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ARTICLE INFO ABSTRACT

Keywords: Engineered architectured Materials, such as metamaterials with periodic patterns, achieve superior properties
Architectured materials compared with their stochastic counterparts, such as the random microstructures found in natural materials. The
XAI

primary research question focuses on the feasibility of learning advantageous microstructural features from
stochastic microstructure samples to facilitate the generative design of periodic microstructures, resulting in
unprecedented properties. Instead of relying on brainstorming-based, ad hoc design inspiration approaches, we
propose an eXplainable Artificial Intelligence (XAI)-based framework to automatically learn critical features
from the exceptional outliers (with respect to properties) in stochastic microstructure samples, enabling the
generation of novel periodic microstructure patterns with superior properties. This framework is demonstrated
on three benchmark cases: designing 2D cellular metamaterials to maximize stiffness in all directions, to
maximize the Poisson’s ratio in all directions, and to minimize the thermal expansion ratio. The effectiveness of
the design framework is validated by comparing its novel microstructure designs with known stochastic and

Stochastic microstructures
Periodic microstructures
Generative design

Design inspiration

periodic microstructure designs in terms of the properties of interest.

1. Introduction

In architectured material design, a compelling research question
arises: How can knowledge and data acquired from one category of
microstructures inform the design of microstructures in a different
category to achieve superior properties? This study focuses on
leveraging knowledge learned from stochastic microstructures to facil-
itate property-driven generative design of periodic microstructures (e.g.
cellular metamaterials). Stochastic microstructures are random in na-
ture and typically fabricated using methods that do not lend themselves
to the direct control of microstructure. Examples of stochastic micro-
structures include nanoparticle composites [1-3], chopped fiber com-
posites [4,5], porous polymers and foams [6-10], coral-like random
structures via directional ice templating [11], and many more. Periodic
microstructures consist of repeating cellular units that are highly engi-
neered for tailorable properties. Examples of periodic microstructures
include the engineered metamaterials [12,13] and lattice structures [14,
15].

In literature, brainstorming-based, ad hoc approaches have been
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extensively employed to draw inspirations from natural/biological ma-
terials for designing metamaterials and architectured materials [16-21].
These approaches often involve proposing novel periodic microstruc-
tures by mimicking structural features observed in stochastic natural
materials, relying on inspiration and reasoning, which constitutes a
manual process.

On the other hand, the literature includes a significant number of
works on computational design approaches that enable microstructure
design automation. For the freeform design of periodic microstructures,
topology optimization based on pixelated/voxelated density fields
[22-24] or level set functions [25,26] has been widely applied for
generating novel microstructure patterns with maximum stiffness,
negative Poisson ratio, negative thermal expansion ratio, etc. For the
design of stochastic microstructures, statistical characterization and
stochastic reconstruction methods have been proposed for defining the
design space with statistical microstructure descriptors. Popular statis-
tical microstructure descriptors include ad hoc microstructure parame-
ters [4,5,27-29], N-point correlation functions [30-33], spectrum
density function [34,35], and random fields [36,37]. In recent years,
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deep generative models, Generative Adversarial Network (GAN) and
Variational Autoencoder (VAE), also see increasing applications in
designing both periodic [38-43] and stochastic [44-50] microstruc-
tures. In our recent works, we investigated deep generative model [51]
and curvature functionals [52,53] approaches in establishing a unified
design space that embodies multiple categories of microstructures,
including both periodic and stochastic microstructures, for freeform
design.

However, the aforementioned works do not provide a rational
approach for leveraging the knowledge learned from stochastic micro-
structures to guide the design of periodic structures. To resolve this
issue, we propose and validate an eXplainable Artificial Intelligence
(XAI)-based framework for generative design of novel periodic micro-
structure based on stochastic microstructure exemplars. Instead of
treating the input-output relationship as a black box, XAI [54,55] pro-
vides an explainability of the causal relationship between microstruc-
ture features as the input and the material properties as the output. Our
hypothesis posits that by learning advantageous microstructure features
from stochastic microstructure data using XAl novel periodic micro-
structure designs created by arranging those advantageous features in a
periodic manner can achieve superior properties compared to stochastic
microstructures. The motivation is to learn critical features from one
microstructure category (e.g., stochastic microstructures) to inspire new
designs in another category (e.g., deterministic metamaterial units)
where data is lacking. In this work, a novel XAl-based framework is
proposed to automate the process of designing periodic microstructures
inspired by advantageous features learned from stochastic microstruc-
ture data. This framework is implemented in three benchmark cases to
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test our hypothesis.
2. methodologies of xai construction and design generation

2.1. Overview of the proposed XAI-based microstructure design
framework

The proposed framework (Fig. 1) embodies three major components:
(a) stochastic microstructure database, (b) supervised learning of
microstructure-property relationship and Gradient-weighted Regression
Activation Mapping (Grad-RAM) [56,57] for critical microstructure
feature identification, and (c) a skeletonization-based periodic micro-
structure construction approach.

We established a stochastic microstructure database that includes
20,000 2D stochastic microstructure images [51] in four categories:
random particle, random fiber, random porous, and random spinodal
structures. The microstructure samples are generated by stochastic
reconstruction methods [1,4,58-60], details of which will be introduced
in the method section. Additionally, the database includes the properties
of all microstructure samples obtained by Finite Element Analysis.

Convolutional Neural Networks (CNN) are trained as the regressors
that predict the material properties based on input microstructure im-
ages. Transfer learning on a modified ResNet-18 model [61] is con-
ducted to create the regressors (Figures S1 and S2). In addition to the
prediction accuracy, interpretability is also crucial for building trust in
these networks. It is important to build ‘transparent’ models that can
explain the key factors driving the predictions. With the trained CNN
regressors, an XAI method, Grad-RAM, is employed to identify the

(a) Stochastic microstructure database by stochastic reconstruction
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Fig. 1. Overview of the proposed XAl-based design automation framework for architectured materials. (a) A highly diverse stochastic microstructure database
created by stochastic reconstruction algorithms. (b) Supervised learning for property prediction and XAI for identifying critical microstructure features leading to
desired properties. (¢) Construction of novel microstructure designs with critical microstructure features.
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critical local regions in the microstructure images that explain the model
output, to be specific, the local regions that contribute to the regression
results. Grad-RAM is a method that was developed based on
Gradient-weighted Class Activation Mapping (Grad-CAM). Grad-CAM
visualizes class activation maps in classification tasks. For a specific
convolutional layer I, Grad-CAM calculates the gradient of the target
class (y°) score with respect to the feature map Ai of it.

day°

oAl (€Y

gradient =

The gradients indicate which neurons in the layer have the most
influence on the final prediction. Grad-CAM computes af, a weighted
average of the gradients for each feature map channel, creating a weight
for each channel based on its importance to the target class using the
following equation:

1
P, @
ij

k,ij

where Z is the total number of pixels. These weights are combined with
the feature maps to create a weighted activation map, L, 4_can> Which
is upsampled to the original image size to highlight the area’s most
relevant for the class.

Lz;rad—CAM = Rel U(ZkalccA;c) (3)

The result will be a heatmap showing which parts of the image the
network focused on for that prediction. Therefore, Grad-CAM can pro-
vide insights into the abstract features or patterns that specific neurons
or layers respond to, and reveal the visual features that the network has
learned.

In contrast to Grad-CAM that has been explained above and com-
putes gradients with respect to specific classes in classification tasks,
Grad-RAM calculates gradients based on the predicted continuous
output in regression tasks. Let f be CNN model (regressor) that predict
the material properties of interest y based on the input image x, and g
denotes a regression result of interest, the purpose of Grad-RAM is to
explain the output of the model for a given input f(x) through a visual
explanation map generated by:

L‘érad—RAM =RelU (Zak b Ak) (4)
k
1 9y
—= A 5
(3 ZZ; P) A; (%)

Where Ay represents the k-th feature map of the selected convolutional
layer, y is the output the CNN model, o is the pooling gradients for
neuron importance weights, Z is the number of elements in each feature
map. Applying ReLU ensures that only features having a positive influ-
ence on the output are considered. In terms of computational
complexity, the primary cost of the proposed framework comes from
training the CNN regressor. The implementation of Grad-RAM only re-
quires gradient calculations, which incur negligible computational cost.

With microstructure samples with superior properties (exceptional
outliers), we employ Grad-RAM to generate heatmaps that pinpoint
critical local regions, which embody advantageous microstructure fea-
tures contributing to desirable properties. These critical local regions
serve as fundamental microstructure units for constructing novel peri-
odic microstructure designs, which is the last step of the framework. The
novel designs obtained will undergo validation through comparison
with established designs to assess their properties.
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2.2. Creation of stochastic microstructure database by stochastic
reconstruction

We have created a database of 20,000 2D stochastic microstructure
images [51] by stochastic reconstruction. The images have a resolution
of 128 x 128 pixels, with the volume fraction (percentage of the white
pixels in the entire image) ranging between 0.38 and 0.41. The sto-
chastic microstructure images in our training database generally fall into
four categories: random particle-like patterns, random fiber-like pat-
terns, random cellular-like patterns, and random amorphous patterns.
Three sets of microstructure reconstruction methods [1,4,58-60] have
been employed (Fig. 2).

Firstly, the parametric descriptor-based method [1,3,4,58,62] is
applied to create microstructures consisting of random particle types,
including spherical and ellipsoidal particles, as well as random
fiber-type microstructures. This method focuses on using predefined
geometric descriptors to model the spatial arrangement and shape of the
microstructural features.

Secondly, the space tessellation-based method [58,63,64] is applied
to generate microstructures that resemble random networks and random
porous structures. This approach partitions space into multiple zones or
cells, each representing a unique phase or component of the material,
thus effectively modeling complex interconnected or porous
architectures.

Thirdly, the spectrum density function (SDF)-based method [34,35,
65] is employed to generate stochastic spinodal-like microstructures.
The SDF method characterizes the spatial correlations between pixels of
each material phase in the frequency domain. Defining a binary image as
Z(r), where r represents pixel locations and pixels take values of 0 or 1
(which represent the two material phases), the image’s Fourier spectrum
is:

F{zZ(r)} = R"Z(r)e’z”i"kdk =Apee (6)

where Ax and ¢, represent the magnitude and phase information at each
location k of the Fourier spectrum. For a microstructure image, its SDF
p(k) is expressed as:

plk) = |7{Z(n)} | = A )

The mathematical relationship between SDF and the 2-point corre-
lation function, which is a well-established approach for characterizing
stochastic images [66-69], has been established by Chatfield [70]. To
reconstruct random but statistically equivalent microstructures based on
a target SDF, a Gaussian random field approach is employed. The
reconstructed microstructure image Z(r) is represented by a Gaussian
random field Y(r), and a numerical realization of Y(r) can be obtained
using the wave-form method [71]:

N
Y(r) = \/% ° Z COS(kiki or+ ¢l) (8)
i=1

where N is the number of terms in the truncated series, ¢; is generated by
sampling uniform distribution in the range of [0, 2z], k; is a vector
uniformly distributed on a unit sphere, and k; is a scalar obtained by
sampling the probability density function p(k) e k in the range of (0, ).

2.3. Supervised learning models of the microstructure-property
relationship

A fundamental component of the Grad-RAM-based design frame-
work is a supervised learning model that predicts the microstructure-
property relationship. Convolutional Neural Networks (CNNs) serve as
a prominent choice for supervised learning, capable of being trained
with the generated data outlined in the previous section. In this study, a
regression model based on Residual Network-18 (ResNet-18) is trained
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Fig. 2. Different methods which used to generate the stochastic samples: (a) Statistical microstructure parameter-based reconstruction, and (b) Stochastic Voronoi
tessellation-based reconstruction, and (c) Generation of various microstructure samples by varying the input spectrum density function.

to predict microstructure properties based on microstructure images
(Figure S3). The basic ResNet-18 consists of 18 layers with weights and 8
residual blocks. Within each block, the input traverses through con-
volutional layers before being added back prior to the final activation
function. This unique "residual" connection facilitates the training of
deeper networks. Grad-RAM will be applied to identify the critical fea-
tures from the last convolutional layer. The CNN model is implemented
in PyTorch. For all the 20000 samples, 80 % of them are used as training
set and the rest 20 % are considered as test set. As listed in Table 2, all
supervised learning models have a reasonable level of accuracy in pre-
dicting properties of interest. The Mean Squared Error (MSE) loss
function which is used in the training is given as:

1<¢ ~
loss = - ; i — yi)2 9)

Where y; is the true value and the y; is the predicted value from the
model. As listed in Table 2, all supervised learning models have a
reasonable level of accuracy in predicting properties of interest. More
details of model training and the structure of this CNN model are listed
in Table 1 and Figure S4.

In order to prepare the data for training, we carried out the finite

Table 1
Details of model training for the two benchmark cases.

Table 2

Accuracies of the supervised learning models for property prediction. Model 1
and 2 predict Young’s modulus along X and Y directions, respectively. Model 3
and 4 predict the Poisson’s ratio along X and Y directions, respectively. Model 5
and 6 predict thermal expansion along X and Y directions, respectively.

Case 1 Case 2 Case 3

Model Model Model Model Model Model

1 2 3 4 5 6
Test Loss 0.0003 0.0002 0.0007 0.0007 0.0005 0.0003
R square 0.9711 0.9591 0.9270 0.9124 0.8653 0.9373
value

element (FE) simulations. Based on the image structures we generated,
the meshes of models are converted from binary microstructure images,
where each pixel corresponds to one quadrilateral element. Thus, an
image of 128 x 128 pixels is converted a FE mesh with 16384 elements.
The material properties used in the simulations are listed in the
following Table 3. MAT 1 represents the properties of the white phase
and MAT 2 represents the properties of the black phase.

Case Basic Model Label Optimizer Batch Size Epochs Learning ratio

1 ResNet—18 Normalized Adam 32 100 Decreased by epochs
2 ResNet—18 Normalized Adam 32 50 Decreased by epochs
3 ResNet—18 Normalized Adam 32 50 Decreased by epochs
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Table 3
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Properties of each material phase and model parameters used in the two benchmark cases.

Case 1 & Case 2 Case 3

Modulus (MPa) Poisson’s ratio Density Modulus (MPa) Poisson ratio Density Coefficient of Thermal Expansion
MAT 1 379300 0.3 1.0 68300 0.33 1.0 23.6e—6
MAT 2 68300 0.3 1.0 0.1 0.25 1.0 le-15

2.4. Implementation of the Grad-RAM

The Grad-RAM (Gradient-weighted Regression Activation Mapping)
is an XAl approach that extends the Grad-CAM (Gradient-weighted Class
Activation Mapping) approach to regression tasks. Originally devised for
classification questions with discrete class labels, Grad-CAM operates by
analyzing gradients flowing into the final convolutional layer relative to
the score of the target class. However, in this study, where the prediction
target is a continuous variable representing a microstructure property,

gradients are computed with respect to the continuous output. Conse-
quently, focus shifts towards understanding how variations in input
image features influence the continuous output value. The process of
conducting Grad-RAM on a CNN model is as follows.

1) Feed the input through the already-trained CNN to obtain the pre-
dicted regression value.
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Fig. 3. (a) Architecture of Grad-RAM; (b) Two examples of applying Grad-RAM to generate heatmaps that highlight the critical regions in the microstructure images.



Z. Feng et al.

2) Choose a convolutional layer for analysis. The reason for selecting
the last layer is that the layers deeper in the network capture more
abstract features globally pertinent to the regression task.

3) With the selected layer, compute gradients of the regression value
with respect to the feature maps of the selected convolutional layer.

4) Perform global average pooling on these gradients to obtain the
importance weights of each feature map channel.

5) Create a weighted sum of the feature maps based on these impor-
tance weights, yielding a coarse heatmap matching the dimensions of
the original image.

6) Apply ReLU activation to this heatmap. Positive values on this
heatmap denote areas significantly influencing the increase in the
output value.

Fig. 3a illustrates the flowchart of this process, and Fig. 3b presents
two examples of Grad-RAM outputs on stochastic microstructure im-
ages. These outputs are heatmaps that highlight the critical regions. In
the three presented benchmark cases, the outputs are the mechanical
properties along the X and Y directions, respectively. Therefore, we
employ Grad-RAM to generate a heatmap for each output and then
intersect the two heatmaps to identify the final critical region.

2.5. Construction of new microstructure designs with key features
identified by XAI

The heatmaps, originally grayscale images, are visualized as RGB
images in Fig. 3 for easier interpretation. By binarizing the heatmap, we
can identify a local patch containing the critical microstructure features
from the original microstructure image. However, the local patch may
not possess the target volume fraction. To facilitate volume fraction
adjustment while preserving the topological characteristics of critical
microstructure features, we propose to represent the material phase with
a higher stiffness and Poisson’s ratio (for benchmark Case 1 and 2) or a
larger thermal expansion coefficient (for benchmark Case 3) in the bi-
phase microstructure using its skeleton. The critical local microstruc-
ture feature in skeleton format, which serves as the microstructure unit
for construction new designs, is obtained by masking the skeletonized
microstructure image with the binarized heatmap. In order to ensure the
connectivity of materials at the unit boundaries, we propose and
compare two methods for constructing new metamaterial designs with
microstructure units and select the mirroring method for its better
performance (Figure S6).

2 3

5
\ . .
Volume
: . : fraction

J =\

Fig. 4. Constructing novel microstructure designs utilizing key microstructure
features identified by XAI: mirroring method.
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e Mirroring method. The microstructure unit is treated as a quarter of
the new design, which can be obtained by mirroring, following the
process shown in Fig. 4.

e Graph-Based method. The skeleton in the microstructure unit is
converted into a node-edge graph, as shown in Figure S5. The posi-
tions of the boundary nodes are adjusted (moved along the bound-
ary) to ensure connections with a periodic boundary condition. This
method is presented in the Supplementary Information.

After constructing the connected skeleton structure, the last step is to
adjust the volume fraction of the binary image by adding white pixels to
the skeleton. Details of the volume fraction adjustment process is pro-
vided in the Supplementary Information (Figure S7).

3. Results validation and discussion

3.1. Benchmark cases of microstructure design and generation of novel
periodic microstructure designs

The effectiveness of proposed XAl-based framework is demonstrated
on three benchmark cases: (1) design for high stiffness, (2) design for
high Poisson’s ratio, and (3) design for negative thermal expansion. The
samples in the microstructure database are considered as bi-phase
composites.

The design objective of Case 1 is to maximize Young’s modulus along
both the X and Y directions, under the constraint that the difference
between them is less than 10 % of the smaller modulus value. The design
objective of Case 2 is to maximize the Poisson’s ratio along both X and Y
directions, under the constraint that the difference between them is less
than 10 % of the smaller value. There are two material phases in each
microstructure sample, where the white phase represents Boron, and the
black phase is Aluminum. The volume fraction of the white phase in the
obtained designs should be within the range of 0.39-0.40. Young’s
moduli of the microstructure are obtained through the analysis of strain
energy from simulated compression tests. For Case 3, design for mini-
mum thermal expansion ratio, the design objective is minimizing the
thermal expansion in X and Y directions, while the difference between
them should be less than 10 % of the relatively smaller one. There are
two material phases in each microstructure sample, where the white
phase represents Aluminum, and the black phase is a certain type of
foam, which has a lower stiffness and lower thermal expansion ratio.
The volume fraction of the white phase in the obtained designs should be
between 0.39 and 0.40. A temperature field is applied to the micro-
structure model, simulating the process of raising temperature from 20
to 500 °C to observe the behavior of thermal expansion along X and Y
directions. The boundary conditions of the three benchmark cases are
illustrated in Fig. 5a and 5b.

The mechanical properties of interest, including stiffness, Poisson’s
ratio, and thermal expansion, are obtained by simulations for all sto-
chastic microstructure samples in the database. In Case 1, stochastic
microstructure samples with exceptional stiffness, characterized by the
top 10 % E, and E, values, are selected as exceptional outliers. In Case 2,
stochastic microstructure samples with top 10 % Poisson’s ratio are
selected as the exceptional outliers. In Case 3, stochastic microstructure
samples with bottom 10 % thermal expansion displacements are
selected as the exceptional outliers. With the exceptional outliers, the
proposed design framework is employed to generate novel periodic
microstructure designs with favorable properties. Fig. 5c-e depict the
four steps of design generation, showcasing the original images, skele-
tonized microstructure features within the critical region, the novel
microstructure design in skeleton format, and finally, the complete
microstructure design with the target volume fraction.

3.2. Validation of the XAI-generated novel microstructure designs

By comparing the XAl-generated periodic microstructure designs
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Fig. 5. Benchmark design cases and examples of novel microstructure designs generated by the proposed framework. (a) Boundary conditions used in both Case 1
and 2. (b) Boundary conditions used in Case 3. (c) Design generation process for Case 1: maximizing the Young’s modulus along X and Y directions. (d) Design
generation process for Case 2: maximizing the Poisson’s ratio along X and Y directions. (e) Design generation process for Case 3: minimizing thermal expansion along

X and Y directions.

with all stochastic microstructures in the training database, we confirm
that this framework has the capability of generating design with un-
precedented properties. In Fig. 6, the blue and yellow dots represent
stochastic microstructure samples in the database, and the yellow dots
are the exceptional outliers that are used in the XAl-based critical local
feature identification. The red dots represent the periodic cellular met-
amaterial designs created based on the critical local features, which are
also meeting the design constraints discussed in the previous section.
The dashed lines in the plots represent points with the equal stiffness/
thermal expansion. In the plots, the properties of the XAl-generated
designs are obtained using the same simulation model employed for
the stochastic microstructure samples. It is evident that the XAI-
generated periodic microstructures achieve unprecedented properties,
surpassing all known stochastic samples in the database, in all three test
cases.

Further design validations are provided in the Supplementary In-
formation (Figure S1 and S2). We provide comparisons between the XAI-
generated metamaterial designs and those obtained by gradient-based
topology optimization (TO), a well-established method for design for
stiffness [72,73] and Poisson’s ratio [74,75]. We find that the proposed
framework can find designs that closely resemble the optimal designs by
TO. Furthermore, by using XAl-generated designs as starting points,
gradient-based TO achieves the local optimum faster compared to those
starting from random images, which indicate a potential synergy be-
tween the XAl-based design framework and the gradient-based TO
methodology. For the case of designing for minimal thermal expansion,
we compare the XAl-generated designs with bi-phase metamaterial de-
signs reported in the literature and confirm the superior performance of
the XAl-generated designs.

3.3. Further notes on (i) adaptability of the framework and (ii) design
generation with moderate samples

In Section 5 of the Supplementary Information, we demonstrated the
adaptability of the proposed framework on an additional case study with

different constituent material properties and a smaller dataset. In Sec-
tion 6 of the Supplementary Information, we also present an investiga-
tion of the impact of heatmap binarization threshold on the
performances of the obtained microstructure designs. By increasing the
binarization threshold, the size of the identified critical region shrinks,
meaning the identified microstructural features become more localized.
In the presented case studies, more localized microstructural features
lead to better performances generally, while we caution that an overly
small critical region may result in microstructural features that are too
small to be meaningful.

In Section 7 of the Supplementary Information, we applied the pro-
posed framework to generate new designs using stochastic samples with
moderate properties, excluding the exceptional outliers from the sto-
chastic dataset. The purpose is to determine whether XAI can still
identify critical features for generating high-performance designs. Our
results in Figure S11 show that designs generated from moderate sam-
ples exhibit lower properties compared to those generated from excep-
tional outliers, though one of the designs from the moderate samples
surpasses all stochastic samples. The results suggest that while it is less
likely, it is still possible to identify advantageous microstructural fea-
tures from moderate samples.

4. Conclusion

This paper introduced a new XAl-based design framework that
identifies advantageous features from stochastic microstructure samples
and generates novel periodic microstructures with enhanced properties.
The effectiveness of this framework is demonstrated through the suc-
cessful generation of novel designs exhibiting superior properties
compared to all known samples within the existing dataset. This work
highlights the transformative potential of XAI in surpassing the limita-
tions of traditional ad hoc design processes, which typically rely on
human expertise and brainstorming to transfer knowledge learned from
one category of microstructures to inspire novel designs in another
category (e.g., from stochastic to periodic). The proposed design
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framework enables design automation and reduces the reliance on
human judgment and brainstorming. The results validate the hypothesis
that by learning advantageous microstructure features from stochastic
microstructures using XAI, novel periodic microstructure designs
created by arranging those advantageous features in a periodic manner
can achieve superior properties compared to stochastic microstructures.

The limitations of the proposed framework will be explored in our
future work. The Grad-RAM approach primarily focuses on identifying
local microstructure features, potentially overlooking high-level spatial
distribution patterns of material phases. However, certain material
properties might not be exclusively sensitive to local features. In our
future research, we plan to improve the framework to enable the
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identification of high-level patterns, such as spatial distribution pat-
terns, that positively influence the properties of interest for the gener-
ative design of novel structures. In addition to designing metamaterials,
we plan to extend this method to porous microstructures, where com-
plete connectivity of the solid phase is a crucial geometric constraint
that was not addressed in this work. We also aim to apply this method to
the design of flexible structures with large deformations to achieve
desired dynamic behaviors.
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