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Abstract

Background Perivascular spaces (PVSs) carry cerebrospinal fluid (CSF) around

the brain, facilitating healthy waste clearance. Measuring those flows in vivo is

di�cult, and often impossible, because PVSs are small, so accurate modeling is

essential for understanding brain clearance. The most important parameter for

modeling flow in a PVS is its hydraulic resistance, defined as the ratio of pressure

drop to volume flow rate, which depends on its size and shape. In particular, the

local resistance per unit length varies along a PVS and depends on variations in

the local cross section.

Methods Using segmented, three-dimensional images of pial PVSs in mice, we

performed fluid dynamical simulations to calculate the resistance per unit length.

We applied extended lubrication theory to elucidate the di↵erence between the

calculated resistance and the expected resistance assuming a uniform flow. We

tested four di↵erent approximation methods, and a novel correction factor to

determine how to accurately estimate resistance per unit length with low

computational cost. To assess the impact of assuming unidirectional flow, we also

considered a circular duct whose cross-sectional area varied sinusoidally along its

length.

Results We found that modeling a PVS as a series of short ducts with uniform

flow, and numerically solving for the flow in each, yields good resistance estimates

at low cost. If the second derivative of area with respect to axial location is less

than 2, error is typically less than 15%, and can be reduced further with our

correction factor. To make estimates with even lower cost, we found that instead

of solving for the resistance numerically, the well-known resistance of a circular

duct could be scaled by a shape factor. As long as the aspect ratio of the cross

section was less than 0.7, the additional error was less than 10%.

Conclusions Neglecting o↵-axis velocity components underestimates the average

resistance, but the error can be reduced with a simple correction factor. These

results could increase the accuracy of future models of brain-wide and local CSF

flow, enabling better prediction of clearance, for example, as it varies with age,

brain state, and pathological conditions.

Keywords: perivascular spaces; cerebrospinal fluid; hydraulic resistance; brain

clearance system; fluid dynamics; hydraulic network models1
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1 Introduction3

Perivascular spaces (PVSs) are annular channels that surround arteries and veins4

in the brain and are filled with cerebrospinal fluid (CSF). The flow of CSF along5

these PVSs is an important component of the brain’s glymphatic system, which6

distributes nutrients and removes metabolic waste products [1]. (See the recent7

reviews [2, 3].) The flow of CSF in this system can be usefully modeled as flow in a8
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hydraulic network, with one-dimensional flows in individual components determined9

by their hydraulic resistance [4, 5, 6, 7, 8, 9]. It is known that the hydraulic resistance10

of a PVS depends strongly on its size and shape [10, 11, 12]. In this paper we develop11

methods of estimating the hydraulic resistance of individual PVSs in the brain based12

on their known geometrical configuration, as determined from in vivo experimental13

data. The PVSs are often quite irregular in shape, and therefore it is useful to14

have ways of estimating their hydraulic resistance without doing a full numerical15

simulation of the detailed flow field.16

Here we are concerned primarily with PVSs that can be considered as essentially17

open spaces, for which the flow is governed by the Navier-Stokes equation. PVSs18

surrounding pial (surface) arteries in the mouse brain are known to be essentially19

open spaces, unobstructed by tissue [13]. Far less is known about the amount of ob-20

struction in PVSs surrounding penetrating arteries: experiments indicate that these21

PVSs in the mouse brain contain some mesh-like obstructions [14], but the blood22

vessel usually lies to one side of the PVS, an arrangement that usefully reduces23

the hydraulic resistance of the PVS only if it were an essentially open space [10].24

It is likely that some PVSs in the brain contain a significant amount of tissue and25

might therefore be considered to contain a porous medium, with flow governed by26

the Darcy equation. Such might be the case for PVSs around arterioles and precap-27

illaries deep in the brain. We present here (in Appendix A) a method of estimating28

the hydraulic resistance of a porous PVS based on its detailed configuration, but29

since we know very little about this configuration, we do not carry out any specific30

applications of the method.31

In a steady, laminar flow of fluid along an open duct, the volume flow rate

Q = �p/R is proportional to the pressure drop �p between the entrance and

exit of the duct and inversely proportional to a hydraulic resistance R, which can

be calculated from the viscosity of the fluid and the detailed shape and length of

the duct. Hydraulic resistance is analogous to electrical resistance, which impedes

an electrical current (analogous to Q) driven by a given voltage drop (analogous

to �p). For nonuniform ducts, a more useful quantity is the hydraulic resistance R
per unit length,

R ⌘ �@p/@z

Q
, (1)

where @p/@z is the pressure gradient in the direction of the flow (the z-direction).32

Simple geometric models of the cross section of open PVSs have been used to33

calculate their hydraulic resistance [10, 12], assuming that the cross section remains34

uniform along the PVS. Here we are seeking more accurate methods that account35

for the variations in the shape and cross-sectional area of a PVS, and hence its36

hydraulic resistance R per unit length, along its length.37

2 Pial PVS shapes determined from in vivo experimental data38

We acquired and segmented three-dimensional (3D) two-photon microscopy images39

of murine pial PVSs, using the methods we developed and employed previously40

[15, 12]. We analyzed PVSs adjacent to pial arteries in four mice, M1–M4, and we41

considered two or three subdomains from each mouse, denoted as S1, S2, or S3, for42
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a total of 9 di↵erent 3D segments of pial arteries. All of the subdomains were from43

pial PVSs located on the main branch of the MCA, between 4-7 bifurcations distal44

to the start of the MCA. Pial perivascular spaces are often shaped like incomplete45

annuli, with a lobe on each side of the pial artery but no spaces connecting the46

two lobes, as described by Raicevic et al. [12] and shown in Figure 1a. All 9 of the47

segments we consider are shaped this way, and each is an individual lobe, located48

to one side of the pial vessel. Thus, the blood vessel is located to one side of the49

subdomains we consider here.50

For each 3D configuration, we chose a series of points distributed along the vessel51

centerline, at each point finding the axial (centerline) direction and a cross section52

normal to that direction, as described in [15] and shown here in Figure 1b. The53

normal cross sections are spaced approximately 0.7 µm apart, but the exact distance54

varies. Below, we will use a variety of methods to estimate the local value of R at55

each cross section.56

For comparison, we created ducts with circular cross sections that have the same57

axial variation in cross-sectional area as the realistic geometries, as shown in Figure58

1c. This allows us to separate the e↵ects of size and shape on R. We do this by59

finding the cross-sectional area of the PVS at each of the previously-chosen normal60

cross sections, obtaining the area as a function of distance in the axial direction.61

We then interpolate the area function at 0.7 µm (1 pixel) intervals and create a62

duct with a straight centerline and circular cross sections of varying area, where the63

area as a function of axial distance is very nearly the same as in the original PVS64

geometry.65

3 Three-dimensional flow calculations for realistic PVS66

configurations67

As a basis for testing the various simpler methods of approximating the hydraulic68

resistance of PVSs presented in the next section, we calculated the full 3D flow69

field for pressure-driven, laminar viscous flow in the actual observed PVS sections70

described above, and then calculated the hydraulic resistance for these flow fields.71

We solved the 3D Navier-Stokes equations using NX Flow in the Siemens NX Ad-72

vanced Simulation software. The PVS geometries were meshed into 3D tetrahedral73

elements using NX advanced FEM. We used the fluid properties of water at 37�C.74

The parallel Flow Solver Scheme was set as the fully coupled Pressure-Velocity75

type, and we used a parallel solver to increase e�ciency. From NX, we exported the76

results in CSV files that were then further post-processed in MATLAB.77

We prescribed a zero-pressure condition at the outlet and no-slip conditions at the78

walls. In order to ensure fully-developed flow at the entrance of the PVS segment,79

we added a uniform (constant cross section) duct upstream whose cross-sectional80

shape matched the entrance of the segment and whose length was 40 µm. For the81

low Reynolds number flows considered here, the minimum length zL required to82

achieve a fully-developed velocity profile is zL ⇡ 0.5Dh, where Dh is the hydraulic83

diameter, Dh ⌘ 4A/P , where A is the cross-sectional area and P is the wetted84

perimeter of the duct [16]. In all cases we consider, zL  40 µm. We prescribed85

a steady flow at the entrance of the inlet duct with a volume flow rate of Q =86

2.19⇥104 µm3/s, a typical value for pial PVSs in the mouse brain [15].87
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To ensure the accuracy of the 3D flow calculations, we reduced the mesh size in a88

finite-element model of a uniform (constant cross section) duct with circular cross89

section until the resistance was within 0.5% of that given by the exact analytical90

solution for laminar flow in a circular duct (Hagen-Poiseuille flow). This occurred91

for a mesh size of 0.5 µm. We determined that further reducing the mesh size to 0.392

µm resulted in a change in average resistance of less than 0.2%. We then used 0.393

µm for all the simulations, although it is clear from these grid verification studies94

that a coarser mesh would have produced very similar results.95

We used a nonuniform mesh, in which the mesh elements were finer near the96

boundaries and coarser near the center. This varying mesh size was dictated by97

changing the internal gradation rate, which limits size di↵erences among adjacent98

mesh elements, particularly in the radial direction (inward from the boundary). In99

order to verify that this did not a↵ect the results, we ran a simulation in which we100

kept the mesh size at 0.5 µm while decreasing the internal graduation rate from101

1.05 to 1.01, which resulted in a di↵erence in average resistance of only 0.03%. We102

then used an internal gradation rate of 1.05 for all the simulations.103

We calculated the hydraulic resistance per unit length at each normal cross sec-104

tion along the length of the channel by taking the volume-weighted average of the105

pressure at all elements in 2-µm-thick slices and dividing the pressure di↵erence106

between adjacent slices by the volume flow rate Q. (See Appendix C for a discus-107

sion of how this calculated quantity compares to the theoretical one derived from108

the lubrication approximation in §4.1.) We observed an increase in error in cross109

sections near the outlet due to exit e↵ects, so in all of our results we exclude the110

last five normal cross sections.111

4 Approximate methods for calculating the hydraulic resistance112

4.1 The lubrication approximation113

Perivascular flows are generally characterized by very low Reynolds number (Re

⌧ 1), where viscous e↵ects greatly outweigh inertial e↵ects. Also, the pulsatile flows

in PVSs have very small Womersley number, and hence the hydraulic resistance

experienced by these flows is the same as that for a steady flow [17]: therefore,

without loss of generality, we will consider steady flow throughout this paper. The

Navier-Stokes equation can then be reduced to the Stokes (creeping flow) equation

for steady flow,

0 = �rp+ µr2u, (2)

where u = (ux, uy, uz) is the Eulerian velocity in Cartesian coordinates (x, y, z), p

is the pressure, and µ is the dynamic viscosity. This equation is accompanied by

the continuity equation for incompressibe flow,

r · u = 0. (3)

Because PVSs are generally much longer (in the flow direction) than they are114

wide (in directions transverse to flow), the flow can be modeled using lubrication115
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theory, which describes a class of flows that are nearly unidirectional. Even if the116

PVS changes in size or shape along its length, the magnitude of the axial flow is117

much larger than the transverse flow.118

We can arrive at the lubrication equations for a duct by non-dimensionalizing the119

components of the Stokes equation according to:120

x̂ =
xp
b0c0

, ŷ =
yp
b0c0

, ẑ =
z

L
, (4)

û =
ux

uc
, v̂ =

uy

vc
, ŵ =

uz

wc
, (5)

p̂ =
p

�pc
, (6)

where b0 and c0 are the characteristic length scales in the x and y directions (trans-

verse to flow), respectively, L is the characteristic length scale in the z direction

(axial), uc, vc, and wc are the characteristic velocities in the x, y, z directions, respec-

tively, and �pc is a characteristic pressure drop across the full length of the duct.

We assume here that b0 and c0 are comparable, such that there is one characteristic

length in the transverse direction,
p
b0c0, and hence ux and uy are comparable, such

that uc = vc. By non-dimensionalizing the continuity equation

@ux

@x
+

@uy

@y
+

@uz

@z
= 0, (7)

we find that uc = ↵wc where ↵ ⌘
p
b0c0
L is the aspect ratio of the channel, and that121

the characteristic pressure is �pc = µwcL/b0c0.122

The resulting dimensionless equations are:123

0 =
@û

@x̂
+

@v̂

@ŷ
+

@ŵ

@ẑ
, (8)

0 = �@p̂

@x̂
+ ↵

2

✓
@
2

@x̂2
+

@
2

@ŷ2
+ ↵

2 @
2

@ẑ2

◆
û, (9)

0 = �@p̂

@ŷ
+ ↵

2

✓
@
2

@x̂2
+

@
2

@ŷ2
+ ↵

2 @
2

@ẑ2

◆
v̂, (10)

0 = �@p̂

@ẑ
+

✓
@
2

@x̂2
+

@
2

@ŷ2
+ ↵

2 @
2

@ẑ2

◆
ŵ. (11)

We can see that several terms in these equations are small perturbations when124

↵
2 ⌧ 1, as is the case for long, narrow ducts like PVSs. Hence we can appropriately125

express the variables as power series in ↵
2:126

p̂ = p̂0 + ↵
2
p̂2 + ↵

4
p̂4 +O(↵6), (12)

û = û0 + ↵
2
û2 + ↵

4
û4 +O(↵6), (13)

v̂ = v̂0 + ↵
2
v̂2 + ↵

4
v̂4 +O(↵6), (14)

ŵ = ŵ0 + ↵
2
ŵ2 + ↵

4
ŵ4 +O(↵6). (15)

Substituting these series expressions into the governing equations and collecting127

terms of the same order of ↵2, we find that the 0th-order equations (composed of128
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terms free of ↵2) are129

0 =
@û0

@x̂
+

@v̂0

@ŷ
+

@ŵ0

@ẑ
, (16)

0 =
@p̂0

@x̂
=

@p̂0

@ŷ
, (17)

0 = �@p̂0

@ẑ
+

✓
@
2

@x̂2
+

@
2

@ŷ2

◆
ŵ0. (18)

These 0th-order equations constitute “classical” lubrication theory. At this order,130

pressure does not vary in the transverse direction, as the equations show. We later131

approximate the PVS as a series of sections, and solve these equations for each sec-132

tion, referring to the combined result as the “series unidirectional approximation”.133

We find the 2nd-order equations to be:134

0 =
@û2

@x̂
+

@v̂2

@ŷ
+

@ŵ2

@ẑ
, (19)

0 = �@p̂2

@x̂
+

✓
@
2

@x̂2
+

@
2

@ŷ2

◆
û0, (20)

0 = �@p̂2

@ŷ
+

✓
@
2

@x̂2
+

@
2

@ŷ2

◆
v̂0, (21)

0 = �@p̂2

@ẑ
+

✓
@
2

@x̂2
+

@
2

@ŷ2

◆
ŵ2 +

@
2
ŵ0

@ẑ2
. (22)

The second-order (and higher-order) corrections constitute “extended” lubrication135

theory, where pressure does vary in the transverse direction, and, most critically136

for this study, depends on spatial variations of the duct cross section. Extended137

lubrication theory has been applied to two-dimensional channels, circular ducts,138

and elliptical ducts, and shown to be quite e↵ective at capturing the e↵ects of axial139

variations of the cross section when compared with experiments and full numerical140

simulations [18, 19, 20].141

4.1.1 A nonuniform elliptical duct142

In this section, we apply the lubrication model to solve for the flow in a nonuniform

elliptical duct, whose varying cross section is an ellipse with semi-major and semi-

minor axes b(z) and c(z):

✓
x

b(z)

◆2

+

✓
y

c(z)

◆2

= 1. (23)

While an actual PVS does not have elliptical cross sections, the nonuniform ellip-143

tical duct is a general shape for which we can find analytical expressions for the144

velocity and pressure at the 0th and 2nd orders, and which illustrates the e↵ect145

that axial variations in cross-sectional shape and area can have on the resistance146

per unit length beyond what is given by classical lubrication theory. Though we147

arrived at dimensionless forms of the 0th and 2nd order equations in the previous148

section, to calculate resistances and compare them with those obtained with nu-149

merical solutions, we will solve the equations in dimensional form in the subsequent150

sections.151
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Uniform duct approximation (0th-order solution). The 0th-order, dimen-152

sional lubrication equations are:153

0 =
@u0

@x
+

@v0

@y
+

@w0

@z
, (24)

0 =
@p0

@x
=

@p0

@y
, (25)

0 = �dp0

dz
+ µ

✓
@
2

@x2
+

@
2

@y2

◆
w0. (26)

We see that the z-momentum equation takes the form of the Poisson equation, and

hence the axial velocity w0(x, y, z) can be readily obtained numerically for a duct

of arbitrary cross section. For an elliptical duct, by enforcing a no-slip condition on

the boundary, the axial velocity can be obtained analytically:

w0 =
1

2µ

dp0

dz

b
2
c
2

b2 + c2

✓⇣
x

b

⌘2
+
⇣
y

c

⌘2
� 1

◆
. (27)

The flow rate Q is independent of z, and we can determine the pressure gradient in154

the duct by applying an integral constraint155

Q = 4

Z c

0

Z b
p

1�(y/c)2

0
w dx dy (28)

= 4

Z c

0

Z b
p

1�(y/c)2

0
(w0 + ↵

2
w2 +O(↵4)) dx dy. (29)

To close the problem, we assume that the bulk of Q is determined only by the 0th

order flux:

Q ⇡ 4

Z c

0

Z b
p

1�(y/c)2

0
w0 dx dy; (30)

the justification for this assumption is given in Appendix B. Using this integral

constraint, we can determine the pressure gradient,

dp0

dz
= �4µQ

⇡

b
2 + c

2

b3c3
. (31)

The 0th order hydraulic resistance per unit length is then

R0 =
4µ

⇡

b
2 + c

2

b3c3
, (32)

which can be expressed alternatively as a function of the cross-sectional area A and

the aspect ratio �(z) = b(z)/c(z), as

R0 =
4⇡µ(�2 + 1)

�

1

A2
. (33)

From this expression, we see that the local resistance (per unit length) depends156

only on the geometry of the local cross section and is independent of axial changes157
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in the geometry. That is, the local resistance is the same as that of a uniform duct158

of the same cross section.159

Extension to second order. By extending the lubrication model to higher160

orders, we anticipate that the solution will include e↵ects of axial variations in cross-161

sectional geometry, and hence will be in closer agreement with three-dimensional162

numerical solutions. This has been demonstrated for two-dimensional channels [19].163

The second-order dimensional equations are as follows:164

0 =
@u2

@x
+

@v2

@y
+

@w2

@z
, (34)

0 = �@p2

@x
+ µ

✓
@
2

@x2
+

@
2

@y2

◆
u0, (35)

0 = �@p2

@y
+ µ

✓
@
2

@x2
+

@
2

@y2

◆
v0, (36)

0 = �@p2

@z
+ µ

✓
@
2

@x2
+

@
2

@y2

◆
w2 + µ

@
2
w0

@z2
. (37)

The working of these equations yields lengthy expressions, so we relegate the details

of the second-order solutions for velocity and pressure to Appendix B. The resulting

expression for pressure gradient is:

@p2

@z
=

µQ

3⇡b5c5
�
b
2
c
2
�
2b02(6x2 � 7c2) + (6y2 � c

2)(2c02 � cc
00)
�

+ b
4
�
�2c2(b02 + 7c02) + c(c2 � 18y2)c00 + 72y2c02

�

+ 72x2
c
4
b
02 + b

3
c
�
cb

00(c2 � 6x2) + 6b0c0
�
3(x2 + y

2)� c
2
��

+ 3bc3
�
b
0
c
0 �6(x2 + y

2)� c
2
�
� 6x2

cb
00�+ b

5
c(cb00 � 3b0c0)

�
, (38)

where primes denote derivatives with respect to z. Here the axial pressure gradient

additionally depends on x and y. Since the pressure distribution over the cross

section is di�cult to measure, a more relevant quantity is the axial pressure gradient

averaged over the cross section,

⌧
@p2

@z

�
=

1

⇡bc

Z

A

@p2

@z
dA, (39)

which is a function only of z. Then we can define the second-order resistance per

unit length as R2 ⌘ �h@p2/@zi /Q, given by

R2 = � µ

6⇡b4c4
⇥
3c4b0c0 + b

3
c
�
2b02 � 7cc00 + 8c02

�
+

bc
3
�
8b02 � cc

00 + 2c02
�
+ b

4 (3b0c0 � cb
00) + b

2
c
2 (6b0c0 � 7cb00)

⇤
. (40)

This higher-order resistance depends on the size of the duct and also on the slope

and curvature of the walls. It combines linearly with the lower-order resistance, such

that the total resistance per unit length is R0+↵
2R2+O(↵4). We can express R2 as

a function of area A and aspect ratio �, as we did for R0, if we further assume that
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the aspect ratio is fixed at some value � = �
⇤, i.e., the cross sections are self-similar

along the length of the duct and d�/dz = 0: the resistance is then

R2,fixed � = � µ

12�2A2

⇥3A02

A
(1 + 6�2 + �

4)�A
00(1 + 14�2 + �

4)
⇤
. (41)

Thus the fractional error of the uniform duct (0th order) approximation in the

total resistance as predicted by the extended lubrication model is

E =
↵
2R2 +O(↵4)

R0 + ↵2R2 +O(↵4)

⇡ (↵2R2

R0
+O(↵4))(1� ↵

2R2

R0
+O(↵4))

⇡ ↵
2R2

R0
+O(↵4)

⇡ ↵
2

48⇡�(�2 + 1)

✓
�3A02

A
(6�2 + �

4 + 1) +A
00(�4 + 14�2 + 1)

◆
+O(↵4).

(42)

If the change in area is relatively small along the length of the duct, i.e., if

A = A0(1 + ✏g(z)), ✏ ⌧ 1

then we can show that, to leading order in ✏, the second derivative of the area

dominates the error:

E ⇡ ↵
2
A0

48⇡�(�2 + 1)
(� 3✏2g02

1 + ✏g
(6�2 + �

4 + 1) + ✏g
00(�4 + 14�2 + 1))

⇡ ↵
2

48⇡�(�2 + 1)
(�3A0✏

2
g
02(1� ✏g)(6�2 + �

4 + 1) +A0✏g
00(�4 + 14�2 + 1))

⇡ ↵
2(�4 + 14�2 + 1)

48⇡�(�2 + 1)
A

00 + O(✏2). (43)

If we consider this �-dependent prefactor, we can show that it is a fairly weak165

function of � and its value is within 13.3% of the � = 1 case for � < 7. For � = 1,166

E ⇡ ↵
2
A

00
/6⇡.167

4.2 Approximations using a series of uniform ducts (series unidirectional approach)168

Here we investigate the suitability of approximating the hydraulic resistance to flow169

in an actual perivascular space by modeling it as a series of uniform ducts. Each170

duct in the series is constructed to have a cross-sectional shape identical to a cor-171

responding section of the PVS, as imaged in 3D. Flow in each is assumed to be172

unidirectional; we neglect the presence of o↵-axis (not parallel to the centerline) ve-173

locity components. Such o↵-axis velocity components can arise from axial variations174

in cross-sectional area or shape, or from curvature of the central axis, and would175

serve to increase the rate of shear at the wall, thereby increasing the hydraulic re-176

sistance compared to that in a unidirectional flow. We refer to this approach as the177

“series unidirectional” approach.178
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Method Description
SUN numerically solve Poisson’s equation for resistance
SUA analytically solve for the resistance in a circular cross section
I solve based on a reference area and resistance, assuming resistance scales with area
II adjust RSUA using shape factor � based on the distance from the wall to the center
III lubrication approximation for an ellipse
IV approximation proposed by Bahrami et al.; uses the polar moment of inertia

Table 1: Summary of the di↵erent solution methods to the series unidirectional

approach, where the resistance per unit length is calculated for flow in a series of

straight ducts with constant cross section and unidirectional flow.

We compute the velocity profile of unidirectional flow along each duct in the series179

numerically, by solving Eq. 26 using Matlab’s PDE solver, “solvepde”, as described180

in [15, 12]. We refer to this solution of the series unidirectional approach as the SUN181

approach. The mesh size is chosen so that the computed resistance for a circular182

duct matches the analytically-known value within 0.5%. Instead, for simple cross-183

sectional shapes like circles, we do the same calculation analytically, referring to this184

solution as the SUA approach. Both approaches allow us to calculate a resistance185

per unit length at many locations along the PVS.186

In addition to solving Poisson’s equation, we also approximate the series unidi-

rectional resistance per unit length using four di↵erent solution methods, which we

refer to as methods I, II, III, and IV, and which are summarized in Table 1. These

methods require considerably less computational e↵ort than solving Poisson’s equa-

tion for each cross section (the SUN method). In method I, we predict the series

unidirectional resistance per unit length at each normal cross section i at z = zi,

based on the resistance in a single reference cross section with resistance per unit

length Rref and area Aref , and the local area Ai:

RI = Rref

✓
Aref

Ai

◆2

(44)

The results depend on the reference cross section, so we examine the impact of its187

selection by choosing two di↵erent reference cross sections: the largest and smallest188

in the PVS segment. The two resulting resistance predictions are denotedRI,maxand189

RI,min, respectively. This approach is based on the idea that the shape of a PVS190

segment is relatively uniform along its length, so changes in local resistance are due191

to changes in area alone. We see this illustrated in the lubrication approximation192

for R0, Eq. 33, where if the shape factor coe�cient is constant, then the resistance193

depends primarily on A
�2.194

Method II is based on the assumption that radial velocity variation in a cross

section of arbitrary shape is similar to that in a circle, such that the shear stress at

the wall depends primarily on its distance from the centerline. In this method, we

can predict the resistance per unit length of each cross section in the series based

on the geometry alone, by multiplying the expression for hydraulic resistance in

Hagen-Poiseuille flow in a circular duct by a shape factor � that accounts for the

non-circularity of the shape. Thus,

RII =
8µ

⇡r4eq

�, (45)
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where req is the radius of a circular cross section of equivalent area and

� =
1

N

NX

j=1

✓
req

dj

◆4

, (46)

where the boundary of the cross section has been approximated as a polygon with195

N vertices, each a distance dj from the center (see Figure 2a). The center is defined196

as the location that minimizes � and is typically close to the location of maximum197

flow velocity. This is appropriate because dj approximates the radius of a circle198

for which the wall shear matches that of the realistic cross section at location199

j. (We originally used the geometric centroid of the cross section as the center200

point but found that when the cross section narrowed in the center, resistance was201

considerably overestimated.)202

Method III predicts the hydraulic resistance of each duct in the series using the

lubrication model for an ellipse, as described in Equation 33:

RIII =
4µ

⇡r4eq

�
2 + 1

�
. (47)

where � is now the aspect ratio of an ellipse with the same second moment as the203

cross section, and A is the cross-sectional area.204

Method IV is an approximation proposed by Bahrami et al. [21] that considers

the shape e↵ect through the second polar moment of inertia Ip:

RIV =
16⇡2

µ

A4
Ip, (48)

where

Ip =

Z

A
((x� x0)

2 + (y � y0)
2) dA, (49)

and (x0,y0) are the coordinates for the centroid.205

5 Results206

5.1 Error in the series unidirectional approximation207

We calculated the resistance per unit length for PVS segment S2 from mouse M1,208

and the results are shown in Figure 1d. We refer to the original geometries as re-209

alistic, in contrast to the contrived geometries with circular cross sections but the210

same area as a function of axial distance. The resistance is calculated by solving211

numerically or analytically for the resistance in a series of straight ducts with uni-212

directional flow with cross sections matching those from the 3D geometries, or else213

calculated from the three-dimensional flow field. Since a circle has the smallest re-214

sistance possible for a given cross-sectional area, the resistances for the circular215

geometries are predictably smaller than those of the realistic geometries. For both216

the circular and realistic geometries, the series unidirectional approximation of re-217

sistance is reasonably close to the resistance from the 3D solution for many cross218

sections. In Figure 1e, we show box plots of the error in resistance from the series219
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unidirectional approximation (methods SUN and SUA) relative to the 3D simula-220

tions for each geometry. The error is less than 20% in the majority of cases. In221

Table 2, we report the average resistance per unit length for each of the geometries222

from the 3D simulations. The average resistance was computed by averaging the223

resistance from all of the cross sections along the length of the duct. We also report224

the error in the average resistance between the series unidirectional approximation225

and the 3D simulations. Resistance is overestimated by the series unidirectional226

approximation in some cases, and underestimated in others, so the error in the227

average resistance is smaller than the typical error in a single cross section, which228

we estimated using the root-mean-square (RMS) value. The series unidirectional229

approximation underestimates the average resistance by 0.5 to 13% for realistic230

geometries, and 1.2 to 8.6% for circular geometries.231

realistic circular

segment
R3D

(mmHg·min
/mL/m)

(RSUN- R3D)
/R3D (%)

(RSUN·�- R3D)
/R3D (%)

(RSUA- R3D)
/R3D (%)

(RSUA·�- R3D)
/R3D (%)

M1 S1 2.8⇥106 -5.3 (10.4) -1.2 (5.5) -2.3 (10.4) 0.1 (5.4)
M1 S2 2.4⇥106 -4.5 (10.2) -1.0 (6.2) -1.7 (10.8) -0.7 (5.8)
M2 S1 8.9⇥105 -2.8 (4.7) 0.9 (2.5) -1.8 (4.7) -0.9 (3.4)
M2 S2 8.9⇥105 -0.5 (6.3) 3.0 (5.1) -1.8 (8.4) -1.7 (5.4)
M3 S1 2.1⇥106 -7.1 (12.4) -2.7 (9.3) -8.6 (16.4) -5.2 (14.4)
M3 S2 3.5⇥106 -9.5 (15.5) -4.5 (10.8) -6.0 (14.4) -3.3 (11.9)
M4 S1 1.7⇥106 -4.6 (9.8) -0.8 (5.4) -1.4 (8.3) -0.1 (4.7)
M4 S2 9⇥106 -12.6 (31.1) -8.2 (30.3) -5.4 (24.6) -0.6 (16.1)
M4 S3 5.5⇥105 -3.5 (11.5) -0.2 (6.4) -1.2 (16.0) 0.7 (11.5)

Table 2: Error in resistance per unit length, for all 9 PVS segments, as calculated

with the series unidirectional approach, without and with the � correction. Refer-

ence resistances R3D are not local values, but are averages over the entire segment.

RMS errors are enclosed in parentheses; average errors are not.

5.2 Alternative solutions to the series unidirectional approximation232

We show the results for methods I, II, III, and IV in Figure 2b and Table 3. All four233

approaches require considerably less computational power than numerically solving234

Poisson’s equation (shown in green in Figure 2b for comparison), and are reasonable235

approximations.236

Depending on the reference cross section, method I produces errors in average237

resistance between -8 and 22%, with RMS errors between 2 and 31%. The error is238

calculated with respect to the SUN approach and does not include the additional239

error inherent in the series unidirectional approximation in the first place.240

Method II performs the best of all the methods, with errors in average resistance241

between -7 and 5%, and RMS errors between 2 and 13%. In Figure 2c we show a242

box plot of the error in RII (with respect to RSUN, the resistance per unit length243

calculated using the SUN approach), which shows that for most cross sections, the244

errors are less than 10%. This approach breaks down if the cross section is very245

oblong, such that the peak velocity in the cross section does not occur at a single246

central point, but along a ridge. To quantify this, we plot error as a function of the247

minor to major axis ratio of an ellipse with the same second moment as each cross248

section (1/�) in Figure 2d, and find that when this ratio is greater than 0.7, the249

error is always less than 10%.250
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Method III underestimates the (average) resistance by between 8 and 25%. This251

makes sense, since it is derived for an elliptical duct, which typically would a have252

lower resistance than many of these “realistic” cross sections, some of which are253

concave in spots, and generally not as smooth as an ellipse, as described by Racivic254

et al. [12]. The average value of � for each geometry ranges between 1.1 and 2, so an255

ellipse with the same � is similar to a circle, which has the minimum resistance for256

a given area. Accordingly, the (�2 + 1)/� term that is the ellipse correction factor257

is typically close to one.258

Method IV underestimates the average resistance by between 5 and 13%, depend-259

ing on the geometry.260

segment
( RI,max- RSUN)

/RSUN (%)
( RI,min- RSUN)

/RSUN (%)
( RII- RSUN)
/RSUN (%)

( RIII- RSUN)
/RSUN (%)

( RIV- RSUN)
/RSUN (%)

M1 S1 1.8 (3.2) 3.2 (4.2) -3.9 (4.8) -25.3 (25.8) -12.5 (12.8)
M1 S2 1.0 (4.4) 12.4 (13.7) -3.4 (4.5) -25.1 (25.8) -12.3 (12.7)
M2 S1 -3.0 (3.6) -1.8 (2.7) 0.9 (2.1) -16.1 (16.5) -9.3 (9.5)
M2 S2 4.0 (5.2) -0.6 (2.9) 1.2 (3.1) -17.3 (20.0) -9.6 (11.1)
M3 S1 -1.6 (2.7) 9.8 (12.0) 3.3 (3.9) -7.8 (8.5) -5.2 (5.6)
M3 S2 -8.3 (9.6) 22.2 (31.1) 4.6 (7.2) -10.7 (10.9) -6.9 (7.1)
M4 S1 0.6 (3.2) -0.1 (3.1) 1.9 (2.5) -18.8 (19.2) -10.2 (10.4)
M4 S2 -8.1 (18.3) 6.2 (19.9) 1.8 (13.3) -28.2 (31.7) -11.1 (12.6)
M4 S3 3.9 (6.1) 5.2 (7.0) -6.7 (8.4) -22.2 (23.9) -11.0 (11.6)

Table 3: Error in resistance per unit length, for all 9 PVS segments, as calculated

with approaches I, II, III, and IV. RMS errors are enclosed in parentheses; average

errors are not.

5.3 Test case: A duct with circular cross section with sinusoidally varying radius261

In order to gain insight into the aspects of the 3D geometry that are not cap-

tured in the series unidirectional approximation, we studied the simpler case of a

duct having a circular cross section with radius varying sinusoidally along its axis

according to

r = 50 + 1.5 sin(2⇡z/50), (50)

where r is the radius (measured in µm, as is z). The resulting shape is shown in262

Fig. 3a. The resistance per unit length as calculated using the series unidirectional263

approximation (which can be solved analytically for a circular cross section) and264

the 3D solution are shown in Figure 3b, and the fractional error between these two265

results is shown in Figure 3c. The series unidirectional calculation overestimates the266

resistance in wide regions and underestimates it in narrow ones.267

We can predict the di↵erence in resistance between a duct with axially varying268

area and one with constant area using extended lubrication theory. In Figures 3b269

and c, we plot the resistance and error predicted using lubrication theory, and it270

agrees well with the 3D solution. The good agreement shows that the 2nd-order271

extension to the lubrication approximation captures the majority of the di↵erence272

in resistance between the series unidirectional approach (derived from the 0th-order273

lubrication approximation) and the full 3D solution. Importantly, from the extended274

lubrication theory, we learn that the error in the series unidirectional approach scales275

with the second derivative of the area. Some of the di↵erence between the 2nd-order276
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extended lubrication approximation and 3D resistances can be attributed to the277

discretization of the domain boundaries, the presence of higher order e↵ects not278

captured in the 0th-order lubrication approximation, and the di↵erence in how the279

R is calculated between the 3D simulations and ELT (discussed in Appendix C),280

though the latter should account for a di↵erence on the order of just 3% for this281

case.282

Here we explain why the resistance di↵ers between the 3D and series unidirectional283

approaches. The resistance is a measure of the pressure drop required to move fluid284

through a duct at a certain rate, and it is calculated by measuring the decrease285

in pressure, or pressure gradient, in the axial direction. The pressure gradient is a286

reflection of the shear rate at the wall, which is dictated by the velocity gradient.287

Axial area variations change the velocity gradient, shear rate at the wall, pressure288

gradient, and resistance, relative to a uniform duct. The velocity, and thus velocity289

gradient, are dictated by the pressure. In Figure 3d, we show the pressure from290

the 3D solution in one cross section of the duct shown in panel (a); there is a291

clear radial pressure variation. In Figure 3e, we show the radial pressure fluctuation292

P �Pmean(z) (where Pmean(z) is the radially-averaged pressure), which excludes the293

mean axial pressure gradient that would otherwise dominate. The radial pressure294

fluctuation modifies the axial velocity at the wall. For example, where the wall295

bulges inward at z = 37 µm, relative to a scenario with a duct with the same size296

and constant cross section, there is a higher pressure region upstream, and a lower297

pressure region downstream. This negative pressure gradient steepens the axial298

velocity gradient, as shown in Figure 3f, resulting in larger shear rates and larger299

pressure gradients, relative to a scenario with a duct with the same size and constant300

cross section. Thus, the series unidirectional approach underestimates the resistance301

at constrictions. Where the wall bulges outward, the opposite is true: pressure is302

lower upstream and higher downstream, flattening the axial velocity gradient and303

reducing shear (as shown in Figure 3f). Thus, the series unidirectional approach304

overestimates the resistance where the cross-sectional area is locally maximum.305

5.4 The error in the series unidirectional approximation correlates with d
2
A/dz

2
306

From the extended (second order) lubrication model, we know that for a duct with307

circular cross sections, the error from the series unidirectional approach approx-308

imately scales with the second derivative of the cross-sectional area with respect309

to axial distance. In Figure 4 we show the error as a function of d2A/dz
2. As ex-310

pected, there is a clear correlation for the ducts with circular cross sections (p value311

< 0.0001). For the realistic geometries, the variation in area is not radially uniform,312

and the change in area does not fully capture how the geometry changes; despite313

this, however, there is still a strong correlation (p < 0.0001).314

In order to quantify the uncertainty associated with this correlation, we also show315

conditional statistics for scattered data, with the circles showing the median error,316

binned according to d2A/dz
2. The dashed lines indicate the 5th and 95th percentiles.317

We fit a first-order polynomial to the data (shown in the right panel in Figure318

4), and the equations of the fit lines for realistic and circular shapes are errreal =319

�1.8 · d2A/dz
2 � 3.2 and errcirc = �4.4 · d2A/dz

2 + 0.22, respectively. The slope of320

the fit line for the geometries with circular cross sections is -4.4, which is close to321

the slope of 100/(6⇡), or -5.3, predicted from extended lubrication theory.322
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We used the equation of the fit lines to find a correction factor � for the series323

unidirectional approach that accounts for the three-dimensional nature of the flow,324

and we plotted the resulting predicted resistances, RSUA·� and RSUN·�, in Figure325

1d, with corresponding errors in Figure 1e. We report the average and RMS error326

in Table 2. This correction factor reduces the error significantly, by more than half327

for most of the geometries.328

6 Discussion329

We gained insight into those aspects of the 3D configuration that result in errors330

in the series unidirectional approach by studying a circular duct with sinusoidally331

varying radius. We found that the error (between the series unidirectional approxi-332

mation and the full 3D solution) is largest at locations where the second derivative333

of the radius with respect to the axial distance has maximum magnitude, or in other334

words, where the slope of the channel wall (relative to the central axis) is changing335

most rapidly. We used extended lubrication theory to define a correction factor for336

the series unidirectional approximation for a circular duct, and it agrees well with337

the full 3D simulations.338

There is some error introduced by the discretization of the geometry, which is339

determined by the spatial resolution of the microscope images. For both the 2D340

and 3D numerical simulations, we reduced the internal mesh size until the errors341

were quite small, but the external domain boundaries remained the same. The non-342

smooth variation of the resistance in the sinusoidal geometry is evidence of this343

discretization error, which is accentuated when taking the numerical derivative of344

the pressure.345

None of our simulations account for any increase in hydraulic resistance due to346

curvature of the centerline of a PVS. However, for these slow viscous flows this e↵ect347

is generally very small and negligible. For duct flows in general, the contribution of348

o↵-axis flow components arising from centerline curvature is usually measured by349

the Dean number De, a dimensionless group relating inertial and centripetal forces350

to viscous forces in a flow: De ⌘ Re
p
re/rc where Re is the Reynolds number,351

re ⌘
p
A/⇡ is the radius of a circle with the same area, and rc is the radius of352

curvature of the vessel centerline. Flows in pial PVSs have Reynolds numbers on353

the order of 10�3 [22], and these PVSs have cross-sectional areas of about 100 µm2,354

or re ⇡ 6 µm. In the PVS geometries used in this work, the average value of rc is355

about 400 µm and is rarely less than 100 µm. Therefore, pial PVSs are expected to356

have a maximum Dean number of De ⇡ 2.5⇥ 10�4, and hence the contribution of357

centerline curvature to the resistance is clearly negligible [23].358

We constructed circular ducts with varying cross-sectional area that matched the359

variation in area in the realistic geometries in order to determine how much the360

variation in shape along the duct a↵ects the accuracy of the series unidirectional361

approach. One could imagine a duct that maintained nearly constant cross-sectional362

area, but where the cross-sectional shape changed from a circle to a square or a tri-363

angle. Depending on the rate of change, this change in shape alone could introduce364

significant o↵-axis velocity components and errors in the series unidirectional ap-365

proach. In the realistic ducts, both the cross-sectional area and the shape vary in366
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the axial direction, but in the circular ducts only the area varies, so the di↵erence367

in error between the two cases can be attributed to the change in shape. As evident368

in Figure 1e and Table 2, the average and RMS error are comparable in the two369

types of ducts, and either one can be larger.370

In the circular ducts, the non-axial velocity components and the radial variation371

in pressure are axisymmetric, but that does not necessarily minimize the error in372

the series unidirectional approach. One could imagine a situation where the change373

in area and shape occur only within a very narrow azimuthal range, such as at a374

sudden and narrow protrusion on one side of the duct. In this case, the error in the375

series unidirectional approach for the realistic geometry might be less than that in376

the circular geometry, because the e↵ects causing the error are concentrated near a377

small portion of the boundary. For realistic PVSs, variations in shape and area do378

not necessarily induce significantly more error in the series unidirectional approach379

than does the variation in area alone.380

For most practical applications, including modeling flow in PVSs, the total re-381

sistance R, rather than the local resistance per unit length R, is the quantity of382

interest. For 3D simulations, R can be calculated directly, but 3D simulations are383

computationally expensive and impractical for simulating flow through large sys-384

tems of ducts like the glymphatic system. For the series unidirectional approach,385

R can be obtained by averaging R and multiplying by the length of the duct: the386

error is then the average resistance error given in Tables 2 and 3. The error in the387

series unidirectional approach for any single cross section is likely to be larger than388

the average error, as indicated by the RMS error, since the series unidirectional389

approach sometimes overestimates and sometimes underestimates the resistance.390

On average, the series unidirectional approach always underestimates the resis-391

tance in a realistic PVS because the non-axial velocity components generated by392

changes in duct area and cross section increase the shear rate at the wall. This393

is reflected in the nonzero constant term in the linear fit describing the error as394

a function of the second derivative of the area. The constant is much larger for395

realistic ducts than that for circular ducts, suggesting that the change in shape396

gives rise to the nonzero average error. The nonzero average error is present in the397

extended lubrication theory through the term containing the first derivative; this398

term is small compared to the second derivative, but generally nonzero when the399

second derivative is zero.400

The realistic ducts analyzed here were all derived from murine pial PVSs in the401

vicinity of the middle cerebral artery, and thus the error magnitudes and correc-402

tion factors calculated here are most appropriately applied to estimate the error403

in neglecting o↵-axis flow velocities in PVSs in similar locations, since it is unclear404

how the shape of PVSs in other locations (and species) may di↵er. Further, the405

analysis here is only applicable to PVSs that are predominantly open, as pial PVSs406

have been shown to be [13], rather than filled with connective tissue and porous, as407

penetrating PVSs are likely to be [14]. We describe in detail how porous PVSs can408

be treated in Appendix A. However, one point can be extended to open PVSs in409

other locations and to any duct with low Reynolds, Womersley, and Dean numbers410

and where the duct is much longer than it is wide: regardless of shape, the error in411

neglecting o↵-axis velocity components scales with the second derivative of the area412
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with respect to axial distance, as we show with the lubrication approximation. This413

principle can be used to estimate the error that arises from neglecting o↵-axis veloc-414

ity components regardless of the shape of the duct, as long as the shape of the duct415

remains relatively constant. The exact correction factor may di↵er for di↵erently416

shaped PVSs, but the existence of a scaling will translate. At present, it is unclear417

how much variation in shape exists in PVSs at other locations and across species,418

but we suppose that the error will in general scale with the second derivative of the419

area.420

Additionally, we show that approach II typically has errors less than 10% as long421

at the ratio of the minor-to-major axis is less than 0.7. We expect this would be true422

for a wide variety of mostly convex shapes so that approach II could likely be used423

to estimate the resistance in many types of PVSs that have a bi-lobed shape, and424

we suppose this would be true for pial PVSs in other regions and species. Approach425

II may not work as well for estimating resistance in penetrating PVSs.426

7 Conclusions427

Assuming a uniform duct and neglecting o↵-axis velocity components underesti-428

mates the average resistance by as much as 15%, depending on the configuration.429

We gained insight into the aspects of the geometry that cause errors in the series430

unidirectional approach by studying a circular duct with sinusoidally varying ra-431

dius, and we showed, using extended lubrication theory, that the error in a circular432

duct can be predicted based on the second derivative of the area with respect to the433

axial distance. We showed further that the error in approximating the resistance434

in realistic, non-circular ducts using the series unidirectional approach correlates435

strongly with the second derivative of the area. We can predict this error, with436

a 95% confidence interval, based solely on this second derivative. We suggested a437

specific correction factor for the series unidirectional approach based on the second438

derivative that significantly reduces the error.439

We approximated the series unidirectional resistance in four di↵erent ways that440

use considerably less computation power and find that they each predict the resis-441

tance reasonably well (errors comparable to those arising from neglecting o↵-axis442

velocity components), with little computational cost. The first approach uses the443

resistance in a single cross section and the cross-sectional area along the length444

of the duct. The second approach yields a correction factor for ducts of arbitrary445

cross-sectional area. The third approach is based on the solution for an elliptical446

duct, with a correction factor that is a function of the major-to-minor axis ratio.447

The fourth approach uses a correction factor based on the polar moment of inertia448

of the cross section. Of these four approaches, the second results in the smallest449

errors, on average.450

Based on these results, we make the following recommendations for estimating451

the hydraulic resistance in an actual PVSs, given its full 3D configuration, or a452

single cross section. If the 3D configuration is known and resistance is to be pre-453

dicted without solving the full 3D Navier-Stokes equations, the series unidirectional454

approach (solve the 2D Poisson’s equation numerically for each cross section, the455

SUN solution) is a useful method, resulting in average errors on the order of 0 to456

20%, depending on the geometry. The error correlates with the second derivative of457
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the cross sectional area, and generally |d2A/dz
2| < 2 results in less than 20% error.458

If the axial area variation is known, the series unidirectional approximation can be459

improved with the � correction. In order to use less computational power than is460

required for solving Poisson’s equation numerically, approach II is a useful method,461

resulting in additional errors < ± 10%, as long as the minor-to-major axis ratio of462

the ellipse with the same second moment as the cross sectional shape is less than463

0.7.464

Appendix A: Flow and hydraulic resistance in porous perivascular465

spaces466

Here we consider PVSs that contain enough connecting tissue that they can be467

treated as a porous medium, with CSF flow governed by the Darcy equation. Little468

is currently known about the detailed configurations of these PVSs, so here we just469

present a method of calculating the hydraulic resistance in anticipation of better470

data becoming available with improved in vivo imaging techniques. To simplify the471

analysis, we assume that the size and shape of the cross section vary slowly along472

the PVS, in which case the non-axial components of velocity make a negligible473

contribution to the resistance, the axial flow velocity is essentially uniform over the474

cross section, and the hydraulic resistance per unit length depends only on the area475

of the cross section.476

Consider a PVS in the form of an annular tube whose cross section varies along

the tube. Let z be an axial curvilinear coordinate running along the tube, and let

A(z) denote the varying internal cross-sectional area of the tube. In this case, the

Darcy law for steady flow along the tube has the di↵erential form

Q = �

µ

✓
@p

@z

◆
A(z), (51)

where Q is the constant volume flow rate,  is the permeability, µ is the dynamic

viscosity, and p(z) is the pressure, which varies long the tube. Note that the pressure

gradient @p/@z (and hence the hydraulic resistance per unit length) varies inversely

with the cross-sectional area A(z). Now consider a finite section of this PVS of

length L, running from z = 0 to z = L. The total pressure drop �p along this

section is given by

�p = �[p(L)� p(0)] = �
Z L

0

✓
@p

@z

◆
dz =

µQ



Z L

0

dz

A(z)
. (52)

If we define an e↵ective cross-sectional area Ae↵ by the relation

1

Ae↵
⌘ 1

L

Z L

0

dz

A(z)
, (53)

then the total pressure drop �p is given by

�p =
µQ



L

Ae↵
, (54)
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which is the same as the pressure drop along a uniform tube of constant cross-

sectional area Ae↵ . For an actual PVS segment, if we have experimental data from

which we can construct an approximate relation A(z) for the varying cross-sectional

area, then we can calculate Ae↵ by numerical integration, which will then give us

the pressure drop �p and the total hydraulic resistance R of the segment,

R ⌘ �p/Q =
µ



L

Ae↵
. (55)

Note that the total hydraulic resistance of the PVS segment depends only on its477

geometrical configuration (its length L and e↵ective cross-sectional area Ae↵), its478

permeability , and the viscosity of the flowing CSF. Note also that in the definition479

of the e↵ective cross-sectional area, the smallest values of A(z) (the narrowest parts480

of the PVS segment, where the flow is most constricted) contribute the most in481

determining Ae↵ and hence the hydraulic resistance R.482

If the permeability  varies significantly along the PVS segment, we can account

for this in estimating the hydraulic resistance. Supposing that the permeability

varies as (z), equation (52) can be replaced by the relation

�p = Qµ

Z L

0

1

(z)A(z)
dz, (56)

which can be evaluated for experimental data by numerical integration.483

As a simple model, consider a tube of length L with a circular annulus cross

section, having a uniform inner radius r0 (representing the surface of the blood

vessel) and an outer radius that varies uniformly from r1 at the entrance (z = 0)

to r2 at the exit (z = L), i.e., r(z) = r1 � ↵z, where ↵ = (r1 � r2)/L. In this case

the e↵ective cross-sectional area is

Ae↵ =

"Z L

0

dz

⇡(r0 � ↵z)2 � r20

#�1

=
2⇡r0(r1 � r2)

ln
h⇣

r1�r0
r1+r0

⌘⇣
r2+r0
r2�r0

⌘i . (57)

Note that this expression holds for both r1 > r2 (narrowing tube) and r1 < r2484

(expanding tube), corresponding to the reversibility of the direction of Darcy flow.485

It can be shown that this expression for Ae↵ has the limiting form Ae↵ = ⇡(r21�r
2
0)486

when r2 = r1, i.e, the e↵ective cross-sectional area is equal to the actual cross-487

sectional area in the case of a uniform annular tube.488

To illustrate simply how the narrowest parts of a tube contribute most to its

hydraulic resistance, suppose the inner tube of the annulus is absent, i.e. r0 = 0, in

which case the e↵ective cross-sectional area is given directly by

Ae↵ =

"Z L

0

dz

⇡(r1 � ↵z)2

#�1

= ⇡r1r2, (58)

and it can be shown that the expression (57) for Ae↵ of the annular tube has

this limiting form for r0 ! 0. Note that this e↵ective area is the same as that of

a uniform tube of radius equal to the geometric mean
p
r1r2 of r1 and r2. The
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geometric mean radius
p
r1r2 is always less than or equal to the arithmetic mean

radius (r1+ r2)/2, which in turn is always less than or equal to the quadratic mean

radius
p
(r21 + r22)/2, i.e.,

p
r1r2  (r1 + r2)/2 

q
(r21 + r22)/2 . (59)

Thus, the e↵ective cross-sectional area Ae↵ = ⇡r1r2 of the tapering tube is always489

less than the cross-sectional area Am = ⇡[(r1 + r2)/2]2 of a uniform tube with the490

arithmetic mean radius (r1+r2)/2, which in turn is less than the cross-sectional area491

Aqm = ⇡(r21+r
2
2)/2 of a uniform tube with the quadratic mean radius

p
(r21 + r22)/2.492

(Note that Aqm is the average of the areas at each end of the segment.) Hence, Ae↵ 493

Am  Aqm, and the hydraulic resistances are correspondingly ordered Re↵ � Rm �494

Rqm. (The equal signs correspond to the case r1 = r2.) This simple example shows495

the dominating e↵ect of the narrowest sections of a porous PVS in determining its496

hydraulic resistance.497

Returning to the case of the annular tube, the hydraulic resistance is given by

Re↵ =
µ



L

Ae↵
=

µ



L

2⇡r0(r1 � r2)
ln

✓
r1 � r0

r1 + r0

◆✓
r2 + r0

r2 � r0

◆�
. (60)

Now consider an annular tube consisting of a continuous sequence of segments of

uniformly varying outer radius, for which the total hydraulic resistance will be the

sum of the resistances of the individual segments (analogous to electrical resistors

in series). Suppose the tube starts with outer radius r1, and consists of N segments

with lengths Ln, entry radii rn, and exit radii rn+1, n = 1, 2, 3, ..., N . The hydraulic

resistance of the n
th segment is

Rn =
µ



Ln

2⇡r0(rn+1 � rn
) ln

✓
rn � r0

rn + r0

◆✓
rn+1 + r0

rn+1 � r0

◆�
, (61)

and the total hydraulic resistance of the tube is R =
PN

1 Rn. This model can be498

used to estimate the hydraulic resistance of a real porous PVS if we approximate its499

configuration as a connected series of circular annular segments of uniformly varying500

outer radius. The PVS may not have a circular outer boundary, but we can choose501

outer radii of the segments so that the areas of the ends of each segment match the502

actual local cross-sectional area of the PVS. This model can be easily extended to503

a case in which the porosity varies along the PVS, by allowing for di↵erent values504

n in equation (61).505

Appendix B: Velocity and pressure in the extended lubrication506

model507

The derivation that follows can be deduced from the solution for an elliptical duct508

[18] and the presentation of the general extended lubrication theory for a 2D channel509

[19].510

To obtain the transverse velocities u0, v0, we combine the 2nd order x and y

momentum equations (Eqs. 35 and 36) to eliminate p2:

@

@y

✓✓
@
2

@x2
+

@
2

@y2

◆
u0

◆
� @

@x

✓✓
@
2

@x2
+

@
2

@y2

◆
v0

◆
= 0. (62)
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For this to be satisfied,
⇣

@2

@x2 + @2

@y2

⌘
u0 must be a function only of x (or a constant),

and similarly,
⇣

@2

@x2 + @2

@y2

⌘
v0 must be a function only of y (or a constant). Moreover,

u0 and v0 likely have a similar form as the axial velocity w0 and must also satisfy

no-slip on the boundary. These conditions are satisfied by

u0 = k1x

✓
�1 +

⇣
x

b

⌘2
+
⇣
y

c

⌘2◆
, v0 = k2y

✓
�1 +

⇣
x

b

⌘2
+
⇣
y

c

⌘2◆
,

and by enforcing continuity we find511

u0 = �2Q

⇡

b
0

b2c
x

✓⇣
x

b

⌘2
+
⇣
y

c

⌘2
� 1

◆
, (63)

v0 = �2Q

⇡

c
0

bc2
y

✓⇣
x

b

⌘2
+
⇣
y

c

⌘2
� 1

◆
. (64)

Next we can solve for the second-order pressure p2 by integrating the x and y

momentum equations:

p2 = C1(z)µ� 2Qµ

⇡bc

✓
c
0
y
2

c

✓
3

c2
+

1

b2

◆
+

b
0
x
2

b

✓
3

b2
+

1

c2

◆◆
,

where C1(z) is a function to be determined later. We can then obtain the second-

order axial velocity w2 from the z-momentum equation

µ

✓
@
2

@x2
+

@
2

@y2

◆
w2 =

@p2

@z
� µ

@
2
w0

@z2
.

By inspection, the right-hand side of this equation is a function of x2 and y
2, so we

can guess that w2 has the general polynomial form

w2 =

✓⇣
x

b

⌘2
+
⇣
y

b

⌘2
� 1

◆�
D1 +D1x

2 +D2x
4 +D3y

2 +D4y
4 +D5x

2
y
2
�
.

Substituting this expression in the momentum equation and collecting like terms,

we can solve for the constants Dn to yield

w2 =
K

⇡bc

✓
1� x

2

b2
� y

2

c2

◆
,

where

K

Q
= �4b5cb0c0 + 8b3c3b0c0 + 4bc5b0c0 + 20b2c4b02 + 4c6b02 + 4b6c02 + 20b4c2c02

2 (7b4c2 + 7b2c4 + b6 + c6)
+

� b
56⇡c5 + b

3
⇡c

7 + ⇡b
7
c
3

2Q (7b4c2 + 7b2c4 + b6 + c6)
C

0
1+

�8b2c3b0c0 � 3c5b0c0 � b
4
cb

0
c
0 + bc

4
�
2b02 + cc

00 � 2c02
�
+ b

5
�
cc

00 � 4c02
�
+ 6b3c2

�
cc

00 � 4c02
�

bc2 (6b2c2 + b4 + c4)
y
2+

2b4c
�
c
02 � b

02�� 24b2c3b02 � 4c5b02 + b
5 (cb00 � 3b0c0) + 2b3c2 (3cb00 � 4b0c0) + bc

4 (cb00 � b
0
c
0)

b2c (6b2c2 + b4 + c4)
x
2
.
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Finally, we obtain C
0
1(z) by applying the integral constraint

0 = 4

Z c

0

Z b
p

1�(y/c)2

0
w2 dx dy (65)

to find

C
0
1(z) =

Q

3⇡b4c4
(�3c4b0c0 + b

3
c
�
�2b02 + cc

00 � 14c02
�
+

bc
3
�
�14b02 + cc

00 � 2c02
�
+ b

4 (cb00 � 3b0c0) + b
2
c
2 (cb00 � 6b0c0)),

which must be integrated numerically to obtain C1(z). We then have a complete512

expression for the second-order pressure gradient, Eq. 38.513

The integral constraint assumption. In our solution, we have assumed that

the 0th order flux Q0 dominates the total flux Q, such that the second order flux

Q2 is negligible:

Q0 = 4

Z c

0

Z b
p

1�(y/c)2

0
w0 dx dy ⇡ Q (66)

and

Q2 = 4

Z c

0

Z b
p

1�(y/c)2

0
w2 dx dy ⇡ 0. (67)

We can justify that Q2 ⌧ Q0 by referring to Equation 37. In this equation, all of

the terms are of equal order, so comparing the 2nd and 3rd terms

✓
@
2

@x2
+

@
2

@y2

◆
w2 ⇠ @

2
w0

@z2
(68)

and since w0 ⇠ Q0 and w2 ⇠ Q2,

Q2

b0c0
⇠ Q0

L2
(69)

and hence Q2/Q0 ⇠ b0c0/L
2, which is small for long, narrow ducts.514

Appendix C: Calculation of the hydraulic resistance515

The pressure gradient in the calculations of hydraulic resistance per unit length is

calculated from the 3D simulations according to §3, which is a discretized approxi-

mation of

d

dz

"
1

A

Z

A(z)
p dA

#
(70)

which is not equivalent to the quantity we calculate through lubrication theory

(§4.1)

⌧
@p

@z

�
=

1

A

Z

A(z)

@p

@z
dA (71)
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since it does not take into account the rate at which the area changes axially. We

can show, however, that these are approximately equal, that is,

d

dz

"
1

A

Z

A(z)
p dA

#
⇡ 1

A

Z

A(z)

@p

@z
dA (72)

if the amplitude of the change in area is relatively small. We demonstrate this with516

the circular duct, whose radius varies as a(z):517

d

dz

"
1

A

Z

A(z)
p dA

#
=

d

dz

"
2

a2

Z a(z)

0
pr dr

#
(73)

= 2

"
d

dz
(a�2)

Z a(z)

0
pr dr + a

�2 d

dz

Z a(z)

0
pr dr

#
(74)

= 2

"
�2a�3

a
0
Z a(z)

0
pr dr + a

�2

 Z a(z)

0

@p

@r
r dr + (pr)|a(z)a0

!#
.(75)

The last term arises from the Leibniz rule, and takes into account a0(z). The middle518

term is the quantity h@p/@zi.519

d

dz

"
1

A

Z

A(z)
p dA

#
=

⌧
@p

@z

�
+ 2a0

"
�2a�3

Z a(z)

0
pr dr + a

�1
p|a(z)

#
. (76)

If the radius a can be expressed as a = a0(1 + �g(z)), where � ⌧ 1 and g(z) is of520

O(1), then521

d

dz

"
1

A

Z

A(z)
p dA

#
⇡

⌧
@p

@z

�
+ 2a0�g

0

"
�2(1� 3�g +O(�2))

a30

Z a(z)

0
pr dr + a

�1
0 (1� �g +O(�2))p|a(z)

#
(77)

⇡
⌧
@p

@z

�
+O(�). (78)
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Figure 1: (a) Three-dimensional (3D) perivascular space (blue) and blood vessel

(red) with an example subdomain (M1 S2, shown in green) (b) The subdomain

with a few cross sections (gray) and corresponding center points (black) and

axial vectors (red). (c) Circular duct with the same axial variation in cross-

sectional area as the realistic geometry shown in (b). (d) Hydraulic resistance

per unit length at cross sections along the length of the perivascular space and

duct as calculated from the 3D simulations (“3D”), from the series unidirectional

approach (“SUN” where calculated numerically; “SUA” where calculated ana-

lytically), and with a correction factor (� correction) to the series unidirectional

approach (“SUN·�” and “SUA·�”), for both the perivascular space shown in

(b) (“realistic”) and the circular duct shown in (c) (“circular”). (e) Error be-

tween the series unidirectional approximation and the 3D solution, for all cross

sections. The box and whiskers plots indicate the median with a solid line and

the interquartile range with a box. Outliers (points more than 1.5 times the

interquartile range above the median) are shown with markers. The series unidi-

rectional approximation underestimates the error, on average, but the correction

factor reduces the error by more than half in most cases.
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Figure 2: (a) Distance d from the center, normalized by req, the radius of a circle

with the same area (shown dashed), for an example cross section. (b) Resistance

at each cross section, calculated using the series unidirectional approach either by

solving Poisson’s equation (“SUN”) or using one of the approximations discussed

in the text. (c) Error in approximation RII for each segment. (d) Error in RII as

a function of cross-sectional aspect ratio. If the ratio of the lengths of the minor

and major axes exceeds 0.7, the error in RII is less than 10%; RII is a reasonable

estimate when the shape is not too oblong.
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Figure 3: (a) Duct with circular cross sections and sinusoidally varying radius.

(b) Resistance per unit length as calculated from three-dimensional simulations

(“3D”), from the series unidirectional approach, and from extended lubrication

theory (“ELT”), along with cross-sectional area. (c) Error in resistance per unit

length predicted by the series unidirectional approximation, compared to 3D

simulations and extended lubrication theory. (d) Pressure at the cross section

marked with a blue box in (a). (e) Radial pressure fluctuations in the longitu-

dinal plane marked with a yellow box in (a). (f) Axial velocity profiles at the

widest (gray) and narrowest (red) locations in the duct, marked by arrows in (e).

The error in the series unidirectional approach can be predicted with extended

lubrication theory and results from the radial pressure variations induced by the

axial variation in area.
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Figure 4: Error in resistance between the series unidirectional approximation and

the three-dimensional solution for all cross sections, as a function of the second

derivative of the cross sectional area with respect with the axial direction. Pale

markers indicate values for individual cross sections. In the left panel, curves

indicate the 5th (dashed), 50th (solid), and 95th (dashed) percentiles. In the

right panel, solid lines show linear fits, and dashed lines indicate 95% confidence

bounds. The error correlates strongly with the second derivative of the area for

both the realistic and circular cross sections, though the correlation is slightly

stronger for the circular cross sections. Across all normal cross sections, for the

realistic cross sections the Pearson correlation coe�cient ⇢ = -0.49 and p value

< 0.0001, and for the circular cross sections ⇢ = -0.80, p < 0.0001.
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