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Abstract— This paper presents a constrained reinforcement
learning-based control strategy for building demand response.
Compared to conventional (unconstrained) reinforcement learn-
ing (RL) controllers where indoor comfort constraints are
addressed by adding a comfort violation penalty in the reward
function, the proposed strategy handles the constraints explic-
itly, by upper bounding the expected cumulative constraint
violation, to avoid the use of arbitrarily set penalty factors that
can significantly affect control performance. To demonstrate
its efficacy, simulation tests of the proposed strategy as well as
baseline model predictive controllers (MPC) and conventional
(unconstrained) policy optimization methods were conducted.
The simulation tests show that the constrained RL strategy
achieved utility cost savings up to 22%, similar to the MPC
baselines, with minimum constraint violation, while the un-
constrained RL controllers led to either high utility costs or
constraint violations, depending on the penalty factor setting.

I. INTRODUCTION

Building electrical loads represent 75% of the electricity
consumption in the United States. Technologies and solutions
for efficient and sustainable building operations have wit-
nessed growing attention in the past few years, with heating,
ventilation and air conditioning (HVAC) demand response
being one of them. Demand response plays an important
role in improving electric power system reliability against
uncertainties in renewable generation, peak demand, asset
availability, and other grid contingent conditions [1]. Model
predictive control (MPC) is a broadly used technique in
demand response control of HVAC systems. While MPC
offers a powerful framework that can explicitly consider
constraints during control decision making, a decent process
model is needed to achieve satisfactory control performance,
the development of which would require significant engineer-
ing costs, especially for complex systems such as buildings.
Reinforcement learning (RL) offers a promising model-
free control approach that has been successfully applied in
different fields including building energy management.

1) Related work: Numerous studies have applied RL
techniques for building controls. The earliest works used Q-
learning techniques and highlighted the challenges of RL
techniques that need to be overcome for their practical
applications [2]. With the development of new algorithms,
such as deep Q-networks (DQN) and policy optimization,
better performance could be achieved even for applications
in the control of complex systems such as HVAC demand re-
sponse. For instance, DQN was used with an action processor
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to leverage previously known information from rule-based
controllers to reduce training time [3]. Better performances
were shown using deep deterministic policy gradient under a
locational marginal price in a multi-zone residential HVAC
system [4] and smart home energy management system [5].
DQN strategies have been implemented and demonstrated
in real buildings, e.g., a DQN strategy pre-trained by a
simulation model was deployed in a residential building
demonstrating a potential of 10 to 20% cost savings [6].
Asynchronous advantage actor-critic methods were applied
for demand response subject to demand charges in a multi-
zone commercial building [7]. Policy optimization algo-
rithms have also been studied in the context of demand
response. A two-stage RL training framework was proposed
integrating evolutionary strategies and proximal policy opti-
mization (PPO) to address a grid-interactive building control
problem [8]. Pure PPO algorithms were also tested under
different demand response scenarios in a building simulation
tool (EnergyPlus) showing energy reduction of up to 22%
and peak demand reduction of up to 50% [9]. All the studies
above used unconstrained RL that cannot directly handle
constraints, e.g., capacity and indoor comfort constraints,
during control decision making. In unconstrained RL imple-
mentations, constraints are often addressed heuristically, e.g.,
by adding a penalty for constraint violations in the reward
function. However, the control performance is sensitive to
the arbitrarily set penalty factor for indoor discomfort. It is
difficult to put a price tag on thermal discomfort as individ-
uals would have different perceptions and tolerances thereof.
The local utility rate structures could further complicate the
situation as the economic consequence can highly depend on
the energy rates as well as the peak-to-off-peak ratio.

2) Contributions of this work: This paper reports the chal-
lenges of applying unconstrained RL algorithms to building
HVAC control: (1) sensitivity to the choice of the penalty
factor, and (2) challenges in benchmarking these algorithms
with other techniques such as MPC-based strategies with-
out guaranteed comfort constraint satisfaction. To overcome
the challenges, this paper presents a constrained RL-based
strategy for building demand response and its numerical
test results in comparison with baseline unconstrained RL
strategies as well as MPC. To the authors’ knowledge, this
is the first work that applied constrained RL strategies to
tackle these challenges in building demand response.

This paper is structured as follows. First, we introduce the
general reinforcement learning concept along with the state-
of-the-art algorithms for both unconstrained and constrained
policy optimization. Next, we present the numerical building
model used as the emulator that interacts with each RL



agent in Section III, followed by brief discussions of the
control implementations in Section IV. Section V reports the
simulation test results in comparison with the conventional
RL and MPC baselines. Concluding remarks are provided in
Section VI.

II. REINFORCEMENT LEARNING

This section introduces the RL framework and algorithms
used in this study and formulates the optimization problem
that each algorithm seeks to solve.

A. Markov Decision Process

In an ideal case, the states of a dynamic system are
all measurable during interactions with the environment
where the control problem can be formulated as Markov
decision process (MDP). In reality, however, not all states
are available to the agent, e.g., wall internal temperatures
which characterize building thermal dynamics, and only one
or a few of the states are observable, e.g., zone temperatures.
Control of such systems can be addressed as a partially
observable Markov decision process (POMDP) [10] or as
a regular MDP by including historical measurements of the
observable outputs and inputs in the state vector. The latter is
analogous to the state-space realization of a high-order linear
system using the high-order time derivatives of the inputs
and outputs as the state variables. This MDP formulation
has been used for RL implementations for building HVAC
controls [3].

B. Trust Region Policy Optimization (TRPO)

The goal of RL is to obtain a policy π that maximizes
the finite or infinite horizon discounted total return J(πθ) =
Eτ∼πθ

[R(τ)], where τ represents a trajectory and πθ is a
parameterized policy which accepts state observations as
inputs and outputs the action probabilities. TRPO [11] seeks
to maximize a surrogate objective function subject to a
constraint that limits the size of a policy update during each
iteration measured by the KL divergence:

max Eτ∼πθold

[
πθ(a|s)
πθold(a|s)

Âπθold (s, a)

]
(1)

s.t. Eτ∼πθ

[
DKL(πθ(·|s)||πθold(·|s))

]
≤ δ (2)

where Âπθ is the advantage that can be calculated using the
generalized advantage estimation (GAE) method [12] and δ
is the upper bound imposed on the KL divergence between
two consecutive policy updates. This problem is usually
simplified using a linear approximation of the objective
function and a quadratic approximation of the KL divergence
constraint. Expectations are estimated by a sample mean over
trajectories and timesteps in this study. If the agent collects
N trajectories of T steps each, the expected value of the
objective function in (1) can be estimated as:

1

NT

∑
N

T−1∑
t=0

πθ(at|st)
πθold(at|st)

Âπθold (st, at) (3)

C. Proximal Policy Optimization (PPO)

PPO seeks to solve the same problem presented in the
TRPO case but in a simpler manner. Two versions of PPO
algorithms were proposed in the original work [13], while
PPO-clip is more broadly used. PPO-clip uses a clip function
to limit the incentive of policy change to stabilize training
as follows:

max Eτ∼πθold
L(s, a, θold,θ) (4)

where

L(s, a, θold, θ) = min

(
πθ(a|s)
πθold(a|s)

Âπθold (s, a),

h
(
ϵ, Âπθold (s, a)

)) (5)

and ϵ is a hyper-parameter that determines how far the new
policy candidate is allowed to deviate from the old one and
the function h is defined as:

h
(
ϵ, Âπθold

)
=

{
(1 + ϵ)Âπθold , Âπθold > 0

(1− ϵ)Âπθold , Âπθold < 0.
(6)

Note that both TRPO and PPO can use a parameterized net-
work to approximate the value function Vβ(s) and compute
advantages at each timestep.

D. Constrained Reinforcement Learning

An inherent challenge of non-constrained RL algorithms
(e.g., TPRO and PPO) is the inability to address constraints,
while for most control applications, operational constraints
exist to ensure safe and quality services. A remedy is to
incorporate a penalty for possible constraint violations in
the reward function but it is difficult to find an appropriate
weighting factor between the original merit and constraint
satisfaction. While setting a high penalty factor helps better
enforce constraints, it limits the improvement in the original
objective. On the other hand, setting a low penalty factor
prioritizes maximization of the original merit at the expense
of significant constraint violations.

Constrained RL seeks to maximize the original merit
function but restricts the set of feasible policies so that a dis-
counted constraint violation return JC(π) = Eτ∼πθ

[RC(τ)]
is limited by a set upper bound d [14]. Among the proposed
algorithms in the literature, constrained policy optimization
(CPO) [15] has been widely studied, which seeks to solve
the optimization problem:

max Eτ∼πθold

[
πθ(a|s)
πθold(a|s)

Âπθold (s, a)

]
(7)

s.t. JC(πθold) +
1

1− γ
Eτ∼πθold

[
Â

πθold

C (s, a)
]
≤ d (8)

Eτ∼πθ

[
DKL(πθ||πθold)

]
≤ δ (9)

where JC is the constraint return. The constraint advantage
and return are defined in a similar manner to those of the
reward function. A positive slack variable d is introduced
to stabilize training. CPO uses linear approximations on



the objective and the first constraint and a second-order
approximation on the KL divergence constraint to solve the
optimization problem. CPO uses two parameterized value
networks, for the constraint and reward value functions,
respectively.

III. BUILDING SYSTEM MODEL

This section introduces the building dynamic model used
for control testing and MPC synthesis. Note that in the MPC
implementation, the same model is assumed for the plant and
control synthesis and perfect weather forecast is assumed;
therefore, the presented control performance represents the
theoretical upper bound and mainly serves the benchmarking
purpose.

A discrete-time state-space model is used to reproduce
building thermal dynamics, based on a thermal network
approach [16]. The model uses the cooling rate as the control
input and outputs the zone temperature, in the following
form:

xt+1 = Axt +Bwwt +BuQ
t
z (10)

T t+1
z = Cxt+1 (11)

where xt is the state vector containing all nodal temperatures
of a thermal network, Qt

z is the average cooling rate within
each time step, T t

z is the zone temperature, and wt is
the disturbance vector comprised of outdoor temperature,
internal heat gains, and solar radiation. The state-space
matrices A, Bw, Bu and C are dependent on the thermal
resistances and capacitances of the thermal network. Details
of the modeling approach and parameter values can be found
in [16]. The model shown in (10) and (11) is used as a
simulation test bed to evaluate the various control strategies.
The same model is adopted for the MPC implementation,
while in RL-based control, the system dynamics are not
known to the agent and the control policy is learned from the
recorded interactions between the agent and the plant model
that include control commands sent to the building and the
measurable observations. Details of the RL implementation
are discussed in Sec. IV-B. The power used by the HVAC
system can be estimated from the cooling rate by

P t =
Qt

z

COP
(12)

where the coefficient of performance (COP) assumes a
constant in this study. Equations (10) to (12) define the en-
vironment which the agent interacts with. The agent applies
a temperature setpoint and a set of measurable observations
are available to the agent after execuation of the setpoint. In
this study, only a cooling scenario is considered although the
methods can be directly applied for heating seasons.

IV. CONTROL IMPLEMENTATIONS

Five control strategies are considered in this study, i.e., two
MPC baselines that represent the current practices for HVAC
operations, the TRPO- and PPO-based RL strategies that
have been extensively studied in the literature for building
control, and the constrained RL strategy.

A. Baseline MPC Control Strategies

Two MPC strategies are formulated as linear programs
(LP), with different cost functions and prediction time hori-
zons.

1) Energy Minimization Control (E-Min): The first base-
line strategy represents the current practice for maximum
energy efficiency. This strategy tends to maintain the zone
temperature as close to the upper limit of the comfort
temperature zone as possible to minimize the HVAC energy
consumption of each time step, with the following cost
function:

W1 = P t. (13)

The energy minimization strategy represents a greedy control
policy over the HVAC energy use with only one step ahead
prediction. A number of operational constraints should be
respected in control decision making. Upper and lower limits
are imposed for the zone temperature in order to meet the
indoor comfort requirements:

T t
min ≤ T t

z ≤ T t
max (14)

where Tmin and Tmax are the lower and upper bounds of
the comfort band. These temperature limits can vary with the
occupancy status: when the building is occupied, a tighter
temperature constraint is needed to ensure comfort, while
during unoccupied hours, relaxed temperature bounds can
be used to achieve energy or cost savings. The cooling rate
at each time step should be bounded by the cooling capacity
QT , which is assumed to be time-invariant in this study:

0 ≤ Qt
z ≤ QT . (15)

2) Utility Cost Minimization Control (U-Min): The sec-
ond baseline strategy minimizes the electric utility cost under
time-of-use rates over a look-ahead time horizon (e.g., 12
hours in the case study) and represents the current practice
for predictive demand responsive control. This strategy can
be implemented by solving an LP with a cost function in the
following form:

W2 =

tf∑
t=ti

(rt · P t) (16)

where rt is the retail energy rate ($/kWh) that may change
with time of the day, ti and tf are the first and last time steps
of the prediction horizon. The same constraints discussed for
the E-min strategy are also present in this cost-minimizing
strategy, over the whole look-ahead time horizon.

B. Reinforcement Learning Formulation

The building demand response problem can be formulated
as a MPD described in section II-A. The basic elements of
the MDP are discussed as follows:



1) State observations: At every 15-min time step, a set
of observations is available to the agent, which includes
the current zone temperature T t

z , the past five-step zone
temperatures T t−1

z , ..., T t−5, hour of the day ht, and the
12-hour forecasts of the outdoor temperature T t

out, ..., T
t+47
out

and global horizontal solar radiation qtsol, ..., q
t+47
sol . The

observation set also contains the power P t required to
achieve the temperature setpoint and the upper and lower
zone temperature limits at the current time step.

2) Actions: The action taken by the agent is the zone
temperature setpoint for the next decision step.

3) Rewards: The goal of the RL agent is to maximize the
reward (negative of the cost) under a time-of-use (TOU) tariff
while maintaining the zone temperature within the comfort
bounds.
Unconstrained RL: Conventional (unconstrained) RL tech-
niques cannot explicitly handle control constraints. In al-
most all previous building control applications, the comfort
constraints were addressed as a soft penalty cost added to
the energy cost with a prescribed weighting factor. The
reward associated with the energy cost is Rcost = −rtP

t.
The reward associated with the comfort violation penalty is
considered in the following form:

Rcom = −ϕ
(
max (T t

z,min − T t
z , 0)+

max (T t
z − T t

z,max, 0)
) (17)

where ϕ is the constraint violation penalty factor. This
comfort penalty is proportional to the cumulative temperature
excursions out of the comfort band. The overall reward for
the unconstrained RL case is Runc = Rcost + Rcom. Note
that this penalty does not take into account the occupant’s
comfort perception and is only based on violations of the set
temperature bounds.
Constrained RL: In the constrained RL case the reward
and constraint (JC in Eq (9)) functions assume Rcost and
−Rcom/ϕ, respectively.

V. CASE STUDY RESULTS

Simulation tests were conducted to assess the performance
of the constrained RL algorithm in comparison with the
different baseline strategies. The TOU retail energy rates
used in the simulation were obtained from El Paso Electric
Co. [17] and are shown in Table I. A lower energy rate of
$0.07/kWh is involved during non-peak hours while elec-
tricity is charged at a much higher rate of $0.22/kWh during
on-peak hours. The zone temperature bounds change with
the occupancy of the building, with 9AM to 6PM being the
occupied period. During occupied hours the upper and lower

TABLE I
SUMMER TIME OF USE TARIFF

Electricity price
($/kWh) Hours

0.222 12:00 to 18:00
0.077 Rest of day

temperature bounds are 21.5°C and 23.5°C, while during
unoccupied hours are 20.5°C and 24.5°C, respectively.

The MPC baselines used a look-ahead horizon of 12 hours
with a decision implemented every 15-min time step. The
MPC baselines were formulated using the CVX package
in MATLAB [18] and solved using Gurobi [19]. The RL
strategies were trained using two years of simulation data
following an on-policy scheme. The RL baseline simulations
were obtained using the Stable Baselines 3 OpenAI library
[20] and the CPO algorithm was implemented using PyTorch.
Episodic training was utilized with each episode or trajectory
consisting of 2 days (192 steps). TRPO and PPO with three
different constraint violation penalty factors, i.e. , ϕ = 0.01,
ϕ = 0.1, and ϕ = 1, were chosen as RL baselines to illustrate
the effect of the weighting factor on the control performance.

Policy networks use the observation set as input, 2 hidden
layers of 64 neurons and an output layer with 17 possible
action logits. A final softmax layer is used to predict the
probability of choosing an action given an observation set.
The value networks used by all the RL algorithms and the
constraint network involved in the CPO algorithm share the
same structure with 2 hidden layers of 64 neurons for each
layer and a one-dimensional output layer.

Fig. 1. Zone temperature under MPC baselines.

Fig. 2. Power profile under MPC baselines.



Table II shows the energy costs and total energy usage for
the five evaluated strategies. Fig. 1 and Fig. 2 present the
simulation results of the two MPC baseline strategies. The
energy minimization baseline (E-min) maintains the zone
temperature at the upper bound when mechanical cooling is
called for, resulting in minimum energy usage. During un-
occupied hours the temperature floats and the HVAC system
remains off. The utility-cost-minimizing (U-min) strategy
engages a pre-cooling action before each on-peak period.
The pre-cooling action maintains a lower zone temperature
prior to on-peak hours so that “cooling” energy is stored
in the building thermal mass; during on-peak hours, the
zone temperature is adjusted upwards to allow the stored
cooling energy to be released, resulting in shifting of building
electricity use to low-cost hours to reduce utility cost. While
this strategy presents utility cost savings, it increases the total
energy used by the HVAC system. Compared to strategy E-
min, the cost-minimizing MPC strategy achieves cost savings
of 20%, with a total energy rebound of 10%. This represents
the best economic performance that can possibly be obtained
under the same prediction horizon setting without any com-
fort constraint violation. Actual MPC performance would be
worse due to potential control-plant model mismatches.

Fig. 3 and 4 present the simulation test results under
the two unconstrained RL strategies subject to different
constraint violation penalty factors. As expected, the uncon-
strained RL strategy with the lowest comfort penalty factors
leads to the lowest energy cost, with cost savings up to 36%
relative to E-min, but at the expense of significant comfort
issues. The RL strategies with high comfort penalty factors
are able to regulate the zone temperature within the comfort
zone but lead to high HVAC energy costs (savings of only
less than 8% relative to E-min). The high-comfort-penalty
RL strategies do not execute any pre-cooling actions for load
shifting, which is the major cause of the high energy cost as
can be seen in Table II. It is evident from these results that
performance achievable with the unconstrained RL strategies
is highly dependent on the comfort penalty factor setting.
This also makes the comparison with the MPC benchmarks
challenging.

Fig. 3. Zone temperatures under TRPO strategies.

Fig. 4. Zone temperatures under PPO strategies.

Fig. 5 shows the learning curve for the constrained RL
algorithm, while the 60-episode average constraint function
value is shown in Fig. 6. It can be seen that the constraint
violation approaches the set limit d = 0.1 and succeeds at
enforcing the constraint satisfaction within the set limit. This
effect is evident in Fig. 7 which shows the zone temperature
variation under the CPO strategy. Pre-cooling actions similar
to those in the benchmark MPC strategies are present in the
CPO case. The constrained RL strategy achieves utility cost
savings of 22.7%, which outperforms the utility-minimizing
strategy due to the minor temperature constraint violations.
Note that choosing a slack term (d) too close to zero could
cause training stability issues and a small positive value is
needed to ensure stable and reliable training. These results
clearly demonstrate the superior performance of constrained
RL over the unconstrained counterparts for predictive control
of building flexible loads while ensuring indoor comfort.

Fig. 5. Moving average reward in CPO training.

VI. CONCLUSIONS

This paper presented a constrained reinforcement learning-
based control strategy for demand responsive control of
building thermal loads. The performance was assessed
through comparisons to model predictive control and uncon-
strained reinforcement learning baselines with different com-
fort penalty factors. The test results show that the constrained



Fig. 6. Moving average constraint violation in CPO training.

Fig. 7. Zone temperature under CPO strategy.

reinforcement learning-based strategy was able to reduce the
electricity cost by 22%, relative to an energy-minimizing
controller, with very minor temperature excursions out of
the comfort zone, while the unconstrained reinforcement
learning strategies led to either high energy costs or signifi-
cant constraint violations, depending on the comfort penalty
settings. The constrained reinforcement learning controller
achieved performances very similar to the model predictive
control benchmark, demonstrating its superior performance
over unconstrained reinforcement learning techniques for
building demand response. Further development is neces-
sary to reduce the training time of these algorithms for
field applications. Transfer learning and imitation learning
are promising approaches to overcome this challenge and
integrating them with constrained reinforcement learning
algorithms will be addressed in future work.
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