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Abstract

Background Perivascular spaces (PVSs) carry cerebrospinal fluid (CSF) around
the brain, facilitating healthy waste clearance. Measuring those flows in vivo is
difficult, and often impossible, because PVSs are small, so accurate modeling is
essential for understanding brain clearance. The most important parameter for
modeling flow in a PVS is its hydraulic resistance, defined as the ratio of pressure
drop to volume flow rate, which depends on its size and shape. In particular, the
local resistance per unit length varies along a PVS and depends on variations in
the local cross section.

Methods Using segmented, three-dimensional images of pial PVSs in mice, we
performed fluid dynamical simulations to calculate the resistance per unit length.
We applied extended lubrication theory to elucidate the difference between the
calculated resistance and the expected resistance assuming a uniform flow. We
tested four different approximation methods, and a novel correction factor to
determine how to accurately estimate resistance per unit length with low
computational cost. To assess the impact of assuming unidirectional flow, we also
considered a circular duct whose cross-sectional area varied sinusoidally along its
length.

Results We found that modeling a PVS as a series of short ducts with uniform
flow, and numerically solving for the flow in each, yields good resistance estimates
at low cost. If the second derivative of area with respect to axial location is less
than 2, error is typically less than 15%, and can be reduced further with our
correction factor. To make estimates with even lower cost, we found that instead
of solving for the resistance numerically, the well-known resistance of a circular
duct could be scaled by a shape factor. As long as the aspect ratio of the cross
section was less than 0.7, the additional error was less than 10%.

Conclusions Neglecting off-axis velocity components underestimates the average
resistance, but the error can be reduced with a simple correction factor. These
results could increase the accuracy of future models of brain-wide and local CSF
flow, enabling better prediction of clearance, for example, as it varies with age,
brain state, and pathological conditions.

Keywords: perivascular spaces; cerebrospinal fluid; hydraulic resistance; brain
clearance system; fluid dynamics; hydraulic network models

1 Introduction

Perivascular spaces (PVSs) are annular channels that surround arteries and veins
in the brain and are filled with cerebrospinal fluid (CSF). The flow of CSF along
these PVSs is an important component of the brain’s glymphatic system, which
distributes nutrients and removes metabolic waste products [1]. (See the recent

reviews [2, 3].) The flow of CSF in this system can be usefully modeled as flow in a


mailto:kboster@ur.rochester.edu

Boster et al.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

hydraulic network, with one-dimensional flows in individual components determined
by their hydraulic resistance [4, 5, 6, 7, 8, 9]. It is known that the hydraulic resistance
of a PVS depends strongly on its size and shape [10, 11, 12]. In this paper we develop
methods of estimating the hydraulic resistance of individual PVSs in the brain based
on their known geometrical configuration, as determined from in vivo experimental
data. The PVSs are often quite irregular in shape, and therefore it is useful to
have ways of estimating their hydraulic resistance without doing a full numerical
simulation of the detailed flow field.

Here we are concerned primarily with PVSs that can be considered as essentially
open spaces, for which the flow is governed by the Navier-Stokes equation. PVSs
surrounding pial (surface) arteries in the mouse brain are known to be essentially
open spaces, unobstructed by tissue [13]. Far less is known about the amount of ob-
struction in PVSs surrounding penetrating arteries: experiments indicate that these
PVSs in the mouse brain contain some mesh-like obstructions [14], but the blood
vessel usually lies to one side of the PVS, an arrangement that usefully reduces
the hydraulic resistance of the PVS only if it were an essentially open space [10].
It is likely that some PVSs in the brain contain a significant amount of tissue and
might therefore be considered to contain a porous medium, with flow governed by
the Darcy equation. Such might be the case for PVSs around arterioles and precap-
illaries deep in the brain. We present here (in Appendix A) a method of estimating
the hydraulic resistance of a porous PVS based on its detailed configuration, but
since we know very little about this configuration, we do not carry out any specific
applications of the method.

In a steady, laminar flow of fluid along an open duct, the volume flow rate
@ = Ap/R is proportional to the pressure drop Ap between the entrance and
exit of the duct and inversely proportional to a hydraulic resistance R, which can
be calculated from the viscosity of the fluid and the detailed shape and length of
the duct. Hydraulic resistance is analogous to electrical resistance, which impedes
an electrical current (analogous to @) driven by a given voltage drop (analogous
to Ap). For nonuniform ducts, a more useful quantity is the hydraulic resistance R
per unit length,

_ Op/0=

R = 0

(1)
where Op/0z is the pressure gradient in the direction of the flow (the z-direction).
Simple geometric models of the cross section of open PVSs have been used to
calculate their hydraulic resistance [10, 12], assuming that the cross section remains
uniform along the PVS. Here we are seeking more accurate methods that account
for the variations in the shape and cross-sectional area of a PVS, and hence its
hydraulic resistance R per unit length, along its length.

2 Pial PVS shapes determined from in vivo experimental data

We acquired and segmented three-dimensional (3D) two-photon microscopy images
of murine pial PVSs, using the methods we developed and employed previously
[15, 12]. We analyzed PVSs adjacent to pial arteries in four mice, M1-M4, and we
considered two or three subdomains from each mouse, denoted as S1, S2, or S3, for
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a total of 9 different 3D segments of pial arteries. All of the subdomains were from
pial PVSs located on the main branch of the MCA, between 4-7 bifurcations distal
to the start of the MCA. Pial perivascular spaces are often shaped like incomplete
annuli, with a lobe on each side of the pial artery but no spaces connecting the
two lobes, as described by Raicevic et al. [12] and shown in Figure la. All 9 of the
segments we consider are shaped this way, and each is an individual lobe, located
to one side of the pial vessel. Thus, the blood vessel is located to one side of the
subdomains we consider here.

For each 3D configuration, we chose a series of points distributed along the vessel
centerline, at each point finding the axial (centerline) direction and a cross section
normal to that direction, as described in [15] and shown here in Figure 1b. The
normal cross sections are spaced approximately 0.7 pm apart, but the exact distance
varies. Below, we will use a variety of methods to estimate the local value of R at
each cross section.

For comparison, we created ducts with circular cross sections that have the same
axial variation in cross-sectional area as the realistic geometries, as shown in Figure
lc. This allows us to separate the effects of size and shape on R. We do this by
finding the cross-sectional area of the PVS at each of the previously-chosen normal
cross sections, obtaining the area as a function of distance in the axial direction.
We then interpolate the area function at 0.7 nm (1 pixel) intervals and create a
duct with a straight centerline and circular cross sections of varying area, where the
area as a function of axial distance is very nearly the same as in the original PVS

geometry.

3 Three-dimensional flow calculations for realistic PVS
configurations

As a basis for testing the various simpler methods of approximating the hydraulic
resistance of PVSs presented in the next section, we calculated the full 3D flow
field for pressure-driven, laminar viscous flow in the actual observed PVS sections
described above, and then calculated the hydraulic resistance for these flow fields.
We solved the 3D Navier-Stokes equations using NX Flow in the Siemens NX Ad-
vanced Simulation software. The PVS geometries were meshed into 3D tetrahedral
elements using NX advanced FEM. We used the fluid properties of water at 37°C.
The parallel Flow Solver Scheme was set as the fully coupled Pressure-Velocity
type, and we used a parallel solver to increase efficiency. From NX, we exported the
results in CSV files that were then further post-processed in MATLAB.

We prescribed a zero-pressure condition at the outlet and no-slip conditions at the
walls. In order to ensure fully-developed flow at the entrance of the PVS segment,
we added a uniform (constant cross section) duct upstream whose cross-sectional
shape matched the entrance of the segment and whose length was 40 pm. For the
low Reynolds number flows considered here, the minimum length z; required to
achieve a fully-developed velocity profile is z;, & 0.5Dy,, where Dy, is the hydraulic
diameter, D, = 4A/P, where A is the cross-sectional area and P is the wetted
perimeter of the duct [16]. In all cases we consider, z;, < 40 pm. We prescribed
a steady flow at the entrance of the inlet duct with a volume flow rate of Q =
2.19x10* pm?3 /s, a typical value for pial PVSs in the mouse brain [15].
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To ensure the accuracy of the 3D flow calculations, we reduced the mesh size in a
finite-element model of a uniform (constant cross section) duct with circular cross
section until the resistance was within 0.5% of that given by the exact analytical
solution for laminar flow in a circular duct (Hagen-Poiseuille flow). This occurred
for a mesh size of 0.5 pm. We determined that further reducing the mesh size to 0.3
pm resulted in a change in average resistance of less than 0.2%. We then used 0.3
pm for all the simulations, although it is clear from these grid verification studies
that a coarser mesh would have produced very similar results.

We used a nonuniform mesh, in which the mesh elements were finer near the
boundaries and coarser near the center. This varying mesh size was dictated by
changing the internal gradation rate, which limits size differences among adjacent
mesh elements, particularly in the radial direction (inward from the boundary). In
order to verify that this did not affect the results, we ran a simulation in which we
kept the mesh size at 0.5 pm while decreasing the internal graduation rate from
1.05 to 1.01, which resulted in a difference in average resistance of only 0.03%. We
then used an internal gradation rate of 1.05 for all the simulations.

We calculated the hydraulic resistance per unit length at each normal cross sec-
tion along the length of the channel by taking the volume-weighted average of the
pressure at all elements in 2-pm-thick slices and dividing the pressure difference
between adjacent slices by the volume flow rate Q. (See Appendix C for a discus-
sion of how this calculated quantity compares to the theoretical one derived from
the lubrication approximation in §4.1.) We observed an increase in error in cross
sections near the outlet due to exit effects, so in all of our results we exclude the

last five normal cross sections.

4 Approximate methods for calculating the hydraulic resistance

4.1 The lubrication approximation

Perivascular flows are generally characterized by very low Reynolds number (Re
< 1), where viscous effects greatly outweigh inertial effects. Also, the pulsatile flows
in PVSs have very small Womersley number, and hence the hydraulic resistance
experienced by these flows is the same as that for a steady flow [17]: therefore,
without loss of generality, we will consider steady flow throughout this paper. The
Navier-Stokes equation can then be reduced to the Stokes (creeping flow) equation
for steady flow,

0= —Vp+ uViu, (2)
where u = (ug, uy, u,) is the Eulerian velocity in Cartesian coordinates (z,y, 2), p
is the pressure, and p is the dynamic viscosity. This equation is accompanied by
the continuity equation for incompressibe flow,

V.-u=0. (3)

Because PVSs are generally much longer (in the flow direction) than they are
wide (in directions transverse to flow), the flow can be modeled using lubrication
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theory, which describes a class of flows that are nearly unidirectional. Even if the
PVS changes in size or shape along its length, the magnitude of the axial flow is
much larger than the transverse flow.

We can arrive at the lubrication equations for a duct by non-dimensionalizing the
components of the Stokes equation according to:

& T og=-2L_ :=Z (4)
vV boCO ’ vV boCO ’ L7
@ = 5 e=tt =2 (5)
U Ve We
A D
6
p Ap. (6)

where by and ¢y are the characteristic length scales in the x and y directions (trans-
verse to flow), respectively, L is the characteristic length scale in the z direction
(axial), u., v., and w, are the characteristic velocities in the z, y, z directions, respec-
tively, and Ap, is a characteristic pressure drop across the full length of the duct.
We assume here that by and cg are comparable, such that there is one characteristic
length in the transverse direction, v/boco, and hence u, and u, are comparable, such
that u. = v.. By non-dimensionalizing the continuity equation

Ouy  Ouy ~ Ou, ~0, )
Ox y 0z
we find that u. = aw. where a = % is the aspect ratio of the channel, and that
the characteristic pressure is Ap. = pw.L/byco.

The resulting dimensionless equations are:

ERE
o B (B T
EIEEE
o m( :;>w.

We can see that several terms in these equations are small perturbations when

a? <« 1, as is the case for long, narrow ducts like PVSs. Hence we can appropriately

express the variables as power series in o?:

p = Po+ Py +a’ps+ 0, (12)
o = g+ iy + oty + O(a®), (13)
b = o+ a*is+atty +0(ad), (14)
W = W+ oy + atidy + O(a®). (15)

Substituting these series expressions into the governing equations and collecting
terms of the same order of a2, we find that the 0*'-order equations (composed of
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terms free of a?) are

Oup Ovp Oy

0= %% *ta T oz (16)

0 = %:% (17)
ap 92 9%\

0 - T, <a§;2 n 6@2> . (18)

These 0*"-order equations constitute “classical” lubrication theory. At this order,

pressure does not vary in the transverse direction, as the equations show. We later

approximate the PVS as a series of sections, and solve these equations for each sec-

tion, referring to the combined result as the “series unidirectional approximation”.
We find the 2"%-order equations to be:

Oly 00y  Ows

= T Ty T (19)
0 = —%%4—(;;24-88;2)@07 (20)
0 = —%Z?;—l-(;;2+68;2>ﬁ07 (21)
0 = —%%+<;;2+§;>w2+8;g’ (22)

The second-order (and higher-order) corrections constitute “extended” lubrication
theory, where pressure does vary in the transverse direction, and, most critically
for this study, depends on spatial variations of the duct cross section. Extended
lubrication theory has been applied to two-dimensional channels, circular ducts,
and elliptical ducts, and shown to be quite effective at capturing the effects of axial
variations of the cross section when compared with experiments and full numerical
simulations [18, 19, 20].

4.1.1 A nonuniform elliptical duct

In this section, we apply the lubrication model to solve for the flow in a nonuniform
elliptical duct, whose varying cross section is an ellipse with semi-major and semi-
minor axes b(z) and ¢(z):

() + (&) =

While an actual PVS does not have elliptical cross sections, the nonuniform ellip-
tical duct is a general shape for which we can find analytical expressions for the
velocity and pressure at the 0'" and 2" orders, and which illustrates the effect
that axial variations in cross-sectional shape and area can have on the resistance
per unit length beyond what is given by classical lubrication theory. Though we
arrived at dimensionless forms of the Oth and 2nd order equations in the previous
section, to calculate resistances and compare them with those obtained with nu-
merical solutions, we will solve the equations in dimensional form in the subsequent

sections.
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1> Uniform duct approximation (0*'-order solution). The 0*"-order, dimen-

153 sional lubrication equations are:

8UO 81;0 Bwo

_ Oug  Ovy | Owy 24
0 oz + Oy + 0z’ (24)
dpo 82 82

We see that the z-momentum equation takes the form of the Poisson equation, and
hence the axial velocity wo(z,y, z) can be readily obtained numerically for a duct
of arbitrary cross section. For an elliptical duct, by enforcing a no-slip condition on
the boundary, the axial velocity can be obtained analytically:

w= - B (5 (2) ). o)

15« The flow rate @) is independent of z, and we can determine the pressure gradient in
155 the duct by applying an integral constraint

¢ rby/I=(w/o)2
4/ / w dx dy (28)
o Jo

¢ rby/T=(y/o2
4 / / (wo + a?ws + O(a)) dz dy. (29)
0 0

Q

To close the problem, we assume that the bulk of @ is determined only by the 0"
order flux:

¢ pby/1—(y/c)?
Q~ 4/0 /0 wo dx dy; (30)

the justification for this assumption is given in Appendix B. Using this integral
constraint, we can determine the pressure gradient,

dpy _4qu2+02

= 31
dz T b3 (31)
The 0" order hydraulic resistance per unit length is then
4p b + c?
7?'0 = ? b3C3 ) (32)

which can be expressed alternatively as a function of the cross-sectional area A and
the aspect ratio 5(z) = b(2)/c(z), as
dru(B?+1) 1
Roy=——+—"""—. 33
0 5 ye (33)
155 From this expression, we see that the local resistance (per unit length) depends
17 only on the geometry of the local cross section and is independent of axial changes
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in the geometry. That is, the local resistance is the same as that of a uniform duct
of the same cross section.

Extension to second order. By extending the lubrication model to higher
orders, we anticipate that the solution will include effects of axial variations in cross-
sectional geometry, and hence will be in closer agreement with three-dimensional
numerical solutions. This has been demonstrated for two-dimensional channels [19].

The second-order dimensional equations are as follows:

8u2 8’02 ng

0 = S tay e (34)
0 = (D T (3)
0 = —aap;Jru(;;Jr;;)wﬁua;;O. (37)

The working of these equations yields lengthy expressions, so we relegate the details
of the second-order solutions for velocity and pressure to Appendix B. The resulting

expression for pressure gradient is:

% =3 ubcgc5 (b*c? (20" (62° — 7¢%) + (6y* — ¢?)(2¢ — cc”))
T

+b* (=22 (b + 7¢%) + o(® — 18y%) " + T2y>?)
+ 7222¢"? 4 bPc (b (? — 62%) + 6V (3(z® +y*) — ¢?))
+3bc® (V' (6(2” +y?) — %) — 627cb”) + b c(cb” — 3b'¢')), (38)

where primes denote derivatives with respect to z. Here the axial pressure gradient
additionally depends on x and y. Since the pressure distribution over the cross
section is difficult to measure, a more relevant quantity is the axial pressure gradient
averaged over the cross section,

op2\ _ L [ Op
<8z> ~ wbe J4 0z d4, (39)

which is a function only of z. Then we can define the second-order resistance per
unit length as Ry = — (9p2/0z) /Q, given by

M
6mbict
be® (86" — cc”" +2¢%) + b* (3b' ¢ — cb”) + b*c® (6b'c’ — Teb”)].  (40)

Ro = [30417’0’ + b3 (2b’2 —Ted + 80'2) +

This higher-order resistance depends on the size of the duct and also on the slope
and curvature of the walls. It combines linearly with the lower-order resistance, such
that the total resistance per unit length is Ro+a?Ra+O0(at). We can express Ry as

a function of area A and aspect ratio 3, as we did for Ry, if we further assume that
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the aspect ratio is fixed at some value § = B*, i.e., the cross sections are self-similar
along the length of the duct and dB/dz = 0: the resistance is then

7 3A” 2 4 1 2 4
Rowa 5= ~pgga g (L 68° + %) — A(1+ 148° 4 4] (41)

Thus the fractional error of the uniform duct (0'" order) approximation in the
total resistance as predicted by the extended lubrication model is

 a®Rz 4 0(at)
R+ a?Ry + O(a)

< (@22 5 O(a!)(1 - ?R2 + Ol
N@2%+O(a4)
a? 3A7% . o , \
VTSI Y (‘ o (687 + 57 +1) + AY(5° + 145 +1))+O(a ).

(42)
If the change in area is relatively small along the length of the duct, i.e., if
A=A4(1+e9(2), ex1

then we can show that, to leading order in ¢, the second derivative of the area

dominates the error:

£~ a2A0 (_3629/2 (652+54+1)+€ H(ﬁ4+1462+1))
TA8TB(B2+ 1) l4eg g
2
[0

(—3A40€%g"?(1 — €g) (682 + B* + 1) 4+ Apeg” (B* + 1458% + 1))

o’ (Bt +1458° 4+1)
T 48mB(B2 + 1)

ST

A" 1 0().  (43)

s If we consider this S-dependent prefactor, we can show that it is a fairly weak
166 function of 8 and its value is within 13.3% of the 5 =1 case for § < 7. For g =1,
w &€~ a2A///67T.

s 4.2 Approximations using a series of uniform ducts (series unidirectional approach)

1o Here we investigate the suitability of approximating the hydraulic resistance to flow
w in an actual perivascular space by modeling it as a series of uniform ducts. Each
m duct in the series is constructed to have a cross-sectional shape identical to a cor-
2 responding section of the PVS, as imaged in 3D. Flow in each is assumed to be
s unidirectional; we neglect the presence of off-axis (not parallel to the centerline) ve-
s locity components. Such off-axis velocity components can arise from axial variations
s in cross-sectional area or shape, or from curvature of the central axis, and would
e serve to increase the rate of shear at the wall, thereby increasing the hydraulic re-
w7 sistance compared to that in a unidirectional flow. We refer to this approach as the

s “series unidirectional” approach.
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Method | Description

SUN numerically solve Poisson’s equation for resistance

SUA analytically solve for the resistance in a circular cross section

| solve based on a reference area and resistance, assuming resistance scales with area
I adjust Rgua using shape factor v based on the distance from the wall to the center
1] lubrication approximation for an ellipse

WY approximation proposed by Bahrami et al.; uses the polar moment of inertia

Table 1: Summary of the different solution methods to the series unidirectional
approach, where the resistance per unit length is calculated for flow in a series of

straight ducts with constant cross section and unidirectional flow.

We compute the velocity profile of unidirectional flow along each duct in the series
numerically, by solving Eq. 26 using Matlab’s PDE solver, “solvepde”, as described
in [15, 12]. We refer to this solution of the series unidirectional approach as the SUN
approach. The mesh size is chosen so that the computed resistance for a circular
duct matches the analytically-known value within 0.5%. Instead, for simple cross-
sectional shapes like circles, we do the same calculation analytically, referring to this
solution as the SUA approach. Both approaches allow us to calculate a resistance
per unit length at many locations along the PVS.

In addition to solving Poisson’s equation, we also approximate the series unidi-
rectional resistance per unit length using four different solution methods, which we
refer to as methods I, II, ITI, and IV, and which are summarized in Table 1. These
methods require considerably less computational effort than solving Poisson’s equa-
tion for each cross section (the SUN method). In method I, we predict the series
unidirectional resistance per unit length at each normal cross section i at z = z;,
based on the resistance in a single reference cross section with resistance per unit

length R,cs and area A,ef, and the local area Aj;:

Aref ?
RI = Rref < Az ) (44)

The results depend on the reference cross section, so we examine the impact of its
selection by choosing two different reference cross sections: the largest and smallest
in the PVS segment. The two resulting resistance predictions are denoted R maxand
Ri,min, respectively. This approach is based on the idea that the shape of a PVS
segment is relatively uniform along its length, so changes in local resistance are due
to changes in area alone. We see this illustrated in the lubrication approximation
for Ry, Eq. 33, where if the shape factor coefficient is constant, then the resistance
depends primarily on A~2.

Method II is based on the assumption that radial velocity variation in a cross
section of arbitrary shape is similar to that in a circle, such that the shear stress at
the wall depends primarily on its distance from the centerline. In this method, we
can predict the resistance per unit length of each cross section in the series based
on the geometry alone, by multiplying the expression for hydraulic resistance in
Hagen-Poiseuille flow in a circular duct by a shape factor + that accounts for the
non-circularity of the shape. Thus,

Ru=—11, (45)
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where 7¢q is the radius of a circular cross section of equivalent area and

-3 i(req>4 (46)
T=5 2\ )
where the boundary of the cross section has been approximated as a polygon with
N vertices, each a distance d; from the center (see Figure 2a). The center is defined
as the location that minimizes v and is typically close to the location of maximum
flow velocity. This is appropriate because d; approximates the radius of a circle
for which the wall shear matches that of the realistic cross section at location
j. (We originally used the geometric centroid of the cross section as the center
point but found that when the cross section narrowed in the center, resistance was
considerably overestimated.)
Method III predicts the hydraulic resistance of each duct in the series using the
lubrication model for an ellipse, as described in Equation 33:

(47)

where [ is now the aspect ratio of an ellipse with the same second moment as the
cross section, and A is the cross-sectional area.

Method IV is an approximation proposed by Bahrami et al. [21] that considers
the shape effect through the second polar moment of inertia I,:

16720
Riv = Tlpa (48)
where
1, = /A (& — 20)? + (v — 90)?) A4, (49)

and (zg,yo) are the coordinates for the centroid.

5 Results

5.1 Error in the series unidirectional approximation

We calculated the resistance per unit length for PVS segment S2 from mouse M1,
and the results are shown in Figure 1d. We refer to the original geometries as re-
alistic, in contrast to the contrived geometries with circular cross sections but the
same area as a function of axial distance. The resistance is calculated by solving
numerically or analytically for the resistance in a series of straight ducts with uni-
directional flow with cross sections matching those from the 3D geometries, or else
calculated from the three-dimensional flow field. Since a circle has the smallest re-
sistance possible for a given cross-sectional area, the resistances for the circular
geometries are predictably smaller than those of the realistic geometries. For both
the circular and realistic geometries, the series unidirectional approximation of re-
sistance is reasonably close to the resistance from the 3D solution for many cross
sections. In Figure le, we show box plots of the error in resistance from the series
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250

unidirectional approximation (methods SUN and SUA) relative to the 3D simula-
tions for each geometry. The error is less than 20% in the majority of cases. In
Table 2, we report the average resistance per unit length for each of the geometries
from the 3D simulations. The average resistance was computed by averaging the
resistance from all of the cross sections along the length of the duct. We also report
the error in the average resistance between the series unidirectional approximation
and the 3D simulations. Resistance is overestimated by the series unidirectional
approximation in some cases, and underestimated in others, so the error in the
average resistance is smaller than the typical error in a single cross section, which
we estimated using the root-mean-square (RMS) value. The series unidirectional
approximation underestimates the average resistance by 0.5 to 13% for realistic
geometries, and 1.2 to 8.6% for circular geometries.

realistic circular
Rsp
.| (Rsun- R3p) | (Rsun-a- Rap) | (Rsua- Rap) | (Rsua.a- R3p)
segment | (Mg in |/ Ran (%) /Rsp (%) /Rsp (%) /Rsp (%)
M1 S1 2.8x10° -5.3 (10.4) -1.2 (5.5) -2.3 (10.4) 0.1 (5.4)
M1 S2 2.4x10° 45 (10.2) 1.0 (6.2) 1.7 (10.8) -0.7 (5.8)
M2 S1 8.9x10° 2.8 (4.7) 0.9 (2.5) -1.8 (4.7) -0.9 (3.4)
M2 52 8.9x10° -0.5 (6.3) 3.0 (5.1) -1.8 (8.4) 1.7 (5.4)
M3 S1 2.1x10° 7.1 (12.4) 2.7 (9.3) 8.6 (16.4) -5.2 (14.4)
M3 S2 3.5%10° -9.5 (15.5) -4.5 (10.8) 6.0 (14.4) -3.3(11.9)
M4 S1 1.7x10° -4.6 (9.8) -0.8 (5.4) -1.4 (8.3) -0.1 (4.7)
M4 S2 9% 10° -12.6 (31.1) -8.2 (30.3) 5.4 (24.6) -0.6 (16.1)
M4 S3 5.5%10° -35 (11.5) 0.2 (6.4) 1.2 (16.0) 0.7 (11.5)

Table 2: Error in resistance per unit length, for all 9 PVS segments, as calculated
with the series unidirectional approach, without and with the A correction. Refer-
ence resistances Rap are not local values, but are averages over the entire segment.
RMS errors are enclosed in parentheses; average errors are not.

5.2 Alternative solutions to the series unidirectional approximation

We show the results for methods I, II, III, and IV in Figure 2b and Table 3. All four
approaches require considerably less computational power than numerically solving
Poisson’s equation (shown in green in Figure 2b for comparison), and are reasonable
approximations.

Depending on the reference cross section, method I produces errors in average
resistance between -8 and 22%, with RMS errors between 2 and 31%. The error is
calculated with respect to the SUN approach and does not include the additional
error inherent in the series unidirectional approximation in the first place.

Method IT performs the best of all the methods, with errors in average resistance
between -7 and 5%, and RMS errors between 2 and 13%. In Figure 2¢ we show a
box plot of the error in Ry (with respect to Rsun, the resistance per unit length
calculated using the SUN approach), which shows that for most cross sections, the
errors are less than 10%. This approach breaks down if the cross section is very
oblong, such that the peak velocity in the cross section does not occur at a single
central point, but along a ridge. To quantify this, we plot error as a function of the
minor to major axis ratio of an ellipse with the same second moment as each cross
section (1/f8) in Figure 2d, and find that when this ratio is greater than 0.7, the
error is always less than 10%.
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Method IIT underestimates the (average) resistance by between 8 and 25%. This
makes sense, since it is derived for an elliptical duct, which typically would a have
lower resistance than many of these “realistic” cross sections, some of which are
concave in spots, and generally not as smooth as an ellipse, as described by Racivic
et al. [12]. The average value of 8 for each geometry ranges between 1.1 and 2, so an
ellipse with the same § is similar to a circle, which has the minimum resistance for
a given area. Accordingly, the (3% + 1)/ term that is the ellipse correction factor
is typically close to one.

Method IV underestimates the average resistance by between 5 and 13%, depend-
ing on the geometry.

Page 13 of 28

cegment ( Rimax- RsuN) | ( Rimin- Rsun) | ( Ri- Rsun) | ( Ruar- Rsun) | ( Riv- Rsun)
€ /Rsun (%) /Rsun (%) /Rsun (%) /Rsun (%) /Rsun (%)
M1 ST 1.8 (3.2) 3. (4.2) 3.9 (4.9) 353 (25.8) 125 (12.8)
M1 S2 1.0 (4.4) 12.4 (13.7) 3.4 (45) 251 (25.8) 123 (12.7)
M2 51 3.0 (3.6) 18 (2.7) 0.0 (2.1) “16.1 (16.5) 9.3 (9.5)
M2 52 20 (52) 0.6 (2.9) 12(3.0) ~17.3 (20.0) 9.6 (11.1)
M3 51 16 (27) 9.8 (12.0) 33(39) 78 (85) 5.2 (5.6)
M3 52 83 (9.6) 222 (31.1) 46 (7.2) ~10.7 (10.9) 6.9 (7.1)
M4 S1 06 (3.2) 0.1 (31) 1.0 (2.5) ~18.8 (19.2) ~10.2 (10.4)
M4 52 8.1 (18.3) 6.2 (19.9) 1.8 (13.3) 8.2 (31.7) 111 (12.6)
M4 S3 3.9 (6.1) 5.2 (7.0) 6.7 (8.4) 2.2 (23.9) ~11.0 (11.6)

Table 3: Error in resistance per unit length, for all 9 PVS segments, as calculated
with approaches I, II, III, and IV. RMS errors are enclosed in parentheses; average
errors are not.

5.3 Test case: A duct with circular cross section with sinusoidally varying radius

In order to gain insight into the aspects of the 3D geometry that are not cap-
tured in the series unidirectional approximation, we studied the simpler case of a
duct having a circular cross section with radius varying sinusoidally along its axis
according to

r =50 4+ 1.5sin(272/50), (50)
where r is the radius (measured in pm, as is z). The resulting shape is shown in
Fig. 3a. The resistance per unit length as calculated using the series unidirectional
approximation (which can be solved analytically for a circular cross section) and
the 3D solution are shown in Figure 3b, and the fractional error between these two
results is shown in Figure 3c. The series unidirectional calculation overestimates the
resistance in wide regions and underestimates it in narrow ones.

We can predict the difference in resistance between a duct with axially varying
area and one with constant area using extended lubrication theory. In Figures 3b
and c, we plot the resistance and error predicted using lubrication theory, and it
agrees well with the 3D solution. The good agreement shows that the 2"d-order
extension to the lubrication approximation captures the majority of the difference
in resistance between the series unidirectional approach (derived from the 0**-order
lubrication approximation) and the full 3D solution. Importantly, from the extended
lubrication theory, we learn that the error in the series unidirectional approach scales
with the second derivative of the area. Some of the difference between the 2"%-order
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extended lubrication approximation and 3D resistances can be attributed to the
discretization of the domain boundaries, the presence of higher order effects not
captured in the 0*"-order lubrication approximation, and the difference in how the
R is calculated between the 3D simulations and ELT (discussed in Appendix C),
though the latter should account for a difference on the order of just 3% for this
case.

Here we explain why the resistance differs between the 3D and series unidirectional
approaches. The resistance is a measure of the pressure drop required to move fluid
through a duct at a certain rate, and it is calculated by measuring the decrease
in pressure, or pressure gradient, in the axial direction. The pressure gradient is a
reflection of the shear rate at the wall, which is dictated by the velocity gradient.
Axial area variations change the velocity gradient, shear rate at the wall, pressure
gradient, and resistance, relative to a uniform duct. The velocity, and thus velocity
gradient, are dictated by the pressure. In Figure 3d, we show the pressure from
the 3D solution in one cross section of the duct shown in panel (a); there is a
clear radial pressure variation. In Figure 3e, we show the radial pressure fluctuation
P — Ppean(z) (where Phean(2) is the radially-averaged pressure), which excludes the
mean axial pressure gradient that would otherwise dominate. The radial pressure
fluctuation modifies the axial velocity at the wall. For example, where the wall
bulges inward at z = 37 pm, relative to a scenario with a duct with the same size
and constant cross section, there is a higher pressure region upstream, and a lower
pressure region downstream. This negative pressure gradient steepens the axial
velocity gradient, as shown in Figure 3f, resulting in larger shear rates and larger
pressure gradients, relative to a scenario with a duct with the same size and constant
cross section. Thus, the series unidirectional approach underestimates the resistance
at constrictions. Where the wall bulges outward, the opposite is true: pressure is
lower upstream and higher downstream, flattening the axial velocity gradient and
reducing shear (as shown in Figure 3f). Thus, the series unidirectional approach

overestimates the resistance where the cross-sectional area is locally maximum.

5.4 The error in the series unidirectional approximation correlates with d?A/dz>
From the extended (second order) lubrication model, we know that for a duct with
circular cross sections, the error from the series unidirectional approach approx-
imately scales with the second derivative of the cross-sectional area with respect
to axial distance. In Figure 4 we show the error as a function of d2A/dz?. As ex-
pected, there is a clear correlation for the ducts with circular cross sections (p value
< 0.0001). For the realistic geometries, the variation in area is not radially uniform,
and the change in area does not fully capture how the geometry changes; despite
this, however, there is still a strong correlation (p < 0.0001).

In order to quantify the uncertainty associated with this correlation, we also show
conditional statistics for scattered data, with the circles showing the median error,
binned according to d>A/dz?. The dashed lines indicate the 5th and 95th percentiles.

We fit a first-order polynomial to the data (shown in the right panel in Figure
4), and the equations of the fit lines for realistic and circular shapes are errye, =
—1.8-d?A/dz? — 3.2 and errgy,e = —4.4 - d>A/dz? + 0.22, respectively. The slope of
the fit line for the geometries with circular cross sections is -4.4, which is close to
the slope of 100/(67), or -5.3, predicted from extended lubrication theory.
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We used the equation of the fit lines to find a correction factor A for the series
unidirectional approach that accounts for the three-dimensional nature of the flow,
and we plotted the resulting predicted resistances, Rsua.n and Rsun.», in Figure
1d, with corresponding errors in Figure le. We report the average and RMS error
in Table 2. This correction factor reduces the error significantly, by more than half
for most of the geometries.

6 Discussion

We gained insight into those aspects of the 3D configuration that result in errors
in the series unidirectional approach by studying a circular duct with sinusoidally
varying radius. We found that the error (between the series unidirectional approxi-
mation and the full 3D solution) is largest at locations where the second derivative
of the radius with respect to the axial distance has maximum magnitude, or in other
words, where the slope of the channel wall (relative to the central axis) is changing
most rapidly. We used extended lubrication theory to define a correction factor for
the series unidirectional approximation for a circular duct, and it agrees well with
the full 3D simulations.

There is some error introduced by the discretization of the geometry, which is
determined by the spatial resolution of the microscope images. For both the 2D
and 3D numerical simulations, we reduced the internal mesh size until the errors
were quite small, but the external domain boundaries remained the same. The non-
smooth variation of the resistance in the sinusoidal geometry is evidence of this
discretization error, which is accentuated when taking the numerical derivative of
the pressure.

None of our simulations account for any increase in hydraulic resistance due to
curvature of the centerline of a PVS. However, for these slow viscous flows this effect
is generally very small and negligible. For duct flows in general, the contribution of
off-axis flow components arising from centerline curvature is usually measured by
the Dean number De, a dimensionless group relating inertial and centripetal forces
to viscous forces in a flow: De = Rem where Re is the Reynolds number,
Te = \/m is the radius of a circle with the same area, and r. is the radius of
curvature of the vessel centerline. Flows in pial PVSs have Reynolds numbers on
the order of 1073 [22], and these PVSs have cross-sectional areas of about 100 pm?,
or 7e ~ 6 pum. In the PVS geometries used in this work, the average value of . is
about 400 pm and is rarely less than 100 pm. Therefore, pial PVSs are expected to
have a maximum Dean number of De ~ 2.5 x 10™%, and hence the contribution of
centerline curvature to the resistance is clearly negligible [23].

We constructed circular ducts with varying cross-sectional area that matched the
variation in area in the realistic geometries in order to determine how much the
variation in shape along the duct affects the accuracy of the series unidirectional
approach. One could imagine a duct that maintained nearly constant cross-sectional
area, but where the cross-sectional shape changed from a circle to a square or a tri-
angle. Depending on the rate of change, this change in shape alone could introduce
significant off-axis velocity components and errors in the series unidirectional ap-
proach. In the realistic ducts, both the cross-sectional area and the shape vary in
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the axial direction, but in the circular ducts only the area varies, so the difference
in error between the two cases can be attributed to the change in shape. As evident
in Figure le and Table 2, the average and RMS error are comparable in the two
types of ducts, and either one can be larger.

In the circular ducts, the non-axial velocity components and the radial variation
in pressure are axisymmetric, but that does not necessarily minimize the error in
the series unidirectional approach. One could imagine a situation where the change
in area and shape occur only within a very narrow azimuthal range, such as at a
sudden and narrow protrusion on one side of the duct. In this case, the error in the
series unidirectional approach for the realistic geometry might be less than that in
the circular geometry, because the effects causing the error are concentrated near a
small portion of the boundary. For realistic PVSs, variations in shape and area do
not necessarily induce significantly more error in the series unidirectional approach
than does the variation in area alone.

For most practical applications, including modeling flow in PVSs, the total re-
sistance R, rather than the local resistance per unit length R, is the quantity of
interest. For 3D simulations, R can be calculated directly, but 3D simulations are
computationally expensive and impractical for simulating flow through large sys-
tems of ducts like the glymphatic system. For the series unidirectional approach,
R can be obtained by averaging R and multiplying by the length of the duct: the
error is then the average resistance error given in Tables 2 and 3. The error in the
series unidirectional approach for any single cross section is likely to be larger than
the average error, as indicated by the RMS error, since the series unidirectional
approach sometimes overestimates and sometimes underestimates the resistance.

On average, the series unidirectional approach always underestimates the resis-
tance in a realistic PVS because the non-axial velocity components generated by
changes in duct area and cross section increase the shear rate at the wall. This
is reflected in the nonzero constant term in the linear fit describing the error as
a function of the second derivative of the area. The constant is much larger for
realistic ducts than that for circular ducts, suggesting that the change in shape
gives rise to the nonzero average error. The nonzero average error is present in the
extended lubrication theory through the term containing the first derivative; this
term is small compared to the second derivative, but generally nonzero when the
second derivative is zero.

The realistic ducts analyzed here were all derived from murine pial PVSs in the
vicinity of the middle cerebral artery, and thus the error magnitudes and correc-
tion factors calculated here are most appropriately applied to estimate the error
in neglecting off-axis flow velocities in PVSs in similar locations, since it is unclear
how the shape of PVSs in other locations (and species) may differ. Further, the
analysis here is only applicable to PVSs that are predominantly open, as pial PVSs
have been shown to be [13], rather than filled with connective tissue and porous, as
penetrating PVSs are likely to be [14]. We describe in detail how porous PVSs can
be treated in Appendix A. However, one point can be extended to open PVSs in
other locations and to any duct with low Reynolds, Womersley, and Dean numbers
and where the duct is much longer than it is wide: regardless of shape, the error in
neglecting off-axis velocity components scales with the second derivative of the area
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with respect to axial distance, as we show with the lubrication approximation. This
principle can be used to estimate the error that arises from neglecting off-axis veloc-
ity components regardless of the shape of the duct, as long as the shape of the duct
remains relatively constant. The exact correction factor may differ for differently
shaped PVSs, but the existence of a scaling will translate. At present, it is unclear
how much variation in shape exists in PVSs at other locations and across species,
but we suppose that the error will in general scale with the second derivative of the
area.

Additionally, we show that approach II typically has errors less than 10% as long
at the ratio of the minor-to-major axis is less than 0.7. We expect this would be true
for a wide variety of mostly convex shapes so that approach II could likely be used
to estimate the resistance in many types of PVSs that have a bi-lobed shape, and
we suppose this would be true for pial PVSs in other regions and species. Approach
IT may not work as well for estimating resistance in penetrating PVSs.

7 Conclusions

Assuming a uniform duct and neglecting off-axis velocity components underesti-
mates the average resistance by as much as 15%, depending on the configuration.
We gained insight into the aspects of the geometry that cause errors in the series
unidirectional approach by studying a circular duct with sinusoidally varying ra-
dius, and we showed, using extended lubrication theory, that the error in a circular
duct can be predicted based on the second derivative of the area with respect to the
axial distance. We showed further that the error in approximating the resistance
in realistic, non-circular ducts using the series unidirectional approach correlates
strongly with the second derivative of the area. We can predict this error, with
a 95% confidence interval, based solely on this second derivative. We suggested a
specific correction factor for the series unidirectional approach based on the second
derivative that significantly reduces the error.

We approximated the series unidirectional resistance in four different ways that
use considerably less computation power and find that they each predict the resis-
tance reasonably well (errors comparable to those arising from neglecting off-axis
velocity components), with little computational cost. The first approach uses the
resistance in a single cross section and the cross-sectional area along the length
of the duct. The second approach yields a correction factor for ducts of arbitrary
cross-sectional area. The third approach is based on the solution for an elliptical
duct, with a correction factor that is a function of the major-to-minor axis ratio.
The fourth approach uses a correction factor based on the polar moment of inertia
of the cross section. Of these four approaches, the second results in the smallest
€rrors, on average.

Based on these results, we make the following recommendations for estimating
the hydraulic resistance in an actual PVSs, given its full 3D configuration, or a
single cross section. If the 3D configuration is known and resistance is to be pre-
dicted without solving the full 3D Navier-Stokes equations, the series unidirectional
approach (solve the 2D Poisson’s equation numerically for each cross section, the
SUN solution) is a useful method, resulting in average errors on the order of 0 to
20%, depending on the geometry. The error correlates with the second derivative of
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the cross sectional area, and generally |[d2A/dz?| < 2 results in less than 20% error.
If the axial area variation is known, the series unidirectional approximation can be
improved with the A correction. In order to use less computational power than is
required for solving Poisson’s equation numerically, approach II is a useful method,
resulting in additional errors < + 10%, as long as the minor-to-major axis ratio of
the ellipse with the same second moment as the cross sectional shape is less than
0.7.

Appendix A: Flow and hydraulic resistance in porous perivascular
spaces

Here we consider PVSs that contain enough connecting tissue that they can be
treated as a porous medium, with CSF flow governed by the Darcy equation. Little
is currently known about the detailed configurations of these PVSs, so here we just
present a method of calculating the hydraulic resistance in anticipation of better
data becoming available with improved in vivo imaging techniques. To simplify the
analysis, we assume that the size and shape of the cross section vary slowly along
the PVS, in which case the non-axial components of velocity make a negligible
contribution to the resistance, the axial flow velocity is essentially uniform over the
cross section, and the hydraulic resistance per unit length depends only on the area
of the cross section.

Consider a PVS in the form of an annular tube whose cross section varies along
the tube. Let z be an axial curvilinear coordinate running along the tube, and let
A(z) denote the varying internal cross-sectional area of the tube. In this case, the
Darcy law for steady flow along the tube has the differential form

Q=2 (L) ac) 61

where @ is the constant volume flow rate, s is the permeability, u is the dynamic
viscosity, and p(z) is the pressure, which varies long the tube. Note that the pressure
gradient dp/dz (and hence the hydraulic resistance per unit length) varies inversely
with the cross-sectional area A(z). Now consider a finite section of this PVS of
length L, running from z = 0 to z = L. The total pressure drop Ap along this

section is given by

L L
Ip pQ dz
Ap = —[p(L) — =— — == . 2
p=—p() o) = - [ () az =12 [T (52)
If we define an effective cross-sectional area Aeg by the relation
11t d
=_ . 53
Aeﬂ‘ L /0 A(Z) ’ ( )
then the total pressure drop Ap is given by
L
Ap =19 (54)

K Aeﬂ"
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which is the same as the pressure drop along a uniform tube of constant cross-
sectional area Aqg. For an actual PVS segment, if we have experimental data from
which we can construct an approximate relation A(z) for the varying cross-sectional
area, then we can calculate Ao by numerical integration, which will then give us
the pressure drop Ap and the total hydraulic resistance R of the segment,

L
Aeﬁ .

R=Ap/Q = (55)

3=

Note that the total hydraulic resistance of the PVS segment depends only on its
geometrical configuration (its length L and effective cross-sectional area Aeg), its
permeability x, and the viscosity of the flowing CSF. Note also that in the definition
of the effective cross-sectional area, the smallest values of A(z) (the narrowest parts
of the PVS segment, where the flow is most constricted) contribute the most in
determining A.g and hence the hydraulic resistance R.

If the permeability x varies significantly along the PVS segment, we can account
for this in estimating the hydraulic resistance. Supposing that the permeability
varies as k(z), equation (52) can be replaced by the relation

L 1
sp=an [ (56)

which can be evaluated for experimental data by numerical integration.

As a simple model, consider a tube of length L with a circular annulus cross
section, having a uniform inner radius ry (representing the surface of the blood
vessel) and an outer radius that varies uniformly from r; at the entrance (z = 0)
to 79 at the exit (z = L), i.e., r(z) = r1 — az, where a = (ry — r3)/L. In this case
the effective cross-sectional area is

L d - (ro —re)
Aot = l/O m(ro — OZ)2 - 7"(%] - In [(QZ:(};S (:;;gﬂ | "

Note that this expression holds for both r1 > 79 (narrowing tube) and 1 < 79

(expanding tube), corresponding to the reversibility of the direction of Darcy flow.
It can be shown that this expression for A.g has the limiting form Aeg = 7(rf —r2)
when ro = rq, i.e, the effective cross-sectional area is equal to the actual cross-
sectional area in the case of a uniform annular tube.

To illustrate simply how the narrowest parts of a tube contribute most to its
hydraulic resistance, suppose the inner tube of the annulus is absent, i.e. 1o = 0, in
which case the effective cross-sectional area is given directly by

L d -1
z
A = _— =
o | [ smtap] 9

and it can be shown that the expression (57) for Aeg of the annular tube has
this limiting form for 7o — 0. Note that this effective area is the same as that of

a uniform tube of radius equal to the geometric mean ,/rir3 of r; and ro. The

Page 19 of 28



Boster et al.

489
490
491
492

493

495
496

497

498
499
500
501
502

503

505

506
507
508
509

510

geometric mean radius /r17r2 is always less than or equal to the arithmetic mean
radius (71 4 r2)/2, which in turn is always less than or equal to the quadratic mean
radius \/(rf +13)/2, ie.,

Vs < (r1+712)/2 <313 +13)/2 . (59)

Thus, the effective cross-sectional area Aeg = mriry of the tapering tube is always
less than the cross-sectional area Ay, = 7[(r1 + 12)/2]? of a uniform tube with the
arithmetic mean radius (r1+72)/2, which in turn is less than the cross-sectional area
Aqm = m(r?+7r2)/2 of a uniform tube with the quadratic mean radius /(r? + r3)/2.
(Note that Aym is the average of the areas at each end of the segment.) Hence, Aeg <
Am < Agm, and the hydraulic resistances are correspondingly ordered Reg > Ry >
Rym- (The equal signs correspond to the case r1 = ro.) This simple example shows
the dominating effect of the narrowest sections of a porous PVS in determining its
hydraulic resistance.
Returning to the case of the annular tube, the hydraulic resistance is given by

w L 7 L T1— T T2 + 170
Reg =5 == 1 . 60
T % Aer K 27ro(r1 — 12) n[(rl+7“0> (7”27”0” (60)

Now consider an annular tube consisting of a continuous sequence of segments of

uniformly varying outer radius, for which the total hydraulic resistance will be the
sum of the resistances of the individual segments (analogous to electrical resistors
in series). Suppose the tube starts with outer radius r1, and consists of N segments
with lengths L,,, entry radii r,,, and exit radii r,,+1, n = 1,2, 3, ..., N. The hydraulic
resistance of the n*® segment is

Ln [ n
Rn:“)an’" TO) (T “J””O)], (61)
K 2mro(Tpe1 — Tn Th +To Trnel —T0

and the total hydraulic resistance of the tube is R = Eiv R,,. This model can be
used to estimate the hydraulic resistance of a real porous PVS if we approximate its

configuration as a connected series of circular annular segments of uniformly varying
outer radius. The PVS may not have a circular outer boundary, but we can choose
outer radii of the segments so that the areas of the ends of each segment match the
actual local cross-sectional area of the PVS. This model can be easily extended to
a case in which the porosity varies along the PVS, by allowing for different values
Ky, in equation (61).

Appendix B: Velocity and pressure in the extended lubrication
model
The derivation that follows can be deduced from the solution for an elliptical duct
[18] and the presentation of the general extended lubrication theory for a 2D channel
[19].
To obtain the transverse velocities ug, vy, we combine the 274 order x and y
momentum equations (Egs. 35 and 36) to eliminate ps:

0 52 0? 0 0? 2
5 (5 ) )~ a5 (53 + o) o) =0 (02
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For this to be satisfied, (;—; + a%;) up must be a function only of = (or a constant),

and similarly, (83—;2 + 6%) vp must be a function only of y (or a constant). Moreover,
up and vg likely have a similar form as the axial velocity wg and must also satisfy
no-slip on the boundary. These conditions are satisfied by

e (0 () () (0 G4 ()

su  and by enforcing continuity we find
wo= e () () ). (63
wo= () () ). (64

Next we can solve for the second-order pressure py by integrating the x and y
momentum equations:

B 2Qu (cy? (3 1 bz? (3 1
P2 = Ci(2)n e ( c\ete)ty\wta))

where C(z) is a function to be determined later. We can then obtain the second-

order axial velocity we from the z-momentum equation

82 + 62 6})2 82100
— + = | we = — — .

FA 822 on2) T 0z Koz

By inspection, the right-hand side of this equation is a function of 2% and 3?2, so we

can guess that wy has the general polynomial form

N 2 2
wy = ((b) + (%) - 1) (D1 + D12 + Doz + Dgy® + Day* + Dsa®y?) .
Substituting this expression in the momentum equation and collecting like terms,

we can solve for the constants D,, to yield

_ K 1 x? y2
2= e b2 c2)’

where

K 4b%cb' ¢! + 833 ¢! + 4bcPb ¢ + 20b2c*b'? 4 4cSb'? + 408¢? + 20042 c?
Q 2 (7b%c? 4 7h%ct 4 b8 + ) +
b56mc® + b3mc” + b’ B
2Q (Th*c2 + Th2ct + b6 + ¢F)
—8b2c3' ¢ — 3V ¢ — bteb'c’ + bet (2b'2 + e’ —2c%) + b° (e’ — 4¢?) + 6b3c? (cc” —4c?)
be2 (6b%c? + b* + ¢*) vt
2btc (<2 — b'?) — 246230 — 4% + b° (cb” — 3b'¢!) + 263¢? (3cb” — 4b'c!) + be (b — V')
b2c (6b%c? + b* + ¢*) v

Ci+
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Finally, we obtain C/(z) by applying the integral constraint

¢ pby/1—(y/c)?
0= 4/ / wq dx dy (65)
0 0

to find

_Q
3mwbtet
be? (=147 + cc” — 2¢%) + b* (b — 3V ) + b (b — 6b'¢)),

Ci(z) = (=3c*' ¢/ + bPc (=2 + e’ — 14¢) +

which must be integrated numerically to obtain C4(z). We then have a complete
expression for the second-order pressure gradient, Eq. 38.

The integral constraint assumption. In our solution, we have assumed that
the Oth order flux @@y dominates the total flux Q, such that the second order flux
(2 is negligible:

¢ pby/I=(s/2
Q0:4/ / wo dr dy ~ Q (66)
o Jo

and

¢ rby/1-(y/o)?
Q2:4/0 /0 ws dz dy = 0. (67)

We can justify that Q2 < Qo by referring to Equation 37. In this equation, all of
the terms are of equal order, so comparing the 2nd and 3rd terms

2 o 92w
(5':172 - 8y2> W2 (%)

and since wg ~ Qo and wy ~ @3,

b%'o N % (69)

and hence Q2/Qo ~ boco/L?, which is small for long, narrow ducts.

Appendix C: Calculation of the hydraulic resistance
The pressure gradient in the calculations of hydraulic resistance per unit length is
calculated from the 3D simulations according to §3, which is a discretized approxi-

mation of

d

y— (70)

)
— p dA
A Jaz

which is not equivalent to the quantity we calculate through lubrication theory

(§4.1)

dp 1 dp
PN _ 2 [ Py 1
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since it does not take into account the rate at which the area changes axially. We

can show, however, that these are approximately equal, that is,

d |1 1 dp
— | = dA| ~ — — dA 2
dz | A /A(z)p A /A(z) 0z 72)

if the amplitude of the change in area is relatively small. We demonstrate this with

the circular duct, whose radius varies as a(z):

d |1 d 2 [
A A R
- | /A(z)p d 7 | a2 /0 pr dr (73)

d a(z) d [
(a_2)/ pr dr + a_2—/ pr dr (74)
0 dz Jy

dz

a(z) a(z) ap
2 —2a_3a’/ pr dr+ a2 / " dr + (pr)|aczya’ (Fp)
0 0 r

The last term arises from the Leibniz rule, and takes into account a’(z). The middle
term is the quantity (Op/dz).

d 1 o a(z)

If the radius a can be expressed as a = ag(1 + dg(z)), where 6 < 1 and g(z) is of
O(1), then

2(1— 389+ O

Q

d |1
— | = dA
dz | A /A(z) P

Q

e R

<

>+0(5).
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Figure 1: (a) Three-dimensional (3D) perivascular space (blue) and blood vessel
(red) with an example subdomain (M1 S2, shown in green) (b) The subdomain
with a few cross sections (gray) and corresponding center points (black) and
axial vectors (red). (c) Circular duct with the same axial variation in cross-
sectional area as the realistic geometry shown in (b). (d) Hydraulic resistance
per unit length at cross sections along the length of the perivascular space and
duct as calculated from the 3D simulations (“3D”), from the series unidirectional
approach (“SUN” where calculated numerically; “SUA” where calculated ana-
lytically), and with a correction factor (A correction) to the series unidirectional
approach (“SUN-A" and “SUA-X”), for both the perivascular space shown in
(b) (“realistic”) and the circular duct shown in (c) (“circular”). (e) Error be-
tween the series unidirectional approximation and the 3D solution, for all cross
sections. The box and whiskers plots indicate the median with a solid line and
the interquartile range with a box. Outliers (points more than 1.5 times the
interquartile range above the median) are shown with markers. The series unidi-
rectional approximation underestimates the error, on average, but the correction

factor reduces the error by more than half in most cases.
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Figure 2: (a) Distance d from the center, normalized by 74, the radius of a circle
with the same area (shown dashed), for an example cross section. (b) Resistance
at each cross section, calculated using the series unidirectional approach either by
solving Poisson’s equation (“SUN”) or using one of the approximations discussed
in the text. (¢) Error in approximation Ry for each segment. (d) Error in Ryy as
a function of cross-sectional aspect ratio. If the ratio of the lengths of the minor
and major axes exceeds 0.7, the error in Ry is less than 10%; Ry is a reasonable
estimate when the shape is not too oblong.
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Figure 3: (a) Duct with circular cross sections and sinusoidally varying radius.
(b) Resistance per unit length as calculated from three-dimensional simulations
(“3D”), from the series unidirectional approach, and from extended lubrication
theory (“ELT”), along with cross-sectional area. (c¢) Error in resistance per unit
length predicted by the series unidirectional approximation, compared to 3D
simulations and extended lubrication theory. (d) Pressure at the cross section
marked with a blue box in (a). (e) Radial pressure fluctuations in the longitu-
dinal plane marked with a yellow box in (a). (f) Axial velocity profiles at the
widest (gray) and narrowest (red) locations in the duct, marked by arrows in (e).
The error in the series unidirectional approach can be predicted with extended
lubrication theory and results from the radial pressure variations induced by the

axial variation in area.
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Figure 4: Error in resistance between the series unidirectional approximation and
the three-dimensional solution for all cross sections, as a function of the second
derivative of the cross sectional area with respect with the axial direction. Pale
markers indicate values for individual cross sections. In the left panel, curves
indicate the 5" (dashed), 50'" (solid), and 95" (dashed) percentiles. In the
right panel, solid lines show linear fits, and dashed lines indicate 95% confidence
bounds. The error correlates strongly with the second derivative of the area for
both the realistic and circular cross sections, though the correlation is slightly
stronger for the circular cross sections. Across all normal cross sections, for the
realistic cross sections the Pearson correlation coefficient p = -0.49 and p value
< 0.0001, and for the circular cross sections p = -0.80, p < 0.0001.
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