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Abstract

National models of the electric sector typically consider a handful of generator operating periods per
year, while pollutant fate and transport models have an hourly resolution. We bridge that scale gap by
introducing a novel fundamentals-based temporal downscaling method (TDM) for translating national or
regional energy scenarios to hourly emissions. Optimization-based generator dispatch is used to account
for variations in emissions stemming from weather-sensitive power demands and wind and solar generation.
TDM is demonstrated by downscaling emissions from the electricity market module in the National Energy
Model System (NEMS). As a case study, we implement the TDM in the Virginia-Carolinas region and
compare its results with traditional statistical downscaling used in the Sparse Matrix Operator Kernel Emis-
sions (SMOKE) processing model. We find that the TDM emissions profiles respond to weather, and that
nitrogen oxide emissions are positively correlated with conditions conducive to ozone formation. In con-
trast, SMOKE emissions time series, which are rooted in historical operating patterns, exhibit insensitivity
to weather conditions and potential biases, particularly with high renewable penetration and climate change.
Relying on SMOKE profiles can also obscure variations in emission patterns across different policy sce-

narios, potentially downplaying their impacts on power system operations and emissions.

Synopsis
This research proposes a novel downscaling methodology to link macro-energy system models and air
quality models accounting for projecting power emissions changes due to renewable technology innovation,

weather-informed system operation changes and load variability.

Keywords: power systems, power emission, energy transitions, emission projection

1. Introduction
An oft-stated objective of policies and strategies to combat climate change is the achievement of a net-
zero emission economy by the mid-21st century. To limit global warming to 1.5°C, the Paris Agreement

set targets for greenhouse gas emissions to decline 45% at least before 2030 and to reach net-zero by 2050

i Corresponding author contact: swang187@alumni.jh.edu
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worldwide [1],[2]. In the US, President Biden has set an ambitious national goal of achieving a carbon
pollution-free power sector by 2035 and a net zero emissions economy before 2050 [3]. Because the energy
sector is responsible for 73% of greenhouse gas emissions globally, decarbonizing the energy system is the
emphasis of policy [4],[5]. Various clean energy transition “pathways” and “roadmaps” have been proposed
and widely discussed by government, academia, and industry [4],[6]—[8]. Decarbonizing the electricity sec-
tor is often the focus of these plans, not only because power production is responsible for 25% of world-
wide emissions [9], but also because electrifying the transport and building sectors is viewed as key to their
decarbonization.

Recently, the social impacts of the energy transition have gained the attention of the public, policy
makers, and researchers, with a focus on effects such as air quality, public health, energy equity, environ-
mental justice, and labor markets [10-16]. Analyzing these impacts requires the integration of different
modeling tools from various disciplines, such as long-term macro-energy system models/integrated assess-
ment models [16],[17], air quality models [18],[19], dose-response models for health impacts [21], and
aggregated sectoral micro-economic models (i.e., power, transportation, and building) [22-24], among oth-
ers. However, it is often difficult to coordinate the inputs and outputs of these models to provide an inte-
grated look at the multiple impacts of policy as those models are usually implemented on different spatial
and temporal scales. In the temporal dimension, for instance, most macro-energy systems or climate models
reduce computational complexity by decreasing the temporal resolution of the data used. Instead of 8760
hours/yr, the National Energy Modeling System (NEMS) model uses nine time-block periods per year for
its load inputs and electricity outputs, while the Regional Energy Deployment System (ReEDS) model
applies an aggregated seventeen time-blocks to represent the within-year distribution of loads [10, 11].
Thus, the rough output of such a model cannot be directly used by air quality models that require highly
resolved temporal data (i.e., an hourly time step) as inputs. Therefore, (temporal) downscaling techniques
are needed to link aggregated system models with air quality models.

A downscaling method usually takes an aggregate spatial or temporal forecast of climate, economic, or
other variables as an input (or “predictor’), and produces a more detailed and disaggregated scenario of
those variables or other variables that are affected by those inputs. Current downscaling methods can be
categorized into statistical [26-32], dynamic [33-36], and fundamentals-based [37, 39] approaches. We re-
view the existing literature associated with each approach in Support Information (SI) Section 1, focusing
on applications to electricity demand, generation, and emissions downscaling.

However, existing downscaling methods have limitations in capturing the effects of long-term (beyond
10-15 years) changes in power generation mixes or climate (e.g., average temperatures). Such factors,
which can significantly impact the amount and timing of power emissions during energy transitions, are
not well represented or ignored. In the case of statistical approaches, the assumption that the statistical
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relationship built using historical or current system data will still be valid for the future system could fun-
damentally limit downscaling projections to just the next handful of years rather than the decades covered
by energy transition scenarios. Meanwhile, the precision of temporal downscaling is restricted by the phys-
ical model used. For instance, the temporal resolution of GCM (General Circulation Model) results
downscaled using RCMs (Regional Circulation Models) is often in 6-hour time steps, which is not detailed
enough to represent the diurnal operation of a power system and its associated emissions [33]. In addition,
a fundamentals-based method was used by Loughlin et al. [39], who proposed an SCC-mapped’ grow-in-
place (GIP) method to link MARKAL and SMOKE-CMAQ (Sparse Matrix Operator Kernel Emissions -
Community Multi-scale Air Quality) modeling frameworks to project and simulate both the location and
time series of energy sector emissions. A combined GIP and SMOKE (GIP-SMOKE) model does temporal
downscaling by converting annual emissions into hourly emissions through its default allocation fac-
tors/temporal profiles, which may consider the pattern differences between day and night, weekdays and
weekends, and months or seasons, but have the shortcoming of being assumed to not change in future years.

Therefore, better downscaling methods are desirable to generate more accurate emission profiles that
can represent how temporal emissions patterns evolve over future years in response to renewable invest-
ment, changed power system operations, and variable weather conditions. Firstly, an improved downscaling
approach should be able to capture changing net-load patterns (gross load less renewable generation, e.g.,
the so-called Duck Curve of the California power system?) and timing of demand peaks. These variations
are expected to create a greater need for more flexible ramping of fossil-fueled thermal plants to maintain
system reliability, inevitably altering the corresponding amount and timing of power sector emissions. Sec-
ond, the new approach should account for climate change which might affect future power system reliability
by magnifying the impacts of weather on demand variability [42], [43]. Climate change can also reduce or
increase the generation of renewable energy, and warming reduces the effective capacity and Carnot effi-
ciency of thermal plants [42, 44-46]. These shifts deserve careful attention when assessing the impacts of
power emissions on air quality and public health, as the effectiveness of power emission reduction can be
significantly influenced by changes in emissions distribution over the year and their correlations with syn-
optic conditions [47]. For instance, elevated NOx emissions during high temperature/high demand days may
coincide with conditions favorable for ozone formation [40]. However, the temporal profiles in SMOKE

generally do not capture these correlations because those profiles are designed to represent historical

IThe Source Classification/Category Codes (SCCs) system was developed by US EPA to classify different types of
activities that generate emissions [41]. Each SCC is given to a unique source category-specific process or function
that emits air pollutants.

2 The duck curve is a graph shows the difference between electricity demand and solar energy production over a day.
It was devised by the CAISO to illustrate an aspect of challenges that renewable energy poses to system flexibility.
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average conditions and do not represent their day-to-day random variability. As a result, SMOKE may
underestimate peak generation emissions while overpredicting emissions during other time periods [48]. .
The latter are often focused instead on projecting long-term changes in siting patterns due to large-scale
fossil retirements and renewable investments, and require national downscaling of results from NEMS and
other national models.

In this paper, we focus on developing temporal downscaling methods for electricity systems that can
more precisely represent impacts of renewable energy growth and other system changes on the level and
variability of power emissions accounting for economic, technical, and climate drivers. The proposed
method is intended to combine the advantages of both statistical downscaling and dynamic downscaling.
Some simple drivers like temperature, wind speed, and solar radiation are processed and downscaled by
statistical methods. Our method then applies optimization to simulate electric generator operations on an
hourly times scale using those statistically downscaled meteorological variables, based on the locations of
existing and new power plant projected using a site-and-grow (SAG) [49] spatial downscaling method.
SAG is designed to model the spatial distribution of changes in generator locations based on modeling of
generator retirements and new plant construction. SAG constrains overall future installed capacity mixes
using future scenarios from national or regional energy models, and chooses where to site new facilities
based either on statistical methods reflecting past siting patterns [40] or optimization methods that account
for transmission, water, land availability, and other factors affecting siting, especially the amount and dis-
tribution of wind and solar resources in the case of renewable generators [49]. The advantage of optimiza-
tion-based SAG models is that they can account for siting costs and requirements for new generation tech-
nologies that can differ significantly from drivers of siting decisions for traditional thermal generators.

The resulting temporally downscaled emissions are expected to anticipate how changes in technology,
policy, and climate drivers affect when and how facilities are operated on an hourly scale. Using this new
method, we are able to address the following research questions: 1) How do hourly emission distributions
from thermal plants vary and correlate with meteorological conditions in the context of climate change,
and how do they compare to traditional methods that don’t account for meteorological variability?, and 2)
How do hourly distributions of power sector emissions compare under alternative policy and technology
scenarios, accounting for the response of emissions to the penetration of wind and solar energy and its
contributions to net-load variations? The proposed hybrid statistical-SAG-temporal optimization-based
method for temporal and spatial emissions downscaling is a novel approach in that this is the first time that
a downscaling method considers hourly operations of a power system in response to renewable energy
penetration and climate drivers over a multi-decadal time scale.

The rest of the paper is organized as follows. Section 2 introduces the proposed temporal downscaling
methodology and case study assumptions. Section 3 shows the numerical case study for the SERC

4



128
129

130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

Virginia/Carolina (SRVC) region in the year 2050' under several energy transition scenarios. Section 4

discusses implications of these results and recommends future research directions.
2 Methods
2.1 Temporal Downscaling Model

The proposed temporal downscaling model (TDM) disaggregates energy outputs from a scale of multi-
hour time blocks (several blocks per year) yielded by a national or regional aggregated electricity model to
an hourly scale while accounting for how power systems will be operated in the future under significant
renewable penetration as well as varying meteorological conditions under climate change and an assumed
policy scenario. Specifically, the TDM is designed to link the NEMS model and the SMOKE-CMAQ model
but is not limited to these two particular models. It can be extended to downscale emissions from the electric
power component of any other macro-energy system model, integrated assessment model, or other time-
aggregated models of power system operations for use in any pollutant fate and transport model.

Here, we describe the specific steps of TDM, assuming that the locations and sizes of electric generators
for some future scenario have been provided by the NEMS-SAG method [49]. The TDM comprises two
major steps as shown in Figure 1, each being explained in detail in SI Sections 2.1-2.2, respectively. (Note
that in our application, the execution of NEMS and SMOKE was done by collaborators on other research
teams, while our contributions are the SAG-TDM downscaling components of the overall process). The
first step addresses net-load adjustments which will affect hourly MW demands (loads) and potential MW
generation by renewables (solar, wind). It is made up of three substeps (SI Sections 2.1.1-2.1.3, respec-
tively). The first substep is the development of hourly load and meteorological scenarios simulated from
external models (Step 1a. ReEDS and WRF model, Fig. 1). The second substep consists of load adjustments
(Step 1b, Fig. 1), and the third step is a simulation of potential renewable profiles (Step 1c, Fig 1). The last
two substeps predict and simulate future hourly load and renewable production profiles consistent with
patterns of statistically downscaled meteorological variables. These profiles are then used as inputs in the

second step of TDM (Step 2, Fig. 1).

! The year 2050 scenario is selected as a long-term transition case study, which is furthest forecasting year under the
used NEMS version. The proposed framework can be also used for the other short and intermediate years such as
2030 and 2040, and even longer term 2100 if meteorological data and energy projection information are available.
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Figure 1. Schematic of methodology linkages within the two-step TDM framework

The core of the second step is an optimization-based hourly electricity dispatch model that determines
hourly generation from each generation type in each subregion (and ultimately power plant) in the model,
while matching the aggregate temporal profile of such generation from the national or regional aggregate
model (here, NEMS). The detailed notation and formulations of the model can be found in SI Section 2.2.
The power flows among NEMS’ EMM regions by load block are solved by the NEMS model and are
therefore used in the TDM as “boundary conditions” for its downscaling procedure. Within each EMM
region, the transmission lines and subregions are represented as pipe-and-bubbles. Security constraints
among subregions, which account for the need to limit flows to less than some multiple of the thermal
capacity of transmission lines because of possible line outage contingencies are represented by a derated
transmission capacity method, which is a common approach of large systems [50]. Resistance losses be-
tween regions are disregarded, but more general formulations could calculate losses as dependent on volt-
age, power line length, and amount of flow. Unit commitment constraints on generator dispatch (e.g., ramp
rates, start-ups, or minimum output levels) are not modeled, consistent with NEMS, but could also be in-
corporated if desired. The structure of this optimization-based electricity model resembles traditional pro-
duction cost models, with two important exceptions. One is that our model also includes constraints that
require that certain energy outputs of an aggregate model (here, NEMS) be matched (namely, the sum over
TDM hourly dispatched generation in time block equals the total generation in that NEMS time block).
Second, the TDM optimization model includes more than the usual amount of detail on temporal variations
in resource availability and load, and their correlations, because the timing and amount of generation and
emissions from thermal generation are closely coupled and influenced by the joint distribution of wind and
solar output and loads, and these effects depend strongly on the exact generation mix associated with the

energy transition scenario being considered [51], [52].
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2.2 Case Study Assumptions

As a case study, we implemented the TDM to downscale NEMS outputs in 2050 in the SRVC region
(Figure 2). Results for other years from NEMS could be downscaled similarly using appropriate inputs.
Based on a power plant and demand location model derived using the SAG model [49], we downscale
energy (MWh) generation projections (by fuel type, technology type, time block, and sub-region) from a
scale of nine NEMS time-blocks per year to 8760 hours per year (Section 3.1). Then we convert the hourly
generation scenario into chronological emissions profiles which we use to modify the basic emission pro-

files in SMOKE-CAMQ [18],[54].

Figure 2. Map of six ReEDS balancing areas (p95-p100) comprising the NEMS SRVC (SERC Relia-
bility Corporation, Virginia and Carolinas) region
The inputs for this downscaling method are of four types: 1) a meteorological scenario of hourly tem-
peratures, cloudiness, and wind speeds (disaggregated to subregion); 2) assumed locations of generation
capacity by subregion (from either the SAG method or the more traditional GIP method [49]) with a multi-
state region for a future scenario year, 3) energy generation by sub-period (NEMS’ nine time-blocks in our
case), and 4) local siting or emissions policies that impact dispatch. The outputs are hourly energy and
pollutant emissions, in particular: 1) Hourly electricity demand and generation from all generation types
(including variable renewables) in each subregion that are consistent with assumed hourly weather, as well

as 2) Hourly emissions (especially SO,, NOx) by generator type and subregion. After downscaling each
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subregion’s chronological emissions further to individual point sources (e.g., by assuming an allocation in
proportion to the capacity of each source present in a point source emissions inventory), those emissions
can then be input into an air pollution fate and transport model such as the CMAQ system.

Our application repeats this process for each of four aggregate energy and emission scenarios from
NEMS model:

e A base case or reference scenario uses AEO 2017 scenario, without the Obama administration

Clean Power Plan [54] (scenario refnocpp),

e Abundant natural gas resources (scenario highNG) [55],

e High electric vehicle penetration (scenario highEV) [56], and

e High building energy efficiency (scenario highEE) [57].
The required additional information on subregional transmission, hourly load profiles, and renewable
sources originate from the ReEDS database [58]. This downscaled emission information will be, by defini-
tion of the methodology, consistent with NEMS totals by region and by load block (nine demand blocks
per year). Finally, we compare the TDM downscaled hourly emissions with the downscaled hourly emis-
sions from SMOKE’s output in terms of temporal variation and O3 formation implications for each of the
scenarios (Sections 3.2 - 3.4).

Emissions policies are key assumptions that affect the results of downscaling analyses, and are reflected
either in the boundary conditions imposed on the downscaling, or the downscaling process itself. Assump-
tions about federal or regional policies (such as seasonal NOy or annual SO, caps or the Regional Green-
house Gas Initiative) constrain solutions of the aggregate energy models that define boundary conditions
for downscaling, such as total emissions by jurisdiction or season. Downscaling method then enforces those
boundary conditions so that the disaggregated emissions are consistent with the aggregate model solutions
and the federal policies they reflect. However, many states impose their own specific emissions policies
that should be reflected in downscaling procedures. Examples include state or local CO; targets or caps on
criterion pollutants within non-attainment areas. In our case study, all emissions are incorporated in the
boundary conditions defined by NEMS, but such limits on timing or location of local emissions could
readily be included.

In general, there exist important uncertainties that should be recognized when using emission downscal-
ing methods. Some of these are broad federal policy, economic, and technology uncertainties that impact
mixes of generation investment and their emissions rates. These are best reflected in sensitivity analyses of
the national or regional models whose aggregate results are the boundary conditions that constrain the total
investment and energy generation by type within the region being studied. Other uncertainties, such as
state or local land use and climate policies that influence the generator siting and operations, should be

considered by downscaling under a range of assumptions about those policies to assess if the resulting
8
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emissions patterns change in ways that could have significant implications for health or other impacts. For

conciseness, this case study does not include such sensitivity analyses.

3 Results

3.1 Hourly Generation Dispatch and Emission Profiles

The scenario-by-scenario NEMS-SAG projected and downscaled generation capacity mixes are shown
in Figure S8 in the SI. In this subsection, given the projected 2050 systems, we present TDM downscaled
and optimized SRVC power system hourly operation under four scenarios (Figure S9. a-d). The figure
reveals that nuclear, coal, natural gas, and solar energy are the primary resources meeting electricity de-
mands in SRVC. In the refnocpp scenario, most of the coal and nuclear power plants operate as baseload
generators, while coal was called upon occasionally during peak hours. A significant amount of solar pro-
duction resulted in gas plants cycling more frequently to meet demand when insufficient solar energy was
available. In the highNG case, gas plants dominate power generation instead, accounting for over 50% of
total electricity production, leading to changes in coal plant operations which in that case only serve as
baseload generators. The operation patterns in the highEE scenario were similar to those in the refnocpp
case, but with more fluctuations during peak periods due to EV charging. Coal plant operations also changed
in the highEE scenario due to reductions in overall electricity demand. By considering weather-dependent
load and renewable variations, the TDM downscaling method can precisely and quantitatively assess how
different energy transition scenarios affect emissions timing and amounts by capturing operating interac-
tions of different resources in a quantitative manner.

As shown in Figure 3, temporal variations in thermal plant operation strongly affect power emissions
profiles, which are the SO, and NOx hourly emission profiles projection in 2050 in the various scenarios.
The emissions are calculated based on the MWh operation of thermal plants multiplied by corresponding
emissions factors. The SO, profile is driven by the timing of coal combustion, while variations in NOx result
from the operations of both coal and natural gas plants. Emission profiles also exhibit seasonal trends, with
higher emissions occurring in summer or winter due to increased cooling and heating demands, respec-
tively. In contrast, emissions in spring or fall tend to be lower. The diurnal pattern shows that there are more
fluctuations in NOx during peak hours compared to SO,, reflecting the flexible operation of gas plants

relative to coal plants and their interactions with solar production.
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Differences in generation mix and location among scenarios also lead to distinct power system opera-
tions and corresponding emission profiles. For instance, in the highNG and highEE scenarios, the emissions
of SO, from coal facilities remain relatively constant over time due to their baseload mode of operation.
This pattern differs from the other scenarios, in which coal generates more power, expanding to include

both baseload and cycling roles. Furthermore, the NOy emission profile in the highEE scenario demonstrates

less fluctuation over the seasons compared to the other three scenarios. This is due to the lower demand and
lower investment in new power resources in that scenario, especially wind and solar, which reduce the
overall variability of net loads faced by fossil units. Thus, the TDM approach effectively captures emission
variations arising from different power system configurations and operations across different energy tran-
sition scenarios.

As discussed in the next three subsections below, many of the differences in emissions patterns arise
from the interactions of weather and particulars of the generation mix, which are captured by the hourly

TDM method but not the commonly used SMOKE downscaling method.
3.2 TDM vs SMOKE: Comparison of Emission Profiles

Figure 4 focuses on comparing the diurnal patterns of NOx emissions profiles obtained using the TDM
method and the SMOKE default method. It represents the hourly emissions of one week in the summer
season for the 2050 projection. In Figure 4a, we can observe that the NOy variation patterns are correlated
with weather. For example, comparing the first day (high temperature and low solar radiation) with the
third day (low temperature and strong solar radiation), we can see a higher demand on the first day and a
gradually increased NOx emission during the afternoon (due to thermal plants gradually ramping up to
compensate for decreasing solar power). In contrast, the third day has a lower demand but a duck-curve-
like NOx emissions profile (due to strong solar production replacing thermal plant operation in the after-
noon). The TDM simulated profile is the result of system operation informed by impacts of weather on load
demand and renewable energy production.

However, the SMOKE profile only relies on historical operation patterns based on generation mixes
dominated by thermal power plants, whose day-to-day patterns emission are less affected by weather than
renewable-dominated systems that have thermal plants as back-up. As shown in Figure 4b, the correspond-
ing SMOKE NOx profile has a repeating and simple pattern mimicking the traditional operation of thermal
power system, ignoring the impacts of weather on power system operation. The peak emission occurs
around noon every day at the same time as peak load demand. However, this is no longer accurate for a
power system with a large amount of solar where the timing of peak emission is postponed to later afternoon
around 7-8 pm. The timing of power emission is significant because the reaction and transport of air pollu-
tants and formation of secondary air pollutants are highly correlated with when pollutants are emitted into

the atmosphere and the local weather conditions. Therefore, the emission profile based on the historical
11



299  power operations may be inappropriate for a future clean power system with a large amount of variable
300  renewable energy, especially in the context of climate change where the impacts of weather information

301  should be considered for more accurate estimates of power operation and emissions.
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3.3 TDM vs SMOKE: Weather Indices

To illustrate the influence of weather information on pollutant formation, we develop a simple index of
the meteorological potential for tropospheric Oz formation [59], [60] and analyze its covariation with NOx
emission profiles of TDM and SMOKE at the subregion level in Figure 5. The Os formation index is cal-
culated as an equally weighted sum of a 0-1 rescaled wind speed and a 0-1 rescaled solar radiation, where
a higher value of the O; index for a given hour indicates a greater risk of O3 formation-favorable weather
conditions characterized by low wind speed and high solar radiation. When the peak time of power emis-
sion coincides with a high value of the Os index, there could be a higher risk of forming secondary Os in
the atmosphere.

Comparing subregions, we can expect a variety of patterns of local power NOx emissions and their
relationship of local weather conditions because of their different generation mixes. In Figures 5a and 5b,
subregions p100 and p95 are unlikely to be exposed to secondary O3 from the local power system due to
low levels of power NOy emissions. On the other hand, subregions p96 and p98 (Figure 5c and 5e) have a
similar generation mix with large amounts of thermal plants and a significant amount of solar energy, which
suggests that weather conditions may interact strongly with power resource operation in these areas. From
Figures 5c and e, we observe a strong correlation between the resulting SMOKE NOy emission profile (blue
curve) and O; index, particularly during peak hours when NOy emission and Os index are both at their
maximum. In contrast, the resulting TDM profile (black curve) shows an opposite trend, with lower NOx
emissions when the O; index is at its peak, which reflects the impacts of solar penetration on the operation
of thermal plants, leading to postponed peak emissions hours. Meanwhile, in p97 (Figure 5d), a similar
phenomenon can be observed on some days, except for the first two days of the week, although there is
only a relatively small amount of solar power in the local generation mix. This contradiction implies that
using the SMOKE profile for a system with high solar penetration could result in overestimating O3 con-
centrations in air quality simulations compared to using a profile generated by a TDM method, with the
latter providing a more trustworthy estimate of the risk of O3 penetration due to the changing operation of
future power systems. Finally, in p99 (Figure 5f), because the local generation mix is purely dominated by
thermal plants with limited renewable penetration, both the SMOKE profile and TDM results can correctly

represent emissions patterns in such a case.
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Figure 5. Hourly NOy emission profiles and O3 formation index in summer week in subregions of SRVC
in refnocpp (a. P100; b. P95; c. P96; d. P97, e. P98; f. P99)

3.4 TDM vs SMOKE: Scenarios

In this section, we compare TDM and SMOKE NOy emissions in summer (Figure 6) and winter (Figure

7) weeks under different scenarios. The TDM profiles in summer exhibit diverse NOx emission patterns

and levels across the scenarios. The refnocpp case and the highEV case share a similar (and highly variable)

TDM NOx pattern, reflecting the influence of gas and solar operations during the daytime. Their pattern is

distinct from the corresponding SMOKE profile whose diurnal pattern is the same every day. In contrast,
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the highEE and highNG cases include more conventional thermal units, leading to different NOx emissions
compared to refnocpp and highEV cases. The highEE TDM pattern closely resembles the SMOKE pattern,
suggesting that the SMOKE profile can sometimes suffice for simulating power emissions if the future
system configuration does not shift towards greater reliance on variable renewable energy. In the highNG
case, however, the TDM pattern appreciably deviates from the SMOKE pattern despite being dominated
by thermal plants. This is due to the presence of a large amount of gas generation, which flattens the peak
emissions of coal plants and shifts emissions to non-peak periods, resulting in an overall different emissions
pattern compared to the SMOKE profile. Also, the highNG scenario shows approximately 25% fewer daily
peak emissions, and 15% higher non-peak emissions compared to SMOKE. By comparing the profiles
among different scenarios, we see that the TDM profiles provide plausible estimates of changes in system
operation and emission patterns under different scenarios. In contrast, the SMOKE profiles exhibit implau-
sibly similar emission patterns across the scenarios, with differences only in the total emissions levels.
SMOKE profiles tend to misrepresent emission profiles, basin them on increasingly irrelevant historical
patterns.

Compared to summer patterns, the differences between the TDM and SMOKE profiles in winter are
less pronounced (Figure 7). The winter SMOKE profiles exhibit two daily peaks and account for the impacts
of solar and load demand changes, which are generally similar to the TDM profile patterns. However, dif-
ferences still exist in the accuracy of representing peaks and fluctuations across days. For instance, in the
refnocpp and highEE scenarios, the extreme peaks observed in the TDM profile on the first day are
smoothed out by the SMOKE profiles when averaged over the remaining days. Furthermore, SMOKE pro-
files may show distinctive daily fluctuation patterns compared to the TDM profile, with SMOKE being
more variable than the TDM profile in the highEE or highNG scenarios, while being less so in the refnoccp
or highEV scenarios. Therefore, although the winter SMOKE profile is more realistic, it fails to capture the
detailed changes in peaks and variations that the TDM profile can capture, which could significantly impact

air quality simulations.
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Figure 7. Hourly NOx emission in winter week of SRVC (a. TDM-refnocpp; b. TDM-highNG; c. TDM-
highEV; d. TDM-highEE; e. SMOKE-refnocpp; f. SMOKE-highNG; g. SMOKE-highEV; h. SMOKE-
highEE)

4, Discussion

In this paper, we have introduced a novel fundamentals-based temporal downscaling method called the

Temporal Dispatch Model. TDM is a procedure for translating temporally aggregated emission results from
aggregate electric power sector models, such as NEMS, to the detailed plant-level hourly inputs required
by air pollutant simulation models, such as the emissions processing model SMOKE. TDM, when paired
with the Site-and-Grow (SAG) method in [49], develops spatially and temporally granular emissions pro-

jections under a given future technology and policy scenario. Because TDM captures the rich detail of the
16
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power networks and generation technology in its dispatch model, the downscaled system's generation mix
and operations at the subregional level not only reflect the scenario-specific fundamental structural changes
in power systems resulting from a scenario’s various technologic, economic, and weather drivers, but also
reveals the spatial and temporal heterogeneity in system operations and emissions among those scenarios.

As a numerical case study, we made a comprehensive comparison of the proposed temporal downscal-
ing method TDM with traditional SMOKE profile-based downscaling in the SRVC region power system
of the NEMS model. We consider various aspects of the results, including resulting power emission pro-
files, correlations with weather indices, and consistency with scenario information. The findings reveal that
the TDM emissions profiles effectively capture how system operations respond to the impacts of weather
on demand and renewable energy production patterns. In contrast, SMOKE profiles, which are based on
historical operations, were found to be potentially biased and unresponsive to changes in the pattern of
dispatch when representing future power emissions, particularly in the context of climate change and re-
newables expansion. Furthermore, our analysis of smog season weather indices (representing meteorolog-
ical conditions such as wind speed and solar radiation that favor O; formation) indicates that relying on the
SMOKE NOx emission profile could lead to an overestimation of O3 concentrations for a system that has
relatively higher penetration of solar capacity. This overestimation is attributed to SMOKE’s misrepresen-
tation of the timing of peak emissions relative to their occurrence in the presence of solar generation. TDM
shifts emissions to the morning and evening peak demand periods due to mid-day solar energy production,
which we conjecture would lessen the potential for tropospheric O; formation [61]. Finally, our analysis of
four policy scenarios demonstrates that the SMOKE profiles exhibited no discernible differences in emis-
sion patterns timing across the scenarios, only differences in their integrals (total emission levels). This
inflexibility may result in an understatement of the impact of different scenarios on system operations and
power emissions, particularly during the summer. In contrast, the TDM profiles result in more credible
changes in system operation, variations in emission patterns, and timing of peak emissions that can be
causally linked to weather patterns.

In summary, while GIP-SMOKE methods provide relatively quick assessments, they may introduce
biases due to oversimplified emission patterns that fail to capture the dynamics of the energy transition, or
insufficient consideration of uncertainties and complex interactions. As a result, these methods can anchor
on historical emission patterns and average trends. In contrast, SAG-TDM methods are generally more
responsive to policy and technology trends and better model system responses to weather. Thus, the SAG-
TDM approach provide a more nuanced description of evolving emissions, better reflecting the distinctive
characteristics and greater variability of renewable-based systems.

While the SAG-TDM downscaling method offers several advantages over traditional GIP-SMOKE
approaches and is better suited for capturing the evolving characteristics of future power systems and
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emissions, it does come with a tradeoff. The implementation of SAG-TDM introduces an increased com-
putational burden and adds complexity to the modeling framework. Consequently, for future research, we
recommend conducting quantitative analyses and comparisons of air quality simulations and their ultimate
human health impacts using emission scenarios generated by both the SAG-TDM and GIP- SMOKE meth-
ods. In particular, that method introduces additional complexity and requires additional model setup and
coding effort. To apply SAG-TDM downscaling, researchers must con-vert the boundary conditions from
the chosen aggregate model into the fine-grained in-puts required for the SAG-TDM model while main-
taining consistency with assumptions about local power markets and policies. External data may also be
needed to capture finer features or dynamics that are not present in the aggregate model. However, although
more effort is needed for model and data development, computational speed becomes less of a concern (the
difference in computation time between the two methods is typically within an hour in our experience).
Altogether, this suggests that GIP-SMOKE may be preferable for policy makers needing quick, high-level
insights when policy development timelines are tight. However, once the SAG-TDM model capability is
developed, it will offer more detailed insights on locality-specific impacts to inform more extended and
detailed policy processes.

Therefore, for future research, we first recommend conducting quantitative analyses and comparisons
of air quality simulations and their ultimate human health impacts using emission scenarios generated by
both the SAG-TDM and GIP-SMOKE methods. This comparative analysis could focus on evaluating the
accuracy of results, computational efficiency, and identifying which methods are suited to various applica-
tions. Furthermore, validating downscaled results is essential. Future work could involve comparing histor-
ical simulation data with real-world observations (e.g., EPA CEMS data) to ensure accuracy. Lastly, we
suggest additional applications, especially studies addressing equity issues in the energy transition process
to assess how the benefits of overall emissions decreases are distributed. And for rapidly growing econo-
mies where coal generation will likely continue to dominate in coming years, fine-grained downscaling
methods can address impacts of policies such as those in China that have emphasized conversion to natural
gas in urban areas.

Support Information

Additional literature review on downscaling methods, model, data and processing methods, and addi-
tional simulation results and analysis for power system operations.
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