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The oceanographic ecology of pelagic Sargassum, and the means by which these floating
macroalgae thrive in the nutrient-poor waters of the open ocean, have been studied for
decades. Beginning in 2011, the Great Atlantic Sargassum Belt (GASB) emerged, with
Sargassum proliferating in the tropical Atlantic and Caribbean where it had not previously
been abundant. Here we show that the nutritional status of Sargassum in the GASB is
distinct, with higher nitrogen and phosphorus content than populations residing in its
Sargasso Sea habitat. Moreover, we find that variations in arsenic content of Sargassum
reflect phosphorus limitation, following a hyperbolic relationship predicted from
Michaelis-Menten nutrient uptake kinetics. Although the sources of nutrients fueling the
GASB are not yet clear, our results suggest that nitrogen and phosphorus content of
Sargassum, together with its isotopic composition, can be used to identify those sources,
whether they be atmospheric, oceanic, or riverine in origin.

The floating macroalgae Sargassum spp. serves as a habitat for more than 200 types of
organisms, including 10 endemic species' and provides habitat for fish nursery, spawning and
foraging*>. Neonate and juvenile sea turtles use Sargassum habitat for feeding as well as
protection from predators®’, and several species of seabirds forage over Sargassum®°. In
contrast to these traditionally beneficial ecological impacts, the GASB’s unprecedented
inundations of Sargassum on Caribbean and Florida coastlines have had deleterious effects on
near-shore seagrass and coral reef ecosystems'%!3, and have led to declines in turtle hatchling
survival'*. The GASB has also presented challenges to regional economies, particularly those
that rely heavily on tourism'>'®, Sargassum decay on coastal margins can cause respiratory and
other human health issues!”, and the presence of arsenic in Sargassum tissue'®? puts significant
constraints on utilization of the biomass that washes ashore?'-%>,

A complex set of interconnected hypotheses have been offered to explain dynamics of the
GASB?*%, Anomalous wind patterns in 2009-2010 are thought to have introduced Sargassum
from its habitat in the Sargasso Sea into the eastern North Atlantic where it was subsequently
entrained into the equatorial current system?’. Since that time, Sargassum has increased
dramatically in the tropical Atlantic, begging the question of nutrient supply. A variety of
nutrient sources have been suggested?®?’, including upwelling, vertical mixing, discharge from
the Amazon and Congo rivers, and atmospheric deposition. However, the causes of the GASB
and the mechanisms controlling its seasonal to interannual variability remain unknown. An
underlying question is: is this massive abundance of Sargassum a result of higher nutrient
availability in the GASB?

In this work we show that GASB Sargassum populations are enriched in both nitrogen and
phosphorus content relative to its Sargasso Sea habitat, clearly identifying nutrient supply as a
primary driver of this phenomenon. In addition, we demonstrate that Sargassum’s arsenic
content varies with the degree of phosphorus limitation, linking our observations with a
theoretical prediction based on nutrient uptake kinetics. Our results show that ascertaining the
nutrient sources and their regulation is essential to understand the underlying causes of this
basin-scale phenomenon—and only then will society have a conceptual basis on which to design
potential strategies to mitigate the consequences of the GASB.

Results
Sargassum distributions and nutritional status

In order to address this question, Sargassum tissue samples were collected in spring 2021
along with hydrographic and nutrient measurements on two hydrographic sections in the western
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Atlantic (Methods) that intersected the western portion of the GASB (Fig. 1). The samples were
separated into two species S. fluitans and S. natans based on their morphology®. S. fluitans and
S. natans co-occurred in the southern portions of both A20 and A22. S. natans was more
prevalent north of 24°N on A22, and north of 27°N on A20. Both species were present at 32°N
on A20 as well as the farthest north sample, collected just south of the Gulf Stream on A22.

Sargassum elemental composition was similar between species (Fig. 2, Supplementary Table
1), a finding that is consistent with earlier studies?”. Our data reveal three distinct regimes within
the sampling domain. In the Sargasso Sea, carbon content tends to be relatively high
(particularly in the eastern transect A20), whereas nitrogen and phosphorus content tend to be
low. Nutritional status in the GASB was much better, with nitrogen and phosphorus content of
Sargassum in the Caribbean and western tropical Atlantic significantly higher than in the
Sargasso Sea (Supplementary Fig. 1, Supplementary Table 2). Interestingly, nitrogen and
phosphorus content were highest in the northern Sargasso Sea.

These trends are also evident in elemental ratios (Supplementary Fig. 2). As expected, C:N
was high in the Sargasso Sea, driven by higher carbon content and lower nitrogen content (Fig.
2). These ratios are higher in A20 than in A22, particularly in S. natans. This zonal gradient with
C:N increasing to the east is driven by both increasing carbon content and decreasing nitrogen
content. C:P is also high in the Sargasso Sea, although the zonal gradient evident in C:N is not
clear in C:P. N:P shows a pronounced maximum in the Sargasso Sea region of A22, which is
driven by a combination of increased N content and decreased P content. Little meridional trend
in N:P is evident in A20, and in aggregate N:P in the Sargasso Sea differs less from the
surrounding regions than does C:N and C:P (Supplementary Fig. 1).

Based on the seasonal analysis conducted on prior data sets?, the springtime samples
described herein would be expected to be at their seasonal maxima of nitrogen and phosphorus
content, and minima of their C:N and C:P ratios.

Nutrient sources

Because Sargassum is subject to both surface currents and wind, hydrodynamic transport
plays a key role in its dynamics®'"*3. In order to assess the recent history of our Sargassum
samples, passive particles were inserted into a numerical ocean model hindcast at each collection
site and tracked backward in time (Fig. 3; see Methods). The southernmost sample of A20
appears to have come from the southeast, whereas samples in the 10-30°N latitude band come
primarily from the east. Exceptions to that pattern include an eddy-like flows from 25°N to
28°N on A22. Samples collected north of 30°N on A20 appear to have come from the north,
consistent with a Gulf Stream origin. The northernmost sample on A22 was clearly under the
influence of the Gulf Stream, although its point of entry into the Gulf Stream varied widely
within the ensemble—ranging from the continental shelf north of Cape Hatteras to the South
Atlantic Bight, with some in the core of the Gulf Stream as far south as 30°N.

This information, together with '°N values of the Sargassum tissue, facilitates some
inferences about nitrogen sources. Specifically, Sargassum utilizing riverine nitrogen tend to
have enriched (positive) §'°N values, whereas those fueled by near-surface oceanic and
atmospheric sources have lower (negative to slightly positive) 8'°N values®. Nitrogen fixation
typically results in a fractionation of -2%o>*.

Patterns in 8'°N from our survey reveal spatial coherence, with no systematic difference
between S. fluitans and S. natans (Fig. 2). Depleted §'°N values in the Sargasso Sea, Caribbean,
and western tropical Atlantic could result from nitrogen fixation by epiphytic cyanobacteria®>-°
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or perhaps atmospheric deposition®’. The highest '°N values occurred in the northern Sargasso
Sea, with values of approximately +2%o potentially reflecting riverine sources along the U.S. east
coast (as indicated by spatial connectivity depicted in Fig. 3), or as distant as the Gulf of Mexico
which has been identified as a source region for Sargassum in the western Atlantic®®. For
example, a coherent plume emanating from the Mississippi River in summer of 2004 was
entrained into the Loop Current, reaching the Straits of Florida in approximately 25 days,
continuing northward in the Gulf Stream to be found in the South Atlantic Bight another 25 days
after that®®. Our northern Sargasso Sea samples were collected another 600 nm farther
downstream, so assuming a flow of 4 kt, they could have been influenced by Mississippi River
water discharged as recently as 150 days before sampling. With end-member §'°N values of +6-
8%o in in northern Gulf of Mexico Sargassum?’, dilution to +2%o would require several
doublings of the population using oceanic sources of nitrogen—which is certainly possible based
on observed growth rates®®#%4! " Alternatively, enrichment of 8'°N in samples from the northern
Sargasso Sea could be caused by upwelling and/or vertical mixing, as values of +2%o are
characteristic of nitrate in the upper thermocline in that region*>*.

Enriched §'°N values were also found in the southernmost samples of the western tropical
Atlantic (Fig. 2), under direct influence of the Amazon River plume (as evidenced by the salinity
distribution in Fig. 1) which has been implicated as a nutrient source for the GASB?6-2**_ There
was one station in the Caribbean interior (17°N, 67°W) where similarly high §'°N values were
measured, but the corresponding salinity (Fig. 1) does not bespeak riverine influence. Particle
backtracking calculations suggest source waters to the east-southeast (Fig. 3), and given the
cross-isohaline transport enabled by wind drag, Amazon River influence is plausible. However,
it is noteworthy that neither the elemental composition (Fig. 2) nor nutrient ratios
(Supplementary Fig. 2) in the high-8'°N samples of the tropical Atlantic and Caribbean Sea show
corresponding anomalies.

Hydrographic data from sections A20 and A22 provide environmental information with
which to interpret the Sargassum observations. The nitracline and phosphocline are deepest in
the warm and salty waters of the Sargasso Sea, and shallower in the warmer and fresher waters
of the Caribbean and western tropical Atlantic (Supplementary Fig. 3). Both nutriclines are
shallower in the colder and fresher waters of the northern Sargasso Sea. Near-surface nutrient
concentrations are generally very low except for the northernmost portions of each transect
where the nutriclines outcrop. Nitrate and phosphate are at or below the limit of detection in the
surface waters Sargasso Sea (Supplementary Fig. 4). Nitrate is enhanced in the Caribbean, and
less so in the western tropical Atlantic, where surface phosphate is elevated. The presence of
detectable nitrate and phosphate in these areas is consistent with the enhanced nutritional status
of Sargassum in the GASB.

Arsenic biogeochemistry
The fact that Sargassum bioaccumulates arsenic has generated considerable interest,

particularly because the associated toxicity puts practical limitations on valorization of the
biomass inundating coastal communities of the GASB. Our survey revealed regional scale
variations in arsenic content (Fig. 2). Arsenic content was lowest in the GASB (Caribbean and
Western Tropical Atlantic samples) and highest in the Sargasso Sea, particularly in the eastern
transect A20. Other stations in A20 show modest enrichment, such as in the southernmost
samples at 9°N, 52°W and the Northern Sargasso Sea samples at 31-33°N, 52°W. There are no
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systematic differences in arsenic content between S. fluitans and S. natans (Supplementary Table
1), although interspecies variability is apparent at some stations (Fig. 2).

The high arsenic content of Sargassum in the subtropical gyre is accompanied by the lowest
phosphorus content, which is consistent with the depression of the phosphocline (Supplementary
Fig. 3) and surface dissolved phosphate concentrations generally below the limit of detection
(Supplementary Fig. 4). Thus, the arsenic to phosphorus ratio of Sargassum of the subtropical
gyre stands out as uniquely high in that region (Fig. 2), where Sargassum is known to be
phosphorus limited®.

Uptake of arsenate (AsO4>) by aquatic plants occurs as a byproduct of phosphorus uptake,
owing to its chemical similarity with the phosphate ion (PO4>")***’. Using the standard
Michaelis-Menten form, uptake of dissolved phosphate and arsenate can be expressed as:

R L — . 1AsOiT]

For low concentrations of phosphate and arsenate, uptake is approximately linear in

concentration:
_ . [PO37] - [AsO37]
Pp = Hp——"— and Py = Ugs .
P As

The ratio of As to P uptake is therefore:

% _ /JAskp [ASO?L_]
pp  Hpkas [PO?{]

Surface arsenate concentrations in the tropical and subtropical Atlantic are relatively uniform in
comparison with phosphate, and up to an order of magnitude lower*®. Moreover, surface
concentrations of arsenate and phosphate are uncorrelated®, so the ratio of As to P uptake can be
simplified to:

Pas 1
PTG

Assuming that the tissue content of these two constituents reflects their proportionate uptake, one
would expect that the ratio of arsenic to phosphorus in Sargassum would be a hyperbolic
function of phosphorus content:

%As 1

%P %P

This prediction is qualitatively consistent with the present data as well as prior observations
dating back to the 1980s (Fig. 4), although the dependence on phosphorus content varies as
%P rather than %P predicted by the theory. The reason for this supra-hyperbolic
dependence is not known, but it is statistically reliable with a p-value <0.001 (Supplementary
Note). This is a clear demonstration of arsenic content as a diagnostic of phosphorus limitation
in a natural population of marine algae, and is consistent with laboratory studies’*!,
biogeochemical proxies based on dissolved As speciation in the ocean*, and other recent field
data®?,
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It could be argued that the As:P versus P relationship in Fig. 4 is a result of the intrinsic
association among variables: for two random variables a and b, plotting the ratio a:b versus b
will take on a hyperbolic form. However, the elemental composition of Sargassum is not
random. For example, the As:C ratio does not show a hyperbolic dependence on carbon content
(Supplementary Fig. 5). Interestingly, As:N varies hyperbolically with nitrogen content, which
we attribute to covariation in nitrogen and phosphorus content.

Notwithstanding our theoretical prediction of the hyperbolic relationship of As:P and P
content, one might also expect a negative correlation between As and P content as a symptom of
phosphorus stress in Sargassum. Observations are also consistent with this expectation
(Supplementary Fig. 6). A similar negative correlation is observed between arsenic and nitrogen
content, which we again attribute to the correlation between nitrogen and phosphorus content. In
contrast, As content is positively correlated with carbon content.

Discussion

Nutrient limitation of oceanic Sargassum populations in their native habitat was
demonstrated decades ago*>**, and enhanced nutrient availability has been advanced as a key
factor in stimulating the GASB?%272°. We show clearly for the first time that Sargassum in the
GASB is enhanced in both nitrogen and phosphorus, indicative of a healthy and thriving
population. Stable nitrogen isotope values point to riverine sources in some circumstances, and
are more equivocal in others. Distinguishing the various nutrient sources sustaining the GASB
will require systematic snapshots of nutrient content and isotopic composition across its entire
breadth. Presumably, the closer one gets to the source, the higher the nitrogen and / or
phosphorus content of Sargassum should be. In that sense, basin-wide patterns in nitrogen and
phosphorus elemental composition could provide the fingerprinting necessary to unequivocally
determine the sources. However, given the strong seasonal to interannual variability intrinsic to
the GASB, it will be essential that such snapshots be synoptic, which poses significant practical
challenges for a phenomenon of this scale.

Our novel demonstration of arsenic content as an indicator of phosphorus stress in natural
populations of Sargassum also has considerable implications. Sargassum inundating coastal
areas of the GASB already contains arsenic concentrations that can exceed safe thresholds for
consumption?!23. If the phosphorus supply to the GASB were to wane relative to that of
nitrogen, our findings would suggest that arsenic content of Sargassum in that area would rise
even further, perhaps up to levels currently observed in the Sargasso Sea. This would have
important implications for management if the nutrient sources turn out to be anthropogenic.

For all these reasons, expanded observational and modeling studies are needed to understand
the GASB’s physical, biological, and chemical drivers. Moreover, the societal need for scientific
understanding is urgent: improved seasonal to interannual predictions would offer tremendous
value for proactive planning and response, while quantification of the underlying causes could
inform potential management actions to mitigate the problem.

Methods

Sampling was conducted on R/V Thomas G. Thompson voyages TN389 (16 March — 16
April 2021) and TN390 (20 April — 16 May 2021), occupying GO-SHIP lines A20%* and A22°°,
respectively.

Hydrography
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Hydrographic profiles and water samples were collected with a standard Conductivity,
Temperature, Depth (CTD) rosette system with Niskin bottles. Nutrient analyses were carried
out at sea using a Seal Analytical continuous-flow AutoAnalyzer 3, consistent with the methods
described in the GO-SHIP repeat hydrography manual®.

Sargassum collection and identification

Sargassum spp. samples were collected with a dip net and sorted into the species and
morphotypes, S. natans I and S. fluitans III per Parr *°. Recent literature has indicated the
increasing presence of a previously rare form S. natans V III on the basis of both morphology*
and genetics>’*%. Based on morphological similarity, any S. natans V III in our samples would
have been classified as S. fluitans I11.

Sargassum elemental analysis and isotopic composition

Samples for each morphotype were separated into up to three replicates as quantities allowed
(6 to 10 thalli/species), rinsed briefly (3 to 5 s) in deionized water, cleaned of macroscopic
epizoa and epiphytes, dried in a laboratory oven at 65 to 70°C for 48 h, and powdered with a
mortar and pestle **. The dried Sargassum samples were split in half and stored in plastic screw
top vials. One half was used for arsenic analysis (see below), and the other half was shipped to
the University of Georgia’s Center for Applied Isotope Studies Stable Isotope Ecology
Laboratory (UGA-SIEL; https://cais.uga.edu/facilities/stable-isotope-ecology-laboratory/) for
analysis of 3'°N as well as %C and %N on a Thermo Delta V IRMS coupled to a Carlo Erba
NA1500 CHN-Combustion Analyzer via a Thermo Conflo Interface. National Institute of
Standards and Technology reference materials 8549, 8558, 8568, and 8569 were used to
routinely calibrate working standards prepared in the laboratory. QA/QC results were
incorporated into the raw data reports received by UGA-SIEL. The other part of this half sample
was analyzed at UGA-SIEL for %P, where approximately 2 mg of dried tissue was weighed into
crucibles, ashed at 500 °C for four hours and extracted with 0.2 mL of Aqua Regia acid®*’. The
acid extracts were then diluted 41:1 with deionized water for TP (as PO4-P) analysis on an
Alpkem 300 series analyzer.

Sargassum arsenic content

Arsenic content of Sargassum tissue was measured by the University of Missouri Soil and
Plant Testing Laboratory (MU SPTL) using an Inductively Coupled Plasma Optical Emission
Spectrometer (ICP-OES; Agilent 5800; Aas = 188.980 nm). Subsamples of rinsed, dried, and
powdered Sargassum tissue from the GO-SHIP A20/A22 expeditions were digested at MU SPTL
in 2022 according to EPA method 3052. In brief, the powdered samples were digested with a
combination of HNOs3 acid at 175°C for 15 minutes using a microwave-accelerated digestion
system (CEM MARS Xpress). Samples collected prior to the 2021 surveys were retrieved from
the B. Lapointe archives (1980-2018) at the Harbor Branch Oceanographic Institute, Florida
Atlantic University. Prior to sending to the MU SPTL for ICP-OES analysis, this subset was
digested at the National High Magnetic Field Laboratory at Florida State University (P. Morton)
in 2020 following a two-step process. First, ~0.1 g aliquots of powdered sample were carefully
weighed into 15-mL Teflon digestion beakers (Savillex), to which 3 mL of concentrated HNO3
acid (Fisher Optima) were added. The beakers were tightly capped and left overnight (~12 hours)
on a hotplate at 150°C. The beakers were then uncapped, and the digested sample taken to
dryness (150°C, 2-4 hrs). The sample residue was then digested a second time (capped, 150°C,
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overnight) using 3 mL concentrated HNOs3 (Fisher Optima) and 200 pL of concentrated HF
(Fisher Optima). The samples were taken to dryness again (uncapped, 150°C) and the residue
dissolved in 3.0 mL of 0.32 M HNOs3 (Fisher Optima).

All samples were analyzed at MU SPTL with ICAP-OES at a 1/100 dilution to bring the As
concentrations into working range of the matrix-matched (0.16 M HNO3) external standard
calibration curve. Triplicate independent digestions and analyses of four Sargassum tissue
samples were used to determine the representative reproducibility of the sample processing and
instrumental analysis methods. For more details see
https://extension.missouri.edu/programs/soil-and-plant-testing-laboratory/spl-researchers.

Backtracking of source waters

At each station where Sargassum was collected, the source waters were assessed by tracking
particles backward in time for 60 days using a Lagrangian algorithm®!. Surface currents were
specified from the OSCAR 1/3° resolution analysis, described at
https://www.esr.org/research/oscar/oscar-surface-currents/ and available at
https://podaac.jpl.nasa.gov/dataset/OSCAR L[4 OC third-deg. A total of 100 particles were
released at each location where Sargassum was found, with random walk diffusion applied each
time step At with gaussian perturbations ¢ defined by 62 = 4DAt. The horizontal diffusivity D
was chosen to be 4000 m? s™! based on estimates for this region derived from Argo float
observations®?. In addition to being affected by surface currents, wind also influences
Sargassum transport’'*2, Windage factors ranging from 0.5% and 3% produce the most accurate
simulations of Sargassum trajectories®>**, and a mid-point value of 2% was used here. Wind
forcing was specified using daily NCEP/NCAR reanalysis® and validated with shipboard
meteorological measurements made on R/V Thomas G. Thompson during voyages TN389 and
TN390.

Satellite observations

Pelagic Sargassum distributions were derived from MODIS measurements using a floating
algal index?%%667. MODIS data were obtained from the U.S. National Aeronautics and Space
Administration (NASA) Goddard Space Flight Center (https://oceancolor.gsfc.nasa.gov). Surface
salinity distributions were obtained from SMOS Earth Explorer mission and the data were
accessed on https://www.catds.fr/Products/Available-products-from-CPDC.

Data availability
Sargassum tissue data are available as separate files in the Supplementary Information.

Shipboard hydrographic data:
https://cchdo.ucsd.edu/cruise/325020210316 (TN389)
https://cchdo.ucsd.edu/cruise/325020210420 (TN390)

Surface currents used for particle tracking:
https://podaac.jpl.nasa.gov/dataset/OSCAR_L4 OC_third-deg

Satellite-based surface salinity:
https://www.catds.fr/Products/Available-products-from-CPDC
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Raw data for computation of satellite-based Sargassum distributions:

https://oceancolor.gsfc.nasa.gov

Sargassum density distribution maps:

https://optics.marine.usf.edu/projects/saws.html

Code availability
Particle tracking code: https://doi.org:https://doi.org/10.5281/zenodo.3468524
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615  Fig. 1. Sargassum sampling on GO-SHIP lines A20 (16 March — 16 April 2021) and A22 (20
616  April — 16 May 2021). a, White circles indicate collection of Sargassum samples, with S.

617  fluitans III shown to the left and S. natans I to the right of the station locations, which are

618 indicated as black circles (where Sargassum sampling was possible), and black Xs (where

619  Sargassum sampling was not possible). Dashed black lines indicate sample groupings in the
620  northern Sargasso Sea, Sargasso Sea, western tropical Atlantic, and Caribbean. Velocity vectors
621  are from the uppermost bin (centered at 29 m depth) of the ship’s ADCP. The surface salinity
622  field is comprised of a time-average of SMOS measurements for the cruise period (16 March —
623 16 May, 2021). b, Photographs of S. fluitans III and S. natans I samples on a 1 cm grid

624  background. Photo credit: Amy Siuda and Jeffrey Schell, Sea Education Association. ¢,

625  Location of GO-SHIP lines A20 and A22 relative to the GASB (contiguous area of Sargassum
626  coverage surrounding the annotation) for the cruise period estimated from MODIS data. Blue
627  lines are the 2000 m and 3000 m isobaths.
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628
629  Fig. 2. Sargassum tissue data: Top row: carbon (left), nitrogen (middle), and phosphorus (right)

630  content (% dry weight). Bottom row: 8'°N values, arsenic content, and arsenic to phosphorus
631  ratio in Sargassum tissue. S. fluitans III is shown to the left of transects A20 and A22, and S.
632  natans I to the right. Stations where no Sargassum was found are shown as circles, and stations
633  where Sargassum sampling was not possible are shown as Xs. Dashed black lines in the upper
634  left panel indicate sample groupings in Northern Sargasso Sea (NSS), Sargasso Sea (SS),

635  Caribbean (CAR), and Western Tropical Atlantic (WTA), as in Fig. 1. Blue lines are the 2000 m
636  and 3000 m isobaths.
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644  Fig. 4. Arsenic to phosphorus ratio as a function of phosphorus content in Sargassum

645  tissue. Data from GO-SHIP lines A20 and A22 in 2021 are in blue (N=200), 1983-1987 in red
646  (N=20), and 2015-2018 in green (N=21). Black line is the fit described in the Supplementary
647  Note.
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Supplementary Information

Supplementary Table 1. Subregional comparisons of elemental composition (% dry weight) and
ratios, as well as stable isotope values (%o) for S. fluitans and S. natans. Mean and 95%
confidence interval are indicated in each case. See Fig. 1 for geographic boundaries of the

subregions.
Northern Sargasso Sea Sargasso Sea Caribbean Western Tropical
Atlantic
S. fluitans | S. natans | S. fluitans | S. natans | S. fluitans | S. natans | S. fluitans | S. natans
N 6 12 20 43 30 29 30 30
%C | 252+15 | 27.5+1.7 | 295+09 30.0+ 1.0 26.3+0.6 25.6+0.6 27.5+0.5 27.2+0.8
%N 2.0+£0.5 20+£0.3 0.8£0.1 0.8 0.1 1.3+£0.1 1.4+0.1 1.1£0.1 1.3+0.1
%P 0.21+0.04 | 0.19+0.03 | 0.08+0.01 0.07+0.01 0.12+0.01 0.15+£0.02 0.14 £0.02 0.15+0.02
C:N 15.6 £4.3 16.9+3.2 45.1+6.7 523+64 25.1+1.8 22.0+1.7 304+33 262+2.0
C:P 320+ 63 419 £ 100 984 + 142 1363 £ 179 619+ 74 469 + 49 570+ 71 506 £ 67
N:P 21.0+34 24.7+£2.7 23.9+4.8 26.9+29 244 +£1.7 21.6£2.0 189+1.6 19.2+1.6
SN | 1.93+0.58 1.82+0.18 | -095+0.36 | -1.40+0.34 | -0.71+0.41 -0.71£0.37 | -0.77+0.46 | -1.22+£0.40
9% AS 0.010 = 0.012 + 0.015 + 0.016 = 0.009 + 0.008 + 0.010 £ 0.010 £
0.005 0.003 0.002 0.002 0.001 0.0004 0.001 0.001

Supplementary Table 2. Statistical significance (p-values of two-sided t-tests) for subregional
comparisons of mean elemental composition, stoichiometry, and stable isotope values for the
combined species S. fluitans and S. natans. Cells with p-values in excess of 0.05 are highlighted.
See Fig. 1 for geographic boundaries of sample groupings in the Northern Sargasso Sea (NSS),
Sargasso Sea (SS), Caribbean (CAR), and Western Tropical Atlantic (WTA).

%C SS CAR WTA %N SS CAR WTA %P SS CAR WTA
NSS | 1.03e-04 0.21 0.36 2.40e-10 | 2.94e-06 | 1.79¢-07 2.53e-09 | 7.82e-05 | 7.19¢-04
SS 6.94e-15 | 1.08e-07 3.88e-25 | 4.20e-16 1.56e-16 | 2.91e-18
CAR 1.33e-05 9.80e-04 0.17
C:N C:P N:P
NSS | 1.10e-20 | 4.42e-06 | 2.31e-10 3.87e-18 | 3.55e¢-04 | 6.10e-04 0.11 0.74 6.72e-04
SS 2.65e-16 | 1.29e-12 7.24¢-15 | 4.68e-15 0.04 1.46e-06
CAR 1.03e-04 0.83 1.24e-05
%As As:C As:N
NSS | 2.73e-03 | 5.38e-03 0.09 0.02 4.50e-03 0.04 1.12e-13 0.68 0.01
SS 1.27e-16 | 9.99¢-13 4.0le-16 | 3.36e-12 6.11e-14 | 4.70e-12
CAR 9.62¢-06 3.67¢-03 4.03e-06
As:P 85N
NSS | 6.58e-14 0.74 0.48 2.74e-31 | 1.91e-25 | 1.59¢-26
SS 2.28e-14 | 4.74e-14 3.88e-03 0.19
CAR 0.49 0.16

Supplementary Table 3. Summary of least squares fits y = ax + b for arsenic content as a
function of phosphorus, nitrogen, and carbon content (% dry weight). Asterisk indicates p-
values so low that they could not be distinguished from zero.

y | x | r* | Intercept (b) p Slope (a) p

As | P | 0.23 1.60e-02 | 0.00e+00* | -3.79¢-02 | 1.16e-12

As | N | 0.27 1.75¢-02 | 0.00e+00* | -5.25e-03 | 3.66e-15

As | C | 0.50 | -1.98e-02 3.33e-16 | 1.13e-03 | 0.00e+00*
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Supplementary Fig. 1. Subregional comparisons (by species) of carbon, nitrogen, and
phosphorus content (top row), elemental ratios (middle row and bottom left), and stable isotope
values (bottom row, middle and right) for the Northern Sargasso Sea (NSS), Sargasso Sea (SS),
Caribbean (CAR), and Western Tropical Atlantic (WTA). Error bars are 95% confidence

intervals.
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676  Supplementary Fig. 2. Sargassum elemental ratios: carbon to nitrogen (left), carbon to

677  phosphorus (middle), and nitrogen to phosphorus (right). S. fluitans 111 is shown to the left of
678  transects A20 and A22, and S. natans I to the right. Stations where no Sargassum was found are
679  shown as circles, and stations where Sargassum sampling was not possible are shown as Xs.

680  Blue lines are the 2000 m and 3000 m isobaths.
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684  Supplementary Fig. 3. Vertical sections of temperature (°C), salinity, nitrate, and phosphate for
685  A22 (left) and A20 (right). Nitrate and phosphate concentrations (umol kg™!') have been log
686  transformed in order to better resolve gradients at low concentrations. Circles along the top of
687  each plot indicate stations where Sargassum was collected: S. fluitans and S. natans (white) and
688  S. natans only (brown). Northern Sargasso Sea (NSS), Sargasso Sea (SS), Caribbean (CAR),
689  and Western Tropical Atlantic (WTA) regions are indicated.
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692  Supplementary Fig. 4. Surface temperature, salinity, nitrate, and phosphate for A22 (left) and
693  A20 (right). Circles along the top of each plot indicate stations where Sargassum was collected:
694  S. fluitans and S. natans (white) and S. natans only (brown). Northern Sargasso Sea (NSS),
695  Sargasso Sea (SS), Caribbean (CAR), and Western Tropical Atlantic (WTA) regions are

696 indicated.
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699  Supplementary Fig. 5. Elemental ratios in Sargassum tissue. Left: arsenic to carbon ratio as a
700  function of carbon content; middle: arsenic to nitrogen ratio as a function of nitrogen content;
701  right: nitrogen content as a function of phosphorus content.
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705  Supplementary Fig. 6. Arsenic in Sargassum tissue. Left: arsenic as a function of phosphorus
706  content; middle: arsenic as a function of nitrogen content; right: arsenic content as a function of
707  carbon content. Results of least squares fits are presented in Supplementary Table 3.
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Supplementary Fig. 7. Left: Fits of the arsenic to phosphorus ratio in Sargassum ratio as a
function of phosphorus content. Solid line is the fit to the data from Fig. 4 (black dots), and the
gray lines are 1000 trials using the permuted phosphorus data as described in the Supplemental
Note. Middle and left panels report the distribution of parameters y and B for the permuted data
(blue bars) and the actual data (X on the x-axes).
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Supplementary Note

The general model relating observations i of arsenic and phosphorus content we wish to test is

Asi

o= BF (1
Where y = —1 would constitute the % dependence predicted by the theory. This model can be
recast as

log(4s;)) = c+ (y + Dlog(P;) (2

where ¢ = log(B). The parameters ¢ and y were estimated by least squares, and it turns out that
the dependence of As:P on P is supra-hyperbolic: y = —1.29 + 0.04. We tested the statistical
robustness of this finding by permuting the independent variable P; in Equation (2) 1000 times,
and the fit to the actual data falls outside that envelope (Supplementary Fig. 7). Thus, we
conclude our result is robust with p<0.001.

We note that recent observations suggest variation of As content among genotypes, with S.
natans VIII having higher As content than S. natans I and S. fluitans III**>?. Because our
methods did not distinguish S. natans VIII, it would have been grouped together with S. fluitans
111 due to their morphological similarity. Our data do not indicate large variations in As content
among the species we resolved (Supplementary Fig. 1, Supplementary Table 1), so this analysis
was based on the As content of the combined species.

20 Cipolloni, O.-A. et al. Metals and metalloids concentrations in three genotypes of pelagic
Sargassum from the Atlantic Ocean Basin-scale. Marine Pollution Bulletin 178, 113564
(2022). https://doi.org:https://doi.org/10.1016/j.marpolbul.2022.113564

52 Gobert, T. et al. Trace metal content from holopelagic Sargassum spp. sampled in the
tropical North Atlantic Ocean: Emphasis on spatial variation of arsenic and phosphorus.
Chemosphere 308, 136186 (2022).
https://doi.org:https://doi.org/10.1016/j.chemosphere.2022.136186
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