a single decision, or “utility” criterion that is optimized.
On the other hand, ‘agree-on-plans’ frameworks such as
Robust Decision Making assume that planners agree on a
set of discrete candidate plans to consider, but they want to
explore their performance for an assumed scenario space and
alternative decision criteria.

As planning frameworks are enhanced to integrate renew-
able resources and improve resilience, planners, regulators, and
their stakeholders seek guidance for tools and methods. For
instance, in the USA, “utilities in the Partnership for Energy
Sector Climate Resilience note that managers would welcome
additional guidance, tools, and methodologies to help them
move forward” [16]. Meanwhile, in Great Britain (GB), the
Energy System Operator commissioned a study to understand
how their network option assessment process compares to
processes followed by peers and researchers [10].

While both ‘agree-on-assumptions’ and ‘agree-on-plans’
frameworks have significantly advanced in the last decades,
the literature lacks comprehensive reviews and comparisons
of these two frameworks for combined risk/multi-attribute
planning. In particular, literature reviews tend to focus on
advancements in solution approaches and techniques for one
or the other framework type. For instance, Ref [17] provides
an overview of methods and modeling techniques useful for
‘agree-on-assumptions’ frameworks; and Ref. [14] provides a
similar overview of techniques that could be applied within
‘agree-on-plans’ frameworks. Very few articles have compared
different planning frameworks through application on the same
case study. Refs. [18], [19], [20] are such articles, but they only
compare robust vs. probabilistic criteria within one framework
instead of distinct frameworks. The treatment of multiple
objectives has also been the subject of many previous reviews
[21], [22] and some careful comparative applications [4],
but comparisons have not been made of different approaches
for integrated consideration of risk and multiple attributes,
especially in a multistage long-term planning setting.

To address planners’ need for guidance and tools for
uncertainty-aware planning, this article makes two contri-
butions. First, we propose a set of readily applied cri-
teria for holistically assessing frameworks for power sys-
tem planning considering multiplicities of uncertainties, at-
tributes, alternatives, and decision stages. For brevity, we
term these ‘uncertainty-aware frameworks’. Second, this paper
contributes the first comparison of two widely-used planning
frameworks that are fundamentally distinct, representing either
the ‘agree-on-assumptions’ or ‘agree-on-plans’ frameworks.
Regarding the first contribution, we build upon and extend
early work that incorporated uncertainty and risk into power
system planning. In a 1989 World Bank report [23], Crousillat
compared three power system planning methods using a set of
three criteria: (1) modeling capability; (2) practical applicabil-
ity; (3) transparency and contribution to decision making.

The three criteria were proposed as operationally-oriented
and the author noted that the choice of criteria was rather
subjective. Their description was also brief, making it chal-
lenging for potential users to apply them. Moreover, the third
criterion in the original report only refers to the decision

makers themselves and not all interested parties.
Recent research though has emphasized the importance

of stakeholder acceptance of plans and processes. Thus, we
propose a significant revision of the criteria extending the
scope of the third criterion to include stakeholders in addi-
tion to decision makers. Considering that public opposition
could be one of four major reasons why a transition to net
zero energy systems may fail to occur [24], we anticipate a
growing emphasis on planning frameworks that engage with
stakeholders to foster acceptance. Hence, the revised third
criterion will enable planning agencies to carefully distinguish
among various frameworks and assess their suitability for the
planning problem at hand.

Moreover, to facilitate the application of the criteria, we
here expand them by listing thematic areas and specific
questions pertaining to each criterion. By making the criteria
less ambiguous and subjective, we hope to help planners to
apply the three criteria and choose a framework in a consistent
and more easily communicable and defensible manner.

Turning to the second contribution, SP and RDM take very
different approaches to modeling and considering uncertainty
and engaging stakeholders and decision makers in that pro-
cess. Both approaches have been widely applied, although
to different problem domains. SP has seen frequent use in
power system planning research, as well as occasional actual
application to planning and operations of the Brazilian hydro-
dominated power system [25], as well as in many other capital
investment planning problems [26]. Meanwhile, RDM is a
framework that recently has seen common use for planning
water, transportation, and other non-power infrastructure plan-
ning under climate change and other long-run uncertainties
[14]. The World Bank recommends RDM as a framework
for managing deep uncertainties, which describe ‘situations
in which analysts do not know or cannot agree on (1) models
that relate key forces that shape the future, (2) probability
distributions of key variables and parameters in these models,
and/or (3) the value of alternative outcomes’ [27].

Despite the presence of deep uncertainties considering the
future of power technologies, demands and policies, RDM
has heretofore received limited attention for power system
planning. To the best of our knowledge, the only power sector
applications have been for hydropower planning in Africa [28]
and a World Bank application to power supply in Bangladesh
[29], a predecessor to our methodological comparison in
Section IV. The present article conducts, for the first time,
a careful head-to-head comparison of RDM and SP-centered
frameworks in the context of a power planning study; this
allows us to offer unique insights on the distinct ways in which
RDM and SP can improve power sector decision making. We
have used power planning data in the RDM and SP frame-
works in as consistent a manner as possible. This consistency
results in a fairer ‘apples to apples’ comparison relative to
attempting a comparison based on stand-alone applications of
each method to different problems in the literature.

The rest of the paper is structured as follows. In Section
II, we present the proposed set of criteria for choosing
an uncertainty-aware planning framework. We then briefly
describe the RDM and SP frameworks in Section III. We
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introduce our case study in Section IV, and then devote Section
V to discussing the qualitative and quantitative results of
the RDM and SP comparison. In Section VI, we summarize
major takeaways along with needed future research. Lastly,
in Appendices A and B we provide the formulation of our
planning model and an overview of data sources, respectively.

II. CRITERIA FOR ASSESSMENT OF PLANNING
FRAMEWORKS

An effective and fair assessment of planning frameworks
should be holistic and avoid a priori assumptions about users’
priorities. Using the three criteria we describe below, planners
can identify strengths and weaknesses of any framework and
inform the design of their own planning process. Based on
recent research findings and experience, those criteria repre-
sent elaborations and extensions of three broad criteria that
Crousillat first suggested in 1989 [23]. We summarize the
criteria in Fig. 1 and refer to parts of Fig. 1 throughout this
section using indexes listed in parentheses in Fig. 1.

Criterion 1. Methodological Capability Modeling capability
is a criterion proposed by Crousillat [23] and it is defined
as “the models’ ability to capture the possible consequences
of multiple uncertainties inherent to alternative investment
plans.” Given that a planning process might include multiple
mathematical models, we refer to this criterion as methodolog-
ical capability. To facilitate the application of this criterion,
we suggest four themes: uncertainty, plans, consequences:
attributes, consequences: assessment (first column of Fig.1).

Uncertainty here refers to “imperfect or incomplete in-
formation/knowledge about a hypothesis, a quantity, or the
occurrence of an event” [30]. To apply the methodological
capability criterion in the context of uncertainty, planners have
to identify how imperfect or incomplete information affects
the quantity of one or multiple parameters of a planning
model [23], and describe which mathematical constructs the
framework in question uses to approximate the uncertainty,
e.g., scenarios or ranges of possible values for uncertain
factor(s) (1.A.1). Planners should also determine how the
framework in question handles the absence or availability
of probability distributions (1.A.2). Over the course of the
planning horizon, new information could resolve some of the
uncertainty [31]. Hence, in cases such learning is expected
through data collection or other means, planners should con-
sider whether and how the framework in question accounts for
chronological evolution of uncertainty (1.A.3). For example,
some methodological frameworks use conditional probabilities
to represent possible dynamic evolution of states over distinct
stages with different uncertainty characteristics [32].

The second theme –plans – refers to a set of investment
decisions to pursue at specified times [33]. Plans are usu-
ally periodically updated [10]. They are also determined in
sequential cycles of increasing resolution, starting with an
initial plan which is rather abstract (e.g., build a transmission
line connecting the electricity grids of Spain and France) and
concluding with a final plan that describes details (such as the
line’s route and equipment) [34]. Therefore, to assess criterion
1 with respect to plans, planners should review: (1.B.1) how

the set of feasible plans is described, e.g., enumeration of
plans or a set mathematically constructed as a feasible region;
(1.B.2) at what temporal-spatial-asset resolution plans are
modelled; and (1.B.3) how future plan updates are considered.

The third theme focuses on attributes that quantitatively
describe plan consequences/performance. Common attributes
include cost, reliability, and environmental metrics [35]. The
resolution of attributes, for example defining several attributes
to describe impacts on different social groups, matters es-
pecially for distributional equity [36]. The precision with
which the attributes are estimated is also important and could
be affected by modeling uncertainty. Hence, planners should
seek evidence here that show how accurately attributes are
estimated. Therefore, for the third theme, planners should
review (1.C.1) which types of attributes are modeled, (1.C.2)
at what resolution and (1.C.3) at what precision.

The last theme reviews how frameworks reflect subjective
preferences for different levels of plan consequences. The
points of view of different affected parties are often considered
by frameworks through utility functions [37]. Utility functions
approximate preferences for different levels of attributes, pri-
orities among attributes, and risk attitudes [38] [4]. Utility
functions commonly combine different attributes using priority
weights, which reflect decisionmaker and stakeholder values.
Risk attitudes commonly assumed in planning models are
those of risk neutral or risk averse users, who are respec-
tively concerned about probability-weighted (expected) con-
sequences or who weight undesirable outcomes more heavily
[39]. For instance, if decisionmakers or stakeholders are in-
terested in a framework’s ability to evaluate high-impact/low-
probability events, certain criteria such as conditional value at
risk might be well suited for assessing extreme outcomes.

Planners are commonly assumed to use utility-maximization
as a criterion for plan selection (e.g., least-cost plans [13])
or to be satisfied with performance within certain thresholds
(e.g., plans within budget constraints or that satisfy environ-
mental standards [36]). In case a methodology incorporates
the optimization of a utility function as a decision criterion,
it is critical to ensure that the assumed utility functions
actually represent how decisionmakers and stakeholders are
willing to trade off attributes against each other [4]. Depending
on the framework, decision criteria can be expressed either
explicitly in an analytical form or implicitly through a pro-
cess in which users directly evaluate and compare alternative
plans. In summary, to evaluate methodological capabilities
with respect to assessment of consequences, planners should
review (1.D.1) what decision criteria the methodology can
incorporate; (1.D.2) how updates in decision criteria can be
handled; and (1.D.3) how the framework elicits weights and
other value judgments by stakeholders and users.

Criterion 2. Practical applicability While time and cost
trade-offs are important practical considerations involved in
choosing a planning framework [23], experience shows that
certain resource needs (digital, intellectual, staff) and regula-
tory compliance also require particular attention.

Using uncertainty-aware frameworks like RDM and SP to
plan power systems can be computationally expensive and, in
the case of particularly complex problems, may require high
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Criterion 2: Practical applicability

• Computational resources
• Software

• Data requirements
• Human resources

• Regulatory compliance

Criterion 1: Methodological capability
Criterion 3: Contribution to decision 

making and stakeholder acceptance

Theme How the methodological framework considers: Engagement goal Number of views

Uncertainty Space of possible states 
(1.A.1)

Probabilities of states
(1.A.2)

Chronological evolution 
(1.A.3)

For each theme in 
the 1st column, 

which goal could 
the framework 

serve: to inform, 
to consult, or to 

collaborate? (3.A)

For each theme in 
the 1st column, can 

the framework 
consider multiple 
views and how? 

(3.B)

Plans Feasible set (1.B.1) Asset-temporal-spatial 
resolution (1.B.2)

Future updates to plans 
(1.B.3)

Consequences:
 Attributes

Types (e.g., reliability, cost) 
(1.C.1)

Resolution (1.C.2) At what precision (1.C.3)

Consequences: 
Assessment

Different types of criteria 
(e.g., min-max) (1.D.1)

Updates to criteria for 
assessment of plans (1.D.2)

Process to elicit 
preferences (1.D.3)

Fig. 1: Proposed criteria for systematic comparison and assessment of uncertainty-aware power system planning frameworks.

performance computing [17]. Most of the time, specialized
software needs to be purchased or developed and maintained.
Thus, it is key to assess if software needs will be met with
in-house, commercial, or open-source tools. Also, uncertainty
characterizations are increasingly data-driven. To feed the
data-hungry models of certain frameworks, data acquisition
and storage schemes have to be established. The set up of
such schemes can be prohibitive for some users [40]. Similarly,
specialized workforce skills and knowledge are essential to
use new techniques [41]. Finally, where processes are subject
to regulatory approval, planners should assess how planning
frameworks conform with regulatory guidelines [35].

To fairly compare planning frameworks, it is important to
review if the needs for resources and regulatory compliance
are one-off or recurring. On one hand, to transition to a
new framework, resource needs such as those for regulatory
approval are likely to be significant but one-off. On the other
hand, application-related needs such as use of computational
resources or consultants are likely to be recurring [23].

Criterion 3. Contribution to decision making and accep-
tance by planners and stakeholders Transparency and con-
tribution to decision making represent the third criterion pro-
posed in [23]. The preferred performance for this is described
as follows: “The method should be readily understood by
decision makers. The criteria for judging alternatives should
be easy to understand and the consequences of differing judg-
mental inputs should be reviewed without excessive effort.”[23]
We extend this criterion in two ways: 1) by expanding its
scope to consider stakeholders in addition to planners because
their acceptance of plans is essential; and 2) by introducing
engagement process goals that planners could consider.

Experience and research since [23] has demonstrated that
social acceptance of investment plans is essential for their
successful implementation, and can be hard to come by if it
is only an afterthought in a planning study [42]. Researchers
all over the world have studied social acceptance of power
plans and facilities. For instance, in rural Australia, researchers
found consultation to be one of the most important factors
for acceptance of wind energy development and planning
[43]. In Europe, analysis of the consultation process for the

construction of a transmission line between Spain and France
reveals the importance of dialogue for fostering acceptance
of transmission planning [34]. Dialogue establishes two-way
communication between decision makers and stakeholders and
can be particularly constructive when stakeholders can: (1)
choose from multiple plans instead of being forced to accept or
reject the plan proffered by the planners; (2) see that divergent
points of views are accommodated; and (3) actively contribute
to tasks of the planning process [34].

Explicit consideration of tradeoffs among attributes and
impacts on different groups has long been recognized as
important to engaging power stakeholder interest [12]. As an
example, [44] proposes a power system planning framework
that combines optimization modeling with multi-criteria de-
cision analysis. To systematically consider stakeholder socio-
environmental preferences, [36] and [45] propose the inclusion
of an explicit metric (Gini coefficient) for electricity access
equality and penalties for the impact of transmission plans on
land use, respectively.

To assess a framework’s ability to engage with planners
and stakeholders, we suggest consideration of the four distinct
themes from criterion 1: uncertainty, plans, consequences:
attributes, consequences: assessment (first column of Fig.1).
The next to last column of Fig.1 shows that, for each theme,
criterion 3 ‘asks’ what type of process goal the framework
aims to achieve and how multiple perspectives are considered.
In line with [46], we distinguish among three process goals:
to inform, to consult, and to collaborate. As one example of
considering how different engagement processes can support
each of those three goals for a theme of Criterion 1, consider
the theme of uncertainty. Engagement with respect to uncer-
tainty could support the goal to inform if stakeholders/decision
makers become familiar with the uncertainties considered by a
methodological framework. Engagement could instead support
the goal to consult if stakeholders can react to uncertainties
considered, e.g., by providing feedback as to whether the
methodological framework misses some plausible scenarios
or includes implausible scenarios. Finally, it could support the
goal to collaborate if stakeholders can contribute uncertainties,
e.g., by contributing scenarios or probability estimates.
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As Fig. 1’s last column shows, the integration of multiple
perspectives in any of the four themes when engaging with
stakeholders can range from considering just a single view,
to aggregating multiple views using weighting or other ap-
proaches, and finally to explicit description of multiple view-
points through, e.g., distinct utility functions for assessment
of consequences.

Before concluding this section, we summarize some impor-
tant assumptions. First, we presumed that planning agencies
have staff with the time and expertise required to apply the
proposed set of criteria. If planning agencies face staffing
challenges, then application of the criteria by independent
parties or consortia of planning agencies might be more
effective. We have also assumed that circumstances are such
that planners can reap the benefits of the application of the
criteria by choosing to apply alternative planning frameworks
or by identifying and addressing limitations of their current
processes. However, in practice, tight deadlines, data require-
ments, and software development needs for application of
bespoke methods might pose prohibitive barriers to adopting
preferred frameworks. Future work to develop off-the-shelf
tools and create open-access databases could address some
of these barriers.

III. MULTI-STEP UNCERTAINTY-AWARE PLANNING
FRAMEWORKS

This section briefly introduces and summarizes in table I
the steps of the two planning frameworks this article studies:
Robust Decision Making and Stochastic Programming.

TABLE I: Summary of steps for SP and RDM frameworks
Step RDM SP-centered

1 Specify X,R,M Specify X, l,m

2 Identify strategies to evaluate
– specify L

Reduce dimensionality for
tractability

3
Evaluate M with models in
R for each strategy in L and

scenario in X

Solve the (approximate)
problem

4 Characterize vulnerabilities Test solution L for original
problem

5 Add strategies to set L and
go to Step 3.

Conduct sensitivity and
uncertainty analysis

RDM is a multi-step decision analysis framework, that was
invented by the RAND Corporation in the 1990s [47]. Since
then, it has been used in multiple studies for infrastructure
planning [14], but its applications in power system planning
are few [28]. The goal of the framework is to identify
vulnerabilities and trade-offs of strategies (plans in our case,
which the RDM framework designates as set L) [48]. Similar
to [48], we describe the framework in five steps. Step 1
specifies (a) a set of exogenous uncertainties, designated as
X , that the RDM application will study; (b) a set of metrics
(set M ) that measure the performance of strategies L; and
(c) relationships R that will be applied to estimate M [49].
Step 2 identifies strategies L RDM will study. Step 3 estimates
M as a function R(L,X) for each combination of strategy L
and instance of X . Step 4 characterizes the vulnerabilities of
each plan L. Step 5 adds to set L additional strategies that
are anticipated to be less vulnerable than strategies already

studied. The vulnerabilities of the new strategies are estimated
and characterized by repeating Steps 3 and 4 for the new
strategies. The process continues until stakeholders do not
have resources to explore additional strategies L or they are
comfortable with the vulnerabilities of at least one strategy.
RDM is a flexible framework and it does not prescribe specific
analytical methods for each step, i.e., different applications of
RDM can follow different methods to define strategies L and
to characterize and communicate the impact of uncertainties
X on performance metrics M [49]. For details on RDM and
its variants, the reader is referred to [14].

SP is an optimization problem (mathematical program)
with constraint and objective function parameters that can be
scenario-dependent [50], [51]. Similar to any constrained op-
timization problem, stochastic programming has three sets of
components: decision variables l, an objective function m(l),
and a set of constraints h(l). SP suffers from the ‘curse of
dimensionality’ in that the optimization must simultaneously
choose the optimal values for all decision variables under
each and every scenario, so the problem to be solved can
be very large. (In contrast, RDM can be executed using a
smaller model for one combination of strategy and scenario at
a time, which also facilitates parallel computation.) Given the
computational challenge SP poses, applications usually resort
to approximations that limit the problem size by shrinking
the problem horizon, omitting some variables, aggregating
decision stages, sampling scenarios and/or discretizing time,
states, decisions [52]. Among all approximations, scenario
reduction methods [53] and decomposition strategies [17]
have been widely applied, and ex-post and ex-ante out-of-
sample simulations are a common way to assess the quality of
approximations [17]. In summary, for the application of SP, we
specify five steps: Step 1 structures the problem, Step 2 yields
an approximate problem; Step 3 prescribes an investment plan
solving the approximate problem of Step 2; Step 4 does a full
sample analysis (to yield information that RDM uses to show
vulnerabilities); and Step 5 performs uncertainty/sensitivity
analysis that could motivate the tuning of plans.

IV. CASE STUDY

We apply the two uncertainty-aware frameworks to a case
study based on a 2015 power sector planning exercise for
Bangladesh [54]. At that time, the country was assessing
investments in power plants under significant uncertainty with
respect to the growth of electricity demand, the evolution
of fuel prices, the supply of natural gas, its national policy
on fossil fuel mining and imports, and climate change [55].
According to projections perceived as plausible by the local
planners [54] and state-of-the-art models at the time [56], [57],
[58], [59], a few discrete scenarios were laid out based upon
two to three possibilities for each uncertain factor. Due to
deep uncertainty, the joint probability of scenarios for different
factors was unknown and not agreed upon by planners and
stakeholders. For that reason, we define X as including 486
scenarios covering all possible combinations of factor-specific
scenarios. We provide detailed information on all factor-
specific scenarios along with the respective data sources in
Appendix B.
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Solving the planning problem with a 25-year horizon (2016-
2041), we obtain perfect-foresight plans, one for each of the
486 scenarios. The 486 plans are considerably different in
terms of the amount of power plant development at each of
six sites within the first 10 years of the planning horizon. For
instance, the 486 plans include interconnection with India at
levels that vary between 1 and 4 GW (see Fig. 2). Figures 2,
3, 5, and 6 are boxplots created with the default options of
matplotlib.pyplot in Python. Each box covers the area between
the first (Q1) and third (Q3) quartiles of the underlying series
of values. Any values that are lower than Q1−1.5 · (Q3−Q1)
or higher than Q3 + 1.5 · (Q3 −Q1) are identified as outliers
and depicted with circles. The whiskers note the minimum and
maximum value of the underlying series, excluding outliers.
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Fig. 2: Boxplots of 486 perfect foresight investments that started between
2016 and 2025. Sites shown have more than 20 MW difference in investment
among all 486 scenarios.

The perfect foresight plans vary a great deal due to differ-
ences among scenarios. For instance, uncertainty about future
fuel prices significantly affects the capacity of interconnections
with India (see Fig. 3 (left)). Uncertainty about future demand
growth affects the levels of investment in power plants that
use imported coal (see Fig. 3 (center)); and uncertainty about
domestic coal mining policy affects the construction of power
plants that use that fuel (see Fig. 3 (right)).

1 2 3
Fuel…price…
…scenarios

1

2

3

4

Interconnection…
…with…India…(GW)

1 2 3
Demand…growth…

…scenarios

0
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4

6

Rampal,…Kulna,…
…and…Zajira…(GW)

1 2 3
Domestic…coal…

…policy…scenarios

1.0

1.5

2.0

2.5

Barapukuria…and
…Kharaspir…(GW)

Fig. 3: Boxplots of scenario-specific investments started between 2016 and
2025 (left) in interconnection with India for different fuel price scenarios;
(center) in three sites using imported coal for different electricity demand
growth scenarios; (right) in two sites using domestic coal for different
domestic coal availability scenarios. Each box includes 162 scenarios.

Recognizing that planners must commit to some investments
before the planning process repeats in 5-10 years, when some

of the uncertainty might have resolved, we apply the two
uncertainty-aware frameworks. We do not apply the fifth step
as it relies on interactions with planners and stakeholders.

To structure the problems (Step 1 of both RDM and SP),
we assume that the planning agency’s preferred decision
criterion is the minimization of an aggregate social cost at-
tribute (M,m) that combines investment and operational costs
with penalties for unmet electricity demand. We also assume
that the agency uses a capacity expansion model to reflect
relationships (R, h(l)) between investments and attributes such
as import share, costs, and unmet demand (see Appendix A
for the detailed model formulation, which parallels classic
generation expansion problems [2]).

Given that the planning exercise is repeated every 5-10 years
[54], we consider two investment stages. The first and second
stages span from 2016 to 2025 and from 2026 to 2041, respec-
tively. Investments in the first stage are identical among all sce-
narios (‘here-and now’ variables), while investments pursued
during the second stage are scenario-dependent (‘wait-and-
see’ or ‘recourse’ variables). Second-stage scenario-dependent
plans optimistically assume that uncertainty will have cleared
to a large extent by the time of any subsequent planning cycle.

To yield problem approximations (Step 2 of both methods),
we must specify a limited set of scenarios and strategies
for SP and RDM, respectively. To specify the two sets in a
consistent manner, we consider the perfect-foresight scenario-
specific investments. We focus on six key potential investments
because the rest of the sites have less than 20 MW difference
across any two scenarios (see Fig. 2).

Applying k-means clustering to the 486 sets of perfect-
foresight first-stage key investments, we obtain seven clus-
ters of similar investments. For each cluster, we choose a
representative plan and scenario as input for RDM and SP,
respectively [60]. For each representative scenario, we use
a probability equal to the cluster size divided by the total
number of scenarios (486). Thus, RDM will compare just
seven combinations of first-stage investments, while SP will
consider in Step 3 an infinite number of possible combination
of investments implicitly defined by its constraint set. Fig. 4
illustrates this difference: SP can choose any feasible point in
the cube as first-stage investments, while RDM is restricted
to analyzing only 7 points in that space, represented by the
tips of the 7 colorful/numbered bars. However, RDM will still
consider all 486 scenarios, while the second stage variables
and constraints of SP only considers 7 representative scenarios.

For the second-stage investments, SP yields an approximate
solution in Step 3. However, for both RDM and SP, we finalize
second-stage investments in Steps 3 and 4, respectively. That
way, we tailor the second-stage investments to each of the
486 scenarios by solving a capacity expansion problem for
each of combination of the 486 scenarios and each plan of
first-stage investments. The problem treats first-stage invest-
ments as pre-determined parameter values, and second-stage
investments as decision variables. Ref. [61] had followed the
same approach for yielding second-stage investments within
the RDM framework. In detail, for the RDM case, there are
7 plans, as described above, yielding 486*7 models to be
solved; averaging over the 486 scenarios yields the average
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Fig. 4: The decision space SP and RDM consider corresponds to any feasible
point in the cube and the tips of the numbered bars, respectively. The bars
show first-stage investments under 7 considered RDM plans and 1 optimum
SP plan.

performance of each of the 7 predefined plans. Meanwhile
for the SP model, only the optimal first stage investments
are treated as a plan in this step, so only 486 models are
solved; the average over their values is the estimated expected
performance of the SP model’s solution for the full set of
scenarios, which is likely a more realistic characterization of
its expected performance than the Step 2 SP model solution
based on 7 representative scenarios.

V. RESULTS OF THE RDM VS. SP COMPARISON

In this section, we apply the criteria of section II to identify
the pros and cons of the two frameworks in a qualitative way
and discuss relevant quantitative results. We do not apply those
criteria to the planning framework Bangladesh followed in
practice to yield their power system plan [62] because it was
not an uncertainty-aware multi-stage engineering-economic
framework. In other words, the framework does not consider
the interplay of operations and investment costs across multi-
ple scenarios and later opportunities to modify plans.

Criterion 1: Methodological Capability We first discuss
quantitative results from the case study and then move on to
a qualitative application of this criterion. In terms of plans,
the two frameworks differ in the way they: (a) represent
feasible plans; and (b) consider inter-dependencies within a
plan between first- and second-stage investments.

As discussed in Section IV, SP considers an infinity of
possible plans and chooses one that yields the minimum value
of the objective function (probability-weighted social cost,
across the limited set of seven representative scenarios). This
SP plan (see black bar in Fig. 4), which is similar to one
of the seven candidate RDM plans (RDM1), prioritizes inter-
connection with India in the first stage and makes moderate
and small investments, respectively, in power plants that use
imported and domestic coal.

SP chooses this plan because it recognizes that plans can
be adjusted once uncertainty is resolved. Hence, instead of
trying to find a plan that will be best for a subset of scenarios,
it finds a first-stage plan that meets the first-stage electricity

demand without investing too much in technologies that might
lock the system into a path with stranded or costly to operate
assets. In this particular case, SP defers a decision on building
capital-intensive coal power plants near domestic coal mines
that could provide cheap fuel but they might never operate
due to environmental concerns, as in 2026 (first year of the
second stage) half of the scenarios build less than 1 GW of
such plans (see Fig. 5). On the other hand, building a low
capital cost interconnector with India seems to be a prudent
first-stage decision to SP as it could provide electricity in any
scenario and the uncertainty only affects how competitively
imported electricity is priced.

Domestic…
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…with…India

0

1

2

3

4

5

G
W

2026

SP
RDM1
RDM2
RDM3
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Fig. 5: Investments in 2026 (first year of second stage) for all plans.

In terms of uncertainty, the two frameworks use the same
set of scenarios, but they need probabilities at different steps.
On one hand, SP needs them as input in the very first step,
while on the other hand, RDM explicitly or implicitly relies
on them to aggregate metrics across scenarios in Step 4.

Finally, in terms of attributes, Step 3 of SP only optimizes
the probability-weighted cost. Hence, at first glance SP appears
to provide information on performance on fewer attributes.
However, under a full sample analysis like the one we perform
in Step 4, it is straightforward to use the same set of attributes
for SP as for RDM. For instance, Fig. 6 shows the regret,
which here is defined as the difference in terms of aggregate
social cost attribute between the strategy in question (averag-
ing over all 486 scenarios, considering the best second-stage
decisions given the first-stage investments) and the perfect
foresight strategy, averaged across all 486 scenarios for every
plan. The perfect foresight strategy is sometimes called the
perfect information case, where both first and second stage
decisions are made with full knowledge of which scenario will
occur. Comparing expected regret for that SP solution with
RDM’s solutions (see Fig. 6), we see that SP yields a 10%
lower regret than plan RDM1, which is the RDM plan closest
to the SP first stage solution. The regret of SP’s solution and
RDM1 is much smaller compared to the regret of other RDM
plans and the expected social costs of plans (see Fig. 6).

Although Fig. 6 indicates that SP and RDM1 as the best
solutions from a social cost point of view, consideration of
other attributes could result in other solutions being preferred.
In particular, from the qualitative application in Table II, it

This article has been accepted for publication in IEEE Transactions on Energy Markets, Policy, and Regulation. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TEMPR.2024.3365977

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Johns Hopkins University. Downloaded on November 06,2024 at 16:41:33 UTC from IEEE Xplore.  Restrictions apply. 



8

SP RDM1 RDM2 RDM3 RDM4 RDM5 RDM6 RDM7
Plan

0

1

2

3

R
eg

re
t…

in
…

bi
lli

on
s…

…
of

…
20

15
…

U
S…

do
lla

rs

Fig. 6: Regret of plans across all 486 scenarios (in billions of 2015 U.S.
dollars, present worth). Triangles show average values. For comparison, the
expected social cost of the perfect foresight and the SP plans are 100.91 and
101.47 (in billions of 2015 U.S. dollars, present worth), respectively.

is worth emphasizing that contrary to the present case study
which uses one decision criterion, in a practical application,
decisionmakers and stakeholders could estimate performance
for additional criteria using reported attribute values; and
even decide to pursue a plan different than RDM1. Whereas
assessment of criterion (1.D.3) is not possible in this case,
future applications of both frameworks could incorporate
methods for engaging with decisionmakers and stakeholders
and eliciting their preferences. For instance, the objective
function and constraints could be informed by multi-criteria
decision-making processes [4] and iterative interactions be-
tween decisionmakers and analysts under RDM could guide
the development of plans, scenarios, criteria, and models [63].

Overall, in our application, both frameworks model un-
certainty, plans, and consequences in a similar manner. SP
is distinct in its ability to model the inter-dependency of
decisions at different stages. In other words, SP can decide
to adjust the levels of first-stage investments, considering
the opportunity for recourse decisions in the second stage.
In our case study, SP prioritizes in the first stage relatively
low-capital-cost investments with relatively flexible operation
levels (interconnection with India) and defers to the second
stage relatively capital intensive investments with scenario-
dependent operational performance (plants using domestic
coal). RDM’s strengths arise from the thorough simulations
and accompanying results, which help stakeholders and plan-
ners better understand each plan. Its performance depends to
a great extent on the set of plans L considered.

Criterion 2: Practical applicability Over all five dimensions
of practical applicability, we observe a key difference in
computational resources and a few similarities. RDM requires
more than twice the execution time of the SP-centered frame-
work. According to Fig 7, Step 3 is the most computationally
expensive step of RDM, taking 70% of the total RDM time.
While this step is computationally intensive, it can be largely
parallelized to leverage available computational resources.
Hence, the clock time to completion for the RDM framework
is not necessarily prohibitive, but nevertheless more com-
putations and output-related data need to be accommodated
compared to the SP-centered approach.

0 500 1000 1500 2000
Minutes

RDM

SP

Step…2:…Scenario-specific…plans
Step…2:…k-means
Step…3
Step…4

Fig. 7: Computational time (clock-time) for RDM and SP-centered frame-
works. Simulations were performed on a desktop with an Intel core processor
i7-5930K at 3.50GHz and 32 GB RAM. For Step 3 (RDM) and Step 4 (SP),
runs were performed in parallel for ∼4 scenarios at a time.

In terms of similarities, the needs for data inputs, software,
and staff resources are almost identical for this case study.
Both frameworks use optimization problems as their quantita-
tive basis, requiring similar qualifications from staff. In terms
of input data, the same set of scenarios describes uncertain
factors and the same parameters are used by those optimization
problems to estimate the costs and benefits of different plans.

Criterion 3: Contribution to decision making and ac-
ceptance by planners and stakeholders Although this work
was done with staff from the World Bank [60], it was
undertaken without the participation of planners and stake-
holders from Bangladesh. Thus, this criterion is challenging
to apply. Nevertheless, we can reach some conclusions for
each of the four themes (uncertainty, plans, consequences:
attributes, consequences: assessment) considering the nature
of each framework’s inputs and outputs and drawing upon our
planning experiences in other contexts.

With respect to uncertainties, both frameworks could serve
a process goal of collaboration as both decisionmakers and
stakeholders could contribute scenarios and probabilities. In
the case of RDM, updated probabilities could be considered
without a need to re-run the simulations (as long as the set
L has not changed), while addition of scenarios would create
a need for simulations only for the new scenarios. Instead,
for SP the computational effort would be higher since either
updated probabilities or new scenarios would create a need for
re-application of the framework.

With respect to plans, RDM could serve a process goal
of full collaboration as stakeholders could contribute plans
for assessment, but SP could at best serve a process goal of
more limited consultation where stakeholders could specify
constraints for the feasible region of plans.

With respect to attributes, both frameworks appear equally
limited by the simulation models. Hence, the process goal that
both frameworks could serve is information. In case of engage-
ment with stakeholders, the process goal could be updated
to consultation if stakeholders could propose attributes that
are important to them and, in response, analysts reconfigure
simulations to generate additional outputs.

Finally, with respect to assessment of consequences, SP
only considers one decision criterion to yield an optimal
plan. SP could consider in additional Step 3 simulations other
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TABLE II: Assessment of methodological capability (criterion 1)

Subcriterion RDM SP-centered
Uncertainty

State space (1.A.1) 486 scenarios with multiple values for 6 uncertain factors

Probabilities (1.A.2) Used to aggregate scenario-specific attributes Used to yield plan L and aggregate scenario-specific
attributes

Chronological
evolution (1.A.3) Uncertainty resolution in 2025: scenario-specific parameters after 2025

Plans
Feasible set (1.B.1) Set of discrete plans Feasible region defined by constraints
Resolution (1.B.2) Plan of MW investments per type of generation, at candidate locations, in different years

Decision cycles
(1.B.3)

Second-stage plans adjust to the realized scenario, but
first-stage plans derived without considering the possibility

of adjustment in second stage

Second-stage plans adjust to scenario realized, and
first-stage plans derived recognizing the possibility of

adjustment in second stage
Consequences

Attribute types
(1.C.1) (1) Investment/Operational cost (2) unserved load (3) imports as share of electricity generation

Attribute resolution
(1.C.2)

Temporal: Hourly resolution for representative hours for each year in the model horizon; Spatial: Plant-level
investment/operational cost; system-wide unserved load; import share per interconnector

Attribute precision
(1.C.3)

Precision in both frameworks is unknown. If data were available, precision could be estimated by running follow-on
production cost simulations with higher spatial and temporal resolution or through back-casting. Similar approaches

could be followed for other modeling approximations.
Assessment

Criteria (1.D.1) Probability-weighted regret criterion considered Probability-weighted regret criterion optimized for
approximate SP

Updates to criteria
(1.D.2)

Possible if new criteria rely on reported attributes; require
reapplication of method if the perfect foresight objective

function not relevant anymore

Require reapplication of SP to find optimal plan for new
criterion

Eliciting preferences
(1.D.3) No process to elicit preferences in this case study due to limited interactions with stakeholders

decision criteria through constraints or additional weighted
objective function terms. RDM can easily incorporate updated
decision criteria that rely on available attribute values. For
example, if stakeholders were interested in attributes that
reflect energy independence, reliability, and costs, analysts
could report results on the share of electricity imports, penal-
ties for unserved energy, and investment and operating cost,
respectively. Drawing the performance in a 3D space as in Fig.
8, we observe that RDM makes trade-offs between energy
independence and cost and reliability obvious. Hence, both
frameworks could serve a process goal of consultation and
RDM could offer insights on trade-offs and alternative plans
with no additional computational effort.

We note, however, that RDM’s solutions (definition of 7 first
stage plans in Step 1, and definition of the optimal second
stage decisions in Step 2 for each of 486 scenarios) relied
on just the social cost objective. A more complete accounting
of other attributes by RDM would necessitate formulation of
model objectives based on those attributes and their inclusion
in Steps 1 and 2 of RDM, which would require appreciably
more work, just as SP would.

With respect to consideration of viewpoints for each theme,
multiple perspectives can be included and considered to create
a suite of alternative plans, uncertainties, or attributes. The
sensitivity of plans to alternative decision criteria can also
be tested in both frameworks. However, for both frameworks,
public participation processes would need to occur to identify
a plan that is accepted by stakeholders and decision makers.

VI. CONCLUSIONS

As researchers and consultants continue to develop frame-
works that plan investments in power systems under uncer-
tainty, planning agencies seek guidance and insights as to
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Fig. 8: Values of three attributes for SP and 7 RDM plans

which existing or new frameworks would be most helpful
in practice. The most authoritative guidance comes from
systematic assessments and cross-comparisons of available
frameworks as applied to realistic problems. Unfortunately,
the existing literature has few careful reviews and especially
realistic comparisons, and most of them narrowly focus on
effects of alternative attribute sets or utility functions.

To help planners to assess frameworks for themselves, and
to facilitate systematic cross-comparisons, this article signif-
icantly revises a set of three criteria, originally proposed in
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[23]. These revisions include adding new criteria and criterion-
specific themes to make the set more comprehensive and
readily applied. The three revised criteria are: methodological
capability, practical applicability, and contribution to decision
making and acceptance by stakeholders and planners. This
article also compares for the first time two widely used but fun-
damentally distinct frameworks for a power system planning
problem: an ‘agree-on-plans’ framework, Robust Decision
Making (RDM); and an ‘agree-on-assumptions’ framework,
Stochastic Programming (SP). The comparison is conducted
for a realistically detailed but hypothetical case of resource
planning in Bangladesh.In doing so, we show how those
criteria can be operationalized to provide useful advice.

We find that both methods can yield adaptive plans when
uncertainty is described through scenarios. SP can proactively
identify flexible investment plans by recognizing the ability
to adjust plans when uncertainty has cleared; while RDM
recognizes flexibility in relative terms by comparing regrets
of predetermined plans across different scenarios. Our analysis
does not find that one framework clearly dominates the other.
On one hand, the Stochastic Programming centered framework
quickly identifies a single plan with better performance than
any of the plans yielded by RDM, especially in terms of
expected cost (as measured by probability-weighted regret).
On the other hand, although RDM takes more time to study
more plans, there are benefits from the extra effort in that
planners and stakeholders gain insights as to the trade-offs and
advantages of different plans in terms of their performance
under a wide range of scenarios and in terms of multiple
attributes. If those attributes address the diverse concerns of
stakeholders, this information can facilitate dialogue between
decision makers and the public as their views would be sought
on multiple plans instead of a single plan that they called to
accept, reject, or challenge with limited information.

As discussed in Section V , RDM’s performance greatly
depends on the quality of the set of plans L, while its
computational time linearly increases with the size of L.
Hence, for planning problems in which there is a potentially
large set L with many dimensions (i.e., alternative decisions),
there is an increased likelihood that the user might fail to
identify and include potentially superior plans in L. SP would
automatically consider all feasible solutions, and so SP might
emerge as a more promising framework in that situation.
However, for problems where the set L is necessarily relatively
small and has few dimensions, e.g., because there are just a
few mutually exclusive feasible configurations, RDM might be
preferred as a transparent method that clearly shows trade-offs
among a few plans.

Future research could cross-compare planning frameworks
for a planning study that involves actual stakeholders and
decision makers and could include in the comparisons plan-
ning frameworks that are currently being developed to model
competing objectives, sources of risk, and risk appetites of
different stakeholders in power system planning [64]. Follow-
on work could also aim to draw mathematical generalizations
with respect to structure of problems that could favor one
framework over another. It would also be interesting to explore
how frameworks could be combined to exploit the strengths

of each approach, resulting in improved modeling capabilities
and applicability, and more insights that help build planner
and stakeholder understanding and confidence in planning
outcomes. Last but not least, it is worth noting that future
research might result in proposals for new/modified criteria
or sub-criteria that assess factors found to be important for
yielding effective power system plans.

APPENDIX A: PLANNING PROBLEM FORMULATION

NOMENCLATURE

Decision variables
b1g,y First-stage generation investment in MW, added at

year y belonging to 1st stage
b2g,s,y Second-stage generation investment in MW, added at

year y belonging to 2nd stage
es,t,y Unserved energy in MW
og,s,y,t Electricity output in MW
pg,s,y Power capacity in MW
ret1g,y Generator retirement in MW at year y of 1st stage
ret2g,s,y Generator retirement in MW at year y of 2nd stage
rs,y Deficit in planning reserve margin constraint
Sets and Indices
F Fuels, indexed by f
G Generators, indexed by g
L Locations, indexed by l
S Scenarios, indexed by s
T Representative hours of the year, indexed by t.
Y Years, indexed by y and y′

Parameters
LOADs,y Annual peak electricity demand in MW
Πs Probability of scenario s
ρ Discount rate; assumed 10%
ACFg Maximum annual capacity factor
CAPg,y Annualized capital cost in $/MW
CFg,s,t,y Maximum hourly capacity factor
Dt Weight of representation hour t in hours
FCg Fixed operation and maintenance costs in US$ per

MW of installed capacity
HRg Heat rate in MMBTU/MWh
IBg,y,y′ 1 for generators g that were added by the planning

model in year y′ and were ready to generate electricity
any year before year y

IFf,g 1 for generators g that use fuel f
ILl,g 1 for generators g that are located at l
IEX
g,s,y,y′ 1 for generators within their operational life; 0 oth-

erwise
Lg Land requirement in acres/MW
LOADs,t,y Electricity demand in MW
PRM Planning reserve margin; assumed 15%
V Cg,s,t,y Variable cost in $/MWh
V OLL Value of lost load in $/MWh
V OR Penalty for violation of planning reserve margin
LANDl Available land in acres

The Objective is defined as follows:∑
g,y

CAPg,y · (b1g,y +
∑
s

Πs · b2g,s,y) (1a)
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+
∑
g,s,y

Πs ·
FCg · pg,s,y +

∑
t Dt · V Cg,s,t,y · og,s,t,y

(1 + ρ)y−2016 (1b)

+
∑
s,y

Πs ·
V OR · rs,y +

∑
t Dt · V OLL · es,t,y

(1 + ρ)y−2016 (1c)

Constraints for capacity expansion:

pg,s,y = pg,s,y−1 +
∑
y′

IBg,y,y′ · (b1g,y′ + b2g,s,y′)

−ret1g,y − ret2g,s,y ∀g, s, y
(2)

∑
g

pg,s,y + rs,y = (1 + PRM) · LOADs,y ∀s, y (3)

pg,s,y ≤
∑
y′

IEX
g,s,y,y′ · (b1g,y′ + b2g,s,y′) ∀g, s, y (4)∑

g

ILl,g · Lg · pg,s,y ≤ LANDl ∀l, s, y (5)

Constraints for operations of installed capacity:∑
g

og,s,t,y + es,t,y = LOADs,t,y ∀s, t, y (6)

og,s,t,y ≤ CFg,s,t,y · pg,s,y ∀g, s, t, y (7)∑
t

Dt · og,s,t,y ≤ ACFg · pg,s,y · 8760 ∀g, s, y (8)∑
g,t

IFf,g ·Dt ·HRg · og,s,t,y ≤ FUELf,s,y ∀f, s, y (9)

In brief, our planning problem minimizes an objective
function that consists of capital costs (eq. 1a), approximate
operational costs (eq. 1b), and penalties for unserved load or
unmet capacity reserves (eq. 1c).

The model includes constraints for capacity expansion and
operation of installed capacity. In detail, the constraints for
capacity expansion keep track of the installed capacity in the
system over time (eq. 2), ensure that there is enough installed
capacity in the system in each year (eq. 3), consider the lead
time it takes to build a power plant (eq. 4), and account for land
usage and site limitations (eq. 5). The operational constraints
ensure that enough electricity is generated any time (eq. 6)
considering availability of each generating resource at specific
times (eq. 7), and throughout the year (eq. 8) along with any
fuel usage constraints (eq. 9).

APPENDIX B: DATA SOURCES

The values for multiple parameters of the power system
planning model are not known with certainty. Hence, when
we compiled the input databases for the planning model, we
relied on multiple sources that provided the best available
information at the time. In Table III, we provide an overview
of assumed scenarios and sources for the six uncertain factors:
demand growth, fuel prices, coal and natural gas availability,
temperature and flooding. In the rest of the Appendix, we dis-
cuss how we constructed the scenarios based on our sources.

TABLE III: Uncertain factors considered

Uncertain factor Number of
scenarios (values) Data source

Demand growth 3 (pg. 17 in [55])
Japan International

Cooperation Agency
(JICA) [54]

Fuel prices 3
JICA [54] and The
World Bank Group

[57]
Domestic coal

availability 3 (pg. 209 in [60]) JICA [54]

Natural gas
availability 2 (pg. 208 in [60]) JICA [54]

Temperature 3 (pg. 204 in [60]) [58]

Flooding 3 (Section B.1 in
[60]) FATHOM and [59]

We relied on [54] for scenarios on socio-economic uncer-
tainties. For demand, three scenarios are modeled. Annual
peak demand grows from the 2015 level of 9 GW to 40–60
GW in 2041. For natural gas supply, we drafted two scenarios:
one in which no new domestic gas reserves or new infrastruc-
ture for LNG imports (apart from already planned infrastruc-
ture) is available and another in which all natural gas supplies
of [54] are available. For domestic coal availability, we used
the same scenarios as in [54]. For fuel prices, we consider two
scenarios from [54]: the central scenario (“IEA New Policies”)
and “IEA 450” (plausible if the global average temperature
does not increase more than 2ºC compared to pre-industrial
averages by the end of this century). We modified the “low
oil price scenario” to reflect the latest fuel price projections by
the World Bank. Lastly, we omitted the “IEA current policies”
scenario from [54] as it did not seem plausible.

Projections for two climate variables (and associated power-
sector climate indicators) are used in this analysis: temper-
ature (and cooling degree days) and flood depths (derived
from precipitation projections). For temperature and cooling
degree days projections, we consider three scenarios based on
clustering of the 17 scenarios available at [58] (resource with
the only climate data downscaled for Bangladesh in 2017).
For flooding, we considered three scenarios: (a) a business as
usual case; (b) a high flooding scenario based on projections
for precipitation change purchased in 2016 from FATHOM1

[56], a global leader in flood risk modeling; (c) an additional
scenario based on [59]. Ref. [59] projected that the return
period of a 100-year event under historical climate conditions
will be 5–25 years in Bangladesh by the end of the century.
In scenario (c), flood profiles project the historical 100-year
event as a 20-year event for fluvial/pluvial flooding and as a
25-year event for coastal flooding.

We consider all possible combinations of the single-factor
scenarios, described in Table III, to create multi-factor sce-
narios for the power-system-planning model (486 scenarios,
where 486=2 · 35). In other words, we adopt the perspective
of a “naı̈ve” planner who does not consider interdependencies
among individual uncertain factors, e.g., by disregarding cer-
tain combinations as implausible (e.g., high fuel prices and
high fuel availability). Thereby, the “naı̈ve” planner considers

1FATHOM’s projections were based on climate scenario RCP 8.5, the
scenario with the highest radiative forcing among the scenarios considered
in AR5 (IPCC 5th Assessment Report).
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the 486 scenarios as equi-probable.
Last but not least, in addition to the system planning

data, operational data around existing plant parameters were
collected from the National Load Dispatch Center as part of
an accompanying work that the World Bank team had been
carrying out concurrently [65].
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