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Abstract 7 

National models of the electric sector typically consider a handful of generator operating periods per 8 

year, while pollutant fate and transport models have an hourly resolution.  We bridge that scale gap by 9 

introducing a novel fundamentals-based temporal downscaling method (TDM) for translating national or 10 

regional energy scenarios to hourly emissions. Optimization-based generator dispatch is used to account 11 

for variations in emissions stemming from weather-sensitive power demands and wind and solar generation. 12 

TDM is demonstrated by downscaling emissions from the electricity market module in the National Energy 13 

Model System (NEMS). As a case study, we implement the TDM in the Virginia-Carolinas region and 14 

compare its results with traditional statistical downscaling used in the Sparse Matrix Operator Kernel Emis-15 

sions (SMOKE) processing model.  We find that the TDM emissions profiles respond to weather, and that 16 

nitrogen oxide emissions are positively correlated with conditions conducive to ozone formation. In con-17 

trast, SMOKE emissions time series, which are rooted in historical operating patterns, exhibit insensitivity 18 

to weather conditions and potential biases, particularly with high renewable penetration and climate change. 19 

Relying on SMOKE profiles can also obscure variations in emission patterns across different policy sce-20 

narios, potentially downplaying their impacts on power system operations and emissions. 21 

Synopsis 22 

This research proposes a novel downscaling methodology to link macro-energy system models and air 23 

quality models accounting for projecting power emissions changes due to renewable technology innovation, 24 

weather-informed system operation changes and load variability. 25 
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1. Introduction  27 

An oft-stated objective of policies and strategies to combat climate change is the achievement of a net-28 

zero emission economy by the mid-21st century. To limit global warming to 1.5°C, the Paris Agreement 29 

set targets for greenhouse gas emissions to decline 45% at least before 2030 and to reach net-zero by 2050 30 
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worldwide [1],[2]. In the US, President Biden has set an ambitious national goal of achieving a carbon 31 

pollution-free power sector by 2035 and a net zero emissions economy before 2050 [3]. Because the energy 32 

sector is responsible for 73% of greenhouse gas emissions globally, decarbonizing the energy system is the 33 

emphasis of policy [4],[5]. Various clean energy transition “pathways” and “roadmaps” have been proposed 34 

and widely discussed by government, academia, and industry [4],[6]–[8]. Decarbonizing the electricity sec-35 

tor is often the focus of these plans, not only because power production is responsible for 25% of world-36 

wide emissions [9], but also because electrifying the transport and building sectors is viewed as key to their 37 

decarbonization.  38 

Recently, the social impacts of the energy transition have gained the attention of the public, policy 39 

makers, and researchers, with a focus on effects such as air quality, public health, energy equity, environ-40 

mental justice, and labor markets [10-16]. Analyzing these impacts requires the integration of different 41 

modeling tools from various disciplines, such as long-term macro-energy system models/integrated assess-42 

ment models [16],[17], air quality models [18],[19], dose-response models for health impacts [21], and 43 

aggregated sectoral micro-economic models (i.e., power, transportation, and building) [22-24], among oth-44 

ers. However, it is often difficult to coordinate the inputs and outputs of these models to provide an inte-45 

grated look at the multiple impacts of policy as those models are usually implemented on different spatial 46 

and temporal scales. In the temporal dimension, for instance, most macro-energy systems or climate models 47 

reduce computational complexity by decreasing the temporal resolution of the data used. Instead of 8760 48 

hours/yr, the National Energy Modeling System (NEMS) model uses nine time-block periods per year for 49 

its load inputs and electricity outputs, while the Regional Energy Deployment System (ReEDS) model 50 

applies an aggregated seventeen time-blocks to represent the within-year distribution of loads [10, 11]. 51 

Thus, the rough output of such a model cannot be directly used by air quality models that require highly 52 

resolved temporal data (i.e., an hourly time step) as inputs. Therefore, (temporal) downscaling techniques 53 

are needed to link aggregated system models with air quality models.  54 

A downscaling method usually takes an aggregate spatial or temporal forecast of climate, economic, or 55 

other variables as an input (or “predictor”), and produces a more detailed and disaggregated scenario of 56 

those variables or other variables that are affected by those inputs. Current downscaling methods can be 57 

categorized into statistical [26-32], dynamic [33-36], and fundamentals-based [37, 39] approaches. We re-58 

view the existing literature associated with each approach in Support Information (SI) Section 1, focusing 59 

on applications to electricity demand, generation, and emissions downscaling.   60 

However, existing downscaling methods have limitations in capturing the effects of long-term (beyond 61 

10-15 years) changes in power generation mixes or climate (e.g., average temperatures). Such factors, 62 

which can significantly impact the amount and timing of power emissions during energy transitions, are 63 

not well represented or ignored. In the case of statistical approaches, the assumption that the statistical 64 
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relationship built using historical or current system data will still be valid for the future system could fun-65 

damentally limit downscaling projections to just the next handful of years rather than the decades covered 66 

by energy transition scenarios. Meanwhile, the precision of temporal downscaling is restricted by the phys-67 

ical model used. For instance, the temporal resolution of GCM (General Circulation Model) results 68 

downscaled using RCMs (Regional Circulation Models) is often in 6-hour time steps, which is not detailed 69 

enough to represent the diurnal operation of a power system and its associated emissions [33]. In addition, 70 

a fundamentals-based method was used by Loughlin et al. [39], who proposed an SCC-mapped1 grow-in-71 

place (GIP) method to link MARKAL and SMOKE-CMAQ (Sparse Matrix Operator Kernel Emissions - 72 

Community Multi-scale Air Quality) modeling frameworks to project and simulate both the location and 73 

time series of energy sector emissions. A combined GIP and SMOKE (GIP-SMOKE) model does temporal 74 

downscaling by converting annual emissions into hourly emissions through its default allocation fac-75 

tors/temporal profiles, which may consider the pattern differences between day and night, weekdays and 76 

weekends, and months or seasons, but have the shortcoming of being assumed to not change in future years. 77 

Therefore, better downscaling methods are desirable to generate more accurate emission profiles that 78 

can represent how temporal emissions patterns evolve over future years in response to renewable invest-79 

ment, changed power system operations, and variable weather conditions. Firstly, an improved downscaling 80 

approach should be able to capture changing net-load patterns (gross load less renewable generation, e.g., 81 

the so-called Duck Curve of the California power system2) and timing of demand peaks. These variations 82 

are expected to create a greater need for more flexible ramping of fossil-fueled thermal plants to maintain 83 

system reliability, inevitably altering the corresponding amount and timing of power sector emissions. Sec-84 

ond, the new approach should account for climate change which might affect future power system reliability 85 

by magnifying the impacts of weather on demand variability [42], [43]. Climate change can also reduce or 86 

increase the generation of renewable energy, and warming reduces the effective capacity and Carnot effi-87 

ciency of thermal plants [42, 44-46]. These shifts deserve careful attention when assessing the impacts of 88 

power emissions on air quality and public health, as the effectiveness of power emission reduction can be 89 

significantly influenced by changes in emissions distribution over the year and their correlations with syn-90 

optic conditions [47]. For instance, elevated NOx emissions during high temperature/high demand days may 91 

coincide with conditions favorable for ozone formation [40]. However, the temporal profiles in SMOKE 92 

generally do not capture these correlations because those profiles are designed to represent historical 93 

 
1The Source Classification/Category Codes (SCCs) system was developed by US EPA to classify different types of 
activities that generate emissions [41]. Each SCC is given to a unique source category-specific process or function 
that emits air pollutants.  
2 The duck curve is a graph shows the difference between electricity demand and solar energy production over a day. 
It was devised by the CAISO to illustrate an aspect of challenges that renewable energy poses to system flexibility.  
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average conditions and do not represent their day-to-day random variability. As a result, SMOKE may 94 

underestimate peak generation emissions while overpredicting emissions during other time periods [48]. . 95 

The latter are often focused instead on projecting long-term changes in siting patterns due to large-scale 96 

fossil retirements and renewable investments, and require national downscaling of results from NEMS and 97 

other national models. 98 

In this paper, we focus on developing temporal downscaling methods for electricity systems that can 99 

more precisely represent impacts of renewable energy growth and other system changes on the level and 100 

variability of power emissions accounting for economic, technical, and climate drivers. The proposed 101 

method is intended to combine the advantages of both statistical downscaling and dynamic downscaling. 102 

Some simple drivers like temperature, wind speed, and solar radiation are processed and downscaled by 103 

statistical methods. Our method then applies optimization to simulate electric generator operations on an 104 

hourly times scale using those statistically downscaled meteorological variables, based on the locations of 105 

existing and new power plant projected using a site-and-grow (SAG) [49] spatial downscaling method. 106 

SAG is designed to model the spatial distribution of changes in generator locations based on modeling of 107 

generator retirements and new plant construction. SAG constrains overall future installed capacity mixes 108 

using future scenarios from national or regional energy models, and chooses where to site new facilities 109 

based either on statistical methods reflecting past siting patterns [40] or optimization methods that account 110 

for transmission, water, land availability, and other factors affecting siting, especially the amount and dis-111 

tribution of wind and solar resources in the case of renewable generators [49]. The advantage of optimiza-112 

tion-based SAG models is that they can account for siting costs and requirements for new generation tech-113 

nologies that can differ significantly from drivers of siting decisions for traditional thermal generators.  114 

The resulting temporally downscaled emissions are expected to anticipate how changes in technology, 115 

policy, and climate drivers affect when and how facilities are operated on an hourly scale. Using this new 116 

method, we are able to address the following research questions: 1) How do hourly emission distributions 117 

from thermal plants vary and correlate with meteorological conditions in the context of climate change, 118 

and how do they compare to traditional methods that don’t account for meteorological variability?, and 2) 119 

How do hourly distributions of power sector emissions compare under alternative policy and technology 120 

scenarios, accounting for the response of emissions to the penetration of wind and solar energy and its 121 

contributions to net-load variations?  The proposed hybrid statistical-SAG-temporal optimization-based 122 

method for temporal and spatial emissions downscaling is a novel approach in that this is the first time that 123 

a downscaling method considers hourly operations of a power system in response to renewable energy 124 

penetration and climate drivers over a multi-decadal time scale.  125 

The rest of the paper is organized as follows. Section 2 introduces the proposed temporal downscaling 126 

methodology and case study assumptions. Section 3 shows the numerical case study for the SERC 127 
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Virginia/Carolina (SRVC) region in the year 20501 under several energy transition scenarios. Section 4 128 

discusses implications of these results and recommends future research directions.    129 

2 Methods  130 

2.1 Temporal Downscaling Model  131 

The proposed temporal downscaling model (TDM) disaggregates energy outputs from a scale of multi-132 

hour time blocks (several blocks per year) yielded by a national or regional aggregated electricity model to 133 

an hourly scale while accounting for how power systems will be operated in the future under significant 134 

renewable penetration as well as varying meteorological conditions under climate change and an assumed 135 

policy scenario. Specifically, the TDM is designed to link the NEMS model and the SMOKE-CMAQ model 136 

but is not limited to these two particular models. It can be extended to downscale emissions from the electric 137 

power component of any other macro-energy system model, integrated assessment model, or other time-138 

aggregated models of power system operations for use in any pollutant fate and transport model.  139 

Here, we describe the specific steps of TDM, assuming that the locations and sizes of electric generators 140 

for some future scenario have been provided by the NEMS-SAG method [49].  The TDM comprises two 141 

major steps as shown in Figure 1, each being explained in detail in SI Sections 2.1-2.2, respectively.  (Note 142 

that in our application, the execution of NEMS and SMOKE was done by collaborators on other research 143 

teams, while our contributions are the SAG-TDM downscaling components of the overall process). The 144 

first step addresses net-load adjustments which will affect hourly MW demands (loads) and potential MW 145 

generation by renewables (solar, wind). It is made up of three substeps (SI Sections 2.1.1-2.1.3, respec-146 

tively).  The first substep is the development of hourly load and meteorological scenarios simulated from 147 

external models (Step 1a. ReEDS and WRF model, Fig. 1). The second substep consists of load adjustments 148 

(Step 1b, Fig. 1), and the third step is a simulation of potential renewable profiles (Step 1c, Fig 1). The last 149 

two substeps predict and simulate future hourly load and renewable production profiles consistent with 150 

patterns of statistically downscaled meteorological variables. These profiles are then used as inputs in the 151 

second step of TDM (Step 2, Fig. 1).  152 

 
1 The year 2050 scenario is selected as a long-term transition case study, which is furthest forecasting year under the 
used NEMS version. The proposed framework can be also used for the other short and intermediate years such as 
2030 and 2040, and even longer term 2100 if meteorological data and energy projection information are available.   
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 153 

Figure 1. Schematic of methodology linkages within the two-step TDM framework 154 
 155 

The core of the second step is an optimization-based hourly electricity dispatch model that determines 156 

hourly generation from each generation type in each subregion (and ultimately power plant) in the model, 157 

while matching the aggregate temporal profile of such generation from the national or regional aggregate 158 

model (here, NEMS). The detailed notation and formulations of the model can be found in SI Section 2.2. 159 

The power flows among NEMS’ EMM regions by load block are solved by the NEMS model and are 160 

therefore used in the TDM as “boundary conditions” for its downscaling procedure. Within each EMM 161 

region, the transmission lines and subregions are represented as pipe-and-bubbles. Security constraints 162 

among subregions, which account for the need to limit flows to less than some multiple of the thermal 163 

capacity of transmission lines because of possible line outage contingencies are represented by a derated 164 

transmission capacity method, which is a common approach of large systems [50]. Resistance losses be-165 

tween regions are disregarded, but more general formulations could calculate losses as dependent on volt-166 

age, power line length, and amount of flow. Unit commitment constraints on generator dispatch (e.g., ramp 167 

rates, start-ups, or minimum output levels) are not modeled, consistent with NEMS, but could also be in-168 

corporated if desired. The structure of this optimization-based electricity model resembles traditional pro-169 

duction cost models, with two important exceptions.  One is that our model also includes constraints that 170 

require that certain energy outputs of an aggregate model (here, NEMS) be matched (namely, the sum over 171 

TDM hourly dispatched generation in time block equals the total generation in that NEMS time block). 172 

Second, the TDM optimization model includes more than the usual amount of detail on temporal variations 173 

in resource availability and load, and their correlations, because the timing and amount of generation and 174 

emissions from thermal generation are closely coupled and influenced by the joint distribution of wind and 175 

solar output and loads, and these effects depend strongly on the exact generation mix associated with the 176 

energy transition scenario being considered [51], [52]. 177 
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2.2 Case Study Assumptions  178 

As a case study, we implemented the TDM to downscale NEMS outputs in 2050 in the SRVC region 179 

(Figure 2). Results for other years from NEMS could be downscaled similarly using appropriate inputs. 180 

Based on a power plant and demand location model derived using the SAG model [49], we downscale 181 

energy (MWh) generation projections (by fuel type, technology type, time block, and sub-region) from a 182 

scale of nine NEMS time-blocks per year to 8760 hours per year (Section 3.1). Then we convert the hourly 183 

generation scenario into chronological emissions profiles which we use to modify the basic emission pro-184 

files in SMOKE-CAMQ [18],[54].  185 

 186 
Figure 2. Map of six ReEDS balancing areas (p95-p100) comprising the NEMS SRVC (SERC Relia-187 

bility Corporation, Virginia and Carolinas) region  188 

The inputs for this downscaling method are of four types: 1) a meteorological scenario of hourly tem-189 

peratures, cloudiness, and wind speeds (disaggregated to subregion); 2) assumed locations of generation 190 

capacity by subregion (from either the SAG method or the more traditional GIP method [49]) with a multi-191 

state region for a future scenario year, 3) energy generation by sub-period (NEMS’ nine time-blocks in our 192 

case), and 4) local siting or emissions policies that impact dispatch.  The outputs are hourly energy and 193 

pollutant emissions, in particular: 1) Hourly electricity demand and generation from all generation types 194 

(including variable renewables) in each subregion that are consistent with assumed hourly weather, as well 195 

as 2) Hourly emissions (especially SO2, NOx) by generator type and subregion. After downscaling each 196 
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subregion’s chronological emissions further to individual point sources (e.g., by assuming an allocation in 197 

proportion to the capacity of each source present in a point source emissions inventory), those emissions 198 

can then be input into an air pollution fate and transport model such as the CMAQ system. 199 

Our application repeats this process for each of four aggregate energy and emission scenarios from 200 

NEMS model:  201 

• A base case or reference scenario uses AEO 2017 scenario, without the Obama administration 202 

Clean Power Plan [54] (scenario refnocpp),  203 

• Abundant natural gas resources (scenario highNG) [55],  204 

• High electric vehicle penetration (scenario highEV) [56], and  205 

• High building energy efficiency (scenario highEE) [57].  206 

The required additional information on subregional transmission, hourly load profiles, and renewable 207 

sources originate from the ReEDS database [58]. This downscaled emission information will be, by defini-208 

tion of the methodology, consistent with NEMS totals by region and by load block (nine demand blocks 209 

per year). Finally, we compare the TDM downscaled hourly emissions with the downscaled hourly emis-210 

sions from SMOKE’s output in terms of temporal variation and O3 formation implications for each of the 211 

scenarios (Sections 3.2 - 3.4).  212 

Emissions policies are key assumptions that affect the results of downscaling analyses, and are reflected 213 

either in the boundary conditions imposed on the downscaling, or the downscaling process itself. Assump-214 

tions about federal or regional policies (such as seasonal NOx or annual SO2 caps or the Regional Green-215 

house Gas Initiative) constrain solutions of the aggregate energy models that define boundary conditions 216 

for downscaling, such as total emissions by jurisdiction or season. Downscaling method then enforces those 217 

boundary conditions so that the disaggregated emissions are consistent with the aggregate model solutions 218 

and the federal policies they reflect.  However, many states impose their own specific emissions policies 219 

that should be reflected in downscaling procedures.  Examples include state or local CO2 targets or caps on 220 

criterion pollutants within non-attainment areas.  In our case study, all emissions are incorporated in the 221 

boundary conditions defined by NEMS, but such limits on timing or location of local emissions could 222 

readily be included.    223 

In general, there exist important uncertainties that should be recognized when using emission downscal-224 

ing methods. Some of these are broad federal policy, economic, and technology uncertainties that impact 225 

mixes of generation investment and their emissions rates. These are best reflected in sensitivity analyses of 226 

the national or regional models whose aggregate results are the boundary conditions that constrain the total 227 

investment and energy generation by type within the region being studied.  Other uncertainties, such as 228 

state or local land use and climate policies that influence the generator siting and operations, should be 229 

considered by downscaling under a range of assumptions about those policies to assess if the resulting 230 
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emissions patterns change in ways that could have significant implications for health or other impacts.  For 231 

conciseness, this case study does not include such sensitivity analyses. 232 

3 Results 233 

3.1 Hourly Generation Dispatch and Emission Profiles  234 

The scenario-by-scenario NEMS-SAG projected and downscaled generation capacity mixes are shown 235 

in Figure S8 in the SI. In this subsection, given the projected 2050 systems, we present TDM downscaled 236 

and optimized SRVC power system hourly operation under four scenarios (Figure S9. a-d). The figure 237 

reveals that nuclear, coal, natural gas, and solar energy are the primary resources meeting electricity de-238 

mands in SRVC. In the refnocpp scenario, most of the coal and nuclear power plants operate as baseload 239 

generators, while coal was called upon occasionally during peak hours. A significant amount of solar pro-240 

duction resulted in gas plants cycling more frequently to meet demand when insufficient solar energy was 241 

available. In the highNG case, gas plants dominate power generation instead, accounting for over 50% of 242 

total electricity production, leading to changes in coal plant operations which in that case only serve as 243 

baseload generators. The operation patterns in the highEE scenario were similar to those in the refnocpp 244 

case, but with more fluctuations during peak periods due to EV charging. Coal plant operations also changed 245 

in the highEE scenario due to reductions in overall electricity demand. By considering weather-dependent 246 

load and renewable variations, the TDM downscaling method can precisely and quantitatively assess how 247 

different energy transition scenarios affect emissions timing and amounts by capturing operating interac-248 

tions of different resources in a quantitative manner. 249 

As shown in Figure 3, temporal variations in thermal plant operation strongly affect power emissions 250 

profiles, which are the SO2 and NOx hourly emission profiles projection in 2050 in the various scenarios. 251 

The emissions are calculated based on the MWh operation of thermal plants multiplied by corresponding 252 

emissions factors. The SO2 profile is driven by the timing of coal combustion, while variations in NOx result 253 

from the operations of both coal and natural gas plants. Emission profiles also exhibit seasonal trends, with 254 

higher emissions occurring in summer or winter due to increased cooling and heating demands, respec-255 

tively. In contrast, emissions in spring or fall tend to be lower. The diurnal pattern shows that there are more 256 

fluctuations in NOx during peak hours compared to SO2, reflecting the flexible operation of gas plants 257 

relative to coal plants and their interactions with solar production.  258 
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 259 

 260 
Figure 3. Hourly power emissions in region SRVC under different 2050 scenarios (a. Refnocpp SO2; b. 261 
Refnocpp NOx; c. HighNG SO2; d. HighNG NOx; e. HighEV SO2; f. HighEV NOx; e. HighEE SO2; f. 262 

HighEE NOx)   263 
 264 



11 

 

Differences in generation mix and location among scenarios also lead to distinct power system opera-265 

tions and corresponding emission profiles. For instance, in the highNG and highEE scenarios, the emissions 266 

of SO2 from coal facilities remain relatively constant over time due to their baseload mode of operation. 267 

This pattern differs from the other scenarios, in which coal generates more power, expanding to include 268 

both baseload and cycling roles. Furthermore, the NOx emission profile in the highEE scenario demonstrates 269 

less fluctuation over the seasons compared to the other three scenarios. This is due to the lower demand and 270 

lower investment in new power resources in that scenario, especially wind and solar, which reduce the 271 

overall variability of net loads faced by fossil units.  Thus, the TDM approach effectively captures emission 272 

variations arising from different power system configurations and operations across different energy tran-273 

sition scenarios.   274 

As discussed in the next three subsections below, many of the differences in emissions patterns arise 275 

from the interactions of weather and particulars of the generation mix, which are captured by the hourly 276 

TDM method but not the commonly used SMOKE downscaling method. 277 

3.2 TDM vs SMOKE: Comparison of Emission Profiles 278 

Figure 4 focuses on comparing the diurnal patterns of NOx emissions profiles obtained using the TDM 279 

method and the SMOKE default method. It represents the hourly emissions of one week in the summer 280 

season for the 2050 projection. In Figure 4a, we can observe that the NOx variation patterns are correlated 281 

with weather. For example, comparing the first day (high temperature and low solar radiation) with the 282 

third day (low temperature and strong solar radiation), we can see a higher demand on the first day and a 283 

gradually increased NOx emission during the afternoon (due to thermal plants gradually ramping up to 284 

compensate for decreasing solar power). In contrast, the third day has a lower demand but a duck-curve-285 

like NOx emissions profile (due to strong solar production replacing thermal plant operation in the after-286 

noon). The TDM simulated profile is the result of system operation informed by impacts of weather on load 287 

demand and renewable energy production.  288 

However, the SMOKE profile only relies on historical operation patterns based on generation mixes 289 

dominated by thermal power plants, whose day-to-day patterns emission are less affected by weather than 290 

renewable-dominated systems that have thermal plants as back-up. As shown in Figure 4b, the correspond-291 

ing SMOKE NOx profile has a repeating and simple pattern mimicking the traditional operation of thermal 292 

power system, ignoring the impacts of weather on power system operation. The peak emission occurs 293 

around noon every day at the same time as peak load demand. However, this is no longer accurate for a 294 

power system with a large amount of solar where the timing of peak emission is postponed to later afternoon 295 

around 7-8 pm. The timing of power emission is significant because the reaction and transport of air pollu-296 

tants and formation of secondary air pollutants are highly correlated with when pollutants are emitted into 297 

the atmosphere and the local weather conditions. Therefore, the emission profile based on the historical 298 
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power operations may be inappropriate for a future clean power system with a large amount of variable 299 

renewable energy, especially in the context of climate change where the impacts of weather information 300 

should be considered for more accurate estimates of power operation and emissions.  301 

 302 

 303 
Figure 4. Hourly NOx emission profiles in summer week in region SRVC in scenario refnocpp (a. TDM 304 

downscaling; b. SOMKE default profile) 305 
 306 
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3.3 TDM vs SMOKE: Weather Indices   307 

To illustrate the influence of weather information on pollutant formation, we develop a simple index of 308 

the meteorological potential for tropospheric O3 formation [59], [60] and analyze its covariation with NOx 309 

emission profiles of TDM and SMOKE at the subregion level in Figure 5. The O3 formation index is cal-310 

culated as an equally weighted sum of a 0-1 rescaled wind speed and a 0-1 rescaled solar radiation, where 311 

a higher value of the O3 index for a given hour indicates a greater risk of O3 formation-favorable weather 312 

conditions characterized by low wind speed and high solar radiation.  When the peak time of power emis-313 

sion coincides with a high value of the O3 index, there could be a higher risk of forming secondary O3 in 314 

the atmosphere.  315 

Comparing subregions, we can expect a variety of patterns of local power NOx emissions and their 316 

relationship of local weather conditions because of their different generation mixes. In Figures 5a and 5b, 317 

subregions p100 and p95 are unlikely to be exposed to secondary O3 from the local power system due to 318 

low levels of power NOx emissions.  On the other hand, subregions p96 and p98 (Figure 5c and 5e) have a 319 

similar generation mix with large amounts of thermal plants and a significant amount of solar energy, which 320 

suggests that weather conditions may interact strongly with power resource operation in these areas. From 321 

Figures 5c and e, we observe a strong correlation between the resulting SMOKE NOx emission profile (blue 322 

curve) and O3 index, particularly during peak hours when NOx emission and O3 index are both at their 323 

maximum. In contrast, the resulting TDM profile (black curve) shows an opposite trend, with lower NOx 324 

emissions when the O3 index is at its peak, which reflects the impacts of solar penetration on the operation 325 

of thermal plants, leading to postponed peak emissions hours. Meanwhile, in p97 (Figure 5d), a similar 326 

phenomenon can be observed on some days, except for the first two days of the week, although there is 327 

only a relatively small amount of solar power in the local generation mix. This contradiction implies that 328 

using the SMOKE profile for a system with high solar penetration could result in overestimating O3 con-329 

centrations in air quality simulations compared to using a profile generated by a TDM method, with the 330 

latter providing a more trustworthy estimate of the risk of O3 penetration due to the changing operation of 331 

future power systems.  Finally, in p99 (Figure 5f), because the local generation mix is purely dominated by 332 

thermal plants with limited renewable penetration, both the SMOKE profile and TDM results can correctly 333 

represent emissions patterns in such a case.  334 
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 335 

 336 

 337 

Figure 5. Hourly NOx emission profiles and O3 formation index in summer week in subregions of SRVC 338 
in refnocpp (a. P100; b. P95; c. P96; d. P97; e. P98; f. P99) 339 

 340 
3.4 TDM vs SMOKE: Scenarios   341 

In this section, we compare TDM and SMOKE NOx emissions in summer (Figure 6) and winter (Figure 342 

7) weeks under different scenarios. The TDM profiles in summer exhibit diverse NOx emission patterns 343 

and levels across the scenarios. The refnocpp case and the highEV case share a similar (and highly variable) 344 

TDM NOx pattern, reflecting the influence of gas and solar operations during the daytime. Their pattern is 345 

distinct from the corresponding SMOKE profile whose diurnal pattern is the same every day. In contrast, 346 
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the highEE and highNG cases include more conventional thermal units, leading to different NOx emissions 347 

compared to refnocpp and highEV cases. The highEE TDM pattern closely resembles the SMOKE pattern, 348 

suggesting that the SMOKE profile can sometimes suffice for simulating power emissions if the future 349 

system configuration does not shift towards greater reliance on variable renewable energy. In the highNG 350 

case, however, the TDM pattern appreciably deviates from the SMOKE pattern despite being dominated 351 

by thermal plants. This is due to the presence of a large amount of gas generation, which flattens the peak 352 

emissions of coal plants and shifts emissions to non-peak periods, resulting in an overall different emissions 353 

pattern compared to the SMOKE profile. Also, the highNG scenario shows approximately 25% fewer daily 354 

peak emissions, and 15% higher non-peak emissions compared to SMOKE. By comparing the profiles 355 

among different scenarios, we see that the TDM profiles provide plausible estimates of changes in system 356 

operation and emission patterns under different scenarios. In contrast, the SMOKE profiles exhibit implau-357 

sibly similar emission patterns across the scenarios, with differences only in the total emissions levels. 358 

SMOKE profiles tend to misrepresent emission profiles, basin them on increasingly irrelevant historical 359 

patterns. 360 

Compared to summer patterns, the differences between the TDM and SMOKE profiles in winter are 361 

less pronounced (Figure 7). The winter SMOKE profiles exhibit two daily peaks and account for the impacts 362 

of solar and load demand changes, which are generally similar to the TDM profile patterns. However, dif-363 

ferences still exist in the accuracy of representing peaks and fluctuations across days. For instance, in the 364 

refnocpp and highEE scenarios, the extreme peaks observed in the TDM profile on the first day are 365 

smoothed out by the SMOKE profiles when averaged over the remaining days. Furthermore, SMOKE pro-366 

files may show distinctive daily fluctuation patterns compared to the TDM profile, with SMOKE being 367 

more variable than the TDM profile in the highEE or highNG scenarios, while being less so in the refnoccp 368 

or highEV scenarios. Therefore, although the winter SMOKE profile is more realistic, it fails to capture the 369 

detailed changes in peaks and variations that the TDM profile can capture, which could significantly impact 370 

air quality simulations.   371 
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 372 

Figure 6. Hourly NOx emission in summer week of SRVC (a. TDM-refnocpp; b. TDM-highNG; c. TDM-373 
highEV; d. TDM-highEE; e. SMOKE-refnocpp; f. SMOKE-highNG; g. SMOKE-highEV; h. SMOKE-374 

highEE) 375 

 376 

Figure 7. Hourly NOx emission in winter week of SRVC (a. TDM-refnocpp; b. TDM-highNG; c. TDM-377 
highEV; d. TDM-highEE; e. SMOKE-refnocpp; f. SMOKE-highNG; g. SMOKE-highEV; h. SMOKE-378 

highEE) 379 

4. Discussion 380 

In this paper, we have introduced a novel fundamentals-based temporal downscaling method called the 381 

Temporal Dispatch Model. TDM is a procedure for translating temporally aggregated emission results from 382 

aggregate electric power sector models, such as NEMS, to the detailed plant-level hourly inputs required 383 

by air pollutant simulation models, such as the emissions processing model SMOKE. TDM, when paired 384 

with the Site-and-Grow (SAG) method in [49], develops spatially and temporally granular emissions pro-385 

jections under a given future technology and policy scenario. Because TDM captures the rich detail of the 386 
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power networks and generation technology in its dispatch model, the downscaled system's generation mix 387 

and operations at the subregional level not only reflect the scenario-specific fundamental structural changes 388 

in power systems resulting from a scenario’s various technologic, economic, and weather drivers, but also 389 

reveals the spatial and temporal heterogeneity in system operations and emissions among those scenarios.  390 

As a numerical case study, we made a comprehensive comparison of the proposed temporal downscal-391 

ing method TDM with traditional SMOKE profile-based downscaling in the SRVC region power system 392 

of the NEMS model.  We consider various aspects of the results, including resulting power emission pro-393 

files, correlations with weather indices, and consistency with scenario information. The findings reveal that 394 

the TDM emissions profiles effectively capture how system operations respond to the impacts of weather 395 

on demand and renewable energy production patterns. In contrast, SMOKE profiles, which are based on 396 

historical operations, were found to be potentially biased and unresponsive to changes in the pattern of 397 

dispatch when representing future power emissions, particularly in the context of climate change and re-398 

newables expansion. Furthermore, our analysis of smog season weather indices (representing meteorolog-399 

ical conditions such as wind speed and solar radiation that favor O3 formation) indicates that relying on the 400 

SMOKE NOx emission profile could lead to an overestimation of O3 concentrations for a system that has 401 

relatively higher penetration of solar capacity. This overestimation is attributed to SMOKE’s misrepresen-402 

tation of the timing of peak emissions relative to their occurrence in the presence of solar generation. TDM 403 

shifts emissions to the morning and evening peak demand periods due to mid-day solar energy production, 404 

which we conjecture would lessen the potential for tropospheric O3 formation [61]. Finally, our analysis of 405 

four policy scenarios demonstrates that the SMOKE profiles exhibited no discernible differences in emis-406 

sion patterns timing across the scenarios, only differences in their integrals (total emission levels). This 407 

inflexibility may result in an understatement of the impact of different scenarios on system operations and 408 

power emissions, particularly during the summer. In contrast, the TDM profiles result in more credible 409 

changes in system operation, variations in emission patterns, and timing of peak emissions that can be 410 

causally linked to weather patterns.  411 

In summary, while GIP-SMOKE methods provide relatively quick assessments, they may introduce 412 

biases due to oversimplified emission patterns that fail to capture the dynamics of the energy transition, or 413 

insufficient consideration of uncertainties and complex interactions. As a result, these methods can anchor 414 

on historical emission patterns and average trends. In contrast, SAG-TDM methods are generally more 415 

responsive to policy and technology trends and better model system responses to weather. Thus, the SAG-416 

TDM approach provide a more nuanced description of evolving emissions, better reflecting the distinctive 417 

characteristics and greater variability of renewable-based systems. 418 

While the SAG-TDM downscaling method offers several advantages over traditional GIP-SMOKE 419 

approaches and is better suited for capturing the evolving characteristics of future power systems and 420 
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emissions, it does come with a tradeoff. The implementation of SAG-TDM introduces an increased com-421 

putational burden and adds complexity to the modeling framework. Consequently, for future research, we 422 

recommend conducting quantitative analyses and comparisons of air quality simulations and their ultimate 423 

human health impacts using emission scenarios generated by both the SAG-TDM and GIP- SMOKE meth-424 

ods. In particular, that method introduces additional complexity and requires additional model setup and 425 

coding effort. To apply SAG-TDM downscaling, researchers must con-vert the boundary conditions from 426 

the chosen aggregate model into the fine-grained in-puts required for the SAG-TDM model while main-427 

taining consistency with assumptions about local power markets and policies. External data may also be 428 

needed to capture finer features or dynamics that are not present in the aggregate model. However, although 429 

more effort is needed for model and data development, computational speed becomes less of a concern (the 430 

difference in computation time between the two methods is typically within an hour in our experience). 431 

Altogether, this suggests that GIP-SMOKE may be preferable for policy makers needing quick, high-level 432 

insights when policy development timelines are tight. However, once the SAG-TDM model capability is 433 

developed, it will offer more detailed insights on locality-specific impacts to inform more extended and 434 

detailed policy processes. 435 

Therefore, for future research, we first recommend conducting quantitative analyses and comparisons 436 

of air quality simulations and their ultimate human health impacts using emission scenarios generated by 437 

both the SAG-TDM and GIP-SMOKE methods. This comparative analysis could focus on evaluating the 438 

accuracy of results, computational efficiency, and identifying which methods are suited to various applica-439 

tions. Furthermore, validating downscaled results is essential. Future work could involve comparing histor-440 

ical simulation data with real-world observations (e.g., EPA CEMS data) to ensure accuracy. Lastly, we 441 

suggest additional applications, especially studies addressing equity issues in the energy transition process 442 

to assess how the benefits of overall emissions decreases are distributed.  And for rapidly growing econo-443 

mies where coal generation will likely continue to dominate in coming years, fine-grained downscaling 444 

methods can address impacts of policies such as those in China that have emphasized conversion to natural 445 

gas in urban areas.  446 

Support Information 447 

Additional literature review on downscaling methods, model, data and processing methods, and addi-448 

tional simulation results and analysis for power system operations.  449 
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