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Ordinary modules for vertex algebras of osp,y,

By Thomas Creutzig at Erlangen, Naoki Genra at Chiba and Andrew Linshaw at Denver

Abstract. We show that the affine vertex superalgebra vk (0%p125) at generic level k
embeds in the equivariant ‘W-algebra of sp,,, times 47 free fermions. This has two corollaries:
(1) it provides a new proof that, for generic k, the coset Com(V* (sP2,)s vk (05p1)2,)) is is0-
morphic to 'We(spzn) ford = -+ 1)+ (k+n+1)/(2k + 2n + 1), and (2) we obtain the
decomposition of ordinary V¥ (0%p1|2,)-modules into vk (5p,,) ® wt (sp,,,)-modules. Next,
if k is an admissible level and £ is a non-degenerate admissible level for sp,,,, we show that the
simple algebra L (0%py|,,) is an extension of the simple subalgebra Ly (sp,,) ® Wi(sp,,)-
Using the theory of vertex superalgebra extensions, we prove that the category of ordinary
Ly (0%p;|2,)-modules is a semisimple, rigid vertex tensor supercategory with only finitely
many inequivalent simple objects. It is equivalent to a certain subcategory of W;(sp,,, )-mod-
ules. A similar result also holds for the category of Ramond twisted modules. Due to a recent
theorem of Robert McRae, we get as a corollary that categories of ordinary L (sp,,,)-modules
are rigid.

1. Introduction

The simple Lie superalgebra osp;|,, behaves in many respects like a simple Lie algebra.
For example, the category of finite-dimensional representations of a simple Lie superalgebra g
is semisimple if and only if g is of type 0sp,, or a Lie algebra [29]. It is also the only simple,
basic Lie superalgebra that is not a Lie algebra and that has no isotropic roots and that admits
a positive definite invariant, consistent, supersymmetric bilinear form [51, 61]. Maybe most
remarkable is a very close connection to the representation theory of s0,,41. Both algebras
have the same set of simple roots and there is a one-to-one correspondence between simple
finite-dimensional representations such that characters and tensor products agree under this
correspondence [59].
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Vertex algebras arose from the physics literature as the chiral algebras of two-dimensional
conformal field theory [28]. In particular, affine vertex algebras are those that correspond to the
Wess—Zumino—Witten theories on Lie groups of physics [65]. Let g be a finite-dimensional Lie
superalgebra over C and B:g x g — C an invariant, consistent and supersymmetric bilinear
form. Let

§=Clr"'1®cag®CK

with K central and
[X ® ln,y ® Zm] = [X’ y] & tn+m = 8n+m,OB(X’ y)K

forx,y e gand n,m € Z. Let §>90 = C[t] ®c g @ CK and let Cy be the one-dimensional
g>0 on which K acts by multiplication with the level k € C, while C[f] ® g acts as zero.
One sets ~

Vk(g, B) := Indg_ Cy,

which can be given the structure of a vertex algebra, the affine vertex (super)algebra of g at
level k. Moreover, V¥ (g, B) might not be simple and one denotes by Ly (g, B) its simple quo-
tient. If g admits a unique non-degenerate positive, invariant, consistent and supersymmetric
bilinear form, then one normalizes it such that long roots have norm two and just writes vk (g)
and L (g). Representations of Ly (g) are in particular smooth g-modules at level k, but being
a vertex algebra module is sometimes very restrictive, and for special levels k, only few g-
modules are also Lz (g)-modules. The most famous instance is the case where g is a simple
Lie algebra and k is a positive integer. In this case, every Ly (g)-module is ordinary and its
representation category is a modular tensor category, that is, a finite, non-degenerate and semi-
simple ribbon category [40,41]. Via the Sugawara construction [63], an affine vertex algebra
at non-critical level contains the Virasoro vertex algebra as subalgebra, and in particular, every
L (g)-module is graded by conformal weight (generalized eigenspaces corresponding to the
Cartan subalgebra of the Virasoro Lie algebra). A module is called ordinary if its conformal
weight spaces are finite-dimensional and the conformal weight is lower-bounded. In particular,
every conformal weight space of an ordinary module of L (g) is integrable for the horizontal
subalgebra g. As an example, let £ be an integrable module of highest-weight A of g. Extend
it to g>o by letting K act by multiplication with k and #g[¢] by 0. Then

k . g
VL) '_Indg?zoEA

is an ordinary module, the Weyl module of highest-weight A at level k. We will denote its
simple quotient by Ly (4). In this work, we are interested in the category of ordinary modules,
M (g). for g = 0p -

Given the similarity between 0sp;|,, and simple Lie algebras, it is reasonable to expect
that the representation theory of affine vertex algebras of osp;,, is similar to that of affine
vertex algebras of simple Lie algebras. Indeed, the simple affine vertex algebra of osp,|,,
at positive integral level n is rational and lisse [24, Theorem 7.1], while no other simple affine
vertex superalgebra at non-zero level can be lisse [37]. Rational and lisse are the finiteness prop-
erties that guarantee that the category of ordinary modules is a modular tensor category [40].
Another special class of levels are the admissible ones [53] and there are quite a few inter-
esting results on ordinary modules of affine vertex algebras at admissible levels. Let g be
a simple, finite-dimensional Lie algebra, k an admissible level and My (g) the category of
ordinary modules of Ly (g). Then
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(1) My (g) is semisimple with a finite number of inequivalent simple objects [4].
(2) My (g) is a braided tensor category [17].
(3) If g is simply laced, then M (g) is a fusion category [15].

(4) My (g) is a fusion category if g is of type B and if the denominator of the admissible
level is 2 (see [21]).

(5) If g is simply laced, then a simple current modification of My, (g) is braided tensor equiv-
alent to a subcategory of the principal W-algebra of g at level 1 — 2" + # with 2"
the dual Coxeter number of g (see [15]).

‘W-algebras are vertex algebras obtained from affine ones via quantum Hamiltonian reduction
[30, 50]. We prove analogues of all these results for g = 0spy|y, as well as that My (sp,,)
(for many admissible levels) is a fusion category. The proof goes in two steps. First, we real-
ize VK (0%p1|2,) from the equivariant ‘W-algebra of sp,,, and second, we pass to interesting
rational levels and use the theory of vertex superalgebra extensions.

1.1. Vk(ospuz n) from the equivariant ‘W-algebra of sp,,. The starting point is
the algebra of chiral differential operators (CDOs) i)éh’ . atlevel k, for G = Sp(2n) (see [36,
56]). While one thinks about affine vertex algebras as chiralizations of finite-dimensional Lie
algebras, the CDO chiralizes the space of functions of an algebraic group. In particular, this is
a vertex algebra with an action of V*(q) ® V*(g) with g the Lie algebra of G andx = k + hY,
—k = £ + hV. For generic level , it satisfies

g = P VFm e vtam.
AeP+
The V*(1) are Weyl modules at level k of highest weight A and P is the set of domi-
nant weights of g. The equivariant (principal) W-algebra is obtained from J)gh’ . Dy quantum
Hamiltonian reduction with respect to the principal nilpotent element in the first factor [5]. For
generic «,
Wou = €D Tro®@VEAH). Tf o= Hi(VE().
AeP+

Let F2"*1 be the vertex superalgebra of 21 + 1 free fermions. We consider WG ®
Recall Feigin—Frenkel duality of type B, C, that is,

F2n+1

"Wk(spzn) o~ Wk(502n+1) with 2« = land ¥ = k + 2n — 1.

Quantum Hamiltonian reduction can be twisted by spectral flow; the corresponding func-
tor is denoted by Hl())S, u for pa coweight of g. A special case of Arakawa—Frenkel duality
[10, Theorem 2.2] is

T)If’() = HO A(V (502n+1))

The Urod property is that the twisted reduction functor commutes with tensoring with inte-
grable representations [6, Theorem 7.2]. Applying this to vk (s02n+1) ® F2"T1 gives us an
explicit decomposition of T" ® F27t1 into modules of WXkt1(s05,41) @ W! (08P 1124)-
Here the principal 'W- algebra of 03P |2, at a certain level ¢ related to k appears due to the
coset realization

W (05p1|2,) = Com(VEH (5020 11). VE (s02041) ® F2"11)
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(see [24]). Inserting this into Wg , ® F2"+! gives us an explicit decomposition of the form
(for generic )
Wepn e ® F" 1 = P Cye Ny,
A€ER
with
ct= Com(Wt (Dg’pl\Zn)’ WSp(Zn),/c ® F2n+1)

with C f and N /{ o certain C ¢ and W! (0%5p;|2,)-modules. Here R denotes the set of non-spin
representations of $0,,41 which is naturally identified with the set of dominant weights of
0%P||2,- Under this identification, we have the following theorem.

Theorem 1.1 (Theorem 3.2). For generic {, Ct =~ V* (05pq)2,) and Ct=vtn).

The proof of this theorem can be reduced to a character computation that we do in the
appendices as it is quite technical. By construction, the coset Com (V¢ (5p2,), vt (05P112,)) 18

W (sp,,) with
1 s

Contl Tnrl
(first proven in [24]) as well as the decomposition of V¢(1) into V* (3Pa,) @ Wi (spy,)-
modules; see Theorem 3.1. The above construction can be generalized substantially and in
particular leads to a new and quick proof of the coset realization of principal ‘W-algebras of
type ADE [25].
We turn now to the category of ordinary modules at admissible levels.

1.2. The category of ordinary modules of osp;|,, at admissible levels. While the
above results hold for generic level, we are now interested in special rational levels, namely let
k = —h" + % be admissible and £ = —h" + 5" be non-degenerate admissible for sp,,.
Gorelik and Serganova extended the notion of admissible level to the super case; see in partic-
ular [39, Section 5]. We determine them in Proposition A.1 and note that the set of levels that
we are interested in is slightly larger than just the admissible ones of [39]; see Remark 2.9.

In particular, we want the affine subalgebra of type sp,,, to be at admissible level and the
‘W-algebra to be at non-degenerate admissible level. We then can prove that the simple subal-
gebras act on the simple affine VOA L¢(0spy|5,) and this gives us the full power of the theory
of vertex superalgebra extensions. Using this theory, we get our main results, Theorem 4.2 and
Corollaries 4.3 and 4.4.

That is, for k = —h" 4 % admissible and £ = —h" + 5" non-degenerate admissible

for sp,,,,
(1) acomplete list of inequivalent simple objects in My (05p1)2,);

(2) acomplete list of inequivalent simple objects in the category of ordinary Ramond twisted
modules of L (05p12,);

(3) the category My (0%p;jp,) is a semisimple, rigid vertex tensor supercategory, i.e. it is
a fusion supercategory;

(4) the category of ordinary Ramond twisted modules of L (0%p;,,) is semisimple;

(5) My (sp,,) is rigid;
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(6) there is a super-braid-reversed equivalence My (sp,,) = C(Wi(sp,,))L;
(7) there is a super-braided equivalence € (W, (sspz,,))g = My (05p1)2,)-

Here €(Wy(sp,,)) and €('W, (gpzn))g are certain full tensor subcategories of the ‘W-algebra
and are introduced in Section 4.

At admissible level, the semisimplicity of ordinary modules and a complete list of simple
objects has already been obtained by Gorelik and Serganova [39].

1.3. Outline. The paper is organized as follows. In Section 2.1, we collect the neces-
sary results on vertex tensor supercategories. In Sections 2.2 and 2.3, we introduce admissible
levels and several notations for subsets of admissible weights of Lie algebras and show the
isomorphisms (2.3) and (2.4). In Section 2.3, we introduce the modules Tf,u and Lz (A, n) of
principal ‘W-algebras, recall the fusion rules and some properties of the subcategories €z, (p, q)
and €g(p, q) of the category of W (g)-modules from [15]; see Remark 2.12. In Section 3, we
recall the equivariant ‘W-algebras, prove Theorem 3.1 by using results in [6, 10], and prove
Theorem 3.2 by using Theorem 3.1 and Theorem D.2. In Section 4, we prove Theorem 4.2 by
using results in Section 2.1, (2.3), (2.4) and Remark 2.12, and derive Corollary 4.3 and Corol-
lary 4.4. In the appendix, we compute the characters of modules of principal ‘W-algebras of
type C and show Theorem D.2.

2. Preliminaries

2.1. Vertex tensor category theory. This section explains useful results on the theory
of vertex superalgebra extensions [20]. A good summary of the most important theorems is
[26, Section 2.4].

Let V be a vertex operator algebra and €y a semisimple category of V' modules that
is a vertex tensor category in the sense of [42-49]. Denote by Irr(€y) the set of inequivalent
simple objects in €y . Let W be a strongly rational vertex operator algebra; in particular, its
category Cy of W-modules is a modular tensor category [40,41]. The dual of an object M
is denoted by M *. Assume that A4 is a simple vertex operator superalgebra extending V @ W
and

(2.1) A~ P xewx)*

Xelrr(€y)

as a V ® W-module, where the 7(X) are inequivalent simple W -modules. Denote by Dy the
subcategory of W-modules whose objects are direct sums of simple modules appearing in the
decomposition of A. We assume that V' ® W is a subalgebra of the even subalgebra A¢ of A.
This set-up is assumed to hold throughout this section.

Theorem 2.1 (Special case of [57, Theorem 4.9]). €y is rigid and super-braid-reversed
equivalent to the subcategory Dw of Ew whose simple objects are the T(X) for X € Irr(€y).

Set € := €y X Cy . Note that the Deligne product of vertex tensor categories is a vertex
tensor category provided that at least one of the two categories is semisimple [19, Theorem 5.5].
We have just seen that € is rigid. There is a €-module category associated to A, denoted by €y4.
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A certain subcategory of local modules, denoted by €!¢, is in fact a braided tensor category
itself. One of the main results of [20] is that this category is equivalent as a braided tensor cat-
egory to the category of modules of the vertex operator superalgebra A that lie in €. Moreover,
there is a functor ¥ from € to €4 and ¥ (X)) for X an object in € is local if and only if the mon-
odromy My x = cx,4 ©cq,x of X with A is trivial. Here ce o denotes the braiding in €. The
induction functor has the important property that it preserves duality [20, Proposition 2.77]; in
particular, a rigid object induces a rigid object. Similarly, we have the category of modules and
local modules for A¢ and corresponding induction functor 4. There is then also an induction
functor, call it ¢, from local Ag-modules to A-modules. For a simple object M in ‘€jl°0°, the
monodromy with A is either one or minus one, since monodromy respects tensor products
[18, Theorem 2.11]. The Ramond twisted A-modules are objects in €4 that are local as €y4,,-
modules and for which the monodromy with A is minus one. The monodromy respects tensor
products; in particular, if X, ¥ have each monodromy minus one with A, then X X Y has triv-
ial monodromy. Since induction is monoidal and every object is a subquotient of an induced
object, this means that the tensor product of two Ramond twisted modules is always local. The
same type of argument yields that the tensor product of a local module with a Ramond twisted
module is always Ramond twisted. Proposition 2.77 of [20] says that ¥ (X)* =~ ¥ (X *). More-
over, [20, Lemma 2.78] states that if # (X) is local, then so is (X *), and the same proof with
an additional minus sign gives that if ¥ (X) is Ramond twisted, then so is (X ™).

The category of Ramond twisted modules is denoted by €Y and we will sometimes
omit the word Ramond. By Yoneda’s Lemma, one has ¥ = J4, o Fo; see [7, Lemma 9.1] for
a proof. In particular, ¥ (X) is in ‘6;1‘” if Mgy x = ldgymx and My, x = —Idg, xx.

Remark 2.2. We summarize properties as just explained.

(1) F(X) is rigid if X is rigid. The dual is ¥ (X)* =~ (X ™*) and if ¥ (X) is local (resp.
Ramond twisted), then so is (X )*.

(2) €Y is a €*-module category.
(3) The tensor product of two Ramond twisted modules is always local.

(4) F(X) for X in €4 is Ramond twisted if My, x = Idqymx and My, x = —Idg, mx-

Theorem 2.3 ([24, Proposition 2.1] or equivalently [58, Theorem 5.2 and Corollary 5.3]).
The categories of local and Ramond twisted modules of A are semisimple.

We continue with the same set-up as before. Let us set Ny := X ® 7(X)*. The multipli-
cation rule M f y 1s defined to be one if Nz appears in the operator product of Ny with Ny, and
it is zero otherwise. This is rephrased in categorical terms in [19, Definition 2.5]. For an algebra
in a rigid vertex tensor category of the form (2.1), [19, Theorem 3.5] says that MXZ’ y = Lif
and only if (Z)* is a summand of (X)* X t(Y)*. This statement is only proven if A4 is an
algebra in [19]; however, the argument (which is [19, Section 3.3]) is exactly the same in the
superalgebra case. In particular, Ny together with V' ® W generates A under operator products
if and only if 7(X)™* generates Dy as a fusion ring.

Lemma 2.4 (Consequence of [19, Main Theorem 3.5]). A is generated under operator
products by V@ W together with any field in X ® t©(X)* if and only if Dw is generated as
a fusion ring by the object T(X)*.
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Finally, a very useful theorem is Frobenius reciprocity.

Theorem 2.5 ([20, Lemma 2.61]). Let §: €4 — € be the forgetful functor; then, for
any object X in € and Y in €4, the two spaces

Home (X, 9(Y)) = Home, (F(X),Y)

are naturally isomorphic.

2.2. Admissible levels for g = ospy;,. Let g be a Lie superalgebra equipped with
a non-degenerate, supersymmetric, invariant, even bilinear form B on g. Then, to this data
and each complex number k € C, one can associate the affine vertex superalgebra vk (g, B).
We are interested in the cases where g is either a simple Lie algebra or g = 0osp;,. In these
instances, we just write V' (gq) when B is normalized such that long roots have norm two. The
simple quotient of V¥ (gq) is denoted by Ly (g).

The notion of admissible level is due to Kac and Wakimoto, who computed them explic-
itly in [54, Proposition 1.1] for simple Lie algebras.

Proposition 2.6 ([54, Proposition 1.1]). Let g be a simple Lie algebra over C of rank n
and let k € C. Let (-|-) be the Killing form on g, normalized such that long roots have norm
two. Let h, hY be the Coxeter and dual Coxeter number of g and r" the lacity, that is, r¥ = 1
intype A, D, E, r¥ = 2intype B,C, Fy and r¥ = 3 for G,. A level k is called admissible if

p=hY, (q.rv)=1,
p>h, (q.rY)=r".

k+hV=§eQ>o, (p.q) =1, p.g>0 and {

The first case is called principal admissible and the second one coprincipal. A principal admis-
sible level is non-degenerate if ¢ > h and a coprincipal one is non-degenerate if ¢ > rVh".

The definition is as follows.

Definition 2.7 ([53]; see also [54, Definition 1.1]). A weight A € h* is called admissible
if (A +p,a¥) > Oforalla” € AY and the Q-span of A} contains AY.

The notation will be reviewed in a moment. A level k is then called admissible if the
weight kA is admissible and A is the fundamental weight corresponding to the 0-th root «g
of the affine Lie algebra. Gorelik and Serganova extended the definition to affine Lie superal-
gebras [39]; see in particular [39, Section 5] for the case of g = 0%P |2, We compute these
explicitly in the appendix.

Proposition 2.8 (Proposition A.1). For k € C, A = kAg is admissible if and only if
there exist coprime integers a € Z and b € Z > such that k = % and
n+%

(1) k+h"="32if (b,2) = 1,
) k+hY =2=1if (b,2) =2.

v

Remark 2.9. Letk = % be an admissible level for 0sp;,,. Define u, v via

k=—m+1)+ 2 and (o) =1,
v
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and set £ = —(n + 1) + 5, in particular,
1
v=b, u=(k+n+1)b, and 2u—v=2(k+n+§)b.

We are interested in the cases where k is admissible for sp,, and £ is non-degenerate
admissible. .
Consider the case b is odd. Then k + n + % > nzj and so

1 b
u=(k+n+1)b2n+§+52n+l,

1
2u—v:2(k+n+§)b22n+l>2n.

So k is principal admissible and ¢ is non-degenerate principal admissible for sp,,,.

Similarly for b even. Then k + n + % > Z”b_l and so

u>2n and 2u—v>4n—-2((>2m+1)ifn > 2).

So k is coprincipal admissible and £ is non-degenerate coprincipal admissible for sp,,,.

If b is odd, then k being admissible for 0spy |y, is in fact equivalent to k principal admis-
sible and £ non-degenerate principal admissible for sp,,. However, if b is even and if n > 1,
then there are some levels k such that k is not admissible for osp;|,, but still is coprincipal
admissible and £ is non-degenerate coprincipal admissible for sp,,,.

2.3. Admissible weights for Lie algebras. Let IT = {«y, ..., o} be the set of positive
simple roots, normalized such that the longest root has norm 2. Let Q be the root lattice. The
fundamental coweights /', ..., w, are the duals of the positive simple roots and they span the
coweight lattice PV. The coroots are defined by a¥ = (a%a)“ and the coroot lattice is denoted
by QV. Its dual is the weight lattice P, spanned by the fundamental weights w1, ..., . Let
6,60, be the longest root and longest short coroot. Let k + 1Y = g be admissible; define the
sets of admissible weights

P(p.q):={AeP|Ale)) €ZLso, i =1,....,n, (A0) < p—h"} if(qg,r)=1,
P(p.q):={reP|Ale))elso,i=1,....n, A6) < p—h} if(qg,r")=r".
Let Lq be the Langlands dual Lie algebra of g. This means the roots of L g are the coroots of
g and vice versa. We denote roots, coroots, weights, coweights and their lattices and all other

quantities associated to g by an additional symbol . Since long roots are normalized to have
norm 2 and the short roots have norm 2/r", one has the relations
Lov=vrvo and LPY=Vrvp.
The dual level Lk to k is defined by
Pk +ERY)(k+ 1Y) = 1.
In particular, if k + hY = g is non-degenerate principal admissible, then Lk + LAY = % is
coprincipal for L. Define the sets
LpVip.q):={r e EPY | (Aoy) € Zso, i =1,....n,
ARy = rV(p—hV)}) it (g.rY) =1,
LpVip.q) ={AeLPY | (M) € Zso.i =1,....n,
(A*6) < p—h} if (q.r) =r".
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Since LGSV = /rV0, rescaling by +/rV gives the isomorphism

P(p.q) =LPY(p.g).

In particular, if & is principal admissible, then (note that # = £k and & > h" for any simple
Lie algebra)

22)  EP(q.rVp) = PY(g.rVp)
—(AePY | (Mar) €Zooi=1,....n, (\O) < q — h)
CireP|(MaY)eZsoi=1.....n. (AMO)<q—h)
CiAeP|MaY)eZsoi=1,....n (AO)<q—h"}
= P(q,1).

Finally, we define the subset of admissible weights that lie in the root lattice

Po(p.q) == P(p.q) N Q.

We specialize to type By, Cy. Let €1, ..., €, be an orthonormal basis of Z" and we view roots
as embedded in Z" or a rescaling of it. Some data for B, is

(1) simple roots ¢y = €1 —€2,...,€p—1 — €p, €n,

(2) simple coroots &y = a1, ..., 0y_| = Up—1, &) = 20p,

(3) longest root 6 = €1 + €2,

(4) longest short coroot GSV = 2¢q,

(5) Coxeter number 7 = 2n, dual Coxeter number 7¥ = 2n — 1.

The corresponding data for Cy, is

: — €1—€2 €n—1—€n
(1) simple roots oy = VRV, ,V2en,
(2) simple coroots ay = 2aq, ..., &, _; = 20tp_1, ;] = 0tp,
(3) longest root 8 = Ve,
(4) longest short coroot 6y = V2(er + €2),
(5) Coxeter number i = 2n, dual Coxeter number h¥ = n + 1.

We want to compare the sets of admissible weights of B, and Cy, so we add a superscript B, C
to indicate the type. Let p > n + 1; then

PC(p.)={AeP|(AV2(e —€ir1)) €Zso. i =1,....n—1,
(AV2€n) € Zzo, (A|V2e1) < p—n—1},
PB2p—1.2p)={ueP|(ule—€r1) €Zso.i=1,....n—1,
(4|2€n) € Z>o, (12]|€1) < 2p —2n — 1},
Pg(Zp—1,2p) ={pneP|(ule—¢€+1)€lso,i=1,....,n—1,
(ilen) € Zzo. (uler) < p—n—3}.
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We observe that the map A > ~/21 provides the isomorphism
23) PE(p.1) = P5(2p—1.2p).
Next, let p > 2n be odd. Then

PC(p.2)={AeP|(AV2€ —€ir1) €Zsoi=1,....n—1,
(A|V2€n) € Zso. (A|V2(e1 + €2)) < p —2n},

PB(p—1.p)={ueP|(ulei—€is1) €Lz, i=1,....n—1,
(412€n) € Zxo, (1le1 + €2) < p —2n},

PE(p—1.p)={neP|(ule—€y1) €Lz i=1,....n—1,
(len) € Zxo, (1ler + €2) < p —2n}.

We observe that the map A > /21 provides the isomorphism
(2.4) PC(p.2y=PS(p—1.p).

Let now g = 0sp5,. This is not a Lie algebra, but a Lie superalgebra. Its simple roots
can be identified with the simple roots of B, where the short roots are odd roots and the long
ones are even. Note that 2« for & an odd root is an even root and it can be identified with a long
root of C,. Weights of 0sp; |5, can be thus identified with weights of B, and it turns out that
there is a one-to-one correspondence between irreducible finite-dimensional 0sp;,,-modules
and irreducible finite-dimensional non-spinor representations of s0,,41 (see [59]). They are
both parameterized by weights in R = Q N P, the set of dominant weights that lie in the
root lattice of B,,.

Remark 2.10. Let E, be the simple highest-weight module of osp;|,, of highest
weight 1 and let v, be the highest-weight vector. Then E;, contains the $p,,, simple highest-
weight module E,, with ~/2v = p as submodule and this submodule is generated by v we

Similarly, let V(1) be a V¥ (0%p1|2,)-module whose top level is isomorphic to E,,.
Then the highest-weight vector generates a vk (sp5,)-module whose top level is E,.

2.4. Fusion categories of ‘W-algebras. Let V/¥(1) denote the universal Weyl module
of V¥ (g) whose top level is the irreducible highest-weight representation £, of g of highest
weight A. Let Ly (1) be its unique graded quotient. Let WX (g) the principal ‘W-algebra of g at
level k. It is obtained via quantum Hamiltonian reduction from V% (g) and the reduction functor
is denoted by HBS( o). Then the reduction HDOS(Vk (1)) of VK1) is a Wk (g)-module. More
generally, there is the twisted quantum Hamiltonian reduction of Arakawa and Frenkel [10].
These reductions are labelled by elements  in the set of dominant coweights, Z P+ and one
denotes them as

TY = Hs, (V). «=k+h".

One has

k _ Lotk
TA,M_ TM,A

by [10, Theorem 2.2], where Lk = Lk + LhV.
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Let Wy (g) be the unique simple quotient of ‘W¥(q) and denote the simple quotient of
T/{"M by Lx (A, ) Let k be non-degenerate admissible. If k is principal or coprincipal non-
degenerate admissible, then Wy (g) is strongly rational [3] and the simple objects are in the
principal admissible case the L (A, 1) with

(A, p) € P(p.q) x“P(q.rVp) = P(p.q) x PV(q.r"p)

and in the coprincipal case the L (A, u) with

(A, p) € P(p.q) x“P(q/r¥.p) = P(p.q) x P¥(q/r". p).

Call a non-degenerate admissible level of coboundary type if ¢ = / in the principal admissible
case or ¢ = r¥LhY in the coprincipal admissible case. If the non-degenerate admissible level
is not coboundary, then two simple modules are isomorphic if and only if they are in the same
orbit under a certain diagonal Weyl group action [35]; in particular, L (A, 0) = L;(1/,0) if
and only if A = A’. The modular transformations of characters have been computed in [12] and
been used to compute fusion rules in [15].

Theorem 2.11 ([15]). Let

LMW BLip)= @ NI Ly (9)
peP(L,1)

be the fusion rules of Ly_p~ () for £ —hY € Z~q. Letk = —hY + g be principal non-degen-
erate admissible. Then, by (2.2), simple modules are parameterized by a quotient of the subset
P(p.1) x PV(q,rY) of the set P(p,1) x P(q,1). Set Ly (A, 1)) = 0 for

(A, A) e P(p, 1) x P(qg. 1)\ P(p.1) x P¥(q,r").

With this parameterization, the fusion rules for (A, 1), (v,v') € P(p,1) x PV(q,r") are

LA RLi ) = @@ NPONS L Li(p. 9.
$eP(p,1)
¢'eP(q,1)

The proof of this theorem used a variant of Verlinde’s formula in modular tensor cate-
gories, namely that there is an isomorphism given by open Hopf links between the Grothen-
dieck ring of the category and the endomorphism ring of the direct sum of all inequivalent
modules. The open Hopf links are given by normalized modular S-matrix coefficients. Let
¢ = e2™i/P; then the map ¢ +— ¢9 maps the open Hopf links L,_pv(A) of the affine ver-
tex algebra L,_pv(g) at level p —hY to the corresponding ones, that is, Lg (A, 0), of the
‘W-algebra Wy (g). This map provides a homomorphism of rings. The cokernel of this ring
homomorphism has not been discussed in [15], but it is known: note that these Hopf links are
given by g-characters and in particular coincide with the ones of the corresponding quantum
group Uy (g) for A

qg= em;
see e.g. [14, proof of Theorem 3.3.9]. For k non-degenerate principal or coprincipal admissible,
the Hopf links vanish for all negligible objects and the non-negligible simple objects are exactly
the highest-weight modules of admissible weight at that level; see e.g. [60, Theorem 2 together
with Lemma 7].
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Remark 2.12. Let €(p,q) be the category of Wi (g)-modules at the non-degenerate
admissible level k = —hY + g. Let €1 (p, q) be the subcategory whose simple objects are
isomorphic to modules of type L (4, 0). Similarly, we denote by €r(p,q) the subcategory
whose simple objects are isomorphic to modules of type Ly (0, A”). We note the properties; see
[15, Theorem 6.1].

(1) The categories €1,(p, q) and €r(p, q) are fusion subcategories of €(p, q).

(2) Let k = —h" + £ be non-degenerate admissible with (¢,r") = (v,r"); then there is
the isomorphism K[€r,(p,q)] = K[€L(p,v)] of Grothendieck rings if both levels are
not coboundary.

(3) L (0, L") is in the centralizer of €1 (p,q) if A’ € Q.
(4) Lg(A,0) is in the centralizer of €g(p,q) if A € Q.

3. The universal affine vertex superalgebra yk (osp1)21)

We recall the notion of equivariant ‘W-algebras using [5]. Let G be an algebraic group
and « € C generic. The CDO algebra at level «, ‘SOCGh . 18 @ vertex algebra that has an action of
Vk(g) ® V¥(g) with g the Lie algebra of G and k = k + 1Y, —k = £ + hV. It satisfies

.= P vy evian
AEPT

as a vector space graded by conformal weights and weights of vk (g) ® vt (g). Moreover, it
is a direct sum of both V*(g) and V¥¢(g)-modules in the categories KL¥ (g) and KL (gq) (see
[5, Proposition 5.6]). Since these categories are completely reducible for non-rational k, £, it
follows that
i)g;h’x o~ @ VEQ) ® VE(*)  (k is generic)
AepPt

as V¥(g) ® V*(g) for non-rational k, £. The equivariant ‘W-algebra of G at level « with respect
to the nilpotent element f in g is the quantum Hamiltonian reduction corresponding to f on
the first factor. In particular,

Wo. = @ Th7 @V, Ty = HY ;(VF() (s generic).
LepPt

We restrict to principal nilpotent elements and will omit the symbol f. The T}’ are modules
for 'W¥(g). Moreover, WG« is a strict chiralization of a smooth symplectic variety [5] and
hence simple by [11, Corollary 9.3].

Theorem 3.1. Let F?"T1 be the vertex superalgebra of 2n + 1 free fermions and
consider G = Sp(2n) and @ = sp,,. Let T, t and L be related by

1 v
{+hY =2, t+1= _Zhvgpuzn’

and let t be generic. There is an embedding ’W’(ogpuz,,) = Wsp2n)x ® F?" 1 and

1
—+
T

ct= Com(Wt (Dg’pl\Zn)’ WSp(Zn),/c ® F2n+1)
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is a simple vertex superalgebra. Moreover, as WT"" (5p2,) ® yt (sp,,)-modules, its even
and odd parts decompose as follows:

Claz= P TieeViw. Chz= P TioeViw.
nEPTNQ HEPTNP\Q
Let\ € P+ and Cf = Cf’even ® Cf’odd such that
y4 ~ l l ~ V4
Cl,even = @ T[I,A ® V= (w), C)L,odd = @ T/i,l ® V().

WwePtNQ WEPTNP\Q

Then the C f are Ct-modules and

WSp(Zn),K ’Y F2n+1 = @ Cf ® N)tk,O’
AePtNO

with N )tt,o certain inequivalent simple W' (08P 1|2, )-modules.

Proof. 'We recall the twisted quantum Hamiltonian reduction of Arakawa and Frenkel
[10] for principal f. These reductions are labelled by elements w in the set of dominant
coweights P T, and one denotes

Y, = Hps . (V¥(L).

One has Tf,u = T/f, 1 by [10, Theorem 2.2] with the right-hand side reductions of modules
of V¢ (Lq) with Lg the Langlands dual Lie algebra of g and k = £ + LRV the shifted level
and r¥Ykx =1 the lacity. In particular, if ¢ = sp,,,, then Lo =s0,41 and hY =n + 1,
LpY =2n —1 and rv = 2. The twisted reduction commutes with tensoring with integrable

representations in the following sense:
(3.1 Hs ,,(VF) ® L) = HSs ,(V¥(W) @ o)L

as Wk (g) ® L-modules [6, Theorem 7.2], where L is an integrable module (at level £ € Z~¢)
for g and the left-hand side is the diagonal reduction at level k 4 n. Here U:ZL is the spectrally
flown module of L. This is defined in terms of Li’s A-operator [55] and it is again an integrable
module at the same level. It is the module twisted by the automorphism induced from the Weyl
translation

ti A s A+ A(K)p — ((Am) + @A(K))S.

If L = V is a lattice VOA, then one has U;:(VN) =~ VN 4, and more generally, for a module
Vv of Vi, one has O'ZZ(VN+V) =~ VN 4v+pu- In particular, one has O’ZVN ~Vyifueh.
Let N = Z" so that Vi is the vertex superalgebra of n-pairs of free fermions. Then N coincides
with the weight lattice P of sp,,,, thatis, let €1, ..., €, be an orthonormal basis of N and set
af =€1—¢€j41 fori =1,...,n—1and oy = €. Then «y,...,0n—1,20, span a sublattice
of N that coincides with the root lattice Q of sp,,. Moreover, Vy is a subalgebra of F2"t1,
the vertex superalgebra of 2n + 1 free fermions and F 2+l ~ [ (s02,41) ® Li(wy) is an
integrable module for 05,41 at level one. The even part is Lj(s02,41) and the odd one
L1(w1). We thus see that

Li(so2p41) ifp € Q,

GM(Ll(gozn-H)) = {Ll(wl) ifﬂ e P \ Q7
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Ly (a)l) if JVS Q s
Li(so2p4+1) ifue P\ Q,
2n+1 :
(F2n+1) ~ F e lflu € Q’
2 7 2n+l lf,l,LGP\Q,
with ™ F2"T1 the parity reverse of F2"+1 Recall that R = Q N P denotes the set of highest
weights of tensor representations of 03,41, i.e. of modules appearing as direct summands of

the iterated tensor product of the standard representation. Let k be generic; then, by [24, Theo-
rem 4.1],

(3.2) VE(s02n11) ® "1 = @ VETI(V) @ N,
AER

o, (L1(wr)) = {

with N )tt,o certain modules of ‘W' (0%p1|2,) at level ¢ determined by
k +2n
k+2n—1
Decomposition (3.2) is completely reducible by [23, Theorem 4.12]. Applying H]g to (3.2)

and using (3.1) and T", = TM 5> one gets

T;;,() ® F2n+1 ~ T(iu ® F2n+1 ~ Hl())S,M(Vk(g’OZn-FI)) ® F2n+1

= HY , (VF(s02n11) ® F2" 1) = @ Hs . (VFT' (W) @ N}
A€ER
=P T ON; = DT, ® N,
AER AER

with K = k 4+ 2n — 1 and © dual to & + 1, that is, 2t(k + 1) = 1. This equality holds for
u € Q, while for u € P\ Q, one has to add an additional parity reversal,

2t +2n +1 =

TKO ® F2n—|—1 ~ TK ® F2n+1 ~ HDOS’M(Vk(502n+l)) ® F2n+1

= HYs , (VE(s02041) ® TF?" 1) = P HSs , (VFT (1) ® "NS
AER

~ +1 ~ t
=P T1 @ N =D T8N,
AE€R A€R
It thus follows that (note that V¥(u*) = V¢(u) for g = SPoy)

WSp(2n),/c ® F2n+1 ~ @ 0 ® VK(M) ® F2n+1
HEPT

@ @ ,\®N)LO®VZ(/¢L)

weP+tNQ A€R

& P Priie™N,Viw

WEPTNP\Q AER

I

We thus obtain that
ct .= Com('Wt(ongz”), Wspan)c ® F2”+1)
= P Tieeviwe @ T(Ti.eViw)

HWEPTNQ WEPTNP\Q
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Since Wsp2n),c @ F 2n+1 g a simple vertex superalgebra on which ‘W’ (05pq|2,) acts com-
pletely reducibly, we have that Com(W’ (05p12,). Wsp(an),c ® F2"*1) is simple [16, Propo-
sition 5.4]. Recall that 27(k + 1) = 1 = 2xk and £ + h¥ = —«. Hence

1 1 1 1 1

T+K+hv *+1 K +/< K

and 12+t +4n +2 = —k —1=0. o
Theorem 3.2. Let £ be generic; then Ct ~ Ve(ospmn) and Cf ~ VEQ).

Proof. C*% and V¢ (0%py|2,) are simple vertex operator superalgebras whose graded
characters coincide by Theorems D.2 and 3.1. In particular, their weight one subspaces coincide
as sp,,-modules. The weight one subspace of C ¢ must generate an affine vertex superalgebra,
and the only possibility for this is to be of type 0sp;|y, at level £. Thus ct=vyt (03P1)20)
must hold. The C* are Vz(ospmn)-modules whose graded character coincides with the one
of V¥(1) by Theorems D.2 and 3.1. In particular, their top levels coincide as $P,,,-modules
and hence as 0spp,-modules. This is only possible if C Ex e, ]

4. The simple affine vertex superalgebra L (ospy|2,)
We now want to pass from the generic levels to interesting rational levels.

Remark 4.1. In general, if we have a family of vertex operator superalgebras A that
for generic level decomposes as a direct sum of modules for a commuting pair of subalgebras

vk wk
k k k
A =P wf,
Ael

then at any specific level £, this decomposition might not be completely reducible, as sum-
mands might have non-trivial submodules and there might be extensions between different
modules appearing at this specific level. However, any simple composition factor of A% must
be a composition factor of Vf ® Wf for some A € . The same statement applies of course
for the simple quotient A, of At Let Vi, Wy be the simple quotients of VE wt. Assume the
following.

(1) A¥ is an ordinary module for vk @ wk.
(2) The categories of ordinary modules of V; and Wy are both semisimple.

(3) Let/ ZV denote the set of simple objects of V, then for A € I, L in [ eV is a composition
factor of Vf implies L is the simple quotient of VE L~ Li.

(4) Let/ KW denote the set of simple objects of Wy, thenfor A € I, M in [ eW is a composition
factor of Wf implies M is the simple quotient of VEM = Mf

Then the only possibility for Ay is to be of the form

Ag=EP L, @ M; @M.
reJ
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with J C I the subset of those weights A with the property that Le in/, YV and M; £in I, W Here
M(A) € {0, C} is a multiplicity space. The same reasoning holds for ordlnary modules of A¥.

Let us now assume that V¥ is an affine vertex algebra and Wwkisa principal W -algebra.
Assume that Vy is at admissible level and W}, is at non-degenerate admissible level. Then (2)
of the assumptions holds by the main theorems of [3, 4], assumption (3) holds by [38, Theo-
rem 0.5] and assumption (4) by [3, Corollary 10.9] together with [38, Theorem 0.5].

Let ¢ = sp,, and £ = —hY + g be non-degenerate admissible. We prefer to parame-
terize modules by weight labels (A, u) with A a weight of sp,,, and p one of s05,41, i.e.
the simple modules are denoted by Ly (A, i) with A € P€(p,q) and u € PB(q,rV p)if £ is
principal admissible and u € PB(g/rV, p) if £ is coprincipal admissible.

Theorem 4.2. Let k = —h" + % be admissible and suppose that { = —h" + 52— is
non-degenerate admissible for sp,,,. Let PB .= PB(q,rVp) ifl is principal admissible and
PB .= PB(q/rV, p)iflis coprincipal admissible and Pg ;= PB N Q. Then

(1) Ly (03p1|2,) is a Lg(3p2,) ® Wi(sp,,)-module.

(2) We have
Li(spipn) = P Li(h) @ Ly(R,0)
A€P(u,v)
and, for u € Pg,
Liw = @ L) @LiA. p)
A€P(u,v)
as Ly (sp,,) ® W(sp,,)-modules.

(3) The Ly () with ju € Pg are a complete list of inequivalent simple ordinary Ly (0$py2,)-
modules.

(4) The category of ordinary Ly (0%py|2,)-modules is a semisimple, rigid vertex tensor su-
percategory, i.e. it is a fusion supercategory.

Proof. (1) Let Lk(gpz,,) be the image of Vk(spz,,) in Lg(0ospy)20)- By [22, Theo-
rem 8.1], the coset Com(Lk(ngn) Ly (05pq|2,)) is a homomorphic image of wt (sp2,)- By
[7, Theorem 4.1], this coset is simple, i.e.

Com(L (p2,). Li(05p110n)) = We(sp2,)-

As Wy(sp,,) ii strongly rational, Com(W¢($p,,), Lk (0$p;)2,)) is simple by [8, Lemma 2.1].
It follows that L ($p,,) = Lk ($p,,) by [13, Theorem 3.4]. Hence we have that L (03p12,,)
isa Lr(sp,,) ® Wi(sp,,)-module.

(2) forv = 1, 2. Let € be the category of ordinary L (sp,,) ® Wi(sp,,)-modules. The
category of ordinary L (sp,,,)-modules is semisimple [4] and a vertex tensor category [17] and
since the category of W;(sp,,,)-modules is a modular tensor category [40,41] as Wy (sp,,,) is
rational [3]. Thus [19, Theorem 5.5] applies, that is, € is the Deligne product of the cate-
gory of ordinary modules of L (sp,,,) and the category of ‘W (sp,,,)-modules. It follows that
L (0%py)2,) is a commutative superalgebra object, call it 4, in € by [18]. Hence the category
of ordinary Ly (0spq)2,)-modules is a vertex tensor category and equivalent to the category
f}l"c of local A-modules in € (see [20]).



Creutzig, Genra and Linshaw, Ordinary modules for vertex algebras 17

Since A = L (0%py|2,) is a homomorphic image of vk (05P1|2,)- it must be of the form
(recall Remark 4.1)

A=Li(spip) = P LM @ Ly(X,0) ® M(R)
A€P(u,v)

with M () € {0, C}. We have to show that M (1) = C. The subcategory of ordinary L (sp,,)-
modules whose simple objects are the Lz (A) with M (A1) = C is a rigid tensor subcategory
of ordinary Lg(sp,,)-modules by Theorem 2.1. Let D be the corresponding subcategory
of €, i.e. simple objects are simple L (sp,,)-modules in this rigid subcategory times simple
Wi (sp,,)-modules. In particular, A = Ly (0%p;)5,) is an object in D and we can consider the
category of local A-modules in O, which we denote by i)}fc. The category i)ifc is semisimple
by Theorem 2.3. It is a subcategory of ‘6/11‘” that is closed under submodules; in particular,
a simple object in 50}4‘” is also simple in ‘C’X’C. Let ¥ be the induction functor from O to 5()114“.
Note that

Xy = AR (Li(sp2,) ®Le(0.0) = P Li(D) ® Ly(h. p) ® M(R)
A€P(u,v)

as object in €. Let P8 := PB(q,rV p) if £ is principal admissible and PB := PB(q/rV, p)
if £ is coprincipal admissible. The X, := ¥ (Lk(sp,,)) ® Ly(0, 1)) is in !D}fc if u e PB by

Remark 2.12 (3). Let Pg = PB N Q. By Frobenius reciprocity, Theorem 2.5, for 11, v € PB,

Hom gyiec (X1, X)) = Hom guee (F (Lic(sP2,) ® L(0. ), F (L (592,) ® L (0,1)))
= Homg (L (sp2,) ® Le(0, 1), AR (Lg (5p2,) ® Lg(0,)))

>~ Homg (Li(5p2,) ® Lg(0, it), Li($p,,) ® Lg(0,v))
= §u,0C.

Thus the X, are simple ordinary A = L (0%p;|5,)-modules. On the other hand, the ordinary
module of highest weight © must be of the form

Lw= @ LW ®L.p)®M@A.p
A€P(u,v)

with M(A, ) € {0,C}, and so we can conclude that M(A, u) = M(A) and X, = Ly ().
By Remark 2.10 and semisimplicity of ordinary L (sp,,)-modules, the Ly (0sp|,)-module
Ly (w) viewed as an Ly (sp,, )-module contains the L (sp,,)-module Lg(v) with pu = V2v
as submodule. It follows that M(v) = C if V2v € Pg Since Pg >~ P(u,v) forv =1,2by
(2.3) and (2.4), we have proven our second claim in these two cases.

(2) for general v. Let My (sp,,,) be the category of ordinary modules of L (sp,,) and
let €©(Wy(sp,,)) be the category of Wy(sp,,)-modules. Then Ly (0ospy|5,) is weakly gener-
ated by the odd dimension one fields; these correspond to the top level of Lz (w1) ® L¢(wq,0)
(w7 is the first fundamental weight which is the highest weight of the standard representa-
tion of sp,,). By Lemma 2.4, €©('W(sp,,))L is generated by Ly(w1,0) for v = 1,2. By
Remark 2.12, the Grothendieck ring only depends on the numerator of the shifted level and
whether the level is principal or coprincipal non-degenerate admissible. Hence €('W;(sp,,))L
is generated by Ly (w1, 0) for all v. By Lemma 2.4, all simple € (W;(sp,,))-modules appear
in the decomposition of Ly (0$p;5,),i.e. M(A) = C forall A € P(u,v).
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(3) Let X be a simple ordinary L (0%p;p,)-module. Since any indecomposable ordi-
nary module of the universal affine vertex operator superalgebra is a homomorphic image of
a universal Weyl module vk () with p a dominant weight of 05,41 that is non-spinor and
since X is necessarily a Lg (sp,,) ® Wi (sp,, )-module, it follows that

X= @ LM)eL(G.peMi.p
A€P(u,v)

with . € Pg and we already proved that, in this case, X =~ Lz (u).
(4) Let €('W, (spz,,)) g be the subcategory of € (W, (%pz,,)) R whose weight labels lie
in Q (i.e. they are non-spinor). The functor #: € (W, (ngn)) & — Mk (05py)2,) defined by

H(X) = F (Li(p20) ® X).  H(f) = F(dL,(sp,,) ® )

for X an object and f a morphism in €(W, (ssz))g is braided monoidal as a composition
of braided monoidal functors. It is fully faithful by Frobenius reciprocity and it is essentially
surjective, i.e. it is an equlvalence Thus the stated properties of My (0sp,) are true as they
are true for € (W, (sp2n))R |

Corollary 4.3. Let k be principal or coprincipal admissible for sp,,,.
(1) Mg (sp,,) is rigid.
(2) My (sp,,) is generated by Ly (w1).

(3) There is a super-braid-reversed equivalence My (sp,,) = C(W(sp,,)) L sending Li (1)
to Ly (A, O)*.

(4) There is a super-braided equivalence € ('Wy (5132,1))}Q2 =~ My (05py)2,) sending Ly(0, w)
10 Li ().

Proof. The first and third statement follow from Theorem 2.1. The second one from
Lemma 2.4. The last equivalence is given by the functor sending Ly (0, ) to

F (Li(sp2n) ® L(0. 1)) = Ly (1),

which is essentially surjective by the previous theorem and fully faithful by Frobenius reci-
procity, Theorem 2.5. O

Corollary 4.4. The category of Ramond twisted modules is semisimple and the simple
objects are parameterized by . € PB \ Pg and they decompose as

Lemw= O L) ®LyA p).
A€P(u,v)

Proof. We use the properties stated in Remark 2.2 in our setting. Let u € PB\ P2
then 271+ is one for A € Q and minus one otherwise. This means that the monodromy of
Li(sp2,) ® Lg(0, 1) with the even part of Lg(0%p;jp,) is one and with the odd part it is
minus one. This is precisely the condition that

Li(p) := F (Li(sp2,) ® L(0, 1))

is a Ramond twisted module.
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Let M,E(ospmn) be the category whose simple objects are such Lz (). Let

E(We(5p20)) 5 2

be the subcategory of €(W;(sp,,))r whose simple objects are L¢(0, v) with v € PB\ PB
Since monodromy respects tensor products, it follows that € (W (sp,,,)) R\Q must be a module
category for € (W, (sspz,l))g and the tensor product of two objects in €(Wy(sp,,,)) R\Q must
be in € (W, (ngn))g Since induction is monoidal, MR (05p1|2n) is an My (05pq|p,)-module
category as well and the tensor product of two objects in MR & (05P1|2,) must be local. With
Wi (0, ) in €(Wy(sp2,)) R\Q the same must be true for its dual Induction preserves duality,
and hence the dual of any object in MR ¢ (05D1)2,) 18 in MR © (05P1)25,) as well.

Consider arbitrary twisted modules X and Y in M}j(ogpmn). Let Y* be the dual of Y
then

X = Li(ospip) RX CY*RY)RX = Y* K (Y KX).

Since the tensor product of two twisted modules is local and ,M}: (05P1)2,) is an My (05p;|2,)-
module category, it follows that X is in :M,E(oespmn). |

A. Admissible levels

Let ¢ = 0%p;|p, with a non-degenerate even supersymmetric invariant bilinear form
(+|-), let h be a Cartan subalgebra of a Lie superalgebra osp;|5,, let A be the root system
of 0sp;,, with respect to b*, and let IT = {w1,...,a,} be a set of simple roots of A. Then
the highest root of 0sp;,, is equal to 6 = 201 + -+ + 2a,. Suppose that ;, is a (unique)
non-isotropic odd simple root, the bilinear form (- |-) on 0spy|5, is normalized as (6]0) = 2,
and «;’s satisfy that

|
(ajlaj) =1, (Oli|01i+1):—§, i=1,...,n—1,

(anlon) = (@ilaj) =0, i =j|>1

5’
Let § = 03pq)p,[t, t711@® CK @ CD be the (untwisted) affine Lie superalgebra of 03P1|20
equipped with the following Lie superbrackets:
la ® ™ .b®1"™] = [a.b] ® "™ " + my(alb)Sm, +my.0K.
[D,a®t™]=ma®t™, [K,g =0
for a,b € 0spy)p, and my,my € Z. Let Hh=5H®CK @®CD be a Cartan subalgebra of §.
Then the bilinear form on h extends to § such that (K|D) =1and
(K|K) = (D|D) = (h|K) = (h|D) =0 forallh €.

Define a linear isomorphism v: b* —>§ by (T}'(a)|h) = «a(h). Then b* has a non- degenerate
bilinear form by («|8) = (V(«)|V(B)). Let A be the root system of § with respect to b* and
let IT = {ap} U IT be a set of simple roots of A. Set an imaginary root § := oo + 6 in A and
Ao € b* such that §(D) = Ag(K) = 1 and

§(h) = Ao(h) = 8(K) = Ao(D) =0 forallh € b.
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We have b* = h* & C8 @ CAo, ¥(§) = K and T(Ag) = D. Denote a" = 27(er)/(e|or) € b
for o € h* if (a|er) # 0. Then
of =20(ei), i=1,....,n—1,
,\1/ = 4V (ap), (x(\)/ =@—-0)=K-06".

In particular, 0¥ = V(2a; + -+ 4+ 20,) = ) + -+, + loz . Recall that the Wey1 vec-
tor p € b* of ospy|p, is defined by p(e)) =1 for all ; € TI. Deﬁne an affine Weyl vector
pebh*byp=p+hYAg, where

1
YEp@) =0+

is the dual Coxeter number of 0sp;,,. Then p(@V)=1foralla € fl.

A root & € A is called even (resp. odd) if the root space ga is even (resp. odd). Let Ao
(resp. Al) be the set of all even (resp. odd) roots. A root @ € A is called principal if « € f
ora/2 € . Let Hpr be the set of all principal roots. Then @7 , are one-dimensional and they
generate a Lie subalgebra s[z of g*. We have Hpr = {agp,a1,...,0y—1,20y}. For a € Hpr,
a snnple reflection 1 Ty € GL(f) ) is well-defined. Then the affine Weyl group of @* is defined
by W = (rglo € Hpr) ap C GL(b ). Fora, A € b*, define a translation operator

ta(3) 1= A + A(K)e = ((R]) + 5(0{|0¢)A(K))8.
Then roorg = tg and ty ) = Wigw ™', talg = 144 p for
we W = (rgla € Ty N A)gp

anda, 8 € b*. Thus W ~ W x M with

M = Spanz{w(0) | w € W} = Spanz{x € A | (¢|a) = 2}.
Let AT be the set of positive roots in A and

At = AT U{a+mS|ae A, meZsi}u{ms|me L=y} CA.

For A € b*, let

AV i={ae Wiy | A@Y) e Z}), AW :=AR)NAT,

) :={8e AT | 2o € A(A) such that 0 < ro(B) < B,

where A > & A —p € Zso(ANQxo f[pr). Then A is called admissible in the sense of [39,
547 if

(1) A+ p)(@Y) > 0fora € II(A).
(2 QAG) = QA.
Proposition A.1. For k € C, A = kg is admissible if and only if there exist coprime
integers a € . and b € 7>y such thatk = 3 and
(1) bisodd =k +hY > #,
(2) biseven = k + hY > 2"b—_1
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Proof. Condition (2) implies that k = A(ety ) € Q. Hence k is of the form k = 5 Wwith
a €Z and b € Z>1 such that (a,b) = 1. Notice that (x|o) =1 or 2 if & € WIIp,. Thus
Wy N A = Ajong U Apyig, where

Along ={a € A | (e]a) =2} and Apig ={a € A | (a|e) = 1}.

Since mK )
m m a
A((@ +mb)Y) = A(av n ) _ a
(a|a) (ala) b
for @ € Ajong U Apig, we have
&(l) _ {bm8 +a | meZl,ace Along U Amid} if b is odd,
{bmé+a |meZ,a € A} U {%mc? + } meZ,uac Amid} if b is even.

Therefore, A is admissible if and only if
(i) (A +p) (@) € Zsy foralla € A(A) if b is odd;
(i) (A + p)(aY) € 1Z5y foralla € A()* if b is even.
Note that we have the following useful formula:

~ ~ ~ ~ ~ 1
A()L):{ozeWHpr %¢A&(A+ﬁ)(av)eZor%EA&()L—Irﬁ)(aV)eZ—IrE}.

In case b is odd, ﬁ(k) ={bd—0,a1,...,a,—1,2ay}. Then, since
b8§—0) =bK—-0Y, A+p=k+h")Ao+p, pO)=h"-1,
condition (1) is equivalent to

A+p)((bs—)")=A+p) (K —0")=blk+h")—(h" —1)=>1
= k+h"> %

In case b is even,

~ bs —6,2 ifn =1,
A = {b o1} it
{58 — b5, a1, ... ,an_1,2an} ifn > 2,
where 0y = 0 — a1 = a1 + 2(a2 + -+ - + @y) is the highest root in Ap,;q. Then, since
b v /b
(55 ~6,) = 2\)(55 —0,) = bK — 6},
0 =2V(a1 +2(2 4+ an)) =) +2(ay + -+ ay_y) + o,
p(0)=14+2(n—-2)+1=2(n-1),
condition (1) is equivalent to the following:

() ifn =1,

A+p)((S—0))= A+ p)(BK —0Y) =bk+h")—

=

| =
| =

1
— k+thB;
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(i) ifn > 2,
~((b v ~ v v
a+pmgs—&))=a+pmm—@)=bm+h)—zm—nzl

2n —1
— k+h'> A

Remark A.2. Proposition A.1 for n = 1 recovers the statement of [52] for admissible
levels of osp(1]2).

Proof. Recall that k is an admissible level if A = kA is admissible. Example 2 in [52]

says that k = 2 = ﬁ with coprime integers ¢ € Z and u € Z>1 is an admissible level if and
only if 3u+¢t—1>0if7risodd and 3u +¢t—3 >0 if r iseven. Let a € Z and b € Z>,
be coprime integers such that k = 2t_u = 4. If t is odd, since (¢,2u) = 1,a =t and b = 2u.
Hence b is even. Then 3u + ¢ — 1 > 0 is equivalent to
B42a-320 = L4122
- b 27 2b

If ¢ is even, u is odd, and since (%, u)=1,a= % and b = u. Hence it follows that b is odd.
Then 3u 4+t — 3 > 0 is equivalent to

3 a 3 1
—=b —1>20 = —+=->-—.
Pt l= b T27 %
Therefore, the statement in [52] is the same as Proposition A.1 forn = 1. O

B. Formal characters

B.1. Characters of modules in @. Let g be a Kac-Moody Lie superalgebra in the
sense of Serganova [62] and let B be the Cartan subalgebra of §. Then we can define the
category O as certain full subcategory of g-modules in the same way as in [27], and the
characters

chM =) (dimM,)et, Meo,
reh*
where M) is the weight space of M for E of the weight A. See e.g. [39, Section 1] for the
details.

B.2. Characters of V¥ (g)-modules. Let g be a finite-dimensional simple Lie superal-
gebra with normalized even supersymmetric invariant bilinear form (- | -) such that (6|60) = 2
for the highest root 6 of g, and let § = g[t,7 '] @ C K be the affine Lie superalgebra of g with
the central element K. For any finite-dimensional highest-weight g-module £ and k € C, we
define the induced g-module ng (E) by

vEEY=U@ ® E.
U(glt]®CK)
where we consider E as a g[t] & C K-module by g[¢]t = 0 and K = k, and U(a) denotes the
universal enveloping algebra of a for any Lie superalgebra a. The module Vé‘ (E) is called the
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local Weyl g-module induced from E at level k. Set
VE(@) = V4 (©)

for the trivial g-module C. It is well known that V¥ (g) has a vertex superalgebra structure, and
then Vé‘(E) is a V¥(gq)-module. Let 7V be the dual Coxeter number of g. If k 4+ 7Y # 0, the
Sugawara construction defines the Virasoro field

L(z) = Z Lz M2

meZ

on V*(q) so that any V¥ (g)-module has a Virasoro module structure with the central charge

k sdim(g)
k+hv '
From the point of view of vertex superalgebras, the formal character of Vé‘ (E) is defined as

follows:
(ulp +2p)

2(k +hV)

where p is the highest weight of E, and p is the Weyl vector of g. By definition, the spe-
cialization of ch ng (E) by e® > ¢ coincides with the trace function of gLoe* for A € h*
on Vé‘ (E).

chVE(E) = ¢"cW ch VE(E).,  m(n) =

B.3. Characters of ‘W¥ (g)-modules. Suppose that g is a simple Lie algebra. Let ny
(resp. n—) be the sum of positive (resp. negative) root vector spaces of g, f a principal nilpo-
tent element of g in n—, and Hj¢(?) the Drinfeld-Sokolov reduction cohomology functor
associated to f', which is defined by

HSg(M) = HZT*(Luy, M @ C,), M €0,

where Luy =ny[t,t7 1, H %""(Lmr, ?) is the semi-infinite cohomology of Lu-modules,
and C is the one-dimensional L -module by x¢" + 8, —1(f|x). Then

Wk(g) = HSs(V¥(9))

has a vertex algebra structure, called the (principal) ‘W-algebra associated to g at level k. We
have ngs(Vk (q)) = O unless i = 0. If k + 1Y # 0, WK(g) also has a Virasoro field of the
central charge
lp = (k + 1")p"|?

k + hv '
where pV is the Weyl covector of g. For any ‘WX (g)-module W whose Lo-eigenspaces are
finite-dimensional, we define the formal character of W by

rank(g) — 12

chW = tryy (qLO).

Consider a Wk (g)-module HS (M) for a highest-weight V¥ (q)-module M with the highest
weight w. Using the Euler—Poincaré principle, we have

qmﬁl(u«)
[172,(1 — g/)rank(®)

where R is the Weyl denominator of g.

ch Hs(M) = (Rch M), g—c@lo-
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C. Characters of modules of 0sp;|2, and $p2,

C.1. Settings for 0sp1)|2, and sp3,. Consider the cases § = 08p;j2, and § = $pay.
Since sp,, C 03Py, We may identify the Cartan subalgebra of sp,, with that of 0sp;,,,
which we denote by b. Let IT°*" = {a1,...,a,} be a set of simple roots of osp;j,, such
that [T°* = {ay,...,an—1, 20, } forms a set of simple roots of sp,,. The Dynkin diagrams
corresponding to IT°%P, TT*P are the following:

O—O— " —0—=e and O—O— ' —O0—==0.

aq (0%} an—1 On o] o ap—1 20y

The normalized invariant form (- |-) on 0spy|y, satisfies that (20 |2a,) = 2. Then the invar-
iant form restricted to sp,,, is the same as the standard normalized form on sp,,. Let Q°%?
(resp. Q®P) be the root lattice of 0sp; |, (resp. p,,), and let P°%P (resp. P*P) be the weight
lattice of 0spy |, (resp. sp,,). It is easy to see that Q°P = P°*P = P*P_which we denote
by P.Let Ay, Ay 5, At 1 be the set of positive roots, even positive roots, odd positive roots
of osp |, respectively. Set

1 1
Posp = Psp — P1, Psp = 5 Z o, p1= 5 Z o.
aEAL D a€AL T

Let p;’p be the element in H* corresponding to the Weyl covector of sp,,,, that is, (,o;/]D o) =1
for all @ € I1%P. Then we have

1
Posp = EP;/p

by direct computations.

C.2. Verma modules. For k € C, A € h*, let MOE,‘p (A) (resp. M, p()L)) be the Verma
module of 08Pz, (resp. $p2,) with the highest weight A at level k. Then

eA A
chME, )= <—. chMEQ) =
Rosp sp
w . .
Rosp=Rey [ Tl +e%g)a+emg/™h,
aceAp 1j=1
m . . .
Rep= [] [Ja-¢)"1—eg) 1 —e¢/7h),
a€A L 5j=1
where g = e~% as usual.
Lemma C.1. P
Rl — Z A (A|A+2m)

osp _
H _1(1 qj)n AEP

Proof. LetA; =) "_. ;. Then AL 1 = {A1,...,An}. We have

Jj=i

1 n n
(Aildj) = 58, 20i=>» X and P =EPZA.
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Using the Jacobi triple product identity

o0
[Ta-¢)"0+ug)a+u"g/™H=>" u™mg2mem+1)

j=1 meZ

foru = eti , it follows that

n
Rsp ]_[(1 —a)RA =T X eMiki ghmi(mi+1)

j=1 i=1m;eZ
— E eXi= mikiq% Y1 mi(mi+1)
mi,...mny€Z

= 3 etqlit2en, .
AEP

Corollary C.2. Forany u € P,

(A—ulA—u+2p07)
q
chME () =) chME(Q)BL B = S
osp ~ sp M l‘[;?il(l _ q])n

Let W be the Weyl group of sp,, and |1|? = (A|A) for A € h*. Since |p7|> = Z, we

8 b
have
gA—nteilP—%

Bl = T
Hj:](l —q/)
Thus
BN =Bl vept BL,=BY Do yew,

C.3. Local Weyl modules. Let P4 be the set of dominant weights in P. For k € C and
n e Py, let E *P (resp. E 13) be the finite-dimensional simple 0sp;|,,-module (resp. sp,,-
module) with the highest weight u, and let V osp (1) (resp. Vg’; (w)) be the local Weyl module
of 08py|2, (resp. $p2y) induced from E,, at level k. See Section B.2 for the definitions of local
Weyl modules. We have

VE (W) = Ulospy o[t 17" ® ESP,
VE (1) = Uspy, ™17 ® EZP

as vector spaces. Thus

ch Vi, () = Y (=1 ch Mg, (w(it + posp) — Posp).
wew

ch V() = Y (=)™ ch ME (w(p + psp) — psp),
wew

where /(w) is the length of w in W. Using the equalities

B* _ prteoss g Gpsp)=pi _ puw! Gpsp)—psp
W(h+posp)—Posp T w(+posp) T T HtPosp - K
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and Corollary C.2, it follows that
)’J’_ S —Ps
(C.1) chVE () = Y chmb ) S (—1)/@ gy Atre)=rer,
AeP wew

Define a real form h of H* and a Weyl chamber C in hg by
bR =P®zR, C={rebhy|A|aY)>0foralla € Ay},
where ¥ = 2a/(x|a) € h*. Then
W(C) = | w(C)={reby| @A) #0foralla € A}, W(C) = | ] w(C) = bg.
weWw wew

An element A € by, is called regular if A € W(C), and is called singular unless A is regular.

Lemma C.3. Let P™¢ be the set of regular elements in P, P SN2 the set of singular
elements in P, P ¢ = P, N P" and ng P, N PS¢ Then

(1) P = P PS" and Py = P8 L PI™,
(2) PE = Py + psp.

(3) Pt = W(P®) ~ W x PI*

4) P = W (P"),

Proof. (1) is trivial. First, we consider (2). Since P+ = P N C, (2) follows from the
fact that P coincides with the set of integral dominant weights of sp,,. Next, we consider
(3) and (4). Since b = W(C) and P is W-invariant, we have P = W(P N C) = W(P4).
Hence .

Pre = W(PI*) and P = W(PL"™).

This proves (4) and the first equality of (3). Finally, we show the last isomorphism of (3). Using
the fact that W acts transitively on the set of Weyl chambers of sp,,,, it follows that the map
W x P 5 (w,A) = w()) € P™ gives an isomorphism. Therefore, (3) follows. o

Set
wold=w+ psp) — psp, weW, Aebh™

Proposition C.4.  Suppose thatk ¢ Q. For u € P, we have
chVhk,(w =Y chVEQ) Y (/@ B,

A€EP L weWw

Proof. By (C.1) and Lemma C.3, we have
(C.2) chVE (= > Y chMEwior) D (—1)!@2) pracwicl

AGP.*. w1 W wreW

+ > > chMiwiod)

AeP_T_"” psp W1 ShY

% Z (_1)1(w2)B;fz°w1°l

wreW
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= > chVEQ) Y () pret
AEPy weWw
+ > > =ni®echME won)
)LePi“g_pgp w1 ES)
% Z (_1)l(w2)B;f2°A»
wreW

where S is a set of representatives of W/Ker(W > w = w(A + psp) € W(A + psp)) in W.
Since k ¢ Q, the Kazhdan—Lusztig category is semisimple and every simple object is isomor-
phic to Vs]; (A) for certain A € P4 so that

VEL(w) =~ P VEQ) ® Homg,, (VA M. VE, ().
AEP_A,_

Then each coefficient of ¢*°* for w € W and A € Piing — Psp in ch V[f‘gp () must be zero.
This implies that the second term in the last equation in (C.2) is equal to zero. Therefore, we
complete the proof. |

Corollary C.5. For A € P}"® — psy and ju € Py,

> ()i et <.
wew

D. Main results

D.1. Branching functions. Let /),

ssps Nep be the dual Coxeter numbers of 0spyz,,

sp,, respectively. Then h\o/sp =n+ %, h;/p =n + 1. From now on, we assume that k ¢ Q.
Especially, k + hy, # 0and k 4 hg, # 0. Set
osp (]t + 2posp) sp (] + 2psp)
me () = — o —— s My (W) = o — ===, pE Py
k 2(k + hysy k 2(k + hy,
Now, it follows from Proposition C.4 (see Corollary C.2 for the definitions of B &) that
Tk 1 vk l DWoA
(D.1) chVE ()= )" chVAM™) D ()™ Bt
AePy weWw
~wok _ quo)\,u.

T (=g
Awory = mp™ () = mP () + (wo A — plw o A — -+ 2p0).
We call the coefficients of ch Vgl; (A) inch Voksp () the branching functions. Define £ € C by
1 1

D.2 =2
(b2 K+hy, | C+hy

Lemma D.1.

Aporu =m (wod —2(0 + h)p) — (wok —2(L + hyy)plpdy)-

Proof. Direct computations. |
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D.2. Characters of simple W?* (sp2,)-modules. Forv € h*, let L?p (v) be the simple
quotient of pr (v), and let Wfp(v) be the Wakimoto module of $p,, with the highest weight
v at level £ (see [32,34,64]). Consider an $p,,-module L?p (A =2+ h;/p)u) forA,u e Py.
By [33] (see also [9, Proposition 4.2]), we have a resolution of L?p (A =20+ h;/p),u) of the
form

(D.3) 0— L7P(A —2({ + hfu) = Co - C; — -+ > Cp2 >0,
Ci = @ Wgep(w oA —2(L + h;/p),u).
wew
l(w)=i
Thus

ch sz(/\ -2+ h;/p)ﬂ) = Z (—l)l(w) ch Wfp(w oA —2(L + h;/p)u).
wew

Recall the Drinfeld—Sokolov reduction cohomology functor HSq(?) introduced in Section B.3.
It follows from [2] that ngs (L?p A=20+ h;’p) w)) is a simple ‘W* (sp,,,)-module, which we

denote by Lg (X3 —2(+hy,))-
Theorem D.2. Suppose that k ¢ Q and £ € C defined by (D.2). For u € Py,

ch Vasy () = D ch V(M) h Le(Ya—a(e4hzmn)-
P
)LGP+

Proof. First of all, for i # 0, we have (see [1] and [31] respectively)
Hig (L7 (A —2(£ + hy)w)) = 0,
Hps(Wh(wo A —2(0 + hy)w)) = 0.
By applying the functor ngs (?) to (D.3), we obtain the exact sequence
0— LZ(XA—2(€+h§p)M) - HI())S(CO) - HI())S(Cl) o HI())S(Cn2) -0

and, using the Euler—Poincaré principle, the character formulas

“P(woA—2(L+hY,) )

~ qml sp

ch H(C)) = :

DS w;/V H;'il(l—ql)n
l(w)=i

X (ﬁgp ch Wfp(w oA —2(f + h;/p)u)ﬂ

@sg—(@lop)
Hence

(D.4) J1Le()(;x—z(zz+hgp)u)
m; P (wod—2(+hy,) 1)

= _plw .
Z = ]—[7.;1(1 —q/)"

wew
x (Rapch Wy (w o A = 2(€ + hyy) ) \equ_(alpgp,
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Now, it is easy to see from the definitions of the Wakimoto modules that

(D.5) ch Wi (v) = ch M& (v), v eb*

Using (D.4), (D.5) and Lemma D.1, it follows that

quol.u

chLe(nangyn) = Y (D' —g——c
(E+hsp)u w;/ H;‘;l(l_qj)n

Comparing this with (D.1), we see immediately that the branching functions coincide with the
characters of Ly (X3 —2¢+nY,)u)- i

(1]

(2]
(3]

[4]
[5]
(6]
7]
(8]
19]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
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[18]

[19]
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