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Ordinary modules for vertex algebras of osp1j2n

By Thomas Creutzig at Erlangen, Naoki Genra at Chiba and Andrew Linshaw at Denver

Abstract. We show that the affine vertex superalgebra V k.osp1j2n/ at generic level k

embeds in the equivariant W -algebra of sp2n times 4n free fermions. This has two corollaries:
(1) it provides a new proof that, for generic k, the coset Com.V k.sp2n/; V k.osp1j2n// is iso-
morphic to W`.sp2n/ for ` D �.n C 1/ C .k C n C 1/=.2k C 2n C 1/, and (2) we obtain the
decomposition of ordinary V k.osp1j2n/-modules into V k.sp2n/ ˝ W`.sp2n/-modules. Next,
if k is an admissible level and ` is a non-degenerate admissible level for sp2n, we show that the
simple algebra Lk.osp1j2n/ is an extension of the simple subalgebra Lk.sp2n/ ˝ W`.sp2n/.
Using the theory of vertex superalgebra extensions, we prove that the category of ordinary
Lk.osp1j2n/-modules is a semisimple, rigid vertex tensor supercategory with only finitely
many inequivalent simple objects. It is equivalent to a certain subcategory of W`.sp2n/-mod-
ules. A similar result also holds for the category of Ramond twisted modules. Due to a recent
theorem of Robert McRae, we get as a corollary that categories of ordinary Lk.sp2n/-modules
are rigid.

1. Introduction

The simple Lie superalgebra osp1j2n behaves in many respects like a simple Lie algebra.
For example, the category of finite-dimensional representations of a simple Lie superalgebra g

is semisimple if and only if g is of type osp1j2n or a Lie algebra [29]. It is also the only simple,
basic Lie superalgebra that is not a Lie algebra and that has no isotropic roots and that admits
a positive definite invariant, consistent, supersymmetric bilinear form [51, 61]. Maybe most
remarkable is a very close connection to the representation theory of so2nC1. Both algebras
have the same set of simple roots and there is a one-to-one correspondence between simple
finite-dimensional representations such that characters and tensor products agree under this
correspondence [59].
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Vertex algebras arose from the physics literature as the chiral algebras of two-dimensional
conformal field theory [28]. In particular, affine vertex algebras are those that correspond to the
Wess–Zumino–Witten theories on Lie groups of physics [65]. Let g be a finite-dimensional Lie
superalgebra over C and BWg � g ! C an invariant, consistent and supersymmetric bilinear
form. Let

yg D CŒt; t�1� ˝C g ˚ CK

with K central and

Œx ˝ tn; y ˝ tm� D Œx; y� ˝ tnCm
D ınCm;0B.x; y/K

for x; y 2 g and n; m 2 Z. Let yg�0 D CŒt � ˝C g ˚ CK and let Ck be the one-dimensional
yg�0 on which K acts by multiplication with the level k 2 C, while CŒt � ˝C g acts as zero.
One sets

V k.g; B/ ´ Indyg

yg�0
Ck;

which can be given the structure of a vertex algebra, the affine vertex (super)algebra of g at
level k. Moreover, V k.g; B/ might not be simple and one denotes by Lk.g; B/ its simple quo-
tient. If g admits a unique non-degenerate positive, invariant, consistent and supersymmetric
bilinear form, then one normalizes it such that long roots have norm two and just writes V k.g/

and Lk.g/. Representations of Lk.g/ are in particular smooth yg-modules at level k, but being
a vertex algebra module is sometimes very restrictive, and for special levels k, only few yg-
modules are also Lk.g/-modules. The most famous instance is the case where g is a simple
Lie algebra and k is a positive integer. In this case, every Lk.g/-module is ordinary and its
representation category is a modular tensor category, that is, a finite, non-degenerate and semi-
simple ribbon category [40, 41]. Via the Sugawara construction [63], an affine vertex algebra
at non-critical level contains the Virasoro vertex algebra as subalgebra, and in particular, every
Lk.g/-module is graded by conformal weight (generalized eigenspaces corresponding to the
Cartan subalgebra of the Virasoro Lie algebra). A module is called ordinary if its conformal
weight spaces are finite-dimensional and the conformal weight is lower-bounded. In particular,
every conformal weight space of an ordinary module of Lk.g/ is integrable for the horizontal
subalgebra g. As an example, let E� be an integrable module of highest-weight � of g. Extend
it to g�0 by letting K act by multiplication with k and tgŒt � by 0. Then

V k.�/ ´ Indyg

yg�0
E�

is an ordinary module, the Weyl module of highest-weight � at level k. We will denote its
simple quotient by Lk.�/. In this work, we are interested in the category of ordinary modules,
Mk.g/, for g D osp1j2n.

Given the similarity between osp1j2n and simple Lie algebras, it is reasonable to expect
that the representation theory of affine vertex algebras of osp1j2n is similar to that of affine
vertex algebras of simple Lie algebras. Indeed, the simple affine vertex algebra of osp1j2n

at positive integral level n is rational and lisse [24, Theorem 7.1], while no other simple affine
vertex superalgebra at non-zero level can be lisse [37]. Rational and lisse are the finiteness prop-
erties that guarantee that the category of ordinary modules is a modular tensor category [40].
Another special class of levels are the admissible ones [53] and there are quite a few inter-
esting results on ordinary modules of affine vertex algebras at admissible levels. Let g be
a simple, finite-dimensional Lie algebra, k an admissible level and Mk.g/ the category of
ordinary modules of Lk.g/. Then
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(1) Mk.g/ is semisimple with a finite number of inequivalent simple objects [4].

(2) Mk.g/ is a braided tensor category [17].

(3) If g is simply laced, then Mk.g/ is a fusion category [15].

(4) Mk.g/ is a fusion category if g is of type B and if the denominator of the admissible
level is 2 (see [21]).

(5) If g is simply laced, then a simple current modification of Mk.g/ is braided tensor equiv-
alent to a subcategory of the principal W -algebra of g at level 1 � h_ C

1
kCh_ with h_

the dual Coxeter number of g (see [15]).

W -algebras are vertex algebras obtained from affine ones via quantum Hamiltonian reduction
[30, 50]. We prove analogues of all these results for g D osp1j2n as well as that Mk.sp2n/

(for many admissible levels) is a fusion category. The proof goes in two steps. First, we real-
ize V k.osp1j2n/ from the equivariant W -algebra of sp2n, and second, we pass to interesting
rational levels and use the theory of vertex superalgebra extensions.

1.1. V k.osp1j2n/ from the equivariant W -algebra of sp2n. The starting point is
the algebra of chiral differential operators (CDOs) Dch

G;� at level �, for G D Sp.2n/ (see [36,
56]). While one thinks about affine vertex algebras as chiralizations of finite-dimensional Lie
algebras, the CDO chiralizes the space of functions of an algebraic group. In particular, this is
a vertex algebra with an action of V k.g/ ˝ V `.g/ with g the Lie algebra of G and � D k C h_,
�� D ` C h_. For generic level �, it satisfies

Dch
G;� Š

M
�2PC

V k.�/ ˝ V `.��/:

The V k.�/ are Weyl modules at level k of highest weight � and PC is the set of domi-
nant weights of g. The equivariant (principal) W -algebra is obtained from Dch

G;� by quantum
Hamiltonian reduction with respect to the principal nilpotent element in the first factor [5]. For
generic �,

WG;� Š

M
�2PC

T �
�;0 ˝ V `.��/; T �

�;0 D H 0
DS.V k.�//:

Let F 2nC1 be the vertex superalgebra of 2n C 1 free fermions. We consider WG;� ˝ F 2nC1.
Recall Feigin–Frenkel duality of type B; C , that is,

Wk.sp2n/ Š W
Lk.so2nC1/ with 2� L� D 1 and L� D Lk C 2n � 1:

Quantum Hamiltonian reduction can be twisted by spectral flow; the corresponding func-
tor is denoted by H 0

DS;� for � a coweight of g. A special case of Arakawa–Frenkel duality
[10, Theorem 2.2] is

T �
�;0 Š H 0

DS;�.V
Lk.so2nC1//:

The Urod property is that the twisted reduction functor commutes with tensoring with inte-
grable representations [6, Theorem 7.2]. Applying this to V

Lk.so2nC1/ ˝ F 2nC1 gives us an
explicit decomposition of T �

�;0
˝ F 2nC1 into modules of W

LkC1.so2nC1/ ˝ W t .osp1j2n/.
Here the principal W -algebra of osp1j2n at a certain level t related to k appears due to the
coset realization

W t .osp1j2n/ Š Com
�
V

LkC1.so2nC1/; V
Lk.so2nC1/ ˝ F 2nC1

�
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(see [24]). Inserting this into WG;� ˝ F 2nC1 gives us an explicit decomposition of the form
(for generic �)

WSp.2n/;� ˝ F 2nC1
Š

M
�2R

C `
� ˝ N t

�;0

with
C `

D Com
�
W t .osp1j2n/; WSp.2n/;� ˝ F 2nC1

�
with C `

�
and N t

�;0
certain C ` and W t .osp1j2n/-modules. Here R denotes the set of non-spin

representations of so2nC1 which is naturally identified with the set of dominant weights of
osp1j2n. Under this identification, we have the following theorem.

Theorem 1.1 (Theorem 3.2). For generic `, C ` Š V `.osp1j2n/ and C `
�
Š V `.�/.

The proof of this theorem can be reduced to a character computation that we do in the
appendices as it is quite technical. By construction, the coset Com.V `.sp2n/; V `.osp1j2n// is
W s.sp2n/ with

1

` C n C 1
C

s

n C 1
D 2

(first proven in [24]) as well as the decomposition of V `.�/ into V `.sp2n/ ˝ W s.sp2n/-
modules; see Theorem 3.1. The above construction can be generalized substantially and in
particular leads to a new and quick proof of the coset realization of principal W -algebras of
type ADE [25].

We turn now to the category of ordinary modules at admissible levels.

1.2. The category of ordinary modules of osp1j2n at admissible levels. While the
above results hold for generic level, we are now interested in special rational levels, namely let
k D �h_ C

u
v

be admissible and ` D �h_ C
u

2u�v
be non-degenerate admissible for sp2n.

Gorelik and Serganova extended the notion of admissible level to the super case; see in partic-
ular [39, Section 5]. We determine them in Proposition A.1 and note that the set of levels that
we are interested in is slightly larger than just the admissible ones of [39]; see Remark 2.9.

In particular, we want the affine subalgebra of type sp2n to be at admissible level and the
W -algebra to be at non-degenerate admissible level. We then can prove that the simple subal-
gebras act on the simple affine VOA L`.osp1j2n/ and this gives us the full power of the theory
of vertex superalgebra extensions. Using this theory, we get our main results, Theorem 4.2 and
Corollaries 4.3 and 4.4.

That is, for k D �h_ C
u
v

admissible and ` D �h_ C
u

2u�v
non-degenerate admissible

for sp2n,

(1) a complete list of inequivalent simple objects in Mk.osp1j2n/;

(2) a complete list of inequivalent simple objects in the category of ordinary Ramond twisted
modules of Lk.osp1j2n/;

(3) the category Mk.osp1j2n/ is a semisimple, rigid vertex tensor supercategory, i.e. it is
a fusion supercategory;

(4) the category of ordinary Ramond twisted modules of Lk.osp1j2n/ is semisimple;

(5) Mk.sp2n/ is rigid;



Creutzig, Genra and Linshaw, Ordinary modules for vertex algebras 5

(6) there is a super-braid-reversed equivalence Mk.sp2n/ Š C.W`.sp2n//L;

(7) there is a super-braided equivalence C.W`.sp2n//
Q
R Š Mk.osp1j2n/.

Here C.W`.sp2n//L and C.W`.sp2n//
Q
R are certain full tensor subcategories of the W -algebra

and are introduced in Section 4.
At admissible level, the semisimplicity of ordinary modules and a complete list of simple

objects has already been obtained by Gorelik and Serganova [39].

1.3. Outline. The paper is organized as follows. In Section 2.1, we collect the neces-
sary results on vertex tensor supercategories. In Sections 2.2 and 2.3, we introduce admissible
levels and several notations for subsets of admissible weights of Lie algebras and show the
isomorphisms (2.3) and (2.4). In Section 2.3, we introduce the modules T �

�;�
and Lk.�; �/ of

principal W -algebras, recall the fusion rules and some properties of the subcategories CL.p; q/

and CR.p; q/ of the category of Wk.g/-modules from [15]; see Remark 2.12. In Section 3, we
recall the equivariant W -algebras, prove Theorem 3.1 by using results in [6, 10], and prove
Theorem 3.2 by using Theorem 3.1 and Theorem D.2. In Section 4, we prove Theorem 4.2 by
using results in Section 2.1, (2.3), (2.4) and Remark 2.12, and derive Corollary 4.3 and Corol-
lary 4.4. In the appendix, we compute the characters of modules of principal W -algebras of
type C and show Theorem D.2.

2. Preliminaries

2.1. Vertex tensor category theory. This section explains useful results on the theory
of vertex superalgebra extensions [20]. A good summary of the most important theorems is
[26, Section 2.4].

Let V be a vertex operator algebra and CV a semisimple category of V modules that
is a vertex tensor category in the sense of [42–49]. Denote by Irr.CV / the set of inequivalent
simple objects in CV . Let W be a strongly rational vertex operator algebra; in particular, its
category CW of W -modules is a modular tensor category [40, 41]. The dual of an object M

is denoted by M �. Assume that A is a simple vertex operator superalgebra extending V ˝ W

and

(2.1) A Š

M
X2Irr.CV /

X ˝ �.X/�

as a V ˝ W -module, where the �.X/ are inequivalent simple W -modules. Denote by DW the
subcategory of W -modules whose objects are direct sums of simple modules appearing in the
decomposition of A. We assume that V ˝ W is a subalgebra of the even subalgebra A0 of A.
This set-up is assumed to hold throughout this section.

Theorem 2.1 (Special case of [57, Theorem 4.9]). CV is rigid and super-braid-reversed
equivalent to the subcategory DW of CW whose simple objects are the �.X/ for X 2 Irr.CV /.

Set C ´ CV � CW . Note that the Deligne product of vertex tensor categories is a vertex
tensor category provided that at least one of the two categories is semisimple [19, Theorem 5.5].
We have just seen that C is rigid. There is a C -module category associated to A, denoted by CA.
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A certain subcategory of local modules, denoted by C loc
A , is in fact a braided tensor category

itself. One of the main results of [20] is that this category is equivalent as a braided tensor cat-
egory to the category of modules of the vertex operator superalgebra A that lie in C . Moreover,
there is a functor F from C to CA and F .X/ for X an object in C is local if and only if the mon-
odromy MA;X D cX;A ı cA;X of X with A is trivial. Here c�;� denotes the braiding in C . The
induction functor has the important property that it preserves duality [20, Proposition 2.77]; in
particular, a rigid object induces a rigid object. Similarly, we have the category of modules and
local modules for A0 and corresponding induction functor FA0

. There is then also an induction
functor, call it F0, from local A0-modules to A-modules. For a simple object M in C loc

A0
, the

monodromy with A1 is either one or minus one, since monodromy respects tensor products
[18, Theorem 2.11]. The Ramond twisted A-modules are objects in CA that are local as CA0

-
modules and for which the monodromy with A1 is minus one. The monodromy respects tensor
products; in particular, if X; Y have each monodromy minus one with A1, then X � Y has triv-
ial monodromy. Since induction is monoidal and every object is a subquotient of an induced
object, this means that the tensor product of two Ramond twisted modules is always local. The
same type of argument yields that the tensor product of a local module with a Ramond twisted
module is always Ramond twisted. Proposition 2.77 of [20] says that F .X/� Š F .X�/. More-
over, [20, Lemma 2.78] states that if F .X/ is local, then so is F .X�/, and the same proof with
an additional minus sign gives that if F .X/ is Ramond twisted, then so is F .X�/.

The category of Ramond twisted modules is denoted by C tw
A and we will sometimes

omit the word Ramond. By Yoneda’s Lemma, one has F D FA0
ı F0; see [7, Lemma 9.1] for

a proof. In particular, F .X/ is in C tw
A if MA0;X D IdA0�X and MA1;X D �IdA1�X .

Remark 2.2. We summarize properties as just explained.

(1) F .X/ is rigid if X is rigid. The dual is F .X/� Š F .X�/ and if F .X/ is local (resp.
Ramond twisted), then so is F .X/�.

(2) C tw
A is a C loc

A -module category.

(3) The tensor product of two Ramond twisted modules is always local.

(4) F .X/ for X in CA is Ramond twisted if MA0;X D IdA0�X and MA1;X D �IdA1�X .

Theorem 2.3 ([24, Proposition 2.1] or equivalently [58, Theorem 5.2 and Corollary 5.3]).
The categories of local and Ramond twisted modules of A are semisimple.

We continue with the same set-up as before. Let us set NX ´ X ˝ �.X/�. The multipli-
cation rule M Z

X;Y is defined to be one if NZ appears in the operator product of NX with NY , and
it is zero otherwise. This is rephrased in categorical terms in [19, Definition 2.5]. For an algebra
in a rigid vertex tensor category of the form (2.1), [19, Theorem 3.5] says that M Z

X;Y D 1 if
and only if �.Z/� is a summand of �.X/� � �.Y /�. This statement is only proven if A is an
algebra in [19]; however, the argument (which is [19, Section 3.3]) is exactly the same in the
superalgebra case. In particular, NX together with V ˝ W generates A under operator products
if and only if �.X/� generates DW as a fusion ring.

Lemma 2.4 (Consequence of [19, Main Theorem 3.5]). A is generated under operator
products by V ˝ W together with any field in X ˝ �.X/� if and only if DW is generated as
a fusion ring by the object �.X/�.
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Finally, a very useful theorem is Frobenius reciprocity.

Theorem 2.5 ([20, Lemma 2.61]). Let G WCA ! C be the forgetful functor; then, for
any object X in C and Y in CA, the two spaces

HomC .X; G .Y // Š HomCA
.F .X/; Y /

are naturally isomorphic.

2.2. Admissible levels for g D osp1j2n. Let g be a Lie superalgebra equipped with
a non-degenerate, supersymmetric, invariant, even bilinear form B on g. Then, to this data
and each complex number k 2 C, one can associate the affine vertex superalgebra V k.g; B/.
We are interested in the cases where g is either a simple Lie algebra or g D osp1j2n. In these
instances, we just write V k.g/ when B is normalized such that long roots have norm two. The
simple quotient of V k.g/ is denoted by Lk.g/.

The notion of admissible level is due to Kac and Wakimoto, who computed them explic-
itly in [54, Proposition 1.1] for simple Lie algebras.

Proposition 2.6 ([54, Proposition 1.1]). Let g be a simple Lie algebra over C of rank n

and let k 2 C. Let . � j � / be the Killing form on g, normalized such that long roots have norm
two. Let h; h_ be the Coxeter and dual Coxeter number of g and r_ the lacity, that is, r_ D 1

in type A; D; E, r_ D 2 in type B; C; F4 and r_ D 3 for G2. A level k is called admissible if

k C h_
D

p

q
2 Q>0; .p; q/ D 1; p; q > 0 and

´
p � h_; .q; r_/ D 1;

p � h; .q; r_/ D r_:

The first case is called principal admissible and the second one coprincipal. A principal admis-
sible level is non-degenerate if q � h and a coprincipal one is non-degenerate if q � r_h_.

The definition is as follows.

Definition 2.7 ([53]; see also [54, Definition 1.1]). A weight � 2 yh� is called admissible
if .� C y�; ˛_/ > 0 for all ˛_ 2 y�_

C
and the Q-span of y�_

�
contains y�_.

The notation will be reviewed in a moment. A level k is then called admissible if the
weight kƒ0 is admissible and ƒ0 is the fundamental weight corresponding to the 0-th root ˛0

of the affine Lie algebra. Gorelik and Serganova extended the definition to affine Lie superal-
gebras [39]; see in particular [39, Section 5] for the case of g D osp1j2n. We compute these
explicitly in the appendix.

Proposition 2.8 (Proposition A.1). For k 2 C, � D kƒ0 is admissible if and only if
there exist coprime integers a 2 Z and b 2 Z�1 such that k D

a
b

and

(1) k C h_ �
nC 1

2

b
if .b; 2/ D 1,

(2) k C h_ �
2n�1

b
if .b; 2/ D 2.

Remark 2.9. Let k D
a
b

be an admissible level for osp1j2n. Define u; v via

k D �.n C 1/ C
u

v
and .u; v/ D 1;



8 Creutzig, Genra and Linshaw, Ordinary modules for vertex algebras

and set ` D �.n C 1/ C u
2u�v

; in particular,

v D b; u D .k C n C 1/b; and 2u � v D 2.k C n C
1

2
/b:

We are interested in the cases where k is admissible for sp2n and ` is non-degenerate
admissible.

Consider the case b is odd. Then k C n C
1
2
�

nC 1
2

b
and so

u D .k C n C 1/b � n C
1

2
C

b

2
� n C 1;

2u � v D 2
�
k C n C

1

2

�
b � 2n C 1 > 2n:

So k is principal admissible and ` is non-degenerate principal admissible for sp2n.
Similarly for b even. Then k C n C

1
2
�

2n�1
b

and so

u � 2n and 2u � v � 4n � 2 .� 2.n C 1/ if n � 2/:

So k is coprincipal admissible and ` is non-degenerate coprincipal admissible for sp2n.
If b is odd, then k being admissible for osp1j2n is in fact equivalent to k principal admis-

sible and ` non-degenerate principal admissible for sp2n. However, if b is even and if n > 1,
then there are some levels k such that k is not admissible for osp1j2n but still is coprincipal
admissible and ` is non-degenerate coprincipal admissible for sp2n.

2.3. Admissible weights for Lie algebras. Let … D ¹˛1; : : : ; ˛nº be the set of positive
simple roots, normalized such that the longest root has norm 2. Let Q be the root lattice. The
fundamental coweights !_

1 ; : : : ; !_
n are the duals of the positive simple roots and they span the

coweight lattice P_. The coroots are defined by ˛_ D
2

.˛j˛/
˛ and the coroot lattice is denoted

by Q_. Its dual is the weight lattice P , spanned by the fundamental weights !1; : : : ; !n. Let
�; �_

s be the longest root and longest short coroot. Let k C h_ D
p
q

be admissible; define the
sets of admissible weights

P.p; q/ ´ ¹� 2 P j .�j˛_
i / 2 Z�0; i D 1; : : : ; n; .�j�/ � p � h_

º if .q; r_/ D 1;

P.p; q/ ´ ¹� 2 P j .�j˛_
i / 2 Z�0; i D 1; : : : ; n; .�j�_

s / � p � hº if .q; r_/ D r_:

Let Lg be the Langlands dual Lie algebra of g. This means the roots of Lg are the coroots of
g and vice versa. We denote roots, coroots, weights, coweights and their lattices and all other
quantities associated to Lg by an additional symbol L. Since long roots are normalized to have
norm 2 and the short roots have norm 2=r_, one has the relations

LQ_
D

p
r_Q and LP_

D
p

r_P:

The dual level Lk to k is defined by

r_.Lk C
Lh_/.k C h_/ D 1:

In particular, if k C h_ D
p
q

is non-degenerate principal admissible, then Lk C Lh_ D
q

r_p
is

coprincipal for Lg. Define the sets
LP_.p; q/ ´ ¹� 2

LP_
j .�j˛i / 2 Z�0; i D 1; : : : ; n;

.�jL�_
s / � r_.p � h_/º if .q; r_/ D 1;

LP_.p; q/ ´ ¹� 2
LP_

j .�j˛i / 2 Z�0; i D 1; : : : ; n;

.�jL�/ � p � hº if .q; r_/ D r_:
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Since L�_
s D

p
r_� , rescaling by

p
r_ gives the isomorphism

P.p; q/ Š LP_.p; q/:

In particular, if k is principal admissible, then (note that h D Lh and h � h_ for any simple
Lie algebra)

LP.q; r_p/ Š P_.q; r_p/

D ¹� 2 P_
j .�j˛i / 2 Z�0; i D 1; : : : ; n; .�j�/ � q � hº

� ¹� 2 P j .�j˛_
i / 2 Z�0; i D 1; : : : ; n; .�j�/ � q � hº

� ¹� 2 P j .�j˛_
i / 2 Z�0; i D 1; : : : ; n; .�j�/ � q � h_

º

D P.q; 1/:

(2.2)

Finally, we define the subset of admissible weights that lie in the root lattice

PQ.p; q/ ´ P.p; q/ \ Q:

We specialize to type Bn; Cn. Let �1; : : : ; �n be an orthonormal basis of Zn and we view roots
as embedded in Zn or a rescaling of it. Some data for Bn is

(1) simple roots ˛1 D �1 � �2; : : : ; �n�1 � �n; �n,

(2) simple coroots ˛_
1 D ˛1; : : : ; ˛_

n�1 D ˛n�1; ˛_
n D 2˛n,

(3) longest root � D �1 C �2,

(4) longest short coroot �_
s D 2�1,

(5) Coxeter number h D 2n, dual Coxeter number h_ D 2n � 1.

The corresponding data for Cn is

(1) simple roots ˛1 D
�1��2p

2
; : : : ; �n�1��np

2
;
p

2�n,

(2) simple coroots ˛_
1 D 2˛1; : : : ; ˛_

n�1 D 2˛n�1; ˛_
n D ˛n,

(3) longest root � D
p

2�1,

(4) longest short coroot �_
s D

p
2.�1 C �2/,

(5) Coxeter number h D 2n, dual Coxeter number h_ D n C 1.

We want to compare the sets of admissible weights of Bn and Cn, so we add a superscript B; C

to indicate the type. Let p � n C 1; then

P C .p; 1/ D ¹� 2 P j .�j
p

2.�i � �iC1// 2 Z�0; i D 1; : : : ; n � 1;

.�j
p

2�n/ 2 Z�0; .�j
p

2�1/ � p � n � 1º;

P B.2p � 1; 2p/ D ¹� 2 P j .�j�i � �iC1/ 2 Z�0; i D 1; : : : ; n � 1;

.�j2�n/ 2 Z�0; .�2j�1/ � 2p � 2n � 1º;

P B
Q .2p � 1; 2p/ D ¹� 2 P j .�j�i � �iC1/ 2 Z�0; i D 1; : : : ; n � 1;

.�j�n/ 2 Z�0; .�j�1/ � p � n �
1
2
º:
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We observe that the map � 7!
p

2� provides the isomorphism

(2.3) P C .p; 1/ Š P B
Q .2p � 1; 2p/:

Next, let p � 2n be odd. Then

P C .p; 2/ D ¹� 2 P j .�j
p

2.�i � �iC1// 2 Z�0; i D 1; : : : ; n � 1;

.�j
p

2�n/ 2 Z�0; .�j
p

2.�1 C �2// � p � 2nº;

P B.p � 1; p/ D ¹� 2 P j .�j�i � �iC1/ 2 Z�0; i D 1; : : : ; n � 1;

.�j2�n/ 2 Z�0; .�j�1 C �2/ � p � 2nº;

P B
Q .p � 1; p/ D ¹� 2 P j .�j�i � �iC1/ 2 Z�0; i D 1; : : : ; n � 1;

.�j�n/ 2 Z�0; .�j�1 C �2/ � p � 2nº:

We observe that the map � 7!
p

2� provides the isomorphism

(2.4) P C .p; 2/ Š P B
Q .p � 1; p/:

Let now g D osp1j2n. This is not a Lie algebra, but a Lie superalgebra. Its simple roots
can be identified with the simple roots of Bn where the short roots are odd roots and the long
ones are even. Note that 2˛ for ˛ an odd root is an even root and it can be identified with a long
root of Cn. Weights of osp1j2n can be thus identified with weights of Bn and it turns out that
there is a one-to-one correspondence between irreducible finite-dimensional osp1j2n-modules
and irreducible finite-dimensional non-spinor representations of so2nC1 (see [59]). They are
both parameterized by weights in R D Q \ PC, the set of dominant weights that lie in the
root lattice of Bn.

Remark 2.10. Let E� be the simple highest-weight module of osp1j2n of highest
weight � and let v� be the highest-weight vector. Then E� contains the sp2n simple highest-
weight module E� with

p
2� D � as submodule and this submodule is generated by v�.

Similarly, let zV k.�/ be a V k.osp1j2n/-module whose top level is isomorphic to E�.
Then the highest-weight vector generates a V k.sp2n/-module whose top level is E� .

2.4. Fusion categories of W -algebras. Let V k.�/ denote the universal Weyl module
of V k.g/ whose top level is the irreducible highest-weight representation E� of g of highest
weight �. Let Lk.�/ be its unique graded quotient. Let Wk.g/ the principal W -algebra of g at
level k. It is obtained via quantum Hamiltonian reduction from V k.g/ and the reduction functor
is denoted by H 0

DS. � /. Then the reduction H 0
DS.V k.�// of V k.�/ is a Wk.g/-module. More

generally, there is the twisted quantum Hamiltonian reduction of Arakawa and Frenkel [10].
These reductions are labelled by elements � in the set of dominant coweights, LPC and one
denotes them as

T �
�;� D H 0

DS;�.V k.�//; � D k C h_:

One has
T �

�;� D
LT

L�
�;�

by [10, Theorem 2.2], where L� D Lk C Lh_.
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Let Wk.g/ be the unique simple quotient of Wk.g/ and denote the simple quotient of
T �

�;�
by Lk.�; �/ Let k be non-degenerate admissible. If k is principal or coprincipal non-

degenerate admissible, then Wk.g/ is strongly rational [3] and the simple objects are in the
principal admissible case the Lk.�; �/ with

.�; �/ 2 P.p; q/ � LP.q; r_p/ Š P.p; q/ � P_.q; r_p/

and in the coprincipal case the Lk.�; �/ with

.�; �/ 2 P.p; q/ � LP.q=r_; p/ Š P.p; q/ � P_.q=r_; p/:

Call a non-degenerate admissible level of coboundary type if q D h in the principal admissible
case or q D r_Lh_ in the coprincipal admissible case. If the non-degenerate admissible level
is not coboundary, then two simple modules are isomorphic if and only if they are in the same
orbit under a certain diagonal Weyl group action [35]; in particular, Lk.�; 0/ Š Lk.�0; 0/ if
and only if � D �0. The modular transformations of characters have been computed in [12] and
been used to compute fusion rules in [15].

Theorem 2.11 ([15]). Let

L`�h_.�/ � L`�h_.�/ Š
M

�2P.`;1/

N
g` �

�;�
L`�h_.�/

be the fusion rules of L`�h_.g/ for ` � h_ 2 Z>0. Let k D �h_ C
p
q

be principal non-degen-
erate admissible. Then, by (2.2), simple modules are parameterized by a quotient of the subset
P.p; 1/ � P_.q; r_/ of the set P.p; 1/ � P.q; 1/. Set Lk.�; �0/ D 0 for

.�; �0/ 2 P.p; 1/ � P.q; 1/ n P.p; 1/ � P_.q; r_/:

With this parameterization, the fusion rules for .�; �0/; .�; �0/ 2 P.p; 1/ � P_.q; r_/ are

Lk.�; �0/ � Lk.�; �0/ Š
M

�2P.p;1/
�02P.q;1/

N
gp �

�;�
N

gq �0

�0;�0 Lk.�; �0/:

The proof of this theorem used a variant of Verlinde’s formula in modular tensor cate-
gories, namely that there is an isomorphism given by open Hopf links between the Grothen-
dieck ring of the category and the endomorphism ring of the direct sum of all inequivalent
modules. The open Hopf links are given by normalized modular S -matrix coefficients. Let
� D e2�i=p; then the map � 7! �q maps the open Hopf links Lp�h_.�/ of the affine ver-
tex algebra Lp�h_.g/ at level p � h_ to the corresponding ones, that is, Lk.�; 0/, of the
W -algebra Wk.g/. This map provides a homomorphism of rings. The cokernel of this ring
homomorphism has not been discussed in [15], but it is known: note that these Hopf links are
given by q-characters and in particular coincide with the ones of the corresponding quantum
group Uq.g/ for

q D e
2�i

2r_.kCh_/ I

see e.g. [14, proof of Theorem 3.3.9]. For k non-degenerate principal or coprincipal admissible,
the Hopf links vanish for all negligible objects and the non-negligible simple objects are exactly
the highest-weight modules of admissible weight at that level; see e.g. [60, Theorem 2 together
with Lemma 7].
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Remark 2.12. Let C.p; q/ be the category of Wk.g/-modules at the non-degenerate
admissible level k D �h_ C

p
q

. Let CL.p; q/ be the subcategory whose simple objects are
isomorphic to modules of type Lk.�; 0/. Similarly, we denote by CR.p; q/ the subcategory
whose simple objects are isomorphic to modules of type Lk.0; �0/. We note the properties; see
[15, Theorem 6.1].

(1) The categories CL.p; q/ and CR.p; q/ are fusion subcategories of C.p; q/.

(2) Let k D �h_ C
p
v

be non-degenerate admissible with .q; r_/ D .v; r_/; then there is
the isomorphism KŒCL.p; q/� Š KŒCL.p; v/� of Grothendieck rings if both levels are
not coboundary.

(3) Lk.0; �0/ is in the centralizer of CL.p; q/ if �0 2 Q.

(4) Lk.�; 0/ is in the centralizer of CR.p; q/ if � 2 Q.

3. The universal affine vertex superalgebra V k.osp1j2n/

We recall the notion of equivariant W -algebras using [5]. Let G be an algebraic group
and � 2 C generic. The CDO algebra at level �, Dch

G;� , is a vertex algebra that has an action of
V k.g/ ˝ V `.g/ with g the Lie algebra of G and � D k C h_, �� D ` C h_. It satisfies

Dch
G;� Š

M
�2PC

V k.�/ ˝ V `.��/

as a vector space graded by conformal weights and weights of V k.g/ ˝ V `.g/. Moreover, it
is a direct sum of both V k.g/ and V `.g/-modules in the categories KLk.g/ and KL`.g/ (see
[5, Proposition 5.6]). Since these categories are completely reducible for non-rational k; `, it
follows that

Dch
G;� Š

M
�2PC

V k.�/ ˝ V `.��/ .� is generic/

as V k.g/ ˝ V `.g/ for non-rational k; `. The equivariant W -algebra of G at level � with respect
to the nilpotent element f in g is the quantum Hamiltonian reduction corresponding to f on
the first factor. In particular,

WG;f;� Š

M
�2PC

T
�;f

�;0
˝ V `.��/; T

�;f

�;0
D H 0

DS;f .V k.�// .� is generic/:

We restrict to principal nilpotent elements and will omit the symbol f . The T �
�;0

are modules
for Wk.g/. Moreover, WG;� is a strict chiralization of a smooth symplectic variety [5] and
hence simple by [11, Corollary 9.3].

Theorem 3.1. Let F 2nC1 be the vertex superalgebra of 2n C 1 free fermions and
consider G D Sp.2n/ and g D sp2n. Let � , t and ` be related by

1

�
C

1

` C h_
D 2; ` C t D �2h_

osp1j2n
;

and let t be generic. There is an embedding W t .osp1j2n/ ,! WSp.2n/;� ˝ F 2nC1, and

C `
D Com

�
W t .osp1j2n/; WSp.2n/;� ˝ F 2nC1

�
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is a simple vertex superalgebra. Moreover, as W ��h_

.sp2n/ ˝ V `.sp2n/-modules, its even
and odd parts decompose as follows:

C `
even Š

M
�2PC\Q

T �
�;0 ˝ V `.�/; C `

odd Š

M
�2PC\PnQ

T �
�;0 ˝ V `.�/:

Let � 2 LPC and C `
�
D C `

�;even ˚ C `
�;odd such that

C `
�;even Š

M
�2PC\Q

T �
�;� ˝ V `.�/; C `

�;odd Š

M
�2PC\PnQ

T �
�;� ˝ V `.�/:

Then the C `
�

are C `-modules and

WSp.2n/;� ˝ F 2nC1
Š

M
�2 LPC\ LQ

C `
� ˝ N t

�;0;

with N t
�;0

certain inequivalent simple W t .osp1j2n/-modules.

Proof. We recall the twisted quantum Hamiltonian reduction of Arakawa and Frenkel
[10] for principal f . These reductions are labelled by elements � in the set of dominant
coweights LPC, and one denotes

T �
�;� D H 0

DS;�.V k.�//:

One has T �
�;�

D LT L�
�;�

by [10, Theorem 2.2] with the right-hand side reductions of modules
of V `.Lg/ with Lg the Langlands dual Lie algebra of g and L� D ` C Lh_ the shifted level
and r_ L�� D 1 the lacity. In particular, if g D sp2n, then Lg D so2nC1 and h_ D n C 1,
Lh_ D 2n � 1 and r_ D 2. The twisted reduction commutes with tensoring with integrable
representations in the following sense:

(3.1) H 0
DS;�.V k.�/ ˝ L/ Š H 0

DS;�.V k.�// ˝ ��
�L

as Wk.g/ ˝ L-modules [6, Theorem 7.2], where L is an integrable module (at level ` 2 Z>0)
for g and the left-hand side is the diagonal reduction at level k C n. Here ��

�L is the spectrally
flown module of L. This is defined in terms of Li’s �-operator [55] and it is again an integrable
module at the same level. It is the module twisted by the automorphism induced from the Weyl
translation

t�W� 7! � C �.K/� �

�
.�j�/ C

.�j�/

2
�.K/

�
ı:

If L D VN is a lattice VOA, then one has ��
�.VN / Š VNC�, and more generally, for a module

VNC� of VN , one has ��
�.VNC�/ Š VNC�C�. In particular, one has ��

�VN Š VN if � 2 N .
Let N DZn so that VN is the vertex superalgebra of n-pairs of free fermions. Then N coincides
with the weight lattice P of sp2n, that is, let �1; : : : ; �n be an orthonormal basis of N and set
˛i D �1 � �iC1 for i D 1; : : : ; n � 1 and ˛n D �n. Then ˛1; : : : ; ˛n�1; 2˛n span a sublattice
of N that coincides with the root lattice Q of sp2n. Moreover, VN is a subalgebra of F 2nC1,
the vertex superalgebra of 2n C 1 free fermions and F 2nC1 Š L1.so2nC1/ ˚ L1.!1/ is an
integrable module for so2nC1 at level one. The even part is L1.so2nC1/ and the odd one
L1.!1/. We thus see that

��
�.L1.so2nC1// Š

´
L1.so2nC1/ if � 2 Q;

L1.!1/ if � 2 P n Q;
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��
�.L1.!1// Š

´
L1.!1/ if � 2 Q;

L1.so2nC1/ if � 2 P n Q;

��
�.F 2nC1/ Š

´
F 2nC1 if � 2 Q;
�F 2nC1 if � 2 P n Q;

with �F 2nC1 the parity reverse of F 2nC1. Recall that R D Q \ PC denotes the set of highest
weights of tensor representations of so2nC1, i.e. of modules appearing as direct summands of
the iterated tensor product of the standard representation. Let k be generic; then, by [24, Theo-
rem 4.1],

(3.2) V k.so2nC1/ ˝ F 2nC1
Š

M
�2R

V kC1.�/ ˝ N t
�;0

with N t
�;0

certain modules of W t .osp1j2n/ at level t determined by

2t C 2n C 1 D
k C 2n

k C 2n � 1
:

Decomposition (3.2) is completely reducible by [23, Theorem 4.12]. Applying H 0
DS;� to (3.2)

and using (3.1) and T �
�;�

D LT L�
�;�

, one gets

T �
�;0 ˝ F 2nC1

Š T L�
0;� ˝ F 2nC1

Š H 0
DS;�

�
V k.so2nC1/

�
˝ F 2nC1

Š H 0
DS;�

�
V k.so2nC1/ ˝ F 2nC1

�
Š

M
�2R

H 0
DS;�

�
V kC1.�/

�
˝ N t

�;0

Š

M
�2R

T L�C1
�;�

˝ N t
�;0 Š

M
�2R

T �
�;� ˝ N t

�;0;

with L� D k C 2n � 1 and � dual to L� C 1, that is, 2�. L� C 1/ D 1. This equality holds for
� 2 Q, while for � 2 P n Q, one has to add an additional parity reversal,

T �
�;0 ˝ F 2nC1

Š T L�
0;� ˝ F 2nC1

Š H 0
DS;�

�
V k.so2nC1/

�
˝ F 2nC1

Š H 0
DS;�

�
V k.so2nC1/ ˝ �F 2nC1

�
Š

M
�2R

H 0
DS;�

�
V kC1.�/

�
˝

�N t
�;0

Š

M
�2R

T L�C1
�;�

˝
�N t

�;0 Š

M
�2R

T �
�;� ˝

�N t
�;0:

It thus follows that (note that V `.��/ Š V `.�/ for g D sp2n)

WSp.2n/;� ˝ F 2nC1
Š

M
�2PC

T �
�;0 ˝ V `.�/ ˝ F 2nC1

Š

M
�2PC\Q

M
�2R

T �
�;� ˝ N t

�;0 ˝ V `.�/

˚

M
�2PC\PnQ

M
�2R

T �
�;� ˝

�N t
�;0 ˝ V `.�/

We thus obtain that

C `
´ Com

�
W t .osp1j2n/; WSp.2n/;� ˝ F 2nC1

�
Š

M
�2PC\Q

T �
�;0 ˝ V `.�/ ˚

M
�2PC\PnQ

�
�
T �

�;0 ˝ V `.�/
�
:
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Since WSp.2n/;� ˝ F 2nC1 is a simple vertex superalgebra on which W t .osp1j2n/ acts com-
pletely reducibly, we have that Com.W t .osp1j2n/; WSp.2n/;� ˝ F 2nC1/ is simple [16, Propo-
sition 5.4]. Recall that 2�. L� C 1/ D 1 D 2� L� and ` C h_ D ��. Hence

1

�
C

1

` C h_
D 2. L� C 1/ �

1

�
D 2 C

1

�
�

1

�
D 2

and t2 C t` C 4n C 2 D
L�C1
L�

� � � 1 D 0.

Theorem 3.2. Let ` be generic; then C ` Š V `.osp1j2n/ and C `
�
Š V `.�/.

Proof. C ` and V `.osp1j2n/ are simple vertex operator superalgebras whose graded
characters coincide by Theorems D.2 and 3.1. In particular, their weight one subspaces coincide
as sp2n-modules. The weight one subspace of C ` must generate an affine vertex superalgebra,
and the only possibility for this is to be of type osp1j2n at level `. Thus C ` Š V `.osp1j2n/

must hold. The C ` are V `.osp1j2n/-modules whose graded character coincides with the one
of V `.�/ by Theorems D.2 and 3.1. In particular, their top levels coincide as sp2n-modules
and hence as osp1j2n-modules. This is only possible if C `

�
Š V `.�/.

4. The simple affine vertex superalgebra L`.osp1j2n/

We now want to pass from the generic levels to interesting rational levels.

Remark 4.1. In general, if we have a family of vertex operator superalgebras Ak that
for generic level decomposes as a direct sum of modules for a commuting pair of subalgebras
V k; W k ,

Ak
D

M
�2I

V k
� ˝ W k

� ;

then at any specific level `, this decomposition might not be completely reducible, as sum-
mands might have non-trivial submodules and there might be extensions between different
modules appearing at this specific level. However, any simple composition factor of A` must
be a composition factor of V `

�
˝ W `

�
for some � 2 I . The same statement applies of course

for the simple quotient A` of A`. Let V`; W` be the simple quotients of V `; W `. Assume the
following.

(1) Ak is an ordinary module for V k ˝ W k .

(2) The categories of ordinary modules of V` and W` are both semisimple.

(3) Let I V
`

denote the set of simple objects of V`, then for � 2 I , L in I V
`

is a composition
factor of V `

�
implies L is the simple quotient of V `

�
, L Š L`

�
.

(4) Let I W
`

denote the set of simple objects of W`, then for � 2 I , M in I W
`

is a composition
factor of W `

�
implies M is the simple quotient of V `

�
, M Š M `

�
.

Then the only possibility for A` is to be of the form

A` D

M
�2J

L`
� ˝ M `

� ˝ M.�/:
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with J � I the subset of those weights � with the property that L`
�

in I V
`

and M `
�

in I W
`

. Here
M.�/ 2 ¹0; Cº is a multiplicity space. The same reasoning holds for ordinary modules of Ak .

Let us now assume that V k is an affine vertex algebra and W k is a principal W -algebra.
Assume that V` is at admissible level and Wk is at non-degenerate admissible level. Then (2)
of the assumptions holds by the main theorems of [3, 4], assumption (3) holds by [38, Theo-
rem 0.5] and assumption (4) by [3, Corollary 10.9] together with [38, Theorem 0.5].

Let g D sp2n and ` D �h_ C
p
q

be non-degenerate admissible. We prefer to parame-
terize modules by weight labels .�; �/ with � a weight of sp2n and � one of so2nC1, i.e.
the simple modules are denoted by L`.�; �/ with � 2 P C .p; q/ and � 2 P B.q; r_p/ if ` is
principal admissible and � 2 P B.q=r_; p/ if ` is coprincipal admissible.

Theorem 4.2. Let k D �h_ C
u
v

be admissible and suppose that ` D �h_ C
u

2u�v
is

non-degenerate admissible for sp2n. Let P B ´ P B.q; r_p/ if ` is principal admissible and
P B ´ P B.q=r_; p/ if ` is coprincipal admissible and P B

Q ´ P B \ Q. Then

(1) Lk.osp1j2n/ is a Lk.sp2n/ ˝ W`.sp2n/-module.

(2) We have
Lk.osp1j2n/ Š

M
�2P.u;v/

Lk.�/ ˝ L`.�; 0/

and, for � 2 P B
Q ,

Lk.�/ Š
M

�2P.u;v/

Lk.�/ ˝ L`.�; �/

as Lk.sp2n/ ˝ W`.sp2n/-modules.

(3) The Lk.�/ with �2P B
Q are a complete list of inequivalent simple ordinary Lk.osp1j2n/-

modules.

(4) The category of ordinary Lk.osp1j2n/-modules is a semisimple, rigid vertex tensor su-
percategory, i.e. it is a fusion supercategory.

Proof. (1) Let zLk.sp2n/ be the image of V k.sp2n/ in Lk.osp1j2n/. By [22, Theo-
rem 8.1], the coset Com.zLk.sp2n/; Lk.osp1j2n// is a homomorphic image of W`.sp2n/. By
[7, Theorem 4.1], this coset is simple, i.e.

Com.zLk.sp2n/; Lk.osp1j2n// Š W`.sp2n/:

As W`.sp2n/ is strongly rational, Com.W`.sp2n/; Lk.osp1j2n// is simple by [8, Lemma 2.1].
It follows that zLk.sp2n/ Š Lk.sp2n/ by [13, Theorem 3.4]. Hence we have that Lk.osp1j2n/

is a Lk.sp2n/ ˝ W`.sp2n/-module.
(2) for v D 1; 2. Let C be the category of ordinary Lk.sp2n/ ˝ W`.sp2n/-modules. The

category of ordinary Lk.sp2n/-modules is semisimple [4] and a vertex tensor category [17] and
since the category of W`.sp2n/-modules is a modular tensor category [40, 41] as W`.sp2n/ is
rational [3]. Thus [19, Theorem 5.5] applies, that is, C is the Deligne product of the cate-
gory of ordinary modules of Lk.sp2n/ and the category of W`.sp2n/-modules. It follows that
Lk.osp1j2n/ is a commutative superalgebra object, call it A, in C by [18]. Hence the category
of ordinary Lk.osp1j2n/-modules is a vertex tensor category and equivalent to the category
C loc

A of local A-modules in C (see [20]).
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Since A D Lk.osp1j2n/ is a homomorphic image of V k.osp1j2n/, it must be of the form
(recall Remark 4.1)

A D Lk.osp1j2n/ Š
M

�2P.u;v/

Lk.�/ ˝ L`.�; 0/ ˝ M.�/

with M.�/ 2 ¹0; Cº. We have to show that M.�/ D C. The subcategory of ordinary Lk.sp2n/-
modules whose simple objects are the Lk.�/ with M.�/ D C is a rigid tensor subcategory
of ordinary Lk.sp2n/-modules by Theorem 2.1. Let D be the corresponding subcategory
of C , i.e. simple objects are simple Lk.sp2n/-modules in this rigid subcategory times simple
W`.sp2n/-modules. In particular, A D Lk.osp1j2n/ is an object in D and we can consider the
category of local A-modules in D , which we denote by D loc

A . The category D loc
A is semisimple

by Theorem 2.3. It is a subcategory of C loc
A that is closed under submodules; in particular,

a simple object in D loc
A is also simple in C loc

A . Let F be the induction functor from D to D loc
A .

Note that

X� D A � .Lk.sp2n/ ˝ L`.0; �// D
M

�2P.u;v/

Lk.�/ ˝ L`.�; �/ ˝ M.�/

as object in C . Let P B ´ P B.q; r_p/ if ` is principal admissible and P B ´ P B.q=r_; p/

if ` is coprincipal admissible. The X� ´ F .Lk.sp2n// ˝ L`.0; �// is in D loc
A if � 2 P B

Q by
Remark 2.12 (3). Let P B

Q ´ P B \ Q. By Frobenius reciprocity, Theorem 2.5, for �; � 2 P B
Q ,

HomD loc
A

.X�; X�/ D HomD loc
A

�
F .Lk.sp2n/ ˝ L`.0; �//; F .Lk.sp2n/ ˝ L`.0; �//

�
Š HomD

�
Lk.sp2n/ ˝ L`.0; �/; A � .Lk.sp2n/ ˝ L`.0; �//

�
Š HomD

�
Lk.sp2n/ ˝ L`.0; �/; Lk.sp2n/ ˝ L`.0; �/

�
Š ı�;�C:

Thus the X� are simple ordinary A D Lk.osp1j2n/-modules. On the other hand, the ordinary
module of highest weight � must be of the form

Lk.�/ Š
M

�2P.u;v/

Lk.�/ ˝ L`.�; �/ ˝ M.�; �/

with M.�; �/ 2 ¹0; Cº, and so we can conclude that M.�; �/ D M.�/ and X� Š Lk.�/.
By Remark 2.10 and semisimplicity of ordinary Lk.sp2n/-modules, the Lk.osp1j2n/-module
Lk.�/ viewed as an Lk.sp2n/-module contains the Lk.sp2n/-module Lk.�/ with � D

p
2�

as submodule. It follows that M.�/ D C if
p

2� 2 P B
Q . Since P B

Q Š P.u; v/ for v D 1; 2 by
(2.3) and (2.4), we have proven our second claim in these two cases.

(2) for general v. Let Mk.sp2n/ be the category of ordinary modules of Lk.sp2n/ and
let C.W`.sp2n// be the category of W`.sp2n/-modules. Then Lk.osp1j2n/ is weakly gener-
ated by the odd dimension one fields; these correspond to the top level of Lk.!1/ ˝ L`.!1; 0/

(!1 is the first fundamental weight which is the highest weight of the standard representa-
tion of sp2n). By Lemma 2.4, C.W`.sp2n//L is generated by L`.!1; 0/ for v D 1; 2. By
Remark 2.12, the Grothendieck ring only depends on the numerator of the shifted level and
whether the level is principal or coprincipal non-degenerate admissible. Hence C.W`.sp2n//L

is generated by L`.!1; 0/ for all v. By Lemma 2.4, all simple C.W`.sp2n//L-modules appear
in the decomposition of Lk.osp1j2n/, i.e. M.�/ D C for all � 2 P.u; v/.
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(3) Let X be a simple ordinary Lk.osp1j2n/-module. Since any indecomposable ordi-
nary module of the universal affine vertex operator superalgebra is a homomorphic image of
a universal Weyl module V k.�/ with � a dominant weight of so2nC1 that is non-spinor and
since X is necessarily a Lk.sp2n/ ˝ W`.sp2n/-module, it follows that

X Š

M
�2P.u;v/

Lk.�/ ˝ L`.�; �/ ˝ M.�; �/

with � 2 P B
Q , and we already proved that, in this case, X Š Lk.�/.

(4) Let C.W`.sp2n//
Q
R be the subcategory of C.W`.sp2n//R whose weight labels lie

in Q (i.e. they are non-spinor). The functor H WC.W`.sp2n//
Q
R ! Mk.osp1j2n/ defined by

H .X/ D F
�
Lk.sp2n/ ˝ X

�
; H .f / D F .IdLk.sp2n/ ˝ f /

for X an object and f a morphism in C.W`.sp2n//
Q
R is braided monoidal as a composition

of braided monoidal functors. It is fully faithful by Frobenius reciprocity and it is essentially
surjective, i.e. it is an equivalence. Thus the stated properties of Mk.osp1j2n/ are true as they
are true for C.W`.sp2n//

Q
R .

Corollary 4.3. Let k be principal or coprincipal admissible for sp2n.

(1) Mk.sp2n/ is rigid.

(2) Mk.sp2n/ is generated by Lk.!1/.

(3) There is a super-braid-reversed equivalence Mk.sp2n/ŠC.W`.sp2n//L sending Lk.�/

to L`.�; 0/�.

(4) There is a super-braided equivalence C.W`.sp2n//
Q
R Š Mk.osp1j2n/ sending L`.0; �/

to Lk.�/.

Proof. The first and third statement follow from Theorem 2.1. The second one from
Lemma 2.4. The last equivalence is given by the functor sending L`.0; �/ to

F .Lk.sp2n/ ˝ L`.0; �// Š Lk.�/;

which is essentially surjective by the previous theorem and fully faithful by Frobenius reci-
procity, Theorem 2.5.

Corollary 4.4. The category of Ramond twisted modules is semisimple and the simple
objects are parameterized by � 2 P B n P B

Q and they decompose as

Lk.�/ Š
M

�2P.u;v/

Lk.�/ ˝ L`.�; �/:

Proof. We use the properties stated in Remark 2.2 in our setting. Let � 2 P B n P B
Q ;

then e2�i�� is one for � 2 Q and minus one otherwise. This means that the monodromy of
Lk.sp2n/ ˝ L`.0; �/ with the even part of Lk.osp1j2n/ is one and with the odd part it is
minus one. This is precisely the condition that

Lk.�/ ´ F
�
Lk.sp2n/ ˝ L`.0; �/

�
is a Ramond twisted module.
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Let MR
k

.osp1j2n/ be the category whose simple objects are such Lk.�/. Let

C.W`.sp2n//PnQ
R

be the subcategory of C.W`.sp2n//R whose simple objects are L`.0; �/ with � 2 P B n P B
Q .

Since monodromy respects tensor products, it follows that C.W`.sp2n//PnQ
R must be a module

category for C.W`.sp2n//
Q
R and the tensor product of two objects in C.W`.sp2n//PnQ

R must
be in C.W`.sp2n//

Q
R . Since induction is monoidal, MR

k
.osp1j2n/ is an Mk.osp1j2n/-module

category as well and the tensor product of two objects in MR
k

.osp1j2n/ must be local. With
W`.0; �/ in C.W`.sp2n//PnQ

R , the same must be true for its dual. Induction preserves duality,
and hence the dual of any object in MR

k
.osp1j2n/ is in MR

k
.osp1j2n/ as well.

Consider arbitrary twisted modules X and Y in MR
k

.osp1j2n/. Let Y � be the dual of Y ;
then

X Š Lk.osp1j2n/ � X � .Y � � Y / � X Š Y � � .Y � X/:

Since the tensor product of two twisted modules is local and MR
k

.osp1j2n/ is an Mk.osp1j2n/-
module category, it follows that X is in MR

k
.osp1j2n/.

A. Admissible levels

Let g D osp1j2n with a non-degenerate even supersymmetric invariant bilinear form
. � j � /, let h be a Cartan subalgebra of a Lie superalgebra osp1j2n, let � be the root system
of osp1j2n with respect to h�, and let … D ¹˛1; : : : ; ˛nº be a set of simple roots of �. Then
the highest root of osp1j2n is equal to � D 2˛1 C � � � C 2˛n. Suppose that ˛n is a (unique)
non-isotropic odd simple root, the bilinear form . � j � / on osp1j2n is normalized as .� j�/ D 2,
and ˛i ’s satisfy that

.˛i j˛i / D 1; .˛i j˛iC1/ D �
1

2
; i D 1; : : : ; n � 1;

.˛nj˛n/ D
1

2
; .˛i j j̨ / D 0; ji � j j > 1:

Let zg D osp1j2nŒt; t�1� ˚ CK ˚ CD be the (untwisted) affine Lie superalgebra of osp1j2n

equipped with the following Lie superbrackets:

Œa ˝ tm1 ; b ˝ tm2 � D Œa; b� ˝ tm1Cm2 C m1.ajb/ım1Cm2;0K;

ŒD; a ˝ tm1 � D m1a ˝ tm1 ; ŒK; zg� D 0

for a; b 2 osp1j2n and m1; m2 2 Z. Let zh D h ˚ CK ˚ CD be a Cartan subalgebra of zg.
Then the bilinear form on h extends to zh such that .KjD/ D 1 and

.KjK/ D .DjD/ D .hjK/ D .hjD/ D 0 for all h 2 h:

Define a linear isomorphism z�W zh� ! zh by .z�.˛/jh/ D ˛.h/. Then zh� has a non-degenerate
bilinear form by .˛jˇ/ D .z�.˛/jz�.ˇ//. Let y� be the root system of zg with respect to zh� and
let y… D ¹˛0º t … be a set of simple roots of y�. Set an imaginary root ı ´ ˛0 C � in y� and
ƒ0 2 zh� such that ı.D/ D ƒ0.K/ D 1 and

ı.h/ D ƒ0.h/ D ı.K/ D ƒ0.D/ D 0 for all h 2 h:



20 Creutzig, Genra and Linshaw, Ordinary modules for vertex algebras

We have zh� D h� ˚ Cı ˚ Cƒ0, z�.ı/ D K and z�.ƒ0/ D D. Denote ˛_ D 2z�.˛/=.˛j˛/ 2 zh

for ˛ 2 zh� if .˛j˛/ ¤ 0. Then

˛_
i D 2z�.˛i /; i D 1; : : : ; n � 1;

˛_
n D 4z�.˛n/; ˛_

0 D .ı � �/_ D K � �_:

In particular, �_ D z�.2˛1 C � � � C 2˛n/ D ˛_
1 C � � � C ˛_

n�1 C
1
2
˛_

n . Recall that the Weyl vec-
tor � 2 h� of osp1j2n is defined by �.˛_

i / D 1 for all ˛i 2 …. Define an affine Weyl vector
y� 2 zh� by y� D � C h_ƒ0, where

h_
D �.�_/ C 1 D n C

1

2

is the dual Coxeter number of osp1j2n. Then y�.˛_/ D 1 for all ˛ 2 y….
A root ˛ 2 y� is called even (resp. odd) if the root space zg˛ is even (resp. odd). Let y� N0

(resp. y� N1) be the set of all even (resp. odd) roots. A root ˛ 2 y� N0 is called principal if ˛ 2 y…

or ˛=2 2 y…. Let y…pr be the set of all principal roots. Then zg�
˙˛ are one-dimensional and they

generate a Lie subalgebra sl2 of zg�. We have y…pr D ¹˛0; ˛1; : : : ; ˛n�1; 2˛nº. For ˛ 2 y…pr,
a simple reflection r˛ 2 GL.zh�/ is well-defined. Then the affine Weyl group of zg� is defined
by yW D hr˛j˛ 2 y…prigrp � GL.zh�/. For ˛; � 2 zh�, define a translation operator

t˛.�/ ´ � C �.K/˛ �

�
.�j˛/ C

1

2
.˛j˛/�.K/

�
ı:

Then r˛0
r� D t� and tw.˛/ D wt˛w�1, t˛tˇ D t˛Cˇ for

w 2 W ´ hr˛j˛ 2 y…pr \ �igrp

and ˛; ˇ 2 zh�. Thus yW ' W Ë M with

M D SpanZ¹w.�/ j w 2 W º D SpanZ¹˛ 2 � j .˛j˛/ D 2º:

Let �C be the set of positive roots in � and

y�C
´ �C

t ¹˛ C mı j ˛ 2 �; m 2 Z�1º t ¹mı j m 2 Z�0º � y�:

For � 2 zh�, let

y�.�/ ´ ¹˛ 2 yW y…pr j �.˛_/ 2 Zº; y�.�/C ´ y�.�/ \ y�C;

y….�/ ´ ¹ˇ 2 y�.�/C j
À˛ 2 y�.�/ such that 0 < r˛.ˇ/ < ˇº;

where � � � , � � � 2 Z�0.� \ Q�0
y…pr/. Then � is called admissible in the sense of [39,

54] if

(1) .� C y�/.˛_/ > 0 for ˛ 2 y….�/.

(2) Qy�.�/ D Qy�.

Proposition A.1. For k 2 C, � D kƒ0 is admissible if and only if there exist coprime
integers a 2 Z and b 2 Z�1 such that k D

a
b

and

(1) b is odd ) k C h_ �
nC 1

2

b
,

(2) b is even ) k C h_ �
2n�1

b
.
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Proof. Condition (2) implies that k D �.˛_
0 / 2 Q. Hence k is of the form k D

a
b

with
a 2 Z and b 2 Z�1 such that .a; b/ D 1. Notice that .˛j˛/ D 1 or 2 if ˛ 2 yW y…pr. Thus
yW y…pr \ � D �long t �mid, where

�long D ¹˛ 2 � j .˛j˛/ D 2º and �mid D ¹˛ 2 � j .˛j˛/ D 1º:

Since
�..˛ C mı/_/ D �

�
˛_

C
2mK

.˛j˛/

�
D

2m

.˛j˛/
�

a

b

for ˛ 2 �long t �mid, we have

y�.�/ D

´
¹bmı C ˛ j m 2 Z; ˛ 2 �long t �midº if b is odd;

¹bmı C ˛ j m 2 Z; ˛ 2 �longº t
®

b
2
mı C ˛

ˇ̌
m 2 Z; ˛ 2 �mid

¯
if b is even:

Therefore, � is admissible if and only if

(i) .� C y�/.˛_/ 2 Z�1 for all ˛ 2 y�.�/C if b is odd;

(ii) .� C y�/.˛_/ 2 1
2
Z�1 for all ˛ 2 y�.�/C if b is even.

Note that we have the following useful formula:

y�.�/ D
°
˛ 2 yW y…pr

ˇ̌̌ ˛

2
… y� & .� C y�/.˛_/ 2 Z or

˛

2
2 y� & .� C y�/.˛_/ 2 Z C

1

2

±
:

In case b is odd, y….�/ D ¹bı � �; ˛1; : : : ; ˛n�1; 2˛nº. Then, since

.bı � �/_ D bK � �_; � C y� D .k C h_/ƒ0 C �; �.�_/ D h_
� 1;

condition (1) is equivalent to

.� C y�/..bı � �/_/ D .� C y�/.bK � �_/ D b.k C h_/ � .h_
� 1/ � 1

” k C h_
�

h_

b
:

In case b is even,

y….�/ D

´
¹bı � �; 2˛1º if n D 1;®

b
2
ı � �s; ˛1; : : : ; ˛n�1; 2˛n

¯
if n � 2;

where �s D � � ˛1 D ˛1 C 2.˛2 C � � � C ˛n/ is the highest root in �mid. Then, since�b

2
ı � �s

�_
D 2z�

�b

2
ı � �s

�
D bK � �_

s ;

�_
s D 2z�

�
˛1 C 2.˛2 C � � � C ˛n/

�
D ˛_

1 C 2.˛_
2 C � � � C ˛_

n�1/ C ˛_
n ;

�.�_
s / D 1 C 2.n � 2/ C 1 D 2.n � 1/;

condition (1) is equivalent to the following:

(i) if n D 1,

.� C y�/..bı � �/_/ D .� C y�/.bK � �_/ D b.k C h_/ �
1

2
�

1

2

” k C h_
�

1

b
I
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(ii) if n � 2,

.� C y�/
��b

2
ı � �s

�_�
D .� C y�/.bK � �_

s / D b.k C h_/ � 2.n � 1/ � 1

” k C h_
�

2n � 1

b
:

Remark A.2. Proposition A.1 for n D 1 recovers the statement of [52] for admissible
levels of osp.1j2/.

Proof. Recall that k is an admissible level if � D kƒ0 is admissible. Example 2 in [52]
says that k D

m
2
D

t
2u

with coprime integers t 2 Z and u 2 Z�1 is an admissible level if and
only if 3u C t � 1 � 0 if t is odd and 3u C t � 3 � 0 if t is even. Let a 2 Z and b 2 Z�1

be coprime integers such that k D
t

2u
D

a
b

. If t is odd, since .t; 2u/ D 1, a D t and b D 2u.
Hence b is even. Then 3u C t � 1 � 0 is equivalent to

3b C 2a � 3 � 0 ”
a

b
C

3

2
�

3

2b
:

If t is even, u is odd, and since . t
2
; u/ D 1, a D

t
2

and b D u. Hence it follows that b is odd.
Then 3u C t � 3 � 0 is equivalent to

3

2
b C a � 1 � 0 ”

a

b
C

3

2
�

1

b
:

Therefore, the statement in [52] is the same as Proposition A.1 for n D 1.

B. Formal characters

B.1. Characters of modules in O. Let zg be a Kac–Moody Lie superalgebra in the
sense of Serganova [62] and let zh be the Cartan subalgebra of zg. Then we can define the
category O as certain full subcategory of zg-modules in the same way as in [27], and the
characters

ch M D

X
�2zh�

.dim M�/e�; M 2 O;

where M� is the weight space of M for zh of the weight �. See e.g. [39, Section 1] for the
details.

B.2. Characters of V k.g/-modules. Let g be a finite-dimensional simple Lie superal-
gebra with normalized even supersymmetric invariant bilinear form . � j � / such that .� j�/ D 2

for the highest root � of g, and let yg D gŒt; t�1� ˚ CK be the affine Lie superalgebra of g with
the central element K. For any finite-dimensional highest-weight g-module E and k 2 C, we
define the induced yg-module V k

g .E/ by

V k
g .E/ D U.yg/ ˝

U.gŒt�˚CK/
E;

where we consider E as a gŒt � ˚ CK-module by gŒt �t D 0 and K D k, and U.a/ denotes the
universal enveloping algebra of a for any Lie superalgebra a. The module V k

g .E/ is called the
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local Weyl yg-module induced from E at level k. Set

V k.g/ D V k
g .C/

for the trivial g-module C. It is well known that V k.g/ has a vertex superalgebra structure, and
then V k

g .E/ is a V k.g/-module. Let h_ be the dual Coxeter number of g. If k C h_ ¤ 0, the
Sugawara construction defines the Virasoro field

L.z/ D
X
m2Z

Lmz�m�2

on V k.g/ so that any V k.g/-module has a Virasoro module structure with the central charge

k sdim.g/

k C h_
:

From the point of view of vertex superalgebras, the formal character of V k
g .E/ is defined as

follows: ech V k
g .E/ D qm

g
k

.�/ ch V k
g .E/; m

g
k
.�/ D

.�j� C 2�/

2.k C h_/
;

where � is the highest weight of E, and � is the Weyl vector of g. By definition, the spe-
cialization of ech V k

g .E/ by e˛ 7! e.˛j�/ coincides with the trace function of qL0e� for � 2 h�

on V k
g .E/.

B.3. Characters of W k.g/-modules. Suppose that g is a simple Lie algebra. Let nC

(resp. n�) be the sum of positive (resp. negative) root vector spaces of g, f a principal nilpo-
tent element of g in n�, and H �

DS.‹/ the Drinfeld–Sokolov reduction cohomology functor
associated to f , which is defined by

H �
DS.M / D H

1
2
C�.LnC; M ˝ C�/; M 2 O;

where LnC D nCŒt; t�1�, H
1
2
C�.LnC; ‹/ is the semi-infinite cohomology of LnC-modules,

and C� is the one-dimensional LnC-module by xtm 7! ım;�1.f jx/. Then

Wk.g/ D H �
DS.V k.g//

has a vertex algebra structure, called the (principal) W -algebra associated to g at level k. We
have H i

DS.V k.g// D 0 unless i D 0. If k C h_ ¤ 0, Wk.g/ also has a Virasoro field of the
central charge

rank.g/ � 12
j� � .k C h_/�_j2

k C h_
;

where �_ is the Weyl covector of g. For any Wk.g/-module W whose L0-eigenspaces are
finite-dimensional, we define the formal character of W byech W D trW .qL0/:

Consider a Wk.g/-module H �
DS.M / for a highest-weight V k.g/-module M with the highest

weight �. Using the Euler–Poincaré principle, we have

ech H �
DS.M / D

qm
g
k

.�/Q1
jD1.1 � qj /rank.g/

. yR ch M /je˛ 7!q�.˛j�_/ ;

where yR is the Weyl denominator of yg.
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C. Characters of modules of bosp1j2n and csp2n

C.1. Settings for bosp1j2n and csp2n. Consider the cases yg D bosp1j2n and yg D bsp2n.
Since sp2n � osp1j2n, we may identify the Cartan subalgebra of sp2n with that of osp1j2n,
which we denote by h. Let …osp D ¹˛1; : : : ; ˛nº be a set of simple roots of osp1j2n such
that …sp D ¹˛1; : : : ; ˛n�1; 2˛nº forms a set of simple roots of sp2n. The Dynkin diagrams
corresponding to …osp; …sp are the following:❡̨

1

❡̨
2

� � � ❡̨
n�1

> ✉̨
n

and ❡̨
1

❡̨
2

� � � ❡̨
n�1

< ❡
2˛n

.

The normalized invariant form . � j � / on osp1j2n satisfies that .2˛nj2˛n/ D 2. Then the invar-
iant form restricted to sp2n is the same as the standard normalized form on sp2n. Let Qosp

(resp. Qsp) be the root lattice of osp1j2n (resp. sp2n), and let P osp (resp. P sp) be the weight
lattice of osp1j2n (resp. sp2n). It is easy to see that Qosp D P osp D P sp, which we denote
by P . Let �C, �C; N0, �C; N1 be the set of positive roots, even positive roots, odd positive roots
of osp1j2n respectively. Set

�osp D �sp � � N1; �sp D
1

2

X
˛2�C;N0

˛; �N1 D
1

2

X
˛2�C;N1

˛:

Let �_
sp be the element in h� corresponding to the Weyl covector of sp2n, that is, .�_

spj˛/ D 1

for all ˛ 2 …sp. Then we have
�osp D

1

2
�_

sp

by direct computations.

C.2. Verma modules. For k 2 C, � 2 h�, let M k
osp.�/ (resp. M k

sp.�/) be the Verma
module of bosp1j2n (resp. bsp2n) with the highest weight � at level k. Then

ch M k
osp.�/ D

e�

yRosp

; ch M k
sp.�/ D

e�

yRsp

;

yR�1
osp D yR�1

sp

Y
˛2�C;N1

1Y
jD1

.1 C e˛qj /.1 C e�˛qj�1/;

yRsp D

Y
˛2�C;N0

1Y
jD1

.1 � qj /n.1 � e˛qj /.1 � e�˛qj�1/;

where q D e�ı as usual.

Lemma C.1.

yR�1
osp D

yR�1
spQ1

jD1.1 � qj /n

X
�2P

e�q.�j�C2�N1/:

Proof. Let �i D
Pn

jDi j̨ . Then �C; N1 D ¹�1; : : : ; �nº. We have

.�i j�j / D
1

2
ıi;j ; 2�N1 D

nX
iD1

�i and P D

nM
iD1

Z�i :
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Using the Jacobi triple product identity

1Y
jD1

.1 � qj /n.1 C uqj /.1 C u�1qj�1/ D
X
m2Z

umq
1
2

m.mC1/

for u D e�i , it follows that

yRsp

1Y
jD1

.1 � qj /n yR�1
osp D

nY
iD1

X
mi2Z

emi �i q
1
2

mi .miC1/

D

X
m1;:::;mn2Z

e
Pn

iD1 mi �i q
1
2

Pn
iD1 mi .miC1/

D

X
�2P

e�q.�j�C2�N1/:

Corollary C.2. For any � 2 P ,

ch M k
osp.�/ D

X
�2P

ch M k
sp.�/B�

�; B�
� D

q.���j���C2�N1/Q1
jD1.1 � qj /n

:

Let W be the Weyl group of sp2n and j�j2 D .�j�/ for � 2 h�. Since j� N1j
2 D

n
8

, we
have

B�
� D

qj���C�N1j
2�n

8Q1
jD1.1 � qj /n

:

Thus
B�

� D B�C�
�C� ; � 2 h�

I B�
w.�/ D Bw�1.�C�N1/��N1

� ; w 2 W:

C.3. Local Weyl modules. Let PC be the set of dominant weights in P . For k 2 C and
� 2 PC, let E

osp
� (resp. E

sp
� ) be the finite-dimensional simple osp1j2n-module (resp. sp2n-

module) with the highest weight �, and let V k
osp.�/ (resp. V k

sp.�/) be the local Weyl module
of bosp1j2n (resp. bsp2n) induced from E� at level k. See Section B.2 for the definitions of local
Weyl modules. We have

V k
osp.�/ ' U.osp1j2nŒt�1�t�1/ ˝ Eosp

� ;

V k
sp.�/ ' U.sp2nŒt�1�t�1/ ˝ Esp

�

as vector spaces. Thus

ch V k
osp.�/ D

X
w2W

.�1/l.w/ ch M k
osp.w.� C �osp/ � �osp/;

ch V k
sp.�/ D

X
w2W

.�1/l.w/ ch M k
sp.w.� C �sp/ � �sp/;

where l.w/ is the length of w in W . Using the equalities

B�
w.�C�osp/��osp

D B
�C�osp

w.�C�osp/
D B

w�1.�C�sp/��N1

�C�osp
D B

w�1.�C�sp/��sp
�
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and Corollary C.2, it follows that

(C.1) ch V k
osp.�/ D

X
�2P

ch M k
sp.�/

X
w2W

.�1/l.w/B
w.�C�sp/��sp
� :

Define a real form h�
R of h� and a Weyl chamber C in h�

R by

h�
R D P ˝Z R; C D ¹� 2 h�

R j .�j˛_/ > 0 for all ˛ 2 �Cº;

where ˛_ D 2˛=.˛j˛/ 2 h�. Then

W.C / D
[

w2W

w.C / D ¹� 2 h�
R j .�j˛/ ¤ 0 for all ˛ 2 �º; W.C / D

[
w2W

w.C / D h�
R:

An element � 2 h�
R is called regular if � 2 W.C /, and is called singular unless � is regular.

Lemma C.3. Let P reg be the set of regular elements in P , P sing the set of singular
elements in P , P

reg
C

D PC \ P reg, and P
sing
C

D PC \ P sing. Then

(1) P D P reg t P sing and PC D P
reg
C

t P
sing
C

.

(2) P
reg
C

D PC C �sp.

(3) P reg D W.P
reg
C

/ ' W � P
reg
C

.

(4) P sing D W.P
sing
C

/.

Proof. (1) is trivial. First, we consider (2). Since PC D P \ C , (2) follows from the
fact that PC coincides with the set of integral dominant weights of sp2n. Next, we consider
(3) and (4). Since h�

R D W.C / and P is W -invariant, we have P D W.P \ C / D W.PC/.
Hence

P reg
D W.P

reg
C

/ and P sing
D W.P

sing
C

/:

This proves (4) and the first equality of (3). Finally, we show the last isomorphism of (3). Using
the fact that W acts transitively on the set of Weyl chambers of sp2n, it follows that the map
W � P

reg
C

3 .w; �/ 7! w.�/ 2 P reg gives an isomorphism. Therefore, (3) follows.

Set
w ı � D w.� C �sp/ � �sp; w 2 W; � 2 h�:

Proposition C.4. Suppose that k … Q. For � 2 PC, we have

ch V k
osp.�/ D

X
�2PC

ch V k
sp.�/

X
w2W

.�1/l.w/Bwı�
� :

Proof. By (C.1) and Lemma C.3, we have

ch V k
osp.�/ D

X
�2PC

X
w12W

ch M k
sp.w1 ı �/

X
w22W

.�1/l.w2/Bw2ıw1ı�
�(C.2)

C

X
�2P

sing
C

��sp

X
w12S�

ch M k
sp.w1 ı �/

�

X
w22W

.�1/l.w2/Bw2ıw1ı�
�
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D

X
�2PC

ch V k
sp.�/

X
w2W

.�1/l.w/Bwı�
�

C

X
�2P

sing
C

��sp

X
w12S�

.�1/l.w1/ ch M k
sp.w1 ı �/

�

X
w22W

.�1/l.w2/Bw2ı�
� ;

where S� is a set of representatives of W=Ker.W 3 w 7! w.� C �sp/ 2 W.� C �sp// in W .
Since k … Q, the Kazhdan–Lusztig category is semisimple and every simple object is isomor-
phic to V k

sp.�/ for certain � 2 PC so that

V k
osp.�/ '

M
�2PC

V k
sp.�/ ˝ Hombsp2n

.V k
sp.�/; V k

osp.�//:

Then each coefficient of ewı� for w 2 W and � 2 P
sing
C

� �sp in ch V k
osp.�/ must be zero.

This implies that the second term in the last equation in (C.2) is equal to zero. Therefore, we
complete the proof.

Corollary C.5. For � 2 P
sing
C

� �sp and � 2 PC,X
w2W

.�1/l.w/Bwı�
� D 0:

D. Main results

D.1. Branching functions. Let h_
osp, h_

sp be the dual Coxeter numbers of osp1j2n,
sp2n respectively. Then h_

osp D n C
1
2

, h_
sp D n C 1. From now on, we assume that k … Q.

Especially, k C h_
osp ¤ 0 and k C h_

sp ¤ 0. Set

m
osp
k

.�/ D
.�j� C 2�osp/

2.k C h_
osp/

; m
sp
k

.�/ D
.�j� C 2�sp/

2.k C h_
sp/

; � 2 PC:

Now, it follows from Proposition C.4 (see Corollary C.2 for the definitions of B�
�) thatech V k

osp.�/ D
X

�2PC

ech V k
sp.�/

X
w2W

.�1/l.w/ zBwı�
� ;

zBwı�
� D

q�wı�;�Q1
jD1.1 � qj /n

;

(D.1)

�wı�;� D m
osp
k

.�/ � m
sp
k

.�/ C .w ı � � �jw ı � � � C 2� N1/:

We call the coefficients of ech V k
sp.�/ in ech V k

osp.�/ the branching functions. Define ` 2 C by

(D.2)
1

k C h_
sp

C
1

` C h_
sp

D 2:

Lemma D.1.

�wı�;� D m
sp
`

�
w ı � � 2.` C h_

sp/�
�
�
�
w ı � � 2.` C h_

sp/�j�_
sp

�
:

Proof. Direct computations.
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D.2. Characters of simple W `.sp2n/-modules. For � 2 h�, let L
sp
`

.�/ be the simple
quotient of M `

sp.�/, and let W `
sp.�/ be the Wakimoto module of bsp2n with the highest weight

� at level ` (see [32,34,64]). Consider an bsp2n-module L
sp
`

.� � 2.` C h_
sp/�/ for �; � 2 PC.

By [33] (see also [9, Proposition 4.2]), we have a resolution of L
sp
`

.� � 2.` C h_
sp/�/ of the

form

0 ! L
sp
`

�
� � 2.` C h_

sp/�
�
! C0 ! C1 ! � � � ! Cn2 ! 0;(D.3)

Ci D

M
w2W

l.w/Di

W `
sp

�
w ı � � 2.` C h_

sp/�
�
:

Thus

ch L
sp
`

�
� � 2.` C h_

sp/�
�
D

X
w2W

.�1/l.w/ ch W `
sp

�
w ı � � 2.` C h_

sp/�
�
:

Recall the Drinfeld–Sokolov reduction cohomology functor H �
DS.‹/ introduced in Section B.3.

It follows from [2] that H 0
DS.L

sp
`

.� � 2.` C h_
sp/�// is a simple W`.sp2n/-module, which we

denote by L`.���2.`Ch_
sp/�/.

Theorem D.2. Suppose that k … Q and ` 2 C defined by (D.2). For � 2 PC,

ech V k
osp.�/ D

X
�2PC

ech V k
sp.�/ ech L`.���2.`Ch_

sp/�/:

Proof. First of all, for i ¤ 0, we have (see [1] and [31] respectively)

H i
DS
�
L

sp
`

.� � 2.` C h_
sp/�/

�
D 0;

H i
DS
�
W `

sp.w ı � � 2.` C h_
sp/�/

�
D 0:

By applying the functor H 0
DS.‹/ to (D.3), we obtain the exact sequence

0 ! L`.���2.`Ch_
sp/�/ ! H 0

DS.C0/ ! H 0
DS.C1/ ! � � � ! H 0

DS.Cn2/ ! 0

and, using the Euler–Poincaré principle, the character formulas

ech H 0
DS.Ci / D

X
w2W

l.w/Di

qm
sp
`

.wı��2.`Ch_
sp/�/Q1

jD1.1 � qj /n

�
�
yRsp ch W `

sp.w ı � � 2.` C h_
sp/�/

�ˇ̌
e˛ 7!q�.˛j�_

sp/ :

Hence ech L`.���2.`Ch_
sp/�/

D

X
w2W

.�1/l.w/ qm
sp
`

.wı��2.`Ch_
sp/�/Q1

jD1.1 � qj /n

�
�
yRsp ch W `

sp.w ı � � 2.` C h_
sp/�/

�ˇ̌
e˛ 7!q�.˛j�_

sp/ :

(D.4)
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Now, it is easy to see from the definitions of the Wakimoto modules that

(D.5) ch W `
sp.�/ D ch M `

sp.�/; � 2 h�:

Using (D.4), (D.5) and Lemma D.1, it follows that

ech L`.���2.`Ch_
sp/�/ D

X
w2W

.�1/l.w/ q�wı�;�Q1
jD1.1 � qj /n

Comparing this with (D.1), we see immediately that the branching functions coincide with the
characters of L`.���2.`Ch_

sp/�/.
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