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Abstract: This paper presents a comprehensive approach to predicting short-term (for the upcoming
2 weeks) changes in estuarine dissolved oxygen concentrations via machine learning models that
integrate historical water sampling, historical and upcoming 2-week meteorological data, and river
discharge and discharge metrics. Dissolved oxygen is a critical indicator of ecosystem health, and
this approach is implemented for the Neuse River Estuary, North Carolina, U.S.A., which has a
long history of hypoxia-related habitat degradation. Through meticulous data preprocessing and
feature selection, this research evaluates the predictions of dissolved oxygen concentrations by
comparing a recurrent neural network with four other models, including a Multilayer Perceptron,
Long Short-Term Memory, Gradient Boosting, and AutoKeras, through sensitivity experiments.
The input predictors to our prediction models include water temperature, turbidity, chlorophyll-a,
aggregated river discharge, and aggregated wind based on eight directions. By emphasizing the most
impactful predictors, we streamlined the model-building processes and built a hindcast system from
2015 to 2019. We found that the recurrent neural network model was most effective in predicting
the dissolved oxygen concentrations, with an R? value of 0.99 at multiple stations. Different from
our machine learning hindcast models that used observed upcoming meteorological and discharge
data, an actual forecast system would use forecasted meteorological and discharge data. Therefore,
an actual operational forecast may have lower accuracy than the hindcast, as determined by the
accuracy of the predicted meteorological and discharge data. Nevertheless, our studies enhance
our understanding of the factors influencing dissolved oxygen variability and set the basis for
the implementation of a predictive tool for environmental monitoring and management. We also
emphasized the importance of building station-specific models to improve the prediction results.

Keywords: dissolve oxygen concentrations; Neuse River Estuary; prediction; machine learning models

1. Introduction

The escalating threat to ocean water quality places strain on essential marine water
resources, fishery habitats, and ecosystems [1-3]. As one of the most important indicators
of water quality, dissolved oxygen (DO) shows the amount of oxygen that is available
to fish, invertebrates, and organisms in the water. The DO concentration must be above
certain levels to support aquatic life and assure the stability of the aquatic ecosystem. Low
levels of oxygen (hypoxia) occur when thermal/haline stratification is strong, coupled with
excessive algae growth and depletion of DO as the algae die, sink, and decompose. A
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common definition of hypoxia is DO < 2 mg/L, while others have thresholds ranging from
1to 6 mg/L [4-6].

Forecasting DO concentrations can enhance ecosystem restoration and safeguard vital
ecosystem services by providing advanced warnings of events that could cause water
quality changes, as well as offering advanced information for field observations. Due
to the intricate hydrodynamical and biogeochemical processes in estuarine and coastal
waters, it is challenging to accurately predict DO [7]. Various methods, including mech-
anistic, statistical, and hybrid models, have been employed to predict DO [8-10]. The
mechanistic models are based on biogeochemical processes, including plankton dynamics,
nutrient cycling, air/sea interactions, and benthic processes [11-13]. They often rely on
lab studies or empirical observations, leading to potential errors, especially when coupled
with intricate hydrodynamic models. Another evident drawback of these models is the
significant computational time consumption and associated costs. Statistical models are
also adopted by researchers [10,14,15]. However, their foundational assumptions may
not adequately address critical complex patterns, with discrepancies arising from the
oversimplified relationships between various factors.

Machine learning is a promising approach due to its impressive performance in
capturing the impacts of non-linear processes for engineering systems [3,16,17]. In recent
years, researchers have buttressed DO predictions in coastal ecosystems by employing
a range of machine learning models, like artificial neural networks (ANNSs) [18], linear
regression (LR) [19], and Support Vector Machines (SVMs) [20-23]. Among them, the
ANN models are adaptable mathematical structures that can recognize intricate non-linear
relationships or patterns between input and output information. Additionally, ANNs may
estimate the output values by utilizing training and learning processes [24].

A type of ANN known as a recurrent neural network (RNN) was recently shown to be
more effective than other neural network designs in modeling sequence data, such as time
series or natural language [25]. In 2022, Nair and Vijaya [26] evaluated the effectiveness
of RNNs and Long Short-Term Memory (LSTM) with a range of conventional machine
learning techniques, including random forest, linear regression, Multi-Layer Perceptron
(MLP) regression, and support vector regression, in predicting DO concentrations. Their
models were developed and verified utilizing data on river water quality that were gathered
from 11 stations between 2016 and 2020. The outcomes demonstrated that, in comparison
to other algorithms, the RNN model had the best prediction accuracy for DO.

In this paper, we aim to enhance the accuracy of short-term DO concentration predic-
tion in predicting the DO in the upcoming two weeks based on upcoming and historical
observations, using the Neuse River Estuary (NRE) in North Carolina, USA, as our example.
It will be the first machine-learning-model-based short-term DO forecast system for the
NRE system. We comprehensively compare the RNN’s performance in bottom water DO
prediction at 11 sampling stations with alternative models, including Gradient Boosting
(GB) [27], LSTM networks [28], MLP [29], and AutoKeras [30]. We experimented with
diverse combinations of input features extracted from related datasets, including the NRE
Modeling and Monitoring program (ModMon [1]) dataset, river discharge data, and NOAA
NDBC meteorological data, to develop machine learning models. The system developed in
the study is examined using hindcast simulations, which utilize observed upcoming input
features to constrain the uncertainties caused by predicted upcoming meteorological and
river data. In a real-time operational forecast, model-predicted upcoming meteorological
and river data would be used.

This research delves into the intricate dynamics of the NRE, offering insights into DO
variations and the factors influencing water quality. In Section 3, we offer a comprehensive
explanation of the datasets and data processing methods used and outline the models
we applied to DO prediction. The model results are shown in Section 4, followed by
discussions about future directions and suggestions for further work in Section 5.
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2. Materials and Methods
2.1. Study Area and Data

The NRE is formed by the Neuse River (Figure 1), which drains North Carolina’s
fourth largest basin, including rapidly urbanizing areas in the Piedmont around Raleigh
and Durham and intensive row crop and swine and poultry agriculture on the coastal
plain. The NRE is a drowned river valley that spans approximately 70 km, with an average
depth of 3.5 m, and is a critical habitat for fisheries and wildlife. Sustainable management
of the NRE-Pamlico Sound coastal ecosystems is crucial for both the environment and
local economies [31,32]. Hypoxia, a challenge confronting the NRE, is exacerbated by
increased terrestrial nutrient flux from the conversion of forests into agricultural and urban
landscapes and a rise in wastewater discharge [33,34]. It directly impacts vital fishery
habitats and recreational areas, highlighting the need for accurate water quality predictions
for stakeholders, including fishery managers, anglers, and water resource authorities [35].
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Figure 1. Location and bathymetry of the NRE, with ModMon sampling sites represented by red dots.

To address water quality problems, the ModMon program has monitored DO, chlorophyll-
a (Chl-a), and other biogeochemical and ecological parameters at 11 mid-river sampling stations
along the NRE from the river head to its mouth at Pamlico Sound since 1994. The program
conducts nearly bi-weekly sampling of hydrographic, chemical, and ecological parameters
from surface (0.2 m depth) and bottom (0.5 m above bottom) depths throughout the year [1].
Extensive and comprehensive datasets lay the groundwork for machine learning models.

Figure 2 provides an overview of our approach to predicting the DO concentrations
using different machine learning models, including the RNN, GB, LSTM, MLP, and AutoK-
eras. In the diagram, “Today” represents the model initialization time, and the machine
learning models predict the DO concentration 14 days later (the 14th day after model ini-
tialization is called the prediction time thereafter), with input features including ModMon
sampling at a time before and closest to the model initialization time, the 14-day wind data
before the prediction time, and the 60-day river discharge data before the prediction time.
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Figure 2. Comprehensive overview of the work plan. The NOAA NDBC station data include hourly
meteorological data, including wind, air pressure, and air temperature data obtained from the NOAA
NDBC station near Cape Lookout Bight, NC. In the diagram, “Today” represents model initialization
time, and the models predict DO concentration in the upcoming 14 days (prediction time) based on
ModMon sampling at a time before and closest to the model initialization time, the 14-day wind data,
and 60-day river discharge before prediction time.

We start by collecting datasets from diverse sources, including the ModMon dataset
and river discharge and meteorological data. The ModMon dataset includes nearly bi-
weekly samples for 14 variables—water temperature, turbidity, chlorophyll-a (Chl-a),
particulate organic carbon (POC), particulate nitrogen (PN), carbon-to-nitrogen ratio (CtoN),
nitrate /nitrite (NO3 /NOy), dissolved inorganic nitrogen (DIN), total dissolved nitrogen
(TDN), dissolved organic nitrogen (DON), orthophosphate (POy), silica (5i0;), ammonium
(NHy), and DO—for 11 NRE stations (stations 0, 20, 30, 50, 60, 70, 100, 120, 140, 160, and
180; Figure 1) from 2000 to 2017. Data on the daily river discharge from the Neuse River
are accessed from the U.S. Geological Survey (USGS) site 02091814 (https://waterdata.
usgs.gov/nwis/; accessed on 1 January 2023). Hourly meteorological data, including wind
speed and direction, air pressure, and air temperature, were obtained from the NOAA
NDBC station near Cape Lookout Bight, NC (station CLKN7; https://www.ndbc.noaa.gov;
accessed on 1 January 2023).

In the first phase of our workflow, we merged the datasets into a cohesive data struc-
ture with a temporal resolution of 2 weeks and filled in missing data by linear interpolation
for continuity.

In addition to the original 14 variables in the ModMon dataset, we included the
manipulated wind and river discharge as input features and used feature selection to
identify the most important predictors. Considering the importance of the wind direction
and the wind’s accumulative effect in modulating physical and ecological processes, we
included the aggregated (summed) wind speeds over 1- to 14-day periods before the
prediction time in eight directional sectors (N-NE, NE-E, E-SE, SE-S, S-SW, SW-W, W-NW,
and NW-N) as input features. Then, we analyzed the correlation between the aggregated
wind data in the directional sectors and the DO concentrations (Figure 3) and identified
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the top three combinations that had the strongest correlation with DO, namely aggregated
NW-N wind over 14 days (NW14), N-NE wind over 14 days (N14), and SW-W wind over
14 days (SW14), with correlation coefficients of 0.43, 0.37, and —0.20, respectively.
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Figure 3. Correlation of aggregated wind over time with DO concentration. N, NE, E, SE, S, SW, W,
and NW represent winds in the sectors of N-NE, NE-E, E-SE, SE-S, S-SW, SW-W, W-NW, and NW-N,
respectively. The horizontal axis represents the number of days prior to the prediction time over
which the wind data are aggregated.

To examine the time-delayed and accumulative effects from the upstream river, we
summed the Neuse River discharge from a week to a year preceding the prediction time
(named ACC_Flow below). We found that some aggregations of discharge data had notable
correlations with the DO concentrations, particularly over the 60 days before the prediction
time, with a correlation coefficient of 0.144, as Figure 4 depicts.

020

0144 0.143
015 0.137 . . 0138 (13
0.121 . e .
L]
o 0.095
o : L ]
a
o 0.061
[ ]
2 oS 0040 0041 0040
L] L]
0004 ~0.009
L]
-0.05

S N B

Day
Figure 4. Correlation of aggregated river discharge over time with DO concentration. The horizontal
axis represents the aggregated river discharge over the number of days prior to the prediction time,
with 0 representing the river discharge at the prediction time. YSI_DO is the observed DO at the
prediction time.
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Therefore, besides the 14 variables in the ModMon dataset, we included NW14, SW14,
N14, ACC_Flow, and Atmospheric Temperature (ATMP) as additional input features. In the
first phase of our workflow, we merged all the input features into a cohesive data structure
with a temporal resolution of 2 weeks and filled in missing data by linear interpolation and
lasso imputation, with gaps of missing data smaller than a week. In instances of extended
data absences longer than one week, records from a nearby station operated by the United
States Coast Guard and Department of Homeland Security NDBC station 41025 (LLNR
637, Diamond Shoals, NC; https:/ /www.ndbc.noaa.gov/; accessed on 1 January 2023)
were used to substitute the missing entries. Resampling the data at bi-weekly intervals
completes the preprocessing, synchronizing the dataset with the LSTM model’s temporal
requirements. Such rigorous preprocessing not only underpins the models’ robustness but
also improves their predictive accuracy for hypoxic conditions in the NRE.

The initial merging of all the datasets with ModMon data using a left join preserved
crucial observations. Segmentation by station resulted in 11 distinct data subsets used for
model training and testing.

2.2. Machine Learning Models

We employed diverse models to predict the DO concentrations, including RNN, LSTM,
GB, MLP, and AutoKeras as a representative of automated machine learning (AutoML)
techniques. Each model was chosen for its unique ability to capture and learn from temporal
and non-linear patterns within the data.

To evaluate the accuracy and variance explained by each model, we used two standard
evaluation metrics, the Mean Absolute Error (MAE) and the R-squared (R?) score, with
smaller MAE and greater R-squared values indicating better performance. These metrics
offer insight into the accuracy and the variance explained by the models, respectively.

In addition, we included an evaluation metric for binary event forecasts to assess our
models’ performance in predicting the occurrence of hypoxia (using a threshold value of
2 mg/L)—the Peirce Skill Score (PSS)—which is defined as

(ad — be)

PSS = (b+d)(a+c)

where a represents the number of correctly predicted occurrences of hypoxia (hits); b
incorrectly predicted hypoxia (false alarms); c false negatives (misses); and d correctly
predicted absences of hypoxia [35,36]. The PSS is in the range of [-1, 1], with larger values
representing a better performance.

2.2.1. The Multi-Layer Perceptron (MLP)

The MLP stands out as a widely embraced and extensively utilized neural network
model, playing a pivotal role in the contemporary era of big data analytics [37]. The MLP
is composed of three distinctive types of layers: the input layer, which accepts the input
dataset; the hidden layers, where feature processing takes place; and the output layer that
provides the predicted results. In this architecture, the input signal is passed through layer
by layer [38,39]. This network serves as the core model for our DO forecasting efforts.

In our MLP model, we utilized one input layer, two hidden layers, and one output
layer for the regression predictions. In the context of an MLP model, the input vector X
includes individual features, x1, xp, . . ., x,,. Each feature is associated with a weight (w) that
signifies its importance, and a bias (b) term is added. The computations for a single neuron
in the layer are expressed as

Z =x1.w1 +x2.wp + ...+ xy.w, + b

The result (Z) is then passed through an activation function to introduce non-linearity,
expressed as
y = Activation (z)
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This process is repeated through each layer, with the output of one layer serving as
the input for the next, until the final output layer is reached.

2.2.2. The Recurrent Neural Network (RNN)

The RNN is one of the ANN structures known to be effective in extracting patterns
from sequence data, including time series or natural language. This model demonstrates
remarkable characteristics, such as a strong prediction performance and the ability to
capture long-term temporal correlations in observations with variable lengths [40,41]. The
RNN sequentially runs the relationships between nodes in a direct cycle graph, allowing
temporal dynamic behavior to be identified. It is effective in multiple domains because it
can handle temporal sequences and store sequence information from previous inputs in
internal memory by offering a recurrent hidden state that recognizes relationships across
time scales [26].

Following partitioning the dataset into two parts based on the experimental setup,
we implemented an RNN model with multiple layers. Each layer possesses its unique
set of biases and weights. This model enables the recognition of temporal dynamic be-
havior by sequentially evaluating the connections between nodes within a cyclic graph
structure [26]. In our RNN model, as shown in Figure 5, each input sequence x1, x3, ..., x;
undergoes dynamic transformation through two SimpleRNN layers, incorporating weights
(Win, Whidden, Wout) and biases (Ui, bpidden, bout)- The first layer generates a hidden layer (A;;,),
subject to dropout for regularization, while the second layer refines these states using ReLU
activation. The final output (Y).) results from applying weights and biases to the refined
hidden layers. This sequential process captures intricate temporal dependencies, which is
crucial for accurate predictions. The RNN computation is summarized as

Ypre = Activation (Aj, Whidgen + Phidden) -Wout + bout

in which A/, represents the dropout-modified hidden layers from the first layer, and Activation
denotes the ReLU activation function. Figure 5 illustrates the structure of the RNN.

[ Dropout ] ' Dropout ' [ Dropout j ( Dropout 1
X ) )
W W W
] ]

A

PN Chl-a POC N14
Figure 5. The architecture of the RNN model.

2.2.3. Long Short-Term Memory (LSTM) Networks

An LSTM neural network represents an advancement over the traditional RNNs by
effectively addressing the RNN’s memory attenuation issue [25,42]. LSTM has been applied
for predictive purposes, encompassing the estimation of total phosphorus and DO and
the forecasting of temporal water quality, including Chl-a concentration [35]. We intended
to utilize LSTM for DO prediction. An LSTM layer consists of a series of interconnected
blocks, each of which incorporates memory cells designed to store and transmit sequential
information. Each LSTM memory cell features three crucial information gates, the input
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gate, the forget gate, and the output gate, as well as two distinct states, the cell state and the
hidden state. These components collectively manage what to retain, what to discard, and
what to remember across time steps, enabling the network to learn and model long-term
dependencies [7].

2.2.4. Gradient Boosting (GB)

The GB machine learning algorithm operates as an additive model, where each subse-
quent model in the ensemble is designed to correct and enhance the performance of the
preceding ones. Unlike traditional models that build upon one another sequentially, GB
employs a unique feed-forward approach [43,44]. It minimizes the errors made by earlier
models by placing greater emphasis on the instances where they fall short, resulting in a
powerful ensemble that excels in its predictive accuracy. GB’s strength lies in its ability to
sequentially refine predictions, making it particularly effective for complex and non-linear
relationships within data. By iteratively improving upon the weaknesses of earlier models,
GB has become a popular and powerful technique in machine learning.

2.2.5. AutoKeras

Compared with statistical models, neural network models can effectively model the
complex non-linearities between input features and predictors. However, selecting the
optimal models/hyperparameters /neural network structure requires extensive searches.
One of the primary goals of the AutoML approaches is to automate the process of selecting
and tuning ML models, bridging the knowledge gap between domain experts (such as
marine scientists) and computational scientists. AutoKeras, a Python-based open-source
tool, empowers users to apply AutoML to deep learning models using Keras’ application
programming interface (API). AutoKeras stands out as an efficient and user-friendly tool for
automatically discovering high-performing models across a diverse spectrum of forecasting
tasks, including regression datasets and structured data, such as tabular formats [45].

2.3. The Model Application Process

With our datasets prepared, we partitioned the data into a training set, constituting
75% of the total from 2000 to 2015, and a test set, comprising the remaining 25% from 2015
to 2019 [16] (Figure 2). This split ensured both the thorough training of our models and a
rigorous evaluation of their predictive performance.

As part of the iterative training process, some models, such as the RNN, took part of
the training samples as validation; in this case, the validation dataset came from the training
dataset. The validation dataset served to assess the models” performance on unseen data,
aiding in the evaluation of their accuracy and generalization to new information.

Based on the segmentation of the stations, we obtained 11 distinct data subsets com-
prising both past and present DO values. Each model was trained independently for
each station after the data segmentation. Considering the difference in the water depth,
geometry, and distance to the river mouth and the coastal ocean, the different stations will
respond differently to the same environmental factors. The risk of low DO/hypoxia differs
by station. For instance, the RNN model for station 0 was trained independently compared
to station 10, so those two models had different parameters despite both models utilizing
the same RNN structure. By training the models independently for each station, we can
enhance the effectiveness and adaptability of the models.
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2.4. Model Parameter Tuning

A crucial step involved in achieving optimal performance in our machine learning
models was fine-tuning their hyperparameters. Table 1 presents an overview of the tuned
parameters for each model in our experiments, namely the RNN, LSTM, the MLP, GB,
and the automated machine learning approach facilitated by AutoKeras. Both the RNN
and LSTM, sophisticated models capable of processing sequential data, were tuned with a
consistent learning rate of 0.001. This ensured steady convergence during training while
minimizing the mean squared error, our chosen loss function. The batch size was set to 32
across these models, with the epoch count for training fixed at 200 [17]. A total of 100 units
were chosen for the hidden layers, striking a balance between the models’ ability to learn
complex patterns and their computational tractability.

Table 1. The parameters of RNN, MLP, LSTM, GB, and AutoKeras models.

Models Parameters Value Models Parameters Value
Learning rate 0.001 Learning rate 0.001
Mean Mean
Loss Loss
squared error squared error
RNN Epochs 200 LSTM Epochs 200
Batch size 32 Batch size 32
The units of The units of
the RNN 100 the LSTM 100
Learning rate 0.001 Learning rate 0.1
Loss Mean GB Number of 100
squared error estimators
MLP Epochs 300 Random state 32
Batch size 32 Epochs 300
The units of 128, 64 and AutoKeras The units of 32,32, 32,
the MLP 32 AutoKeras and 1

The MLP, a dense network model, was parameterized with varied layer units of 128,
64, and 32 to provide a hierarchical feature extraction mechanism. A longer training period
of 300 epochs was set for this model [2], with other parameters such as the learning rate
and batch size mirroring those of the RNN and LSTM models. Conversely, the GB model, a
robust ensemble technique, utilized a higher learning rate of 0.1 to foster faster convergence,
while the number of estimators was set as 100 to build a strong learning model. The random
state was held constant at 32 to ensure the reproducibility of the results. This model also
underwent a 300-epoch training regimen.

AutoKeras was programmed with a distinct configuration of 32 units for the first three
layers and one unit for the output layer. AutoKeras optimizes its architecture internally,
allowing us to streamline the model selection process. The hyperparameter values detailed
in Table 1 were determined through an iterative process of experimentation, considering
both the performance on the validation set and the computational resources at our dis-
posal. The subsequent sections will elaborate on how the fine-tuning of these parameters
significantly influenced the models” prediction accuracies and learning capabilities.
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3. Results

We compared the five models’ performance in DO prediction in Table 2 and Figures 6 and 7,
with Table 2 showing the metrics of MAE, R?, and the PSS. As indicated in Table 2, the RNN and
GB models exhibited superior performance, maintaining low MAE values (<0.32) and high R
values across all tested sites. Notably, the RNN model achieved an R? value of 0.9 at multiple
sites, suggesting an solid predictive capability within the constraints of the experiment. The
PSS scores for the RNN models range from 0.90 to 1.00, and for the GB models, they range
from 0.75 to 1, demonstrating great performance in predicting the occurrence of hypoxia. On
the other hand, the AutoKeras models showed significant variability in their MAE (ranging
from 0.12 to 1.45) and R? values (ranging from 0.69 to 0.99), implying a less consistent predictive
performance. The PSS scores for AutoKeras range from 0 to 1.00, with large variability in the
performance of hypoxia prediction.

Table 2. Performance comparison of the five models for DO concentration prediction.

Station 0 20 30 50 60 70 100 120 140 160 180
MAE 0.13 0.17 0.18 0.13 0.14 0.16 0.12 0.16 0.14 0.11 0.11

RNN R? 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
PSS 1.00 1.00 0.96 1.00 0.90 1.00 0.94 0.90 1.00 0.97 0.99

MAE 0.24 0.31 1.43 0.29 0.48 0.52 0.51 0.41 0.54 0.46 0.31

MLP R? 0.98 0.98 0.77 0.98 0.96 0.96 0.95 0.96 0.94 0.96 0.96
PSS 1.00 0.88 0.85 0.93 0.83 0.68 0.92 0.40 0.86 0.49 0.00

MAE 0.24 0.24 0.46 0.29 0.45 0.53 0.30 0.45 0.28 0.29 0.31

LSTM R? 0.98 0.98 0.96 0.98 0.96 0.95 0.98 0.96 0.98 0.98 0.96
PSS 0.00 0.87 0.86 0.96 0.83 0.85 0.74 0.88 0.99 0.85 0.00

MAE 0.15 0.19 0.28 0.28 0.31 0.32 0.29 0.26 0.19 0.23 0.21

GB R? 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.98 0.98
PSS 1.00 0.88 0.93 0.98 0.79 0.86 0.94 0.82 0.75 0.90 1.00

MAE 0.39 0.93 0.26 0.32 1.45 0.93 0.41 0.50 0.38 0.12 0.39
AutoKeras R? 0.93 0.82 0.98 0.98 0.69 0.90 0.97 0.95 0.96 0.99 0.96
PSS 0.00 0.94 0.57 0.84 0.61 1.00 0.97 0.98 0.99 0.87 1.00

Figure 6 expands upon these results by providing a detailed comparison of the DO
concentration predictions by the five models with in situ observations at various NRE
stations. The plots demonstrate varying levels of accuracy and reliability, with some models
performing better at certain stations. This spatial performance heterogeneity underscored
the models’ sensitivities to site-specific dynamics. The RNN and GB model results were
closest to the observations, illustrating their predictive capability. The MLP and LSTM
models displayed competent predictions but with slightly higher deviations from the
observed values.

Among the five models compared in Figure 6 and Table 2, the RNN’s predictions ex-
hibited the closest alignment with the observations, particularly during hypoxia occurrence.
The RNN model’s site-specific performance is further detailed in Figure 6, showcasing the
model’s predictive accuracy across different stations. These subplots reinforced the model’s
overall effectiveness, evidenced by its low MAE and high R? values.

Lastly, Figure 7 delivers a direct comparison of the RNN-based DO predictions to ac-
tual values, visually represented through scatter plots for each station. The plots illustrated
a high degree of correlation between the predicted and observed values, with most of the
data points clustering near the diagonal line, indicative of high model accuracy.
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Figure 6. Comparison of the DO (mg/L) predicted by five models with in situ observations at NRE
stations (0, 20, 30, 50, 60, 70, 100, 120, 140, 160, and 180).
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Figure 7. Comparison of observations with the RNN-based DO predictions, the model with the best

performance among the models implemented in the study. The dashed line represents the 1:1 line.

4. Discussion

The RNN model’s outstanding performance, particularly its R? value of 0.99 at multi-
ple stations, underscores its potential for capturing temporal dependencies and non-linear
dynamics in environmental data. The sequential processing capability of RNNs allows for
the integration of past information, which is crucial for time series prediction tasks such as
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DO concentration forecasting. This is visually corroborated in Figure 6, where the RNN
predictions closely align with the observed values, and in Figure 7, where the scatter plots
show a strong linear relationship between the predicted and observed DO concentrations.

The GB model also performed consistently well across different sites. Its ensemble
approach, which combines multiple weak learners to form a strong predictive model, is
particularly adept at handling complex, noisy datasets. As evidenced in Table 2, the GB
model maintained high R? values, indicating its robustness in capturing the underlying
patterns in the DO data. Conversely, the AutoKeras model exhibited the most considerable
fluctuations in performance, with relatively high MAE and lower R? values. This vari-
ability could be attributed to the automated nature of the model selection process within
AutoKeras, which may not always converge to the optimal model architecture for a given
dataset, especially when the data contain intricate spatial and temporal correlations.

The MLP and LSTM models showed a competent but inconsistent performance. While
these models are theoretically capable of modeling complex relationships, their performance
may have been impacted by the hyperparameter settings, as suggested by the broader
fluctuations in Figure 6 (for example, for station 30). However, there is potential that
additional tuning or a more extensive search for the optimal architecture could improve
their accuracy. Figure 6 presents a nuanced view of the model performance across various
stations, highlighting how local station-specific environmental factors might influence the
model accuracy. The differential performance across sites implies that while some models
are generally accurate, their effectiveness can be station-specific. This suggests the necessity
for localized model tuning to capture station-specific dynamics, which could be influenced
by factors such as sensor placement or environmental disturbances.

The results also emphasize the importance of choosing appropriate performance metrics
for model evaluation. While MAE provides a direct measure of the average prediction error,
R? offers a normalized indication of the variance captured by the model. The high R? values
for the RNN and GB models across most stations indicate not only their predictive accuracy
but also their ability to generalize well across different environmental conditions.

It is noteworthy that the machine learning models are hindcast models, which use
observed upcoming meteorological and discharge data. When the models are transferred to
real-time operational forecasting, we can only use the forecasted upcoming meteorological
and discharge data. Therefore, the operational forecast would have lower accuracy than
the hindcast models presented in this study, determined by the accuracy of the predicted
meteorological and discharge data.

5. Conclusions

This research implements five machine learning models to predict DO in the upcoming
2 weeks. The models exclude the influence of the accuracy of the predicted meteorological
and discharge data on the DO forecast; however, they set the basis for the implementation
of an operational forecast based on historical water sampling, predicted meteorology,
and hydrology, which could provide local stakeholders—including water managers, field
scientists, and fish anglers—with useful warning information about the occurrence of
hypoxia. This research demonstrates the capability of artificial neural networks in modeling
the dynamic and complex interactions affecting DO concentrations in the NRE, with the
best performance by the RNN and GB. By focusing on selecting and testing various input
variables, we reveal the significant accumulative and time delay impact of winds, especially
wind in certain directions, and river discharge on DO. The exploration of different machine
learning approaches suggests that there is no one-size-fits-all solution, and each model’s
predictive capability may be enhanced or constrained by the dataset features and the
complexity of the environment. Water quality forecasts can benefit from combining the
strengths of different models and various types of feature engineering of the input features.
In the future, we plan to (1) investigate the feature importance more, building a predictive
model that requires fewer input features, potentially without the need for in situ water
quality sampling but with comparable accuracy, and (2) optimize and simplify our models
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to better serve the research community for the local water resource management objectives
by using predicted meteorological and hydrological data.
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