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In this paper we study the effect of dependence on detecting a class of
signals in Ising models, where the signals are present in a structured way.
Examples include Ising models on lattices, and mean-field type Ising models
(Erd6s—Rényi, Random regular, and dense graphs). Our results rely on cor-
relation decay and mixing type behavior for Ising models, and demonstrate
the beneficial behavior of criticality in detection of strictly lower signals. As
a by-product of our proof technique, we develop sharp control on mixing and
spin-spin correlation for several mean-field type Ising models in all regimes
of temperature—which might be of independent interest.

1. Introduction. Understanding probabilistic models describing collections of depen-
dent random variables arises across many scientific disciplines such as spatial statistics, biol-
ogy, image segmentation, and social science, among others (Ahmed and Xing (2009), Geman
and Geman (1984), Jarpe (1999), Stauffer (2008)). For binary outcomes, the Ising model Ising
(1925) constitutes the simplest yet one of the most fundamental frameworks to explore the
effect of dependence on the collective behavior of Bernoulli random variables. In spite of its
origins in statistical physics, the Ising model has enjoyed continued enthusiasm across the
fields of applied probability, statistics, and computer science—and has provided us a with a
rich theory at their intersection. Indeed, as has been demonstrated in recent literature, un-
derstanding statistical inference or exploring optimal algorithms for Ising models requires a
marriage of ideas from applied probability (e.g., establishing correlation decay and concen-
tration phenomenon) and statistical methodology (e.g., sharp analysis of pseudo-likelihood
type methods). In a similar vein, in this paper, we consider a class of high-dimensional hy-
pothesis testing problem involving dependent binary observations following an Ising model
and completely characterize how such correlation bounds, which we establish for a large
class of mean-field type models, imply different phase transitions of the hypothesis testing
problem as a function of dependence in the models considered.

Specifically, we let X = (X7, ..., X,,)T € {#1}" be a random vector with the joint distri-
bution of X given by an Ising model defined as

— . 1 é T T ) Y n

(D) PgouX=x): 72,1(,8,@ ) exp(zx Qx+up'x|, x € {£1}".

Here Q is an n x n symmetric matrix with 0’s on the diagonal, p := (i1, ..., un) ' € R"is
an unknown parameter vector to be referred to as the external magnetization vector, § € R
is a real number usually referred to as the “inverse temperature,” and Z, (8, Q, p) is the nor-
malizing constant. The pair (8, Q) characterizes the dependence among the coordinates of X,
and X;’s are independent if 8Q = 0,,x,,. The most popular class of examples for Q would be
adjacency matrices of some underlying graph, with an appropriate scaling. Examples such
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as complete graphs, Erd6s—Rényi graphs, lattices, etc. have been studied extensively in the
context of the Ising model described above (Dembo and Montanari (2010b), Duminil-Copin
(2020), Ellis and Newman (1978)). We are interested in understanding the role of depen-
dence (8, Q) in testing against a collection of alternatives defined by a class of subsets C,

of {1,2,...,n} each of which is of size s. More precisely, given any class of subsets C,, of
{1,2,...,n} of size s € [n], we consider testing the following hypotheses:

2) Hy:w=0 vs H :peZC,s,A),

where

E(Can s, A) o= | € R ssupp(u) €Co min i = A} ang

supp(p) :={i € {1,...,n}: pu; #0}.

Thus the class of alternatives E(C,, s, A) puts nonzero signals on one of the candidate sets
in C, where each signal set has size s. Throughout we shall assume that there exists a v > 0
such that s < n'~V. However, some of our results go through for s as large as 10’; —. Finally,
although we only consider one-directional signals, our results should go through for any
noncritical B (see Section 3) for bi-directional signals as well.

Of primary interest here is to explore the effect of (8, Q) on testing (2) for some structured
signal classes C,,. Examples of such signals will include geometric structures such as block
signals on a lattice or suitable classes of low entropy signals (e.g., class of signals having
enough disjoint sets—see Section 3.1 for precise definitions) on graphs with no inherent ge-
ometry. In this regard, previously, Arias-Castro, Candés and Durand (2011), Arias-Castro,
Donoho and Huo (2005) studied the detection of block-sparse and thick shaped signals on
lattices while Addario-Berry et al. (2010) considered general class of signals of combina-
torial nature—however both these papers assume independent outcomes which corresponds
to B =0 in (1). Several other papers have also considered detection of contiguous signals
over lattices and networks (see, e.g., Arias-Castro et al. (2018), Butucea and Ingster (2013),
Enikeeva, Munk and Werner (2018), Hall and Jin (2008), Hall and Jin (2010), K6nig, Munk
and Werner (2020), Sharpnack, Rinaldo and Singh (2016), Walther (2010), Zou, Liang and
Poor (2017) and references therein). On the other hand, if Q is taken to be the adjacency ma-
trix of a line graph, then problem (2) can be viewed as a change point detection problem under
dependence, which has also attracted a lot of attention in the literature; see Bhamidi, Jin and
Nobel (2018), Cho (2016), Horvath and Huskova (2012), Liu, Gao and Samworth (2021),
Ray and Tsay (2002). However, in overwhelming majority of the literature, the networks in
question have only been used to describe the nature of signals—such as rectangles or thick
clusters in lattices (Arias-Castro, Candes and Durand (2011)). A fundamental question how-
ever remains—“how does dependence characterized by a network modulate the behavior of
such detection problems?” In this regard, Enikeeva et al. (2020) recently explored the effect
of dependence on such detection problems for stationary Gaussian processes—with exam-
ples including linear lattices studied through the lens of Gaussian auto-regressive observation
schemes. Dependence structures beyond Gaussian random variables are often more challeng-
ing to analyze (due to possible lack of closed form expressions of resulting distributions)
and allow for interesting and different behavior of such testing problems—see, for example,
Mukherjee, Mukherjee and Yuan (2018). One of the motivations of this paper is to fill this
gap in the literature and show how dependent binary outcomes can substantially change the
results for detecting certain classes of structured signals.

To this end, we adopt a standard asymptotic minimax framework as follows. Let a sta-
tistical test for Hy versus H; be a measurable {0, 1} valued function of the data X, with
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1 denoting rejecting the null hypothesis Hy and O otherwise. The worst case risk of a test
T : {£1}" — {0, 1} for testing (2) is defined as

(3)  Risk(T, E(Cy,5,A),B,Q):=Pgo(TX)=1)+ sup Pgou(TX)=0).
REE(Cy,s,A)
We say that a sequence of tests 7;, corresponding to a sequence of model-problem pair (1) and
(3), to be asymptotically powerful, asymptotically not powerful, and asymptotically power-
less against E(Cy, s, A) respectively, if
limsupRisk(7,,, E(Cy, s, A), 8,Q) =0,

n—oo

liminfRisk(Z,,, E(Cy. 5, A), B, Q) > 0,
liminfRisk(Z,,, E(Cy, 5, 4), B, Q) = 1.

The goal of the current paper is to characterize how the sparsity s and strength A of the signal
jointly determine if there is an asymptotically powerful test, and how the behavior changes
with (8, Q). In this regard, the main results of this paper are summarized below.

e General upper bounds

(I) For a general class of (8, Q), we show that a scan statistic can detect a certain class
of sparse signals (2) as soon as tanh(A) > +/logn/s; see Theorem 1 (in fact the change
happens at a constant level).

(II) A natural question is what happens if (8, Q) are unknown, that is, can we construct
tests that are adaptive to the unknown parameters (8, Q)? In this direction, we get the same
detection boundary as above if the unknown (8, Q) satisfies some additional assumptions
(see Theorem 2).

o General lower bounds

(I) If the signal set has large cardinality (s > Clogn), we provide a general lower
bound by showing that no test is asymptotically powerful, under assumptions on corre-
lations between spins (see Theorem 3) for ferromagnetic Ising models, if the signal A is
small.

(Il) The upper bound results suggest that testing is impossible if the signal set has small
cardinality (s < clogn). We confirm this intuition by showing that no test is asymptotically
powerful irrespective of signal strength A for small s, in ferromagnetic Ising models (see
Theorem 4).

o Examples

(I) Mean-field type Ising models: We apply our general results to several popular ex-
amples of mean-field Ising models. These include Ising models on dense regular graphs,
random regular graphs with “large” degree, and Erd6s—Rényi graphs with “large” edge
density. For 8 # 1 (which is the critical point for these Ising models), detection is impos-
sible for small s for any value of A, and detection is possible for large s with the detection

boundary tanh(A) ~ / 10%. On the other hand, at criticality the detection boundary has
three distinct regimes depending on the length of the signal set s, which we refer to infor-
mally as small, medium, and large. For s small, again no testing is possible for any signal

strength A. For s medium, detection is possible with detection boundary tanh(A) ~ ,/ lofn ,
which is the same as the case B # 1. Finally if s is large, the detection boundary shifts to

tanh(A) ~ ”lsl instead, and thus allows for detection of much smaller signals only for
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B = 1. This improved upper bound at criticality for s large does not follow from Theo-
rem 1 (which is based on a scan test), but instead utilizes a test based on sum of spins. The
proof of the lower bound requires bounds on correlation between spins at all temperatures
(see, e.g., Lemma 10 and other supporting results in Section 6). The proof of the upper
bound at criticality follows from a careful analysis the sum of spins (see Lemma 12). To
the best of our knowledge, these results are new, and might be of independent interest.

(Il) Ising models on lattices: We show that for the classical Ising model on any fixed

d-dimensional lattice the detection boundary again scales like tanh(A) ~ ,/ 10% through-
out the high temperature regime (right up to the critical temperature). The proof uses finite
volume correlation decay, and ratio-scale mixing results. We note that similar arguments
should apply in the low temperature positive pure-phase regime (plus boundary condi-
tions). The case of free boundary conditions in the low temperature regime remains open.

1.1. Organization. The rest of the paper is organized as follows. In Section 2.1 we
present some general upper bounds—including both the case of known and unknown de-
pendence parameters (8, Q). Section 2.2 contains a general lower bound result under ferro-
magnetic condition (positive 8, Q) and correlation decay type conditions. Subsequently, in
Section 3 we apply these general results to demonstrate sharp upper and lower bounds for
detecting signals in several commonly studied classes of Ising models. Section 4 contains the
proofs of the main results from Sections 2.1 and 2.2. In Section 5, we present the proofs of the
theorems stated in Section 3. Section 6 contains proofs of additional technical lemmas which
may be of independent interest, pertaining to bounds on mixing, spin-spin correlations, and
asymptotic analysis of the sum of spins at critical temperature.

1.2. Notation. Throughout, Eg .u, Varg Q,u, Covg ., Will denote the expectation,
variance, and covariance operators corresponding to the measure Pg , 4. For a vector X fol-
lowing the Ising model as in (1), the ith coordinate will be denoted by X;, and will often be re-
ferred to as the spin for vertex i. For a given sequence of symmetric matrices Q = {Qy, xn }n>2
with nonnegative entries, we define the critical temperature as

. . . 1 &
@ Pe(Q) =inf) p >O:%zlil(}nll>ngoEﬁ7Q.u(h)<;;Xi) >O},
where w(h) = (h, ..., h)T € R" denotes the vector with all coordinates equal to /4. Similarly,

for any S € C, and real number 7 let pg(n) denote the vector which has u; =nZ(i € ). In
the examples pursued in the rest of the paper the existence of the limit is a part of classical
statistical physics literature, and we shall note relevant references whenever talking about
critical temperature in our examples. We shall refer to (0, 8.(Q)) as high temperature regime,
and B8 € (B8.(Q), o0) as low temperature regime.

For any a,b e N, we let [a : b] ={a,a+1,...,b} and [a] = {1, ..., a}. We also denote
the m-dimensional 1-vector (1,1,...,1) € R™ by 1,,. Also for any finite set S we use |S|
to denote the number of elements in S. For any two vectors v, v» of same dimension and
1 < p < o0 we let ||[vi — V2|, denote the Euclidean £, norm. For any real matrix M and
1 < p < oo we define the p-matrix norm of M as [|M]|,—, , = SUP|y|,=1 IMy]|,. For p =2,
we drop the the subscript to use ||[M|| as the spectral norm of M. For p = co we use the fact
that [[Q[lco— 0o = SUP;¢[p) Zje[n] |Q;;|. Finally for any vector v € R™ and subset § C [m] we
let vs to be the |S|-dimensional vector obtained by restricting v to the coordinates in S. For
X~ PﬂVQ?,L asin (1), let m; = m; (X) := Z?’:l Q,'ij.

The results in this paper are mostly asymptotic (in n) in nature and thus requires some
standard asymptotic notation. If a, and b, are two sequences of real numbers then g, <
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b, and a, = o(b,) implies that a, /b, — 0 as n — oo. Similarly a, < b, and a, = O(b,)
implies that lim sup,,_, .. an /b, < oo. We also say a, = ©(b,) or a, ~ b, if both a, = O(b,,)
and b, = O(a,). Finally for any integer m > 1 and real 0 < p <1 we let Bin(m, p) denote

the distribution of a binomial distribution with m trials and success probability p.

2. General results. We divide our general results into two subsections pertaining to up-
per and lower bounds.

2.1. Upper bounds: General coupling matrix. Let us assume that the class of signals C,
satisfies

©) log ICnl < Cy logn, |Cy| — o0,

for some constant C,, > 0. We now begin with a general result which pertains to pinning
down a signal strength necessary for detection in a general class of Q. To describe the test,
define for any S € C,

Ls(p) == —== Y _(X; — tanh(Bm; + 1)),

v |S ieS

where m; = Z’}Zl Q;; X ;. For a fixed § € (0, 1), consider the test rejects the null hypothesis

when
Ly = sup |Ls(0)| > 2(1 + BlIQlloc—oc)y/2(1 4 8) log |Cy|.

SeC,

THEOREM 1. Suppose X ~ Pg g, with any p € R and Q such that ||Q||loo— 00 < C;, for

some constant C,, and (5) holds. Consider testing hypotheses about p as described by (2).

logn

Then there exists a constant C' > 0 such that if tanh(A) > C’ , then the test based on

L, defined above is asymptotically powerful.

REMARK 1 (Choosing § as a function of level). The risk criterion used in this paper is
the sum of the type I and the type II error. Our goal is to obtain minimax detection thresholds
such that this sum converges to 0, that is, both the type I and the type II error converges
to O (see equation (3) in the paper). In this framework, we do not control type I error at a
prespecified significance level. Therefore, the tests are parametrized by some § > 0. This
framework is quite popular and has been used in Arias-Castro, Candes and Durand (2011),
Mukherjee, Mukherjee and Yuan (2018). It is also possible to change the criteria to control
the type I error at level @ and obtain minimax detection thresholds such that the type II error
converges to 0. In that case, we should choose § depending on «. For instance, in the test
discussed in Theorem 1, we should choose

_log2 —logux
log|Cx|

This will control the type I error at o without changing the minimax detection boundary
(where the loss function is now the type II error).

The fact that the test that attains the performance claimed in Theorem 1 is, not surpris-
ingly, a scan type procedure. However, to attain optimal separation rates across all regimes of
dependence (i.e., B) we need to conditionally center the scanning elements instead of uncon-
ditional centering prevalent for hypothesis testing literature with independent outcomes. This
is in fact, based on a maximum pseudo-likelihood score statistic. As an intuition, note that

exp(Bm; + ;)

Ppop(Xi=1|X;,j#i)= .
PQuisi / exp(Bm; + i) + exp(—Bm; — 17)
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Therefore, the maximum (log) pseudo-likelihood function is given by
n
fu() :=—Nlog2+ > [(Xi(Bm; + wi)) —logcosh (Bm; + )],
i=1

where we treat 8, Q as fixed. Consequently An N (ﬂ) |u=0 = X; — tanh(Bm;). Therefore, the
test statistic L, can be viewed as

Ofn(m)
L, = sup
" sec, v/ IS IEZS i
The above version of the scan test relies explicitly on the full knowledge of the null distri-
bution. Especially this requires that g, Q are known. As we shall show in Section 3, this test
is indeed optimal for any noncritical 8 > 0 for a large class of underlying graphs. If however,
the values of (8, Q) are unknown but “small”, there exists a sequence of tests with the same
detection thresholds as above, which does not depend on the knowledge of S, Q.
Fixing 8, n € (0, 1), consider the test which rejects the null hypothesis when
L, :=sup —

1 (14 6)log|Cyl
3ox;| - [LE20sle]
sec, VS| l—n

ieS
THEOREM 2.  Suppose X ~ Pg q.u with 0 < B|Qllcc—oco < 1 for some 0 < n < 1 fixed,
min; ; BQ;, j > 0 and (5) holds. Consider testing hypotheses about p as described by (2).

n=0

Then for C' > 0 large enough, if tanh(A) > C’ 10;"’”, the test based on L, above is asymp-
totically powerful.

REMARK 2. We note that the condition n < 1 is sharp, in that the detection threshold
when n = 1 can be very different compared to what is stated in Theorem 2, depending on
the value of s. A counter example is provided by the Curie—Weiss model, (Ising model on
the complete graph) for which n = 1 allows for the choice 8 = 8. = 1, which is the critical
temperature for this model (see the discussions after Theorem 6 in Section 3 for exact details).

Examples of Q which satisfy the assumption stated in Theorem 1 and Theorem 2 include
some prototypical examples of Ising models studied in literature. We discuss them in detail
in Section 3.

2.2. Lower bounds: Ferromagnetic models. In this section we present results on lower
bounds to demonstrate sharpness of Theorem 1 for Ising models having min; ; 8Q;; > 0—
traditionally referred to as ferromagnetic model. In this regard, according to Theorem 1,
successful detection is possible by a conditionally centered scan test provided tanh(A) >

C’ log" for a constant C’ > 0 which depends on the class of signals C, and ||Q||co— oo
through the constants C,, and C,. Since tanh(A) € (—1, 1), it seems that one might need s
to at least be of order logn for the success of this test. This intuition turns out to be true
and there exists a phase transition in the possibility of testing depending on the behavior of
s w.r.t logn. In particular, there exists constants 0 < ¢ < C < oo (depending on the problem
sequence (B, Q) and class of alternatives C,) such that the detection problem behaves differ-
ently depending on whether s < clogn or s > Clogn. Before formally stating the relevant
results, let us assume that there exists a constant C; > 0 and some subcollection C, € C, of
disjoint sets such that

(6) log |Cy| > Cylogn.
Note that (6) immediately implies min(|C,|, |C,|) — 0o, and so it need not be assumed sep-

arately. As the proofs of the results in the two regimes (s small/large) involve substantially
different ideas, we divide their presentation in separate subsections.
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2.2.1. Large signal size s. The following theorem will be used to verify sharpness of the
upper bound presented in Theorem 1 for s large.

THEOREM 3.  Suppose X ~ IPg .y such that min; j BQ;; > 0, |Qllcc—oce < C,, for some
constant C}, > 0 and (6) holds. Consider testing (2). Then there exists fixed constants ¢’, C >
0 such that the following hold.

(I) Suppose there exists sequences ry, r;, diverging to +o00 with r, > Clogn, and

(a) supgec, Varg.Qo(Lies Xi) < ru.
(b) sups, +s,ec; Covp.Q0(Xies, Xir Xjes, Xj) = 0(ry).

Then all tests are asymptotically powerless when tanh(A) < ¢’ min{,/ lori” , \/FI, }.

(I) Suppose there exists an increasing set 2, < {—1, +1}" and sequences ry, r, diverging
to +o0o with r, > C logn, such that:

(a) sup,cio,a7SUPsec; Varg.Q.usn (Lics XilS2n) < ra.

(b) sup,cjo,418UPs, £5,ec; [Vars.Quus,us, m (iesyus, XilS2n)  — Varg Quug i (Lies, Xil
Q2,) — Varﬁ,Qvﬂsz(ﬂ) (ZiGSQ Xi|2,)| = O(Fr/z)’

(c) liminf, 5 Pg Q,0(£2,) > 0.

Then no test is asymptotically powerful if tanh(A) < ¢/ min{,/ lor%, \/rI, }.

A few remarks are in order about the assumptions and implications of Theorem 3. The
results are presented in two parts since they will eventually be applied (in Section 3) to prove
sharp lower bounds for high and low temperature regimes separately. To fix ideas, let us focus
on the case of the Curie-Weiss model, which corresponds to (1) with Q = %IIT, that is,

2
1 n n

(7 PpuX=x)= meXP(% (in) +Z“ixi>'
A i=1 i=1

Under (7), when u; = 0 for all i, the coordinates of X are exchangeable. Further, X;’s can
be viewed as independently distributed conditioned on a appropriate latent variable (see
Mukherjee, Mukherjee and Yuan ((2018), Lemma 3)). Consequently, the model (7) has a
lot of additional structure. Therefore, let us try to illustrate Theorem 3 under (7).

Indeed, for 8 < B, = 1 (B, the critical temperature, can be different in different examples)
we will appeal to part I of the theorem while part II of the theorem will be used for the low
temperature regime 8 > B, = 1 with the increasing event €2, being X > 0. In fact, under (7),
B < 1, itis easy to check that

sup Varg’Q,o(Z X,-) Ss,

SeC;, ieS
sup COVﬁ,Q,0<Z Xis ) XJ') =0<1 )
S1#£82¢€C), 1€S] JES ogn

Consequently, we invoke Theorem 3, part (I), with r, = O(s) and r}, = O(s/logn), to get
that the detection boundary is tanh(A) ~ / 10%. The same choices work if 8 > 1 and invok-
ing Theorem 3, part (II), gives the same detection boundary. When B = 1, the correlation
bounds are quite different, that is,

2

s
sup Varg, ’0( X-)gs—l——,
sec, 7e ; l Vv
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2

sup COV/&QJ’(Z Xi, Z Xj) < %

S1#£852€C;, ies) jeS

Both these bounds are potentially larger than when 8 < 1, as long as s > /n/logn. This
leads to a substantially different detection boundary at the critical point when s is “large.”

In general, the main quantity that decides the validity of the lower bound presented above
happens to be the correlation between spins X; and X ; for suitable pairs 7, j. Indeed, such
correlation control is an area of active research and eventual verification of these conditions
requires establishing correlation bounds on the graphs in our examples. We derive several
such bounds in Section 6.

2.2.2. Small signal size s. The following theorem will be used to verify sharpness of the
upper bound presented in Theorem 1 for s small.

THEOREM 4. Suppose X ~ Pg Q,u such that min; ; Q;; > 0 and (6) holds. Consider
testing (2). Then there exists ¢ > 0 such that whenever s < clogn, the following holds:

@ If

0,

PgoXs =1 X5, =1 1‘
Pg,Q.0Xs, = DPgoXs, =1)
then all tests are asymptotically powerless irrespective of A.

(I) If there exists an increasing set 2y, such that liminf,_, .o P(2,,) > 0 and the following
holds:

lim  sup
00 g £8yeC),

lim  sup 0,

N>00 51 £8)eC

’ Pg.Q.0Xs, =1, X5, = 1|2,) B ‘
Pg.,0Xs, = 112,)Pg q,0(Xs, = 1]€2,)

then no test is asymptotically powerful irrespective of A.

A few remarks are in order regarding the conditions and results in Theorem 4. Once again
we have presented the results in two parts since they will be applicable to two different
regimes of 8. Also, we have once more kept the conditions of the theorem somewhat general
so that we can verify them across different classes of Ising models on different graph families
in Section 3. As for the intuition behind the conditions, the main idea behind the expressions
appearing in the statements of Theorem 4 is to capture a notion of dependence between
disjoint groups of coordinates of the Ising model and hence conveys a similar essence to
the correlation decay conditions presented in Theorem 3. Instead of correlation decay, here
we need to verify precise deviations as specified by these mixing type conditions. Indeed,
under these conditions, Theorem 4 verifies our intuition from Theorem 1 that no signal can
be detected for s < clogn for suitably small ¢ > 0. In Section 3, we verify the strong mixing
type conditions in Theorem 4 for different classes of Ising models.

3. Specific examples. In this section we provide examples of coupling strengths (8, Q)
and class of signals C, which when looked through the lens of Theorems 1, 3, and 4 yield
matching (in terms of rate) upper and lower bounds.

3.1. Mean-field interactions. In this section we verify the validity and optimality of our
upper and lower bounds for some examples of mean-field type Ising models. Mean-field
Ising models can be generally characterized by positing conditions on Q under which mean-
field approximation holds (see, e.g., Basak and Mukherjee (2017), Jain, Koehler and Mossel
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(2018) for exact definitions and details). Our results on rate optimal detection boundaries will
be verified for some important subclasses of such mean-field Ising models. Before stating
these results, let us present the rates for the 8 = 0, that is, the independent case. This will
serve as a useful baseline for comparison later.

PROPOSITION 5.  Suppose B =0 in (1). Then there exists constants ¢, C, ¢, C' > 0 such
that if:

(a) s <clogn, all tests are asymptotically powerless for any A > 0.

(b) s > Clogn, then all tests are asymptotically powerless if tanh(A) < ¢’ 10# On the

other hand, if tanh(A) > C’,/ 10%’ then the sequence of tests based on L,, as described
in Theorem 1, is asymptotically powerful.

The proof of the above Proposition follows from Arias-Castro, Candes and Durand
(2011)). It is also a direct consequence of Theorem 6, and hence we omit the details. With
the 8 = 0 case in mind, let us proceed with the more nontrivial examples. In the rest of the
section, throughout, the matrix Q will usually be associated with a certain sequence of sim-
ple labeled graphs G, = (V,, &,) with vertex set V,, = {1,...,n} and edge set &, C V, x V,
and corresponding Q = G, /d where we define the average degree of the graph G, to be
d = |E,]/|Va|. Here G, is the adjacency matrix of G,,. Also given any square matrix M, we
use A; (M) to denote the ith largest eigenvalue of M.

Since such models have no apparent geometry, there is less restriction on the choice of
signal classes C,. Consequently, in this section we discuss testing against sparse alternatives
of size s defined by E(C,, s, A), where C, is any collection of subsets of V), of size s such
that (5) and (6) hold.

In all the examples to be considered in this subsection, the critical temperature corresponds
to B =1 (see, e.g., Basak and Mukherjee (2017)), and we demonstrate a double phase tran-
sition on the detection boundary in terms of the signal size s at the critical temperature (com-
pared to only one phase transition at s ~ logn for noncritical temperatures), at s ~ logn and
s ~ /n/logn. In particular, for s > /n/logn the behavior of the testing problem changes at
the critical temperature, and one is able to detect lower signals using a simple test based on
total number of spins.

Our first example in this regard is for dense regular graphs.

THEOREM 6. Suppose G, corresponds to a d,-regular graph, which is dense, that is,
d, = ©(n) and (5) and (6) hold. Then there exists constants ¢, C > 0 such that if,

(a) s <clogn, then the following conclusions hold:
(D If B <1, all tests are asymptotically powerless for any A > 0.
D If B > 1, no test is asymptotically powerful for any A > 0, provided
limsup,,_, %?”) <1
(b) s > Clogn, then there exists constants ¢’, C’ > 0 such that the following conclusions
hold:
(I) If B < 1, all tests are asymptotically powerless if tanh(A) < ¢/ IOL#. On the other

hand, if tanh(A) > C’,/ 10%, there the sequence of tests based on L, as described

in Theorem 1, is asymptotically powerful.
() Suppose B =1 and limsup,,_, ., A2(G,)/d, < 1.
logn

i. If s < «/n/logn, all tests are asymptotically powerless if tanh(A) < ¢ =,
and the sequence of tests based on L, is asymptotically powerful if tanh(A) >

; /logn
C'y 2
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ii. If s > /n/logn, all tests are asymptotically powerless if stanh(A4) < n'/4
and there exists a § > 0 such that the test which rejects when nl/4xX >
8(s tanh(A)/n/*)1/3  is asymptotically powerful if s tanh(A) > n'/*.
) If B > 1 andlimsup,_, o, A2(Gy)/d, < 1, there are no asymptotically powerful tests

if tanh(A) < ¢’/ k’%. On the other hand, if tanh(A) > C’ k’%, the sequence of
tests based on L, is asymptotically powerful.

Theorem 6, which includes the classical Curie—-Weiss model as a special case (see (7)),
demonstrates the benefit of critical temperature in detecting lower signals for s > /n/logn.
It should be mentioned that a lot of existing literature on testing in the context of Ising models
at critical temperature with mean-field interactions, focuses on the Curie—Weiss case. This
case has a lot of additional structure (see Mukherjee, Mukherjee and Yuan ((2018), Lemma
3)), which is not present in general dense graphs, that are covered in Theorem 6 above.
Therefore, the proof of Theorem 6 requires considerably different techniques.

Note that, for any 8 # B, the detection thresholds resemble that of 8 = 0O (i.e., independent
observations), see Proposition 5; and only for § = 8. one can detect lower signals—and that
too only when the number of signals is large enough. Proving that the detection thresholds are
the same as the independent case, whenever 8 # B, is itself a very challenging exercise. This
is particularly evident if B > B. when the correlations between spins, that is, Corr(X;, X ;)
is asymptotically O (1) as opposed to the independent case where this is 0. Overcoming this
challenge requires new correlation decay arguments which may be of independent interest;
see Lemma 13.

REMARK 3 (Computational complexity). The computational complexity of our test de-
pends on the size of |C,|, and by our assumption |C,| < n€ for some C > 0 (see (5)). Thus
our computational complexity is at most polynomial in n. Note that even in the independent
case (B = 0), the same scan test (with the same computational complexity) is known to be
optimal (Arias-Castro, Candes and Durand (2011)), and so one cannot hope for a test with
much better computational complexity in all regimes. Note, however, that when 8 =1 and
s 2 /n/logn, we show that the optimal test is based on the sum Y 7, X;, which is com-
putationally much more feasible. Such a phenomenon is not present in the independent case,
and can be seen as a computational gain because of dependence.

The assumption of denseness of the regular graph can be removed under randomness. In
particular, a similar result holds for sparser but random regular graphs. We state this in our
next result.

THEOREM 7. Suppose G, is the adjacency matrix of a d, random regular graph, with

logd,
6 = liminf —2 < [0, 1]
n—o00 logn

and (5), (6) hold. Then there exists fixed constants ¢, C > 0 such that if,

(a) s <clogn, then the following conclusions hold:
(D) If B <1, all tests are asymptotically powerless for any A, provided 6 > 0.
(D If B > 1, no test is asymptotically powerful for any A, provided 6 > 0.
(b) s > Clogn, then there exists constants ¢’, C' > 0 such that the following conclusions
hold:

(I) If B < 1, all tests are asymptotically powerless if tanh(A) < ¢’/ 10% and 6 > 1/2.

On the other hand, if tanh(A) > C’ 10%, there is a sequence of asymptotically
powerful tests for any 6 > 0.
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Q mean field

=1

T

s K logn log;n<<s<<1(;§1 s>>lo‘/gi
[Dctoction impossible ] tanh(A) ~ 4/ bii—" [Dotcction impossiblc] tanh(A) ~ 4/ long tanh(A) ~ #

FI1G. 1. Summary of detection boundary in mean field models.

) Suppose p =1.
i. If s < /n/logn, all tests are asymptotically powerless if tanh(A) < ¢’ lofn,
0 > 1/2 and there is a sequence of asymptotically powerful tests if tanh(A) >

C'\J %" and 6 > 0.

ii. If s = /n/logn and 6 > 1/2, then all tests are asymptotically powerless if
stanh(A) < n'/*, and there exists a sequence of asymptotically powerful tests if
stanh(A) > nl/4.

(IIT) If B > 1, there are no asymptotically powerful tests if tanh(A) < ¢’/ 10% and 0 >
2/3. On the other hand, if tanh(A) > C’ 10%, there is a sequence of asymptotically

powerful tests for any 6 > 0.
The minimax optimal upper bounds are attained by the same tests as in Theorem 6.

It is intuitive that the results for random regular graphs should naturally extend to suitable
Erd6s—Rényi graphs as well. This intuition is indeed correct—as verified by our next result.

THEOREM 8. Suppose G,, is the adjacency matrix of an Erdds—Rényi random graph with
parameter p,, such that
1
6 = liminf 28"1) 0. 1]
n—o00 log n
as before and (5), (6) hold. Then the same conclusions hold as in Theorem T except that every
occurrence of the condition 8 > 0 in part (b) of Theorem 7 is replaced with 6 > 0.

A summary of the detection boundary for mean field Ising models is given in the tree in
Figure 1. Even though all the transitions happen at a constant level, we remove all constants
to make the results more transparent.

The proofs of the theorems above, mostly rely on verifying the conditions of Theorems 1,
3, and 4 for the respective graphs. Only for 8 = 8. = 1 and s = /n/logn, the optimal upper
bound does not follow from Theorem 1. In this case the optimal test is not based on a scan
test but rather simply on the total magnetization )7, X;. The sharp analysis of the test based
> X; requires several additional technical details. We develop the necessary ingredients
in Section 6.

3.2. Short range interactions. Indeed, the most classical example of an Ising model cor-
responds to nearest neighbor interactions on a lattice in dimension d (Ising (1925), Onsager
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(1944)). To introduce this model it is convenient to rewrite the vertices of the graph as the ver-
tices of a lattice as follows. Given positive integer d, consider a growing sequence of integer
lattice hypercubes of dimension d defined by A,(d) := [—n/d pl/d19 N 74 n > 1, where
Z4 denotes the d-dimensional integer lattice. For any two distinct elements i, j € A, (d) we
put a weight Q;;, with the restriction that Q;; = Qj;. Thus Q is a symmetric array with ze-
ros on the diagonal. With this notation, we say Q is short range if there exists L > 1 such
that Q;; = Q;j(An(d), L) =Z(0 < |li — jll1 < L). Since such a model has an inherent ge-
ometry given by the lattic structure in d-dimensions, it is natural to consider signals which
can be described by such geometry. Similar to one of the emblematic cases considered in
Arias-Castro, Candes and Durand (2011), Arias-Castro, Donoho and Huo (2005), Butucea
and Ingster (2013), Konig, Munk and Werner (2020), Walther (2010), here we discuss testing
against block sparse alternatives of size s define by E(C,, s, A) with

d

(8) Co=1]]la; :6;1N A : bj—aj:(sl/d1}.
j=1

Although we only present the results for subcube detection in this paper, one can easily

extend the results to detection of thick clusters (see Arias-Castro, Candes and Durand (2011)

for details) with minor modifications of the arguments presented here.

We now argue that the conditions of Theorems 3 and 4 hold right up to the critical temper-
ature in such model and class of signals problem pair and therefore we have sharp match-
ing lower bounds corresponding to the upper bounds presented after Theorem 1. In the
following analyses, we let B.(d, L) denote the critical temperature of an Ising model with
Q =Q(A,(d), L) in (4). Although analytic forms of S.(d, L) are intractable for d > 3, the
existence of such critical temperatures has been classically established—see for example,
Duminil-Copin (2020), Ellis and Newman (1978), Friedli and Velenik (2018) for more de-
tails. Note that 8.(d, L) can potentially be infinite.

THEOREM 9. Let X ~ Pg q,u with Q;; =Z(0 < |li — jll1 <L) fori,j € Ap(d) and
0< B < B:(d, L) <00, and consider testing (2) with C,, as in (8). Then there exists positive
constants ¢, C > 0 depending on 8, L, d such that the following hold.

(a) Suppose s < clogn. Then all tests are asymptotically powerless irrespective of A.
(b) Suppose s > Clogn. Then there exists constants ¢',C' > 0 such that if tanh(A) >
C’ /logn

s 0

then the sequence of tests based on L,, in Theorem 1 is asymptotically powerful.

On the other hand, if tanh(A) < ¢’ 10%, then all tests are asymptotically powerless.

We note that at the critical point 8 = B.(d, L) we do not expect Theorem 9 to hold, and
the detection boundary to be lower (see the discussion in Mukherjee and Ray (2022) for
heuristics in this regard).

We conclude this example by considering the case of one-dimensional Ising model that is,
d = 1. This is the earliest studied Ising model and has Q correspond to the adjacency matrix
of the line graph on n vertices (Ising (1925)). It is well known that the Ising model on the
line graph does not exhibit a thermodynamic phase transition that is, 8.(1, 1) = +o00 (see,
e.g., Ising (1925) and Friedli and Velenik ((2018), Section 3.3)). As an immediate corollary
to Theorem 3 and Theorem 4, we get that the detection boundary remains the same for any
B > 0, and is the same as the independent case that is, 8 = 0.

COROLLARY 1. Let X~Pgquwithd=1,Q;; =1(li — j|=1) fori, j € Ay(d) and
B € R, and consider testing (2) with C as in (8). Then there exists positive constants ¢, C > 0
depending on B such that the following hold.
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(a) Suppose s < clogn. Then all tests are asymptotically powerless irrespective of A.
(b) Suppose s > Clogn. Then there exists constants ¢', C' > 0 such that if tanh(A) >

C’ lofn, then the sequence of tests described in Theorem 1 is asymptotically powerful. On

the other hand, if tanh(A) < ¢’ 10%, then all tests are asymptotically powerless.

We note that for this particular case, a different proof using exact expressions for the log
partition function can be used to show the validity of Corollary 1 for any g € R.

3.3. Future scope. In this paper we have explored how the level of dependence in Ising
models can modulate the behavior of detection problems for testing certain structured anoma-
lies. This minimax hypothesis testing problem provides a natural next step in a rich area of
research of detecting contiguous signals of geometric nature—yet mostly under indepen-
dence of the outcomes. Although we pinpoint the rates of minimax separation in this paper,
we believe that there is a sharp constant threshold at which the transition happens from test-
ability to non-test-ability (see, e.g., Arias-Castro, Candes and Durand (2011) for independent
outcomes). In a different direction, one can study whether it is possible to attain optimal rates
of detection for all 8, if B is unknown (but Q is known, say).

4. Proofs of main results.

4.1. Some supporting lemmas. In this section we collect the lemmas (whose proofs we
defer to Section 4.6) which will be used in the proofs of Theorems 1-4.

LEMMA 1 (GHS inequality (Lebowitz (1974))). Suppose X ~Pg g, with >0, Q;; >
Oforalli,je[n]and p € RT)". Then for any (i1, i2,i3) € [n]%®3 one has

3
a“ila/‘bizaﬂh

Consequently, for any iy = L, = 0 (i.e., coordinatewise inequality) one has
9) Covg,Q.u, (Xi, X;) < Covg Q.u, (Xi, Xj),
whenever BQ;; > 0 for all i, j € [n].

LEMMA 2 (GKS inequality (Friedli and Velenik (2018))). Suppose X ~ Pg g, with
B >0,Q;; >0foralli,j€[n] and p € (RT)". Then the following hold for any i, j € [n]:

COVlngJL(X,',Xj) >0; Eﬂ,Q,IL(Xi) > 0.

LEMMA 3 (Lemma 8 of Daskalakis, Dikkala and Kamath (2019)). Suppose X® ~
Py g 0 for k= 1,2 with pVQ) = pOQY = 0 forall i, j. Then

Covgm qu o(Xi, Xj) = Covga o o(Xi, Xj), Vi, .

LEMMA 4 (See Theorem 1.5 of Chatterjee (2007) and Lemma 1 of Mukherjee, Mukherjee
and Yuan (2018)). Let X~ Pg Q.u- Then for any t > 0 and S C [n] we have

Pg Qu(|Ls(w)] >2(1 + BlQllcc—oc)t) < 20112,

where Lg(p) := ﬁ Y ies(Xi —tanh(Bm; + ;) with m; = Z’}:l Qi X;.
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LEMMA 5. Let X~ Pg ,u such that B||Qllco>o0 < 1 and Bmin; ; Q; j > 0. Then for
any S C [n] and t > 0 we have

- t 2
P (|Lsw) > ) =2
ranl W= =grar s
where is(p,) = ﬁ Yies(Xi —Epg Q.uXi).
LEMMA 6. Consider a finite set juy, ..., ;. of (RT™)" and let = be the uniform prior
on them. If BQ;; > 0 for all i, j € [n] and Ly denotes the likelihood ratio of (2) w.rt m,

then Eﬂ,Q,o(LJZT), viewed as a function of k x n coordinates of Ly, ..., i is coordinatewise
increasing.

LEMMA 7. Suppose X ~Pg g u with p € (RM)", and BQ; j > 0 for all i # j. Setting
p = (1 — tanh(Bl|Qlloo—o0) we have Ep q.u(X;) = p tanh(y;).

LEMMA 8. For every n > 1, let (X,,, F,) be a measure space and P,,, Q,, be two prob-
ability distributions on this measure space. Also assume that P, and Q, have densities p,
and qy with respect to some common dominating measure. Define L, := q, /P, whenever the
denominator is nonzero. Then the following conclusions hold:

1. IfEp, L% =14 0(1), then all tests are asymptotically powerless for testing P, versus Q.
2. IfEp, [L,%|Qn] = O(1) for some event S2,, for which

min{liminf}P’n(Qn), limiann(Qn)} >0,
n—oo n—o0
then no test is asymptotically powerful for testing Py, versus Q.

4.2. Proof of Theorem 1. By Lemma 4 we get

Pp.Q.o(ILs(0)] > 2(1 + BllQlloo—o00)y/2(1 + 8) log [Cpl) < 2exp(—(1 + 8) log [Cpl).

A union bound then gives

2
P5.0.0(Ln > 2(1 4 BlIQlloo—oo0)y/2(1 + 8) log|Cyl) < T >0,
n

yielding a control over the Type I error of the test. In order to control the Type II error of
the test suppose supp(p) = S for some S € C,,. Then we show that | L 5(0)| beats the the null
cut-off. To this end note that

1
|Ls(0)| = ‘ﬁ > (tanh(Bm; + i) — tanh(ﬁmi))‘ —|Ls(w)|.
ieS

Again by Lemma 4 we have

Pg.Qu(|Ls()] <2(1 + BlQlloo—00)y/2(1 +8) 1og|Cpl) > 1 — 2exp(—(1 + 8) log |Cpl).

On the other hand, observe that from elementary calculus,
tanh(x 4+ y) — tanh(x) >

~

sup
xe[0,K],y=0 tanh(y)

where K > 0 and the (hidden) constant on the right is strictly positive and depends on K.
Therefore there exists a constant M > 0 (depending on B, ||Q|lco— o) such that

Z(tanh(ﬁmi + wi) — tanh(Bm;)) > M tanh(A)|S|.
ieS
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The desired control on the Type II error therefore follows on noting the following string of
inequalities:
M tanh(A)/|S| = C"- M/logn = 4(1 + B||Qllcc—c0)y/2(1 4 8) log |Cy ],

where the last inequality holds for all n large (using the fact that log|C,| < C, logn) for
¢’ = 8UHBCHVCu
= 7 .

4.3. Proof of Theorem 2. Define for any S eC, set
Ls(w) = —== > (Xi —Ep quX0),
m Z B.Q.n

ieS

and note that Zn =SUpgec, ZS(O).
Then, a union bound along with Lemma 5 gives

- (1+3)log |Cn|) 2 oo
P L < 0,
ﬁ’Q"’( S T A

yielding a control over the Type I error of the test.
Proceeding to control Type Il error, with p := 1 —tanh(n) we have for the signal set S € C,

ngﬁQu(x) |Ls(w)| > ptanh(A)/IS] — | Ls(m)|,

where the last inequality uses Lemma 7. Also, again invoking Lemma 5 we have

Pﬁ,o,u(}is(uﬂ <./ %mjm) > 1 —2exp(—(1+8)log|Cyl).

This gives that

|Ls(0)] >

(14 6)log|Cyl
1—

with probability tending to 1 under IPg ¢, ., and so Type Il error converges to 0 as soon as we

have
1+46)log|C
ptanh(A)/s > 2 /w,
|

44 /_cu

Ly > Ls(0) > ptanh(A)\/|S| —

which can be achieved by choosing C’ = (smce log|C,| < C, logn), which depends
y g g g P

only on n, Cy.

4.4. Proof of Theorem 3.

(I) Let C;, be the subclass of C, described in the statement of Theorem 3. Recall that
for any S € C, and real number 1, wg(n) denotes the vector which has u; = nZ(i € S).
Let 7 denote the uniform prior on {Pg q,u(4), S € C,} and let L, be the likelihood ratio
of 7 against Pg 0. By Lemma 8, it suffices to show Elg,Q,o(L%) =1+ o0(1). it is easy to
see that the corresponding second moment of the likelihood ratio is given by (owing to the
disjointedness of the sets in C’ ),

3 Z2(8,Q.0)Z,(B. Q. ws(2A))
i Za(B.Q ms(A)Za(B,Q, 0)

1 5 Z2(B.Q.00Z,(B,Q, ks us,(A))
|c' 1c.1? sitsrecy Zn (B Qo s (M) Zn (B, Q. s, (AN Zu(B, Q. 0)

EﬁQO |C/ |2
(10)




16 DEB, MUKHERJEE, MUKHERJEE AND YUAN

Now for any S € C,, a two term Taylor expansion in A around O gives the existence of
n €0, A] (depending on S, A, §) such that

Z2(B,Q, 1s(A)Z, (B, Q,0)

= exp(log Zn (/39 Qv 0) + log Zn (:3’ Q’ ILS(zA)) - 210g Zn (/39 Q? ILS(A)))
2 2 2

2 h=n o2

AZ
= exp<7 [4Var/3,Q,,LS(2,7) (Z X,‘) — 2Varﬂ,Q,ﬂS(,7) <Z X,‘)i|)

ieS ieS
<exp <2A2Varﬂ,Q,ﬂs(2n) <Z Xl'>).
ieS
Now the main challenge is to understand these spin-spin covariances at arbitrary magneti-
zation 7 at locations S. To deal with this we employ GHS inequality (Lemma 1) to get that
forany n >0, any S € C,/l, and any i, j we have
Covp,Q.us(n(Xi, Xj) < Covg g.0(Xi, X;).

Therefore, using the condition of the theorem we have that

Z2(B. Q. 0)Zy (B, Q, p5(24)) ) | 2
Z2(8,Q. ns(A)Z,(B,Q,0) SeXP<2A Varﬁ,Q,0§Xz> <exp(2A°r,).

Next note that, once again for any S, S» € C,, we have for some 1 € [0, A] (possibly
different) such that the following hold by a two term Taylor expansion in A around O:

Z2(B.Q,0)Z,(B,Q, s us, (M)
Zn (ﬁv Q’ ILSI (A))Zn (IB’ Q’ ILSZ (A))Zn (ﬂ’ Q’ 0)

Varg Q.us, us, (n)( > Xi)

A? :
=exp| — ieS1US

2
—Varﬂ,Q,,LS] (n)(z Xi> - Varﬂ,Q,lLsz(n) (Z Xi)

(ISh ie$S

(1)

Again by GHS inequality (Lemma 1) one has that for disjoint S7, S and n >0

Vafﬁ,Q,usluszw)(Z Xi) < Varg.Q.us, (n) (Z Xi)»

i€S] i€eS]
VarﬂsQ?lLSIUSZ(n)(Z Xl> S VarﬂsQ!”’Sz(’]) (Z Xl)'
i€S ieS
Consequently,

Zr21(139 Q9 O)Zn(ﬂ’ Q’ M’SIUSQ (A))
Zn (ﬂ’ Q’ I’LSI (A))Zn (ﬁ’ Q’ ”’Sz (A))Zn (/3? Q? 0)

A2
(12) SGXP<7 > COVﬂ,Q,us,usz(n)(Xi’Xj))

ie€S1,jeSH
2

A
§exp(7 Z COVﬁ’Q’()(Xi,Xj)>,

ieS1,jes
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where the second to last line follows, as before, by GHS inequality. Therefore, combining
(10) and (11), we have

(13) Eg..0(L2) <

1
|C/ B Z exp(24%r,) + —|C/|2 Z exp(o(A®r))).

Sec S1£S,eC)

As log|C;,| = C;logn, there exists constant ¢’ > 0 such that if A < ¢’min{,/=* log"
\/Tz

then one has Eg ¢, 0(L2) =1+ o(1) by (13). Since r,, > C logn, the same concluswn holds
if tanh(A) < ¢/ min{ log"

(II) To prove this part of the theorem, we consider the same prior 7w as in part (I)
and denote Pg @, to be the corresponding mixture of probability measures. Since €2, is
an increasing event for every n, we also have by monotonicity of measures w.r.t. u that
liminf, ., oo Pg @, (£2,) > 0.

By Lemma 8, part 2, it suffices to show that Eﬂ,Qyo(Lfr’inﬂn) stays bounded, where
Ly o, is the likelihood ratio of the probability measure Pg g, (-|€2,) is contiguous w.r.t.
Pg,Q,0(:|€2,). To this end, one has that the conditional probability measure Pg , 4 (-1£2,)
corresponding to any Pg @, in (1) is given by
exp(SxTQx + nTX)1(x € ©,)

Zn (B, Q, k|S2,)

where Z, (B, Q, _I21) = xeq, exp(%xTQx + uX). Therefore, by direct calculations sim-
ilar to part (I) one has

Eﬂ,Q,O(Li Q,12n)
3 Z2(8,Q,012,)Z, (B, Q, tg(2A)|2,)
|c' ? &2 Z2(B. Q. ks(A)]20) Zn(B. Q. 012)
1 3 Z2(B,Q,012:) Z4 (B, Q, s us, (1))
e 51 tsrecy Zn(B- Q. s, (A)Q20) Zu(B. Q. s, (A) Zu(B. Q. 012)

(15) =I1+1L
Now, it is easy to check by direct calculations that for any S € C},,

Aoz Zu(B. Q s M1 | _pp <><ZX'|9)
= Q.us(n 1 njJ»

’

PguX=x|Q2) =

(14)

dh h=n ieS
3210g Z, (B, Q, ws(h)|2)
= V: X122, ).
9h2 ‘h:n arﬁQ#S(ﬂ)(% il n)

This implies that, the first term of (15) can be bounded similar to part (I) as

(16) |C/ 2 > exp(4A7Varﬂ Q.115(2n) (ZX 12, ))
Sec’ ieS
for some 0 < n < A. Similarly, the second term of (15) can be written as
A2 Varg Qs us, (n) ( Z X; |Qn)
(17) M=exp|— 1€51U5)
2 | =Varg gug, (Z Xi|9n> — Varg,q,us, (n) (Z XiIQn)

ieS €Sy
The conclusion then follows using the given assumptions, in a similar manner as in part (I).



18 DEB, MUKHERJEE, MUKHERJEE AND YUAN

4.5. Proof of Theorem 4. The proof proceeds by controlling appropriate likelihood ratios
in the same way as in the proof of Theorem 3.

(a) With w(A) denoting the same prior as in the proof of Theorem 3, the likelihood ratio
Ly (a) is given by

1 ) PgousaX=x) 1 )3 Pg.Q.usa)Xs =Xs)
|Cl{1| Sec’ PB,Q,O(sz) |C;l| sec’ Pﬂ7Q70(XS =XS) ’

Lya)(x) =

where the second inequality follows on noting that the conditional distribution of Xgc given
X is the same under both the measures Pg @, u4(4) and Pg 0. On letting A — oo gives

1 1(x, = 1)
)

ICal s, Pa.0.0(Xs =Xs) B

lim L;(x)= cos  Say.
A—00

Since, by Lemma 6, Eﬂ,Q,oLn(A) is anondecreasing function of A, and Ly 4) < P 0.0(Xs=x5)

which is bounded in A, using dominated convergence we have
2 . 2
EgQ,0L7a) = All)moo Eg,Q.0L74)

(18) :E,g 0.0L%

|C/ 2 S; Pg.q. o(XS =1)

1 3 Pg.Q.0Xs,us, =1)
IC’ 1C 2 S1.5ec! Pg..0Xs, = DPg q,0Xs, =1)

2S

P X =1
<2 4 sup 8,0,0Xs,us, =1) .
IC,l  s51#5, Pp..oXs, = DPg g0Xs, =1)

(19)

The first term in the RHS of (18) is small since log |C},| > C;logn and s < clogn for a small
enough ¢ > 0. The second term converges to 1 using the given hypothesis. Thus we have
EL2, =1+ o(1), and so the proof is complete
(b) It suffices to show that Eg ¢, ()Lﬂ(A = O(1). We can assume that Pg ¢,0(£2,) > «/2
for all large n and some « > 0. Using (18) it suffices to show that
Pg.0Xs, =1, X5, =1) 4

20) sup LAY
sizsrec, Pp.Q.oXs, = DPg g.0(Xs, = 1) K2

To this effect, for i = 1, 2 a simple inclusion gives
Pg.0Xs; =1) >Pg.0,0Xs; =1,,) > %P/B,Q,O(XS,- =1|RQ,),
and the FKG inequality subsequently gives
Pg.0Xs;, =1, X5, =1) <Pg g,0Xs, =1, X5, =1|2,).

Combining these two observations along with the given hypothesis, (20) follows.

4.6. Proofs of lemmas from Section 4.1. The proofs of Lemmas 1-4 follow from the
references cited in the statements themselves.
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4.6.1. Proof of Lemma 5. A direct computation gives
1

dTv([P(i)(.|x,,~), P(i)(-|y,l~)) = 7 tanh(ﬂZQinj + ,lL,‘) — tanh(ﬁ ZQ,’jyj + M,)‘
J J

<BY_ Qijl{x; #yj}
j

This, along with assumption 0 < B]|Q||> < 1, on invoking Chatterjee ((2005), Theorem 4.3)
gives the desired conclusion.
4.6.2. Proof of Lemma 6. Note that

Z,(8,Q,0)Z,(8,Q, 21,)) Z,(B,Q. 0 Z,(B, Q. p, + 1)
kQE L2 = + 1 P
p.0(L) ; Z2(6,Q. w) g}z Za(B,Q, 11,) Za (B, Q. p1,)

= > exp(log Z,(8.Q. 0)) + log Z,(B. Q. 2p;) — 2log Z,(B. Q. p;))
!

+ Y exp(log Z,(B,Q, 0)) +log Z, (B, Q. py, + ms,)

Li#h
- log Zn(,B, Qs M’ll) - log Zn(,B, Qs M’lz)),
fix any coordinate / = 1, ..., k and consider k*Eg ¢.0(L2) as a function of the n coordinates

of u, fixing the rest of the coordinates. We note that it is enough to show that each coordinate
of this gradient is nonnegative in the direction of any vector in (R™)". Being a sum of expo-
nentials, it is sufficient to individually consider each exponent and show the same conclusion
desired above. A typical such term is one of two types:

dlog Z,(8,Q, dlog Z, (B, Q,
21 ,0l0g Z,(B.Q. 1) _,010gZ,(8.Q. ) or
dp n=2p Ip =g
81 Z N ) / 81 Z ’ ’
22 02ZufQutm) | _dloeZBQW | L,
Ip n=H p n=n
However, by mean value theorem, the ith coordinate of 2310‘(523—23’(2””“ »
= 1

zaloglg(ﬁ,Q,u)
"

2u; and e; denoting the ith unit vector in R”. This implies that all coordinates of 5 are
positive. Consequently, each coordinate of Varg ¢ ,(X) is positive, since 8Q;, j, > 0 for all
J1, j2 € [n] which gives Covg @ 4(Xj, X j,) > 0 by GKS inequality (Lemma 2). This proves
that the first term (21) has positive coordinates. A similar proof works for the second term
(22).

p equals ulTVar,g,Q,,,(X)ei for some n lying on the line joining g; and
=K

4.6.3. Proof of Lemma 7. Note that

Ep.Q.u(Xi) :Eﬂ,Q,Mtanh(ﬂ Z QijX;+ Hi)
Jj€ln]

> Eﬁ,Q,utanh(ﬁ )3 Q,-,-X,-) 1 (1 — tanh(B]1Qlloosoc) tanh (i),

Jé€ln]
from which the result follows on noting that

E,g,Q,,Ltanh(ﬂ > Qi,,-X,-> ZE[&QJ}t&Hh(ﬂ > Ql-jx‘,-) =0.

jeln] Jj€ln]
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In the above display, the first inequality follows the fact that the Ising model is stochas-
tically nondecreasing in u, along with the observation that the function (x;, j € [n]) —
tanh(B 3 jc(,) Qijx;) is nondecreasing, and the second equality follows by symmetry of the
Ising model when u = 0.

4.6.4. Proof of Lemma 8.

1. Let {¢»(-)},>1 be a sequence of {0, 1}-valued test functions and let R,, denote the cor-
responding rejection regions, thatis, R, := {x € X, : ¢, (x) = 1}. Observe that the following
equality holds:

Py(Ry) +Qu(R) =1— /R (Ly — 1)dP,.

As Ep, L, =1 and Ep, L,Zl =14 o(1l), we have L, & 1. By the dominated convergence
theorem,

Ep,|L, — 11z, — O.

Combining the two displays above, completes the proof.

2. We first claim that it is enough to prove that Q, (-|$2,) is contiguous w.r.t. P, (-|£2;)
(where for any distribution P, IP(-|€2) is used denote conditional distribution given X € ).
To verify this by contradiction, suppose we have a sequence of rejection regions R,, such that

PH(RH) g O’ Qn(Rn) — 1.

We will show that if Q,(-|€2,) is contiguous w.r.t. P, (:|€2,) then limsup,_, ., Q,(R,) <
1, which will give a contradiction. To see this, first note that since P,(R,) — 0 and
liminf,_, 5 P, (2,) > 0, we have P, (R,|€2,;) — 0. Consequently, by contiguity one must
have Q, (R, |€2,) — 0. Thus, writing

Qn (Rn) = @n (Rnlﬂn)Qn(Qn) + Qn (Rn N Q,Cl)a

the first term of the right hand side of the display above goes to 0 by contiguity and the second
term satisfies
limsupQ, (R, N2 <limsup@Q,(225) < 1.
n— 00 n— o0
It follows that limsup,,_, ., Q,(R,) < 1, as desired.

The final step is to show that Ep, [LﬁlQn] = O(1) implies that Q, (-|€2,) is contiguous
w.r.t. P, (-|€2,). So, we will show that if 4, is a sequence of events such that P, (A, |$2,) — 0,
then Q,(A,|2,;) — 0. Towards this direction, observe that for any K > 0, the following
holds:

Qn(A, N Q) =Ep, [Lila,ne,10,>k]+Ep, [Li1a,ne,1L,<k]
< K 'Ep,[L21g,] + KP, (A, N Q).

As P, (A,|R2,) — 0, the second term in the above display converges to 0 as n — oo for every
fixed K. As Ep, [L%|S2n] = 0(1), the first term converges to 0 by taking n — oo, followed
by K — oo. Therefore,

limsup,,_, o Qu(A N Q) 0

li Q) <
lgsolinn(Anl n) < liminf, - O, (2,)

This completes the proof.



DETECTION THRESHOLDS FOR ISING MODELS 21

5. Proofs of Theorems 6-9. This section will be devoted to proving Theorems 6-9.
Towards that direction, we first mention a collection of lemmas, whose proofs we defer.

5.1. Some auxiliary lemmas. The first lemma describes some relevant properties of
a fixed-point equation which arises naturally in mean-field Ising models (see Basak and
Mukherjee (2017) for details) and will be useful for the subsequent discussion.

LEMMA 9 (See Page 10 in Dembo and Montanari (2010a)). Consider the fixed point
equation

(23) ¢(x) =0, wherep(x):=x — tanh(Bx + B).

(a) (High temperature) If B < 1, then (23) has a unique solution at t =0, and ¢’(0) > 0.

(b) (Low temperature) If B > 1, then (23) has two nonzero roots +t of this equation, where
t >0, and ¢'(£t) > 0.

(¢c) (Critical temperature) If B = 1, then (23) has a unique solution at t = 0, and ¢'(0) = 0.

In the rest of the paper, ¢ will always denote the nonnegative root of ¢ (-) as defined in 9.

For the remaining results we need a few notation. For a graph G, = (V,,, &,) with vertex
set V, and edge-set &,, let G,, denote the adjacency matrix with its (i, j)th element denoted
by G, (i, j). Let d; denote the degree of vertex i € V,, d the average degree, and dpyax the
maximum degree. For an Ising model Pg o, defined on G,, we will use the convention that
Q = G/d. Finally, we denote the ith largest eigenvalue of a square matrix M by ; (M). With
these notation, the following lemma establishes sharp bounds on the spin-spin correlations
for some mean-field type Ising models. These will serve as quintessential ingredients for
verifying the conditions of Theorem 3 for the examples in Section 3.

LEMMA 10. Let o, = lo%" and assume that max; e[, |% —1]—=0.

(@) If0<B < 1 andd > (logn)? then we have
1
| < = if (i, J) €&,
EpQo(XiX;)| <
! Zma_X(Q3),~ )ter i) ¢EEn,
(i.)) /
where &, denotes the set of edges in G,,.
(b) If B > 1 and limsup,,_, ., Max;c[,] ﬁsechz(ﬁt + wi) < 1 and the assumptions in
Lemma 14 [part (b)(i) or (b)(ii)] hold, then we have:

(@)
if (i, J) €én,

I(Illzjl))((Q?’),]) +“;31 if (i, J) ¢En-

&l —

|Covg.Q.u(Xi, X;j1X>0) <

N

(it)
m?)ﬂVarﬁ,Q,u(X,- |)_( >0) — sechz(ﬂt + ui){ S .
1€n
(c) If B =1, (39) holds, and the graph G,, satisfies

d> ﬁ(logn)s, max

then we have |Eg g0l X; X ;1| S n~1/2,
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Our next result establishes some crucial probability estimates for mean-field type Ising
models. These will serve as quintessential ingredients for verifying the conditions of Theo-
rem 4 for the examples in Section 3.

LEMMA 11. Assume that max;epy) |d; /d — 1| — 0.

(a) If0 < B < 1, then for any fixed c > 0 and any s satisfying s < clogn, we have

Pp.0.0(Xs =
(24) lim sp  |p@eHs=a)

n=>00 ¢.15|=s, ae(—1,1}5 2-s

1| =0,

provided d > (logn)*.

(b) If B =1, the same conclusion as part (a) holds provided d > (log )10,

(¢) If B > 1 and the assumptions in either part (b)(i) or part (b)(ii) of Lemma 14 hold,
then we get

5 Pg.g.0Xs =a|X > 0)
im sup —
n=0 g.|§|=s,ae{—1,1}s g(a,s)

exp(Bt Zf;] a;)
Ybe(—1.1ys eXp(Br i bi)’

1|=0,
(25)

g(a,s) =
provided d > (logn)*.

Our final result in this section establishes precise behavior of average magnetization X at
critical temperature for some mean-field type Ising models—under the presence of asymp-
totically vanishing, yet detectable, external magnetization . The application of this result
for s = /n/logn in these models yields matching sharp upper bounds to the lower bounds
developed in Theorem 3.

LEMMA 12. Suppose p € E(C,, s, A), B =1, d> ﬁ(logn)s, and s A > n'/*. Further
logn
d

assume that max;e[n] |d; /d — 1] < , and limsup,,_, .o 22(Q) < 1. Then there exists a

constant § > 0 such that

lim Pg.q.u(n'/*X > 8k;) — 1,

n—oo

where ky, := (n~1/*s A)1/3.

Our final lemma concerns the correlation decay property in the context of Ising models
on lattices which serves as the main tool in the proof of Theorem 9. We refer to Aizenman,
Barsky and Fernandez (1987), Duminil-Copin (2020), Duminil-Copin, Raoufi and Tassion
(2019), Duminil-Copin and Tassion (2016), Mukherjee and Ray (2022) for more details. We
use the notation used in Section 3.2 for denoting the vertices of the d-dimensional lattice.

LEMMA 13 (Correlation Decay ). Suppose X ~ Pg .0 with B >0 and Q;; =Z(0 <
li —jlli <L) forsome L>1andi,je A,(d) (see Section 3.2 for precise definitions). Then
there exists a B.(d, L) > 0 such that for all 0 < 8 < B.(d, L) one has

(26) Covp.Q.0(Xi, Xj) <exp(—c(B.d, L)lli — jlI1),
for some c¢(B,d, L) > 0 depending on B, d, L.
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5.2. Proof of Theorem 6.

(a) e High temperature and critical point (0 < <1)

In this case, note that the average degree d = d,, > (logn)? for any y > 0 and so we
have Pg g.0(Xs =1) =2751(1 + 0(1)) for any S with |S| < 2s, by Lemma 11 ((a) and
(b)), where the o(1) term depends on S only through its cardinality. Consequently we have

Pg.0Xs, =1,X5, =1)

sup — 1| =0().
$1NS2=.151 =152 1=sP8,Q.0Xs, = DPg.QoXs, =1)

The desired conclusion then follows by using Theorem 4, part (I).
o Low temperature (B > 1)
In this case we have

IP),B,Q,O(XS = 1|5( > 0) = )\“—S}eﬂﬂs‘(l + 0(1))’

where Ajs) 1= > pe(—1,1)s €xp(B? Y.3_, bi) for any set S with |S| < 2s, by Lemma 11 (c).
Consequently we have

P X5, =1,X =1|X>0
sup 5,Q,0( Si S5 X >0)

_ — 1| =o(1).
S1NSy=¢,|81|=|5|=sPg,Q,0Xs, = 1|X > 0)Pg @,0(Xs, = 1|1X >0)

Next, set 2, := {)_( > 0} and note that liminf, o Pg @,0(£2,) > 1/2 by symmetry. The
desired conclusion then follows by invoking Theorem 4, part (I).

(b) e High temperature (0 < B < 1) Since ||Q|lco—»00 = 1 for regular graphs, the upper
bounds follows from Theorem 1. For the lower bound, note that

2

d
3 -3 -1
@7 max(Q’);; = maxd, ;QikalQu SEsnT

Combining the above observation with Lemma 10 (a), we have

logn
Covg.Q.o(Xi, Xj) =Eg o(XiX;) < —

which immediately gives
,logn
(28) sup Varg .o D_Xi ) <s+>_Covgo(Xi, X;) <s+s"—— <,
SeCy ies i) n

where the last line follows from the fact that s < n'~? for some v > 0 which is a standing
assumption throughout the paper. For the same reason, we also have

lo logn lo logn)?
B up Y Covpoo(Xi xj) < s2gnlogn  slogn)”_ )
S S1#Ses, €S n
Thus, invoking Theorem 3, part (I) with r, :=s, 1} := losgn then shows that testing is

impossible if tanh(A) < ¢’ min{,/ k’%, 10%} =c lof", for some small constant ¢’ > 0,
as desired.

e Critical point (B = 1) The upper bound for s(logn)//n < 1 follows from Theorem 1
as before. For s = \/n/logn, it suffices to show that there is a sequence of asymptoti-
cally powerful tests for s A > n'/4. Note that by Lemma 12, there exists a sequence k,, :=
8(n~1*sA)!/3 — oo for some § > 0, such that P,g,Q,,L(nl/4)_( > ky) — 1 as n — oo. Fur-
ther by Deb and Mukherjee ((2023), Theorem 1.3), IP)/ng,o(nl/A')_( >k,) — 0asn— oo.
Therefore the test which rejects Hy if n!/4X > k,, is asymptotically powerful.
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For the lower bound, as before, using Lemma 10 (a) we have

§2

cOvﬂQO(X,,X)_E,gQO(XX)N[ = SsugZVar,ng(X)<s+T.
€ln jes

The same bound also gives

52

sup Z Covg,Q.0(Xi, X)) < —
Sl#SZiGS] jeS \/E

We will now consider two cases depending on the value of s.

- s <K V1 In this case we can invoke Theorem 3 with r,, :=s and r,, as before to

logn * log P
get the detection boundary tanh(A) <,/ 1(’%,
. . 2
e 1(‘)@1 In this case setting €, := nﬂ%, Fni=s+ % and r) := f’ we note that

1 1/4
(29) m1n /Og” / AL

where the last equality uses the fact that s 2> é_ which in turn implies

1/4 1/4
logn - Jenn Jnlogn - Jenn

s 25 s2 = 25

for all large enough n. Combining (29) with Theorem 3, part (I) shows that testing is
impossible if sA = o(n'/%).
o Low temperature (8 > 1)
As in the low temperature regime for part (a), set 2, := {X > 0}. It is an increasing set
of probability at least 1/2 under Pg ¢ 0 (by symmetry). Fix § C [n] and set u = pg(n) for
some 7 € [0, 2A]. For any A < ¢’/logn/s for some ¢’ > 0, note that

n
Z,u,- <2sA <2c\/slogn <2c'\/nlogn,
i=1

u logn
||Qu||ooslr,r€1%JZQ%jJZu,<2A,/ <2c ,/
j=1

which implies that the conditions for Lemma 14, part (b)(i) hold. Also by choosing ¢’ >
0 small enough, using s > Clogn and Lemma 9, we have, without loss of generality,
limsup,,_, o max;e[,) B sech? (Bt + i) < 1. Therefore, by Lemma 10, part (b)(i) and (27),
we have Covg . u(Xi, Xj12,) < lof" uniformly in i, j. Therefore we can choose r, = s
by the same argument as in (28). With S:= 8§, US,, observe that

Vafﬂ,Q,ug<n>< > Xilﬂn) = Varﬂ,Q,ug(n)(Z Xilﬂn) +Varﬁ,Q,ug<n>(Z Xi|9n>

ieS1US i€S] €Sy

+ COVﬁ,Q,ugm)(Z Xi, Z Xi|9n>

i€eS| i€S

= 25 sech®(Bt + ) + O(s\/logn/d, + s*logn/n),
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where the last line follows from Lemma 10, part (b), (i), and (ii), and the error term is
uniform over Sy, S and n € [0, A]. Similarly,

Varg Q.us, (n) (Z X,-|Qn) = ssech’(Bt +n) + O(s\/logn/dy)
ieS]

and the same conclusion holds with S; replaced by S> above, with all error terms being
uniform in Sy, S», n € [0, A]. Consequently,

Vafﬂ,Q,usluszw)( > X,-|Qn> — Varg Q.us, (n)(Z Xi|9n>
ieS1uUSy €8

sup sup
nel0,A] S1#S5,€C;,

(30)
- Varﬂ,o,us2<n><z X IQn) < O(s\/logn/dy + s*logn/n) = o(s/logn).
€S
Then, by setting r;, = ; Osgn and applying Theorem 3, part (II) completes the proof.

5.3. Proof of Theorem 7. Observe that ||Q|lcc—oco = 1 and max{|A2(Q)|, [1,(Q)|} =
O,(d, 1/ 2) (see Friedman, Kahn and Szemerédi (1989), Theorem A). Further if d, = ®(n),
the result follows from Theorem 6. Therefore we will assume d,, = o(n) in the rest of the
proof. The proof of the whole of part (a), and the critical case 8 = 1 of part (b), then follows
similar to the proof of Theorem 6. In fact, the proofs of the upper bounds for the high and
low temperature regimes are also the same as in Theorem 6. We prove the lower bounds for
the high and low temperature regimes below.

o High temperature (0 < < 1)
To begin note that the conditions for Lemma 10, part (a) hold if 6 > 1/2. Using (27),
we therefore have the bound

1
sup Covg Q.0(Xi, X;) S —,
i.jes dy
. dy,
and so, if s K Togr
lo
sup Var,g,Q’o(Z Xi> <s+ 52 en <s,
SGCn ieS dn
D log log
n slogn
sup Z Covg Qo(Xi, X;) S =o(l).
S Si1#S2es, jeS, n
Thus invoking Theorem 3 with r, =5, 1, = ; ofgn gives the desired conclusion. Thus with-
out loss of generality we will assume s 2> % throughout the remainder of the proof.

In the remaining part of the proof we will denote the adjacency matrix any graph G, =
(V. &,) on n-vertices as G, and its i, jth element as G, (7, j). Also conditioning on a
random graph G,, will imply conditioning w.r.t to the sigma field generated by the random
variables involved in G, (i.e., the random edges in case of a simple random graph with
fixed vertex set).

Now, if G,, is a random d,,-regular graph on vertices {1, ..., n}, then using Gao, Isaev
and McKay ((2020), Theorem 1.5 (b)), it follows that G,, is stochastically dominated by
an Erdés—Renyi graph G, (whose corresponding adjacency matrix will be denoted by

GG, j) forits i, jth element) with parameter p, := KM for some fixed k¥ > 0,
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and so we have

1 dy))? d3Q dy))?
IED((Q3)ij (Og(’;/ ))) ( G, )328’(3 n(ng/ln/ ) )

<P(GG, j) = 8n%p)).

Let F; denote the neighbors of i and note that G3 (i, J) = XkeF; e F; G, (k, £). Also we
have |F;| ~ Bin(n — 1, py), |F;| ~ Bin(n — 1, pn) and given the sets F;, Fj we further
have ) ;. Fi teF; Gn (k, £) is stochastically dominated by the Bin(| F;|| F;|, p,) distribution.
Using this we have

P(G2 (i, j) > 8n°p))
<2P(|F;| > 2npy)

VE[B( X Gulk0) > 8P plIE Fy ) limax{[Fl. 7)) < 2up, )|
keF; LeF;

< 2P(Bin(n, p,) > 2np,) + P(Bin(4n’p2, p,) > 8n’p) < e 4 o120

for some § > 0, where the last step uses standard Chernoff bounds for a binomial distribu-
tion. A union bound along with the assumption 6 > 1/2, which translates to p, > n~* for

3
some o < 1/2 shows that, on setting D,, := {maxi,je[n](Q3)ij > 8/(3%} we have

P(Dy) < n?(e P 4 e P) = o(1).

Also, if G, € Dy, then for any i, j € [n] we have the following bound from Lemma 10,
part (a):
1 (logn)?
(32)  sup CovpQo(Xi, Xj|Gn) S — sup  Covg qo(Xi, Xj|Gn) S ——.
(i,j)€€n n (i, ) ¢En

Let £, 25 denote the collection of all subsets of [1] of size 2s. Then for any sets S € L, 2,
let E(S, G,,) denote the number of edges in (,, within the vertices in S. Then we have

P(E(S, G,) > 4s2pn) <P(E(S, Gp) > 4s2pn) =P <Bin ((2;), p,,) > 4s2pn> < ¢35 Pn
Setting E, := {SUPSeﬁ,, ” ES, G,) > 4s2pn}, a union bound then gives
P(E,) < (;s)e_asz"” <ne " = o(1),

where we use the bound
d, «dy,log(n/dy,) d?
. =9 -

n

s2pn>s > 2slogn.

. logn n nlogn
Combining we have P(D, U E,;) = o(1). For G, € D;, N E;,, using the bound (32) gives

2 lo 3
sup VarﬂQ()(ZX |G, ) +Sdpn +S2( gn) <s,
e ieS n n

logn logn [ s? logn)3
g sup Z Covg,.0(Xi, X;|G,) S £ ( Pn +s2( gn) ) =o(1).
S Si1#S2e8,, €S dn
Thus again we have verified (31), and so invoking Theorem 3 with r, =5, r, = logn gives

the desired conclusion as before using Theorem 3, part (I).
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e Low temperature
Set Q, := {X > 0}. The proof is similar to Theorem 6, part (b) for the low temperature
regime. Without loss of generality, we assume d,, = o(n) as before. Note that, on the set
Dy, defined above we have by the same calculation as in the high temperature regime:

_ 1
sup Covg o u(Xi, X;IX>0,G,) S —,

(i,j)eé& dn
(33)
- (logn)3
sup CovgQ.u(Xi, X;j1X>0,G,) < ;
(i) #En "
by Lemma 10, part (b) where we have used the fact that 6 > 2/3. Using (33) and s < lg’gn )

we get

- s2logn
(34) sup  sup Varg Q ug(n) (Z Xi|X>0, (Gn) Ss+ <s.
nel0,24] S€C, ics dn
Also by the same calculation as in (30), we see that
sup  sup Var/g,Q,,LSIUSZ(n)< Z Xi|2p, (Gn)
nel0,A] S1#S,€C), i€S1US,
(35) — Varg.Q.us, <n>(2 Xi|S2n, Gn) - Varﬂ,Q,usz<n><Z X |2, Gn>
€S €S

[logn 52 s
< — = .
~S d, + d, Op(logn)

Therefore by choosing r, = s, r;, = s/logn and using Theorem 3, part (II) then com-
pletes the proof. We can therefore assume s > l(;gn”. In this case, the same conclusions as
in (34) and (35) follow as in the proof of the high temperature regime if we further restrict

to G, € D; N Ef;. We omit the details for brevity.

5.4. Proof of Theorem 8. The proof goes through exactly as the proof of Theorem 7,
with the only change being that now G, is not regular but “approximately regular.” In order
to carry out the same proof, we need to show that G, (having adjacency matrix G; and
Q =G, /d) with and 6 > 0, satisfies:

(1) maxiep |4 — 1] = 0,(,/*E").

(2) 1Qlloo—00 = Op(1).

(3) max{|A2(Q), A2 (Q)[} = 0p(1).

Here we as usual have defined d; = ?:1 G, (i, j) to be the degree of the ith vertex and
d the average degree of the graph. As d| ~ Bin(n — 1, p,,), a standard Chernoff’s inequality
yields that J”Pnl% — 1/ = 0,(1) and a union bound then yields / l’(’f;’; max; e[n] |”% -
1| = O, (1). A similar argument also shows that ‘/npnl% — 1] = 0, (1). Combining these
observations yields

Lot el ) <o
max| = — max — — = ,
logn ielnl| d ~ dlogn ielnl|np, npn b

which establishes (1). Note that (2) follows from (1), and (3) follows from Feige and Ofek
((2005), Theorem 1.1).
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5.5. Proof of Theorem 9. 1In this proof we follow the notation introduced in Section 3.2.

(a) s > Clogn

For this part, it suffices to verify the conditions of Theorem 3 for some large constant
C > 0. To this end, we first define a subcollection C;, of C, as follows. Throughout we as-
sume that s/ and n'/? are integers for the sake of notational convenience. The analyses
works verbatim otherwise by working with the corresponding ceiling functions. Also assume
without loss of generality that 3s'/¢ divides n'/?. First, let C)! be the class of disjoint sub-
cubes of A, (d) obtained by translating along each axis (by 3s 1/d ; in each direction each time)
the cube of side lengths 35174 from the bottom left corner of A, (d) = [—n'/4, n1/4)14 N 74.
Consequently, subdivide each cube in C,, into 3¢ cubes of side length s!/¢ each and take
the center subcube of each cube in C, to be elements of our class C,. It is easy to see that

n*
ICl|=1C| = (2/3)d and also that min;es, jes,: [|i — j||1 > 4s'/<.
S1#8y€Cn

First note that [|Q|lco— 00 = 2d L. Also note that by Lemma 13, for all 0 < 8 < B.(d, L)
one has

(36) Covg.Q.o(Xi, X;) <exp(—c(B.d,L)|li — jl1).
for some c(B,d, L) > 0 depending on B, d, L. Therefore for any S € C,; we have

Var/&Qﬁ(ZXi) =< Z exp(—c(B.d, L)|li — jll1)
ieS i,jes
dsl/d
<> > exp(—c(B.d,L)i — jlh) < Cs,
=0 i,jeS:li—jlli=l

for some constant C’ > 0. Also for any S| # S, € C’

> CovgooXi, X)) < > exp(—c(B.d,L)lli — jll1)
i€S1,jesr i€S1,j€S

< s?exp(—4c(B, d, L)s'9).

This completes the verification of the conditions of Theorem 3, thus verifying part (a).

(b) s <clogn

It suffices to verify the conditions of Theorem 4 for some small constant ¢ > 0. To this end,
we again define a subcollection of C,, as follows. First, let C;, be the class of disjoint subcubes
of A, (d) obtained by translating along each axis (by logn in each direction each time) the
cube of side lengths sl/d from the bottom left corner of A, (d) = [—nl/d pl/d1d n7d Tt is

easy to see that |C| 2 ( T ) 2 oz d , and also minies,.jes,: ||i — j|l1 > logn. Consider
S1#82€Ch

s+10g
now any two Sj # S, € C, and consider the ratio

Pgo0Xs;, =1,Xs, =1)
Pg .0Xs, = DPgo0Xs, =1)°

To analyze this ratio, let P denote the Edward—Sokal coupling measure between the Ising
model Pg .0 and the corresponding random cluster model (see, e.g., Duminil-Copin (2020),
Grimmett (2006)). In the following argument, for any two sets A, B € A,(d) we denote
A < B (respectively A +» B) to denote the event that there is an open path between the sets
A and B (respectively there is not open path between A and B). Then

Pg.Q0Xs, =1,X5, =1)

=PXs5, =1,Xg5,=1)
=PXs, =1, X5, =1, 8 < $) +PXs5, =1,Xs, =1, §1 +» $)).
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Now, since 0 < B8 < B.(d) and minies,.jes,: ||i — j|l1 > logn, there exists a constant p > 0
S1#82€Cy

such that

(37) P(Xs, =1,Xs5, =1, 5] < 8) <P(S] < $,) < exp(—plogn).

Similarly, since under the Edward—Sokal coupling disjoint clusters are assigned spins inde-
pendent of one another, we have

P(Xs, = 1,X5, =1, 51 +» $) = P(Xg, = 1, X5, = 1|S1 +» S$2) P(S) + 52)
=P(Xs, = 1|S] «» $)P(Xs, = 1|S] «» $2)P(S) +» Sp).

Moreover, by FKG inequality we have

(38) Pg.Q.0Xs, = DHPg Q0Xs, =1) > 27%,
Therefore,
PpooXs =1.Xs,=1) _ P(Xy5, = 1|81  SHPXs, = 1|S1 «» SHP(S1  $2)
Pg.Q.0Xs, = DPg g,0Xs, =1) Pg.Q.0Xs, = DPg ,0Xs, =1)

PXs, =1,Xs5, =1, 5] < )
Pp.Q.0(Xs, = DPg oXs, =1)
The second term in the display above is smaller than exp(—p logn +slog4) by (37) and (38).

Therefore, for s < clogn with ¢ small enough, this converges to 0, and we only need to show
that the first term above is 1 4+ o(1) uniformly in S; # S>. To this end, note that

P(Xs, = 1|81 +» $)P(Xs, = 1|S1 «» $H)P(S) « $2)

=T +1+T;3,
Pg.Q.0Xs, = 1Pg g,0Xs, =1)

where
o P(Xs, = DP(Xs, = 1) ’
P(S1 +» $2)Pg.0.0Xs, = DPg .0 Xs, = 1)
PXs, =1, 81 < $H)P(Xs, =1) + P(Xs, = 1, S < SH)P(X5, = 1)
- B(S1 = S)Ps.0.0(Xs, = DPg.o.0(Xs, = 1)
_ PXs, =1,81 o HPXs, =1, 51 < )
PTB(S) « S)Pp.0(Xs, = DPpgo(Xs, = 1)

T, =

’

Once again, it is easy to see from (37) and (38) that there exists a constant p such that for
large enough n one has |T> + T3| < Cj exp(—p logn + slog4). For Ty, note that by definition
of the coupling we have
_ PgoXs, = DPg qoXs, =1)

P(S1 «» $2)Pg,Q.0(Xs; = DPg 0,0 Xs, = 1)
B 1

P(S1 1)

T

From (37) we immediately have 71 = 1 + o(1) uniformly in S; # S» € C, . This completes
the verification of the condition of Theorem 4 for 0 < 8 < B.(d).
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6. Proofs of auxiliary lemmas. This section is devoted to proving Lemmas 10, 11, and
12.
In the sequel, we will use dnmax to represent the maximum degree of the graph G,, and I,

for the m x m identity matrix. Finally, throughout we let «;, =,/ logn “for X ~ Pg.qQ,pu let
m; =m;(X) := Z’}:l Q;jX;j,m=3)""_m;/n,and use the letter ¢ to denote the nonnegative
root of x = tanh(Bx) for 8 > 1.

Our first result yields a sharp control on the tail behavior of m;, i > 1—which serves as a
crucial building block for proving Lemmas 10, 11, and 12.

LEMMA 14. Suppose that Q is the scaled adjacency matrix of a graph, such that
maxj<j<p |% — 1| — 0, and let A > 1. Then we have the following conclusions:

(a) For 0 < B <1 we have
. < )2
10gP/3,Q,0<§2% |m;| > Aan> S =25,
for all large enough n.
(b) Let B> 1, and maxiep) | — 1] S a.
() If G, satisfies d > \/nlogn and
39) limsupA;(Q) < 1,

n—oo

and p satisfies

n

(40) Y owi Synlogn, 11Qullec S e,

i=1
then we have

logIP’ﬁ,Q,,L(max lm; —t| > Aoy, X > O) < A2,
i)

Jfor all large enough n.
(i1) If G, satisfies d > nY for some y > 0, and maxa<j<, |Ai(Q)| = 0, and p satisfies (40),
then we have

logPﬁ,Q,o(maX Im; —t] > hay, X > 0) < —min (A%, El—y)’
ie[n]
for all large enough n.

(¢c) For B =1, assume that max;e[n) |% — 1]
(i) Then we have

< .

~

logP | > ral3) < 22
0g ﬁ,Q,o(?Gl%Imzb o, )N

for all large enough n.
(i) If G, satisfies (39), and pu € (R™) satisfies |Qu|lco < oy, then we have

log 11)3/2
logPﬁ,Q,ﬂ<maX |m; —m| > A% +)L\/ﬁ> < —22,
i€[n] d
for all large enough n.
PROOF. Part (a) follows directly from part (a) of Deb and Mukherjee ((2023), Lemma

2.3). Part (c)(i) follows by combining Deb and Mukherjee ((2023), equations (4.9), (4.10)).
Here we prove the remaining parts (b)(i) (ii), and (c)(ii).
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Part (b)(i). Without loss of generality we can assume Aw, < 1, as otherwise the bound is

trivial on noting that Ao, > 1 2 max;ep) |m;|. We now claim that

i€n]

(41)  logPg o u(Ans) < —22, A,,,A:={max

m; — Z Qij tanh(,ij)
j=1

>kan}.

Indeed, this follows on using Lemma 4 along with the bound |Qu|co < .
A two term Taylor expansion of tanh(Bm ;) gives

S>3 Qijmy — 1),

n di n
> Qjjtanh(Bm ) — 7—,3(1 — 1) " Qijmj —1)
j=1
d; H
jpu— _1
d

j=1 j=1

and so on the set A,ﬁ , we have

i€ln]

n
= || 1= B(1—12 dijd| < (mj—1)?
max |m; — || 1 = (1 — 1) maxd; /d| < Otn+?;%[j§Qu(mJ )+
(42)

n

2
=  max|m; —t| < max ii(mi—1)" + Aoy,
max |m; — 1] ie[n]ngU( j =0+ oty

where the last line uses the fact that max; ¢, % — 1,and B(1 — %) < 1. We now claim that
for every € > 0 we have

(43) 10gPp.Qu(Bue) S ——5,  Buei=[maxim; —1] > e}.

i€[n]

Q
| —

Cc

Given (43), choosing ¢ > 0 small enough, on the set A,‘;, 5N By .,

using (42) we have
maxlmi—t|§kan+max|mi—t|2 =  max|m; —t| S Aoy,
ieln] i€ln] i€ln]

Combining the above observations, we get

log Py @ u(max mi — 1] 2 hawy) <10g[P 0 u(An:) +Pp.0u(Bre)]

(44) |

< — min[kz, —2}
o

n

using (41) and (43). The desired conclusion follows from this on recalling that Ao, < 1.
It thus suffices to verify (43). To this effect, use (41) with A« = € to note that

1
>e|l S——.
oy

We now claim that for any 0 < M < oo and for all L > Mozn_2 logn (i.e., L > Md), we have

45) logPs.Q.u(An.e/a,) =10gPg.Q.u (max

i€[n]

m; — Z Ql'j tanh(,ij)
j=1

n
(46) 10gPs.0u(Cn.r) S—L, where Cpp = {Z(m,- —1?>L,X> o}.
i=1

On the set C¢ - we have
n,ed

n 1 n
Y Qijmj —1)* < §Z(mj —1? <e,
=1

j=1
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which along with (42) implies that there exists constants M; > 0 such that
log Pﬂ’Q,u(?elﬁﬁ |m; —t] >¢,X> O)

n
<logP (mj—1)>>Me,X>0
= log ﬁQ#(%%EQU(mJ ) =M, X> )

1 = _
<logmax[Pp.Q u(An mie/an) Pp.Q.u(Cy c)] S —mln[g, d] =07,

n

where the last inequality uses (45) and (46). This verifies (43). Finally, (46) follows using (40)
to note that supyc(_y ypn | 27—y mixil < 37—y i S +/nlogn, and consequently for § small
enough we have

n
logEg Q. |:exp (8 Z(mi — t)2> ‘ X > 0i|

i=1

n
@7) < Julogn + 1ogEﬁ,Q,0[exp(5 S i — t)z>

i=1

" /d; 2 n _
< .nlogn+ ;(7 — 1> + = =o0(d),
1=

where the last line uses Deb and Mukherjee ((2023), Lemma 2.2, part (b)).
Part (b)(i1). We begin by claiming that for every ¢ > 0 we have

5(20}

48 log P P — 1t < —d .
(48) og ﬁ,Q,u(?El% |m; —t| > 8) N

Given this claim, note that (48) is the analogue to (43) above, which is the only place where
we use the fact that d > 4/nlogn in the proof of part (c)(i). Thus, following the above proof
for the derivation of (44) gives

logIPﬁ,Q,,L@El% lm; —t| > kan> <max[logPg Q.u(An 1), 10gPg.Q.u(Bne)]

= —min[)»z,ﬁlfy],

as desired. It thus remains to verify (48).
To this effect, a one term Taylor’s series expansion of tanh(Bm ;) gives

n d; n
2 Quytanh(Bmj) = 1=+ B 3 Qijlm; — Dsech’ (BE;)

j=1 j=1

QU

=1= 4 (1 —1?) Z(m,—t)JrZD(”)(mj—t),

ISH|

where Dg.’) = BlQ; jsech2 (BEj) — I_T’], for some &; lying between m; and ¢. On the set
A€ Nnce i this gives

A /gl—y n,nlogn
(m; —t)—ZD(”)<mj -n|<

d; 1
) ‘+‘n2(m )|+

i=1

d; 1 1
T O e =

logn
i

=
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for all n large enough. With K denoting the implied constant in the display above we have

logn

49) max <K 7

i€n]

(mi —1) — Z D" (m; —1)

j=1

Consequently, for every £ > 1 we have

n

> (D) (m; — ZD(”) (DY) (mi — 1)

=1 =1 k=1
1
< max|(m, —z)—ZD(”)(mJ £)| max Z(D( N <eptk =,
Jeln] =l i€l iz d

where the last inequality uses the bound max;¢[,) Z?:l |D§;')| < 28 for all n large enough.
Combining the last two displays show that for any £ > 1 we have

-1
<Kd 'Y B <CBK, ‘C’_Igy”,
r=0

- 1
(50) max|m; —| < |(D™)°]  max|m; —t|+2A)Kd T S [DM) ]+ @B [
ieln] *ieln] o d

(mj —1t) — Z(D(n)) (mj—1)

j=1

max
i€n]

and so

We now claim that on the set A ——NC¢ —» we have
nAd Y n,nlogn/d
: ) —
51) Tim [D®],=0.
Given (51), using spectral theorem write (D(”))TD(”) = AiPiPi, where max; e[y il =
o(1), and so

< max |Ak|

(@) D)) max

l]‘_

o)

k=1

This immediately shows that setting £ = §logn with § = m, using (50) we have

/logn [logn
< 14 dlogn
ln;flnx|m, s nmaxM "+ (28) 7 < EV/Z -0

for all n large enough. Thus for any & > 0, for all n large we have

P&Qu(?é% mi 1] > ¢) =Ppou(d =) +Pp.Qu(Cypiognsar):

which along with (41) and (46) gives

R < = —
log Pﬁ’Q’“(zr'Iel% |m; —t| > 8) < m1n|:d > =7 } d ’,

which verifies (48), and hence completes the proof of part (b)(ii).
It thus suffices to verify (51). To this effect, setting J := %11’ and A™ denote a diagonal

matrix with entries Ag?) := sech?(B&;) we have

”D(n) ”2 _ ||,3QA(”) —B(1— Z‘Z)JHZ < ,BHQA(n) —JA®™ ”2 + ’BHJ[A(U) —(1- t2)In]

29
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from which (51) follows on noting that ||Q — J||2 = o(1) by assumption, and

BA™ — (1= )] = A — (= A rPal, = LAl - 1 - AP o

i=1
where the last limit uses the fact that we are working in the set C

and hence completes the proof of part (c).
Fart (c)(ii). By Deb and Mukherjee ((2023), equation (4.12)), on the set A, ; forany £ > 1

we have
<t logn/\a,

where Qij :=Q;; fori # j, and Q,-, = dma" — 1 satisfies Q1 =1.Set £ = Dlogn for D fixed
but large enough so that max; ¢, Qii < 2 (such a D exists by Deb and Mukherjee ((2023),

Lemma 5.2(a))). Then we have
l n
: \/KQ” Z(mJ —m)? < \/_J =Y (m; —m)?,
j=1 ni
Pﬂ,Q,u(m% Im; —m| > A(logn)3/2/\/§+ ’\J’TZM)
Leln '
l

n n
<Pgq.u(4],,) +Pﬁ,q,u(2<mi —m)’ zxznaognf/dﬂzzu,-).
i=1 i=1

77 - This verifies (51),

n,nlogn/

max|m
i€[n]

;—m— ZQU(’"J —m)

maXZQU(mJ —m)

ie n]

and so
(52)

The desired conclusion follows from this on noting that for § small enough, using a similar
argument as (47), we have

n _ n n
logEg Q. u [exp(éﬁ Z(mi — m)2>] < = logn + Z,ui,
i=l i=1
where we have used Deb and Mukherjee ((2023), Lemma 2.2). [

6.1. Proof of Lemma 10. Part (a). For i # j setting mlgj) = D kj QikXx we have
Eg.0.0[(X; — tanh(Bm ;)) tanh(Bm'’’)] = 0, and so
|E/3,Q’()[X,' X;]— Eﬂ,Q,g[tanh(,Bmi) tanh(ﬂmj)]|
= |E/3’Q,0[(Xj - tanh(ﬁmj)) tanh(ﬂmi)]| < 2,3Qij-
Now, using part (a) of Lemma 14, for any positive integer k we have

gk | < Lk
(54) Ep. Qo max mi "] < .

(53)

Using this, a Taylor’s series expansion gives | tanh(8m;) — fm;| < |m;|?
(55) |Eg.q,0[tanh(Bm;) tanh(Bm ;)] — B*Ep q.0lmim ;1| < oy

Equipped with (53), (54) and (55), we now complete the proof of part (a). To verify the first

, which gives

estimate, setting ,0,51) :=maxgx¢ Eg 0 Xk X¢] we have

d 2
Eg..0lmim;]= Z QikQ;¢Es.q.0l Xk X1 < pl! )max< )
k=1 i\ d
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which along with (53), (54) and (55) gives the existence of a constant M such that
(56) ,o(]) < ,82p(1)max<di) + M[maxQ,~ +a4] = ,0(1) < = ! +a4 < i,

"o m\ d iz " "~ ~d
where the last bound uses d > (logn)?. Proceeding to show the second bound, setting p,(,z) =

max ¢)¢s, £,0,0[ Xk X¢] and using (56) gives the existence of a finite constant M free of n
such that for all (7, j) ¢ £ we have

n
Eg q.0lmim;l= Z QixQjeEp Q0 Xr X¢]
k,t=1

Q.|| =

IA

> QikQ¢Galk, D)+ B> maéi EXiXe Y. QuQje

(k,0)e&, (k,O)¢En

- did; ~ did;
M(Q); + B0 ;J =M(Q); + B0

IA

Since max;e[n] % — 1 and B < 1, using (53) and (55) along with the above display gives

p,(lz) < max;, Q?j + ozfl, which is the second conclusion of part (a).

Part (b)(i). A Taylor’s series expansion of g;(x) := tanh(8x + ;) gives

RO 1) W
> 02+ Sy =),

where &; lies between m; and . Also, using part (b) of Lemma 14, for any positive integer k
we have

(57) gi(m;) = gi(t) + (m; — t)g]

(58) Ep.qumax |mi — 1 Sa,
and so
Ep Q.ulgi(mig;(m )X > 0] = gi(1)g;(t) + &/ (1)g; (Ep q ulmi — 11X = 0]
+8i(0g} (Ep.Qulm; — 11X > 0]
g/ (g ()
R

+ 2B uulmi — %X > 0]
gi(1)gh (@) .
+ =5 B qulm) — DX = 0]

+8i(Ng;(OEg.Qul(mi —)(m; — )X = 0]+ 0(a)),
Ep.Q.ulgi(mi)X>0]=g(t)+ g )Epg.qpulmi —t|1X > 0]

g/ ®
2
A direct multiplication using the last display gives

wlmi =X =0]+ 0(a)).

(59) [Covp.q.u(gi(mi), g;(m;)X>0) —gi(1)g;(t)Covp Qu(m; —t,mj— 11X>0)| <o)
We now claim that there exists p > 0 such that for all n large enough we have

m£x|Covﬁ,Q’,L(X,~, Xj|)_( > 0) — Covg,qQ,u(tanh(Bm; + w;), tanh(Bm ; + ,uj)l)_( > 0)]
60y 7

SQijte
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Note that (60), (58) and (59) are the analogues of (53), (54) and (55). Given these estimates,
the rest of the proof follows along similar lines as in part (a), on noting that

max gj(1)g;(t) = B> max sech®(Bt + u;)sech® (Bt + u})
1<i,j<n 1<i,j<n

= ,stech4(ﬁt + maxu,-) <1l—¢
i€[n]

for some fixed € > 0 and all large enough n by assumption. It only remains to verify (60). To
this effect, we first claim that there exists a (different) constant p > 0 free of n, such that for
any function f :{—1, 1}" + [—1, 1] we have

(61) max|Ep o [ f (X)IX = 0] ~ Bp .u £ (X)1X; > 0] = 5¢77".

where X; := % >_j=i Xj- Given (61), noting that IP’,g,Q,,L()_( > 0) > 1/3 for all large enough =,
we have

Eg.Q.u(XiX;1X >0)
_ EgQulXiX;1{X>0}]

Pg.g.u(X>0)
EnglL[XX l{X > 0}] —on
+ 0(e™"") [By (61
PhonX>0) (e7"") [By (61)]
EﬁQu[tanh(ﬁml+u,)X l{X > 0}] O(e_p")
Pp..u(X > 0)

_ Egqultanh(Bm;” + 1) X, 1{X; > 0}]
Pg.o.u(X >0)

+ 0(e™ ")+ 0(Qjj) [By (61)]

_ Egqultanh(Bm” + ;) tanh(Bm j + ) 1{X; > 0]
Plg Q, ,L(X > 0)

+ 0(€_pn) + O(Q[./‘)

Eﬁ Q.ultanh(Bm; + w;) tanh(Bm ; + ,uj)l{X > 0]
Ppou(X=0)
=g, Q,x[tanh(Bm; + u;) tanh(Bmj + uj)|)_( > 0]+ O(e™"") + 0(Q;)).
A similar calculation gives
(62)  EpgoulXilX>0]=Egq u[tanh(Bm; + )X > 0]+ O(e ") + 0(Q;)),

which along with the above display gives (60), as desired. To complete the proof, we need to
verify (61). To this effect, use Deb and Mukherjee ((2023), equation (2.8)), to note that

= [PpouX=0)—PgouX;>0)<e™,

+0(e”) + 0(Q;)) [By (61)]

and so
Eg..u[f X)X = 0] — Eg.q.u[f X)X, > 0]]
1 1
< = — -
PgouX=>0) PgouXi>0)
+ Pﬂ,Q,u(X <0,X; > 0) <5 P7,
which verifies (61).

+Pgo.uX>0,X; <0)
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Part (b)(ii). It suffices to show that max;cp,) [Eg Q,u(Xi|X > 0)

' 0, tanh(Br + )| < ay
But this follows on using (57) and (58) to note that
|Eg,q.u(tanh(Bm; + 11;)|X > 0) — tanh(Bt + w;)| SEp.Q ulmi —t|

S op.
Part (c). To begin, use Deb and Mukherjee ((2023), equation (4.25)) and Deb and Mukher-
jee ((2023), Lemma 2.4(c)), coupled with the assumption d > /n(log n)? to note that

1 - 1
Eﬂ,Q’Oﬁlz 5 e EXZ SJ -+
n

<
Also, using part (c)(ii) of Lemma 14 with p = 0 gives

Sl -
Sl -

|Eg,Q,0 tanh(m;) tanh(m ;)|

|Eg,q.0[(tanh(m;) — tanh(m) + tanh(Bm))(tanh(m ;) — tanh(m) + tanh(Am))]|
< Eg,Qo|(m; —m)(m; — )| + Eg .0/ (n; — i)
+Ep.q.ol(m; —mm| +Eg g om

< Eg,Q,0 max |m; —m| +2\/E5,Q,0r.n?)§|mi —ﬁ1|2\/EﬁQ0m2 + Eg,Q,om
Leln
RN

VT

6.2. Proof of Lemma 11

1/4

Part (a). To begin, note that for any i € [n] we have

L ePmi
Pg.o0(Xi =xi|1X; =xj,j #1i)

z 1 1 :: p,
ePmi 4 e=Pmi — 1 4 o—2C.8
where max; e, |m;(X)| < maxj<j<, >

=1 Qij = C,. The above display on taking expecta-
tion gives Pg @,0(X; =x;|X; =x;, j € A) > pforany A C [n],andso Pg g,0(Xs =2a) > p
On the other hand, setting
mi(S) =Y Qijxj,
jese

we have

Q(S) _{xe{ LY < max|m (S)|<x1°g”}
vd

l
Imi —mi(8)] < = < 2"

d

Q.II “

= Pgoo(Xse ¢ Q(9)) <

<n P

for some p > 0, where we use part (a) of Lemma 14. Consequently, for A sufficiently large
for any a € {—1, 1}® we have

Pp.q.0(Xs =a) > p* > plogn s =P,

and so
P X, =
lim sup p.0.0(Xs =2)

n=>00 g.15=s, ac{—1,13 1 Pg,Q,0(Xs = a, Xgc € Q(s)
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It thus suffices to estimate Pg ¢ 0(Xs = a, X € (S)). To this effect, we have

1
Pﬂ,Q,O(XS =a, XSC € Q(S))m
X Z exp(2 Z Qijxixj+p Z Qijaixj+ — Z Q,Ja,a]>
xeQ(S) i,jese ieS,jes¢ ljeS
(63) 1
= 7 0 Z ( Z Q’Jxli +ﬁ2a1m S+ = Z Ql]alaj)
n(’B’Q’ )XeQ(S) i,jesc ieS ljeS

exp(ABs 1:)%1 + ’3—S—2)

d 2d
=T Z.6.Q.0 Zexp( ZQ”’“””)

xe2(S) i,jesS¢

A similar calculation gives

exp(—ABsien _ ﬁ—s_z)
(64) Pgo,0(Xs=a,Xs €Q(S)) > 7.8 g ) 2 Z exp( Z QIJXZXJ>

xeQ(S) i,jes¢

Note that both the bounds in (63) and (64) are free of a and depend on S only through
its cardinality, that is, s. The ratio of these two bounds converge to 1 using the fact that
d > (log n)*. The conclusion in (24) then follows.

Part (b). The proof of part (a) goes through verbatim after replacing the term l(i/ggn in the

... 2/3
definition of 2(S) by ao%—n/)é.

Part (c). Again the proof is similar, except that we now use the bound } ;¢ |a;m;(S) —

ajt| < As li%" for x € Q(S§), where the revised 2(S) is defined as

Q(S) _{xe{ 1, 1y*° max|ml(S)—t|<)\l(:/g; IES:LX >O}

6.3. Proof of Lemma 12. Since the probability distribution Pg ¢, is monotonic in u (co—

ordinatewise), without loss of generality we can replace u by i, where (i; = min(A, . @)
for i € S and [i; = 0 otherwise. Then we have

Xn:~-—min(sA d ) = <<Z d
izlﬂl_ "\l logn i = logn

Therefore, more generally, we will show the existence of n > 0 such that

d
, maxu; — 0.
logn ieln]

n n
(65) IP’,S,Q#‘(”XS > Z/L,) — 1 whenever n'/* « Z“i <

i=1 i=1

This choice gives

i 0 - 1 Xn: - Nz 1 < [logn
ijhj == Mj== == =~
j=1 dj:l d\/IOgl’l \/dlogn d

and so Lemma 14 part (c)(ii) applies.
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We begin by claiming the following, whose proofs we defer:

n 2
(66) Ep.Qu(n'/*X)° <n~'/2 <Z m) ,

i=1

(67) Eﬁ,Q,M[Z(di/E— 1)&} <n'l (Z m) :
i=1

i=1

n 2 n 2/3
(68) Ep.Q.u [Z(Xi — tanh(m; + /m)} <!l (Z m) :
i=1 i=1
An application of the triangle inequality gives:
n n

Z(Xi — tanh(m;)) > Z(tanh(mi + pi) — tanh(m;)) —

i=1 i=1
>p ZM;

for some positive constant p free of n. Also, since 7, u; > n 174 using (68) gives

o (G )=o)

Finally, a Taylor’s series expansion of tanh(;) at m gives

n n
Sy mi —m)?+ ) m; —mp,

i=l i=I

> (Xi — tanh(m; + Mi))l
(69) =1

Z — tanh(m; + ;)

i=1

n

Z(X — tanh(m; + ;))
i=1

(70)

> tanh(m;) — n tanh(im)
i=1

(71)

and so

> o(xi— tanh(mi))‘
i=1

n n
SnlXP +aim =X+ XY m —m)? + Y m; —m|?
i=1 i=1

no o\ 1/3 no\1/3 ;
m esnr(i) Yoo )
i=1 j

i=1
n(logn)?/? _
0p< ;%/2 +”(IL)3/2>

n
<3
=nX +0P<Zui>,
i=l
where the last line uses (66), (67) and Lemma 14 part (c)(ii). Combining (72) along with (69)
and (70) completes the proof of (65).
We now verify the three claims (66), (67), (68). To this effect, note that

n 2
(73) Egq.u(n'*X)° {(Zu) +n—‘/2Eﬂ,Q,u[Z<di/3—1>X,-] }
i=1

n

(74) Eg.qu [Z(di /d — 1)X,-] S Vn[1+Eg g (n'/*X)?]
i=1

together imply (66) and (67). It thus suffices to verify (73), (74), and (68).
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e Proof of (73)

The proof follows closely the proof of Deb and Mukherjee ((2023), equation 4.13).

Set T, =n—3/4 _, X;, and form an exchangeable pair (X, X’) as follows: Let I denote
arandomly sampled index from {1, 2, ..., n}. Given I =i, replace X; with an independent
+1 valued random variable X; with mean tanh(Bm; + ;) = Eg q n[Xi|(X;, j #i)], and
let X" := (Xy,..., Xi—1, X/, Xi41, ..., X). Then we have

EpQu[Th — T)IX] = 7/42 — tanh(m; + 1))

1
= W X}( tanh(’n ) 7/4 ZS!/-’LI’
=

where {§;}1<;<, are bounded random variables. This, along with the last display gives

Eg.QulTn — T,1X] — n/2T,} /3|

> (m; —m)’

i=l

2 . 4 . _
< 50 TP+ M A = 4T Y my -
i=I

|

for some fixed constant M > 0. On multiplying both sides of the above inequality by |7}, |3
and taking expectation gives

6
EﬂaQ,II»[Tn]
< @/5n B Qul Tul®
n
n* B ulI T, 1X — ] +n“/2Eﬂ,Q,u[ITn|4Z<mi —m)’
i=1

n
:| + n71/4E5,Q,u|Tn|3 Zﬂi
i=1

+3M

n

Y (m; —m)’

+n1/4E,g,Q,,L[|Tn|3
i=1

+3n°2[Bp.Qu(Tn — T,)T,]).

This is the analogue of Deb and Mukherjee ((2023), equation 4.15) in the case when p is
not necessarily 0. Also, using part (c)(ii) of Lemma 14 we have

n 14
Eﬁ,Q,u[Dmi — m)z} < (na? +nm)”,

(75) i=1

. _mlP < Y4

where we use the fact that it < jl—i < ap, as d > /n. This is the analogue of Deb and
Mukherjee ((2023), equation 4.17). Hereon, proceeding similarly as in the derivation of
Deb and Mukherjee ((2023), equation 4.13) gives (73).
e Proof of (74)
This proof is similar to the derivation of Deb and Mukherjee ((2023), equation 4.14).
With Q as defined in the proof of Lemma 14 part (c)(ii), sete " := (d;/d—1, ..., d,/d —
D, )T = cT(Q)E and xg :=Eg quld i, c l(e)X 12. Note that we can write xp = Ty +
Tr¢ + T3¢ where

2

n

T := Eﬁ~Q’l’«|:Z Ci(l) (X,' — tanh(m; + /,Ll')):| ,
i=1
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0 2
!
Ty = Eﬂ,Q,u[Z C§ tanh(m; + Mi):| ,

i=1

T3¢ := 2E/3’Q’,L I:Z ci(E)C;K) (X,' — tanh(m; + ,bL,')) tanh(m; + /,L,')i| .
i#]
Using Lemma 4 it follows that
(76) Tie S [e“3 < liell3.

For controlling T3, setting mgj ) = Zk?g j Q;x X as before we have

| T3¢] =2 E cl@c;g)Eﬁ,Q,,L(Xi — tanh(m; + w;))(tanh(m; + pu;) — tanh(ml(j) + ii))
77 l;ﬁj(@) ) )2 2
<2 lelle;” Qi S e < lell3.
i#j

For bounding 7»¢, note that

n|X —m|

n
ZCiXi
i=1

n n
<[> _ci(X; — tanh(m; + Mi))' + | > " ci(tanh(m; + ;) — tanh(im + Mi))‘
i=1 i=1
n
+ Zci tanh(u;)
i=1
n n
<D ci(Xi — tanh(m; + Mi))‘ +llellz | Y (mi —m)? + nopt,
i=1 i=1

where the last step uses the bound max;¢(,) [¢;| = max;e[n) |% — 1] £ &y,. Consequently,
for any positive integer p using (75) we have

Ep..uX — M) <n (|3’ (14 n” (a2 + &)7) + (naniv)*?)

(78) <n P[P (14 nPag? +nPi’) + o d’]
2p
< (ogm™ 1
~ 321) ~ np
where the last line uses the bound
n
d.

2 n
||c||%=2(§’—1) <2, Y w<yd = Jlogn.
i=1

i=1

In the subsequent proof, unless otherwise stated, (78) will always be invoked with p = 1.
Combining (78) and (66), we get

n 2 3/2(] 2

v S 1 +n_1/2(2m> + ﬂ </,

i=1
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which again on invoking (78) (with p = 3) gives

n
<0 % - — -
(79) EpouX =—5Sn,  EuE°Sn7, Eﬂ,Q,ﬂ[Zm?]sl.
i=1

Now, a Taylor’s series expansion gives tanh(m; + u;) = tanh(m;) + ;& for bounded
random variables &;, and so

n 2 n n
Toy = E/&QJ‘« |:Z cl(e) tanh(mi):| + 2{E,3,Q,[L |:Z cl(e) tanh(m,-)] } (Z Cl_(e)%-i /Li)
i=1

(80) i=1 i=1

n 2
(Eeren)’
i=1

Setting 6, := 1+ Eg g, (n'/*X)? and invoking (78) and (75) the terms in the RHS of (80)
can be estimated as

n 2 n

14 2 _ _

Eﬁ,Q,ﬂ[E ! )tanh(mi):| <[e®@3- [EM > " (m; —m)* + nEﬂ,Q,ﬂmZ} < llel3/nb,,
i=1 i=1

n n n n
() ()
¢; & il <max ¢ |- ; < max |c; P <1.
i:ZI i &l _ie[”]i:21| i | ;Ml _ie[n]l tliglﬂtw

Combining the above estimate with (78) and (79) and repeating the derivation of Deb and
Mukherjee ((2023), (4.32)), we get the existence of M < oo such that for all £ > 1 we have

Xe < Xpp1 +2M X1 B+ M2, Bui=1+|lc]l2v/0,.

The above relation is similar to Deb and Mukherjee ((2023), (4.32)). Proceeding in a sim-
ilar manner, setting L = D(logn)? with D large enough, an inductive argument gives
x¢ < (L — €+ 1)>M?B2, giving

2
n d
X0 = Eﬁ,Q,M[Z(j’ - 1)&-] < (L + 1M < (logmy* (1 + lel36),
i=1

which verifies (74).
e Proof of (68) A direct expansion gives

n

2
Eg.Q.u [Z(X,‘ — tanh(m; + ,bL,))i|

i=1

n
— E@Q# |:Z sechz(mi =+ ,u,):|

i=1

+Eg.Q.u [Z(X,- — tanh(m; + ,u,-))(tanh(m; + pj) —tanh(m; + Mj))j|
i#£]

n
=Eg Q. [Z sech®(m; + ,u,')]

i=1

+Eg.Q.u I:Z(l — X; tanh(m; + ,bL,‘))(—Qj,' sechz(m; + Mj))i|
i#]



DETECTION THRESHOLDS FOR ISING MODELS 43

+ 0( 3 ng)
i j=1
:Eﬂ,Q,u[ZSCChZ(mi +Mi)<1 — > Qjisech’(m; +Mj))j| + 0( > Qi)
i=1 j=1 ij=1

The first term of the above display, splits into two terms as follows:

Eg, Q,L|:Zsech (m; +u,)<1 - dg>i| + Eg, Qﬂ[ZQU sech?(m; 4 ;) tanh?(m —I—Mj)]

i=1 i,j

n d;
) "(sech®(m) + &1 + &ia(m; — ﬁ))(1 — j) H

(@)
= Eg.qQ.u
i=1

+ Eﬁ,Q,ﬂ[Z Q;; tanh*(m j + u,-)}
ij

d;
<max——1
d

§1+JZ<

Zu, +ZEﬂQlL (% - 1)(’711 —m)'+EﬂQM[ZQtJ mj "HLJ)}

i=1 i=1 i,j

) n
) J EpQu ) (mi —m)?

i=l

&II S

n n
+EgQ.u |:Z(mi — ﬁ)2:| + nEﬁ,Q?ﬂﬁz + Z ,u?
i=1 j=1

b) nlogn |n(logn)? n(logn)?
Sl [ | Y i

n
+ Y ui +nBg (X —m)? +nEs o u[X]?
i=1

n n 2/3
(i) Y s S+ EpquiXE S0 (L)
j=1

i=1

Here (a) follows from standard Taylor expansions. Note that &1 and &;» are uniformly
bounded random variables. The bounds in (b), (¢) and (d) are consequences of Lemma 14
part (c)(ii), (78) and (66) respectively.
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