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Dimitrios Tsapetis et al.
1. Motivation and significance

Uncertainty Quantification (UQ) is the science of characterizing,
quantifying, managing, and reducing uncertainties in mathematical,
computational and physical systems. Depending on the sources of un-
certainty, UQ provides a multitude of methodologies to quantify their
effects. For instance, given the probability distribution for the inputs
to a computational model, forward uncertainty propagation methods
aim to estimate the distributions or statistics of resulting quantities
of interest. Inverse UQ, on the other hand, aims to infer uncertainties
in input quantities given limitations and uncertainties in the observed
system response, e.g. for model calibration from experimental data. Nu-
merous related tasks fall under the broad classification of UQ including
sensitivity analysis, which aims to quantify the influence of multiple
inputs to a system, and reliability analysis which aims to estimate (and
sometimes minimize) the probability of failure of the system.

A major challenge in UQ is to reduce the high computational
expense associated with many repeated model evaluations. This can be
achieved through advances in sampling, development of computation-
ally inexpensive surrogate models (or metamodels), and by leveraging
high performance computing. To address these challenges, multiple
software packages and libraries have been developed. Some of the most
comprehensive libraries for UQ include OpenTurns [1], Korali [2],
MUQ [3], UQTk [4], Dakota [5], OpenCossan [6] and UQLab [7].
These software are developed in either C, C++ programming languages
or Matlab and although many provide bindings to Python (to dif-
fering extents), they are not generally suitable for direct extension
in Python, which is one of the most widely used languages in the
scientific community.

Apart from these general purpose UQ libraries, several packages
that target specific applications or with more limited scope are avail-
able. In R, the DiceDesign [8] package aids experimental design,
while DiceKriging and DiceOptim [9] use Kriging for metamodel-
ing and surrogate-based optimization, respectively. The Matlab code
FERUM [10], developed at UC Berkeley and IFMA, Clermont, serves
as a general purpose finite element structural reliability code, while
SUMOToolbox [11] is a framework for global surrogate modeling and
adaptive sampling. The Engineering Risk Analysis group at TU Munich
also provides a collection of Matlab and Python routines [12] re-
lated to the group’s research. Specifically in Python, several focused
libraries have been developed. UncertaintyPy [13] was developed
for UQ in computational neuroscience. PyROM framework [14] pro-
vides a user-friendly way to implement model reduction techniques.
The ChaosPy package provides UQ functionality centered around
polynomial chaos expansions. Bayesian calibration algorithms are im-
plemented in SPUX [15] and ABCpy [16] and sensitivity analyses
by SALib [17]. PyMC [18] provides a simple Python interface that
allows its user to create Bayesian models and fit them using Markov
Chain Monte Carlo methods. PyGPC [19] library is based on general-
ized polynomial chaos theory and provides capabilities for uncertainty
and sensitivity analysis of computational models. Three of the latest
additions are PyApprox [20], which provides wide-ranging func-
tionality, NeuralUQ [21] focused on UQ in neural network models,
and Fortuna that provides uncertainty estimates, classification and
prediction for production systems.

UQpy aims to provide a comprehensive UQ library with wide-
ranging capabilities spanning the areas discussed above, as well as a
development environment for creating new UQ methodologies. The
UQpy package was originally introduced in [22], where the overall
structure of v3 was described. Since then, the authors have reworked
the UQpy architecture with the goal to simplify its structure, enhance
its extensibility, and make it more robust. The updated architecture
of the library rendered it not backwards compatible, as the strategy
for construction of classes has changed. Yet porting older solutions to
the new structure can be performed in a straightforward manner. This
restructuring resulted in the current version we present here, v4.1.
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The first task carried out towards v4.1 was to restructure the file
system. The previous structure, which maintained a single Python
file per module, had reached size limitations and made it cumbersome
for the team members to add new functionalities or update existing
ones. In the reorganization, a directory was created for each module,
which contains, in a hierarchical structure, subdirectories for specific
functionalities, with one file dedicated to each class. Slight modifica-
tions were also made to the existing code to ensure compliance with
PEP8 by renaming modules, classes, and function signatures. Instead
of monolithic classes per functionality, each component was split into
a separate class with a dedicated abstract baseclass, where ap-
plicable. This choice reduced code complexity, provided a standardized
way of extending components, and enabled the construction of the final
functionality, using object composition and inheritance.

The second step to improve internal and external collaboration
was to deprecate the “branch-per-developer” strategy and move to a
feature-based branch structure using the Github Flow. This removed
unnecessary redundancies and complications when multiple people are
working on related functionalities. At the same time, the workflow
is now directly combined with testing automation and Continuous
Integration/Continuous Delivery (CI/CD) workflows. Unit tests were
implemented throughout the software, achieving code coverage greater
than 80%. The CI pipeline includes linting, code quality checks, and
automated semantic versioning, while the CD pipeline packages and
distributes the code via multiple channels, such as PyPI, conda-
forge, and Docker images. This CI/CD pipelines are explained in
more detail in Section 3.

The documentation was revamped to reflect the new hierarchical
structure of the code, with embedded examples serving as tutorials
to quickly familiarize users with the code functionality. Specifically,
for each class, a gallery of examples is created using the sphinx-
gallery extension [23]. The users can now download the examples
in both Jupyter notebook and Python format or directly interact with
the example in a dedicated Binder environment. Finally, several new
functionalities were introduced either by the development team or
external collaborations, thus boosting UQpy’s capabilities.

2. Software description
2.1. Software architecture

UQpy is a Python-based toolbox that provides a series of com-
putational methodologies and algorithms for wide-ranging UQ prob-
lems. The core of UQpy is based on state-of-the-art Python libraries,
specifically NumPy [24], which is the most fundamental package sup-
porting array and linear algebra operations, SciPy [25], that pro-
vides algorithms for optimization, integration and basic statistics, and
scikit-learn [26], which includes various tools for supervised
and unsupervised learning. UQpy is split into eleven modules, nine
of which address specific tasks in UQ and which will be discussed
in detail in the following section. A module that enables necessary
simulations in all other modules, called run_model, aids in the batch
execution of both Python and third-party computational models and
includes functionality for parallelization via MPI for high performance
computing. Finally, a utilities module contains various functions
that are common to multiple modules.

2.2. Software modules

In this section, all existing modules of UQpy will be briefly intro-
duced, with emphasis on software updates compared to v3. The basic
module structure and capabilities are illustrated in Fig. 1. The detailed
UML diagrams for all modules are included in the UQpy documentation
allowing architecture visualization.
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Fig. 1. Structure and capabilities of the UQpy modules.

2.2.1. distributions module

The distributions module serves as the basis for most prob-
abilistic operations in UQpy. It is fully compatible with scipy dis-
tributions and enables users to create probability distribution objects.
Compared to the previous version, the baseclass hierarchy was sim-
plified. An abstract baseclass Distribution serves as the interface
for creating all subsequent distributions. Depending on the dimension-
ality of the distribution this baseclass is further refined into Dis-
tributionlD and DistributionND for univariate and multivari-
ate distributions respectively, while the Distribution1D is further
subclassed into DistributionsContinuous1D and Distribu-
tionsDiscretelD for continuous and discrete random variables.
Within this structure, 23 distinct distributions are implemented. A
Copula baseclass with two implementations enables users to add de-
pendence between 1D distribution objects. All baseclasses can be easily
extended by users to implement any distribution of their choice by
simply creating a new child class for the distribution and implementing
the requisite methods.

2.2.2. sampling module

This module provides a wide range of methods to draw samples
of random variables. The following classes enable Monte Carlo sim-
ulation and variance reduction methods: MonteCarloSampling,
SimplexSampling, ImportanceSampling, and Stratified-
Sampling. The StratifiedSampling class has been refactored
as a parent class for all stratified sampling approaches with Lat-
inHypercubeSampling, TrueStratifiedSampling, and Re-
finedStratifiedSampling as child classes, all of which utilize
a common Strata class for geometric decomposition of the domain.
Markov Chain Monte Carlo (MCMC) methods are included, with the
MCMC abstract baseclass serving as the common interface and 7 dif-
ferent methodologies implemented as subclasses. The latest version
includes two new implementations of parallel and sequential tempering
MCMC algorithms. Additional MCMC methods can be implemented by
the user by simply creating a new subclass with the requisite methods.
The module also includes the AdaptiveKriging for adaptive sample
generation for Gaussian process surrogate modeling (see Section 2.2.9)
using specified (and custom) learning functions. Compared to v3, all
learning functions have been extracted as separate classes, with a com-
mon LearningFunction baseclass, allowing users to easily create
custom implementations.

2.2.3. transformations module

This module contains isoprobabilistic transformations of random
variables. Except for updates in naming conventions, this module re-
tained the previous functionality with the Nataf, Correlate, and
Decorrelate transformations being available.

2.2.4. stochastic_process module

This module supports the simulation of univariate, multivariate,
and multidimensional Gaussian and non-Gaussian stochastic processes,
with the latest addition since v3 being the two-dimensional Karhunen—
Loéve Expansion in the KarhunenLoeveExpansion2D class. All
pre-existing classes of SpectralRepresentation, Bispectral-
Representation and KarhunenlLoeveExpansion have been up-
dated to conform with PEP8 Python coding standards.

2.2.5. run_model module

This module is not directly related to any specific UQ operations,
yet it is an integral part of the UQpy software. It lies at its core and
supports the execution of either Python or third-party computational
models at specified sampling points.

UQpy interfaces Python models directly, by importing and exe-
cuting the code. On the other hand, UQpy interfaces with third-party
software models through ASCII text files to introduce uncertainties
in their inputs and uses a standardized scripting format for model
execution. In both cases, UQpy supports serial and parallel execution.
Parallel execution allows the execution of different samples simulta-
neously, with options for local and cluster execution. Local parallel
execution uses MPI and the mpi4py library to distribute the random
samples among tasks that are processed independently. In this case,
the model evaluation cannot invoke MPI internally. In cluster enabled
parallelization, with the aid of a bash script, a tiling of the jobs can be
performed to include both shared and distributed memory parallelism,
while enabling the user to work with different HPC schedulers.

2.2.6. dimension_reduction module

In the update from v3 to v4.1, the dimension_reduction mod-
ule was rewritten from scratch. The existing DirectP0OD and Snap-
shotPOD methods were reworked to comply with the latest Python
coding conventions and the HigherOrderSVD class was added. To
support Grassmann manifold projections and operations, a series of
classes were added. The GrassmannProjection class serves as the
parent for classes that project data arrays onto the manifold, with the
SVDprojection subclass currently available. After the data have
been projected, operations such as computing the Karcher mean or
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Frechet variance are available with the aid of the GrassmannOpera-
tiomns class. Interpolation can be performed on the manifold with the
GrassmannInterpolation class. Special attention was given to the
DiffusionMaps class, where the kernel computation was extracted
and delegated to a hierarchy of kernel classes in the utilities
modules for broader use in future development of other kernel-based
methods. More detail can be found in Section 2.2.11.

2.2.7. inference module

The functionality of the inference module was retained from
v3 to v4.1 but restructured. The previous InferenceModel class,
which defines the model on which inference is performed, has now
been split into three separate classes depending on the specific model
type, namely DistributionModel, LogLikelihoodModel and
ComputationalModel, all under the revised InferenceModel
baseclass. For information theoretic-based model selection using the
InformationModelSelection class, the information criteria have
been extracted as separate classes, AIC, BIC, AICc, under a new com-
mon InformationCriterion baseclass. The remaining functional-
ity of MLE, BayesParameterEstimation, and BayesModelSe-
lection was updated according to the newly adopted coding conven-
tions and, for Bayesian evidence computation, the EvidenceMethod
baseclass has been established with the HarmonicMean subclass de-
fined and allowing straightforward implementation of new Bayesian
evidence methods as distinct subclasses.

2.2.8. reliability module

Modifications to the reliability module were made to ensure
compliance with the latest Python coding guidelines. The first and
second-order reliability methods, FORM and SORM, were restructured as
subclasses under a common TaylorSeries baseclass to remove code
redundancies. The existing SubsetSimulation class was retained
and revised to match best practices.

2.2.9. surrogates module

One of the most heavily refactored modules in the latest version is
surrogates. Generally, surrogate models are now developed under
the abstract Surrogate baseclass. The previously existing Kriging
class was removed entirely and is now replaced with the more general
GaussianProcessRegression, which includes the functionality
to perform regression or interpolation (Kriging). Kernels are extracted
as separate classes, with the abstract baseclass Kernel (from the
utilities module), serving as an interface. The RBF and Matern
kernels have been implemented. For use with GaussianProcess-
Regression, multiple regression methods are implemented as sub-
classes under the Regression baseclass. The newest addition to
GaussianProcessRegression is the ability to add constraints us-
ing the virtual point method. These constraints are implemented under
the Constraints baseclass, which makes adding new constraints
straightforward by implementing a new subclass with the requisite
methods.

The PolynomialChaosExpansion class was rewritten from
scratch (now as a subclass of Surrogate) to resolve performance
issues. Two new baseclasses were introduced. The Polynomials
baseclass defines sets of orthogonal polynomials as subclasses, includ-
ing the Hermite and Legendre polynomial classes. The Polyno-
mialBasis baseclass establishes a set of subclasses to define the
polynomial basis, e.g. using a classical tensor product basis Ten-
sorProductBasis, or introducing new ways to reduce the basis
computation such as the TotalDegreeBasis and HyperbolicBa-
sis classes. This makes the code easily extensible to include new
means of basis construction. All regression methods were united as
subclasses under the Regression baseclass, again making it more
easily extended for new methods, and the computationally efficient
LeastAngleRegression was added.

Lastly, the SROM method was retained and updated to conform with
the latest Python software development practices.
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2.2.10. sensitivity module

In v3, the sensitivity module only contained the Morris-
Sensitivity method. This module significantly benefited from the
extensibility introduced in UQpy with v4.1. The Sensitivity ab-
stract baseclass now contains the first major contribution from ex-
ternal collaborators introduced in a set of subclasses that include
SobolSensitivity, GeneralizedSobolSensitivity, Chat-
terjeeSensitivity, and CramerVonMisesSensitivity. Ad-
ditionally, the updated polynomial chaos expansion code in the sur-
rogates module (see Section 2.2.9), allows the computation of first
and total order sensitivity indices with reduced computational cost
through the PceSensitivity class, which takes advantage of a
fitted PolynomialChaosExpansion object.

2.2.11. utilities module

The new utilities module contains code that may be used in
multiple modules. This currently contains two abstract baseclasses,
the Kernel baseclass and the Distance baseclass for computing
kernels and measures of distance, respectively. Within each baseclass,
there are two additional baseclasses for Euclidean and Grassmannian
kernels/distances. Several kernels and distances have been added as
subclasses and new ones can be easily developed by writing a new
subclass with the requisite methods.

3. Continuous integration

UQpy v3 [22] was developed using the flexible standards of an
academic software, which challenged the ability of the team to col-
laborate and develop new features using a streamlined workflow. To
this end, the latest version was fully restructured to enhance its ex-
tensibility, while modern software development practices were intro-
duced to support collaboration and ensure code robustness and quality.
The standard of Github Flow was adopted as development strategy.
The master branch of the Github repository always contains the
latest stable version. A Development branch is now used for merg-
ing all newly developed functionality and bug fixes. New versions
of the software are released when a pull request is merged from
the Development branch to master. For developing new features,
a feature-{functionality} branch is created from the latest
Development state and merged back once complete. The case is
similar for bug fixes, with branches following the bugfix-{bug}
naming convention. The aforementioned workflow enables a consistent
way of treating new functionality or addressing errors arising during
development.

To ensure the code quality of all previously implemented fea-
tures, the development team enforced unit testing practices. Since
the functionality implemented in UQpy is inherently stochastic, and
its randomness stems from random number generators, a process of
setting the seed to ensure test reproducibility is adopted. All previous
functionalities are tested against benchmark problems to achieve a
minimum of 80% line coverage. To ensure that the code coverage
directive is enforced, Azure Pipelines were used to automatically run
all tests and compute coverage when a commit is pushed to the Github
repository. The static code analyzer Pylint is also used to enforce
coding standards and ensure that no syntax errors are allowed. In
addition to these checks, a code quality tool named SonarCloud
is used to eliminate code vulnerabilities. This tool is triggered when
creating a pull request and automatically detects any code smells, bugs
or code duplications introduced, and fails when exceeding a predefined
threshold. For a pull request to be acceptable, all test, linting, and
code quality must satisfy minimum acceptance criteria and must pass a
detailed code review from the code owners. Only then will the additions
be merged to Development and subsequently to master branch.

Apart from the Continuous Integration process mentioned above,
that ensure the robustness of UQpy, a set of Continuous Deployment
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(CD) actions are triggered. The first action is to evoke the GitVer-
sion tool, which traverses the Git history of the code and deter-
mines the version of the code automatically, as a sequence of numbers
v{Major}.{Minor}.{Patch}. Using the computed version, the
code is packaged and automatically distributed to Python Packaging
Index (PyP1I), Github release inside the repository, as well as a Docker
image that contains the latest UQpy version.

Finally, a structured logging framework was established — in lieu
of print commands triggered by if statements that were previously
used to indicate errors or faults — that allows users to select the required
level of severity tracked during code execution. Six different levels of
severity are available in Python, namely NOTSET, DEBUG, INFO,
WARN, ERROR, and CRITICAL, with the ERROR being the default case
in UQpy. The users can choose a more verbose setting by opting for the
INFO severity level. Logging output is then directed to their sinks of
choice e.g. Terminal, Logfile, Http Streams, etc.

4. Impact

The latest version of UQpy modernizes the software to meet best
practices in scientific software development, while also updating and
improving functionality. This makes the package easier to use and
more robust, broadens the classes of problems that it can solve, and
greatly enhances the development experience. These points are critical
to the widespread adoption of UQ in scientific applications. This robust
yet friendly Python library is both user- and developer-friendly and
provides core functionality to casual users, state-of-the-art methods for
advanced users, and a carefully designed environment for developers of
UQ methods. With the advent of version 4, we have seen the user-base
increase as the library has been adopted by external UQ teams, and
have now successfully integrated updates from third-party developers
— both of which serve to advance the field of UQ.

To summarize, the entire package has been restructured from a
single-file per area to a module hierarchy. Wherever possible, subop-
tions inside algorithms were extracted using the Strategy design pattern
to enhance encapsulation and allow users to select their functionality
in a more clear and straightforward manner. Baseclasses are now used
throughout the code, which provides interfaces for the implementation
of new algorithmic alternatives. To enhance the team collaboration
efforts, the already existing version control and Github repository were
supported with a CI/CD pipeline that automates software testing and
code quality checks to ensure the best scientific output, while each
new merge to the master is followed by package releases to PyPI,
conda-forge, and Dockerhub image repository.

Compared to the other existing UQ packages, many of which have
been listed above, the aim of UQpy is twofold. First of all, we aim
to provide an extensive fully Python-based UQ library that addresses
the wide-ranging needs of the scientific community. At the same time,
we want to provide a toolbox that allows its straightforward extension
with new functionalities and its use in real-world UQ applications. The
developments outlined here represent significant advancements toward
these two objectives.

5. Conclusions

In this work, the open-source library for uncertainty quantification
UQpy and specifically the latest v4.1 was introduced. All changes and
updates to the modules of the library were explained in detail, with
one of the most significant being the new software development and
continuous integration workflow. The latest version enables users and
external collaborators to expedite the development of new features
using UQpy as a platform. This is proven by the new functionali-
ties introduced from both the development team, as well as external
collaborators.
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Appendix. UQpy future extensions

UQpy is continuously updated with new capabilities developed as
a product of the research conducted in the group and through external
contributions. When possible, existing capabilities are also made more
robust and computationally efficient to address the needs of compu-
tationally intensive research objectives in UQ. The following describes
tentative plans for future development in UQpy.

Existing modules are planned to be expanded with the following
capabilities:

» Dimension Reduction: We are looking to enrich the module
with advanced manifold projection methods including kernel
PCA [27], principal geodesic analysis (PGA) [28], and Isomaps
[29] among others, while also adding new Euclidean/
Grassmannian kernels [30-32].

Sampling: We aim to expand the StratifiedSampling class with
existing generalized of stratified sampling methods developed
in the group such as: Partially Stratified Sampling (PSS) [33],
Latinized Stratified Sampling (LSS) [33], and Hierarchical Latin
Hypercube Sampling (HLHS) [34].

Surrogates: We plan to enrich the Gaussian Processes with
additional constraints such as monotonicity, convexity and dif-
ferential constraints [35].

Surrogates: We plan to incorporate the novel physics con-
strained Polynomial Chaos Expansions developed in the group
[36,37].

Surrogates: We plan to add Geometric Harmonics [38] for
out-of-sample extensions on a manifold.

Sensitivity: We are currently building the capability for
Gaussian Process-based Sobol indices estimates [39].

In addition to these extension we envision the development of new
modules that will further enhance the capabilities of UQpy as a general
purpose uncertainty quantification library.
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+ Multi-fidelity Modeling: This module will include multi-
fidelity modeling algorithms that include those based on control
variates [40] as well as those using Gaussian process correc-
tions and model selection - including methods developed in the
group [41-43].

Neural Networks: Algorithms for Bayesian Neural Networks
[44], physics-informed Neural Networks [45] and Deep Operator
Networks [46] are under development within the group and are
planned to be incorporated in the future versions of UQpy - likely
by coupling with other open-source Python libraries that contain
computationally efficient Neural Network implementations [26,
47,48].

Multi-scale Modeling: A module for stochastic hierarchi-
cal multi-scale modeling is currently under development that
advances deterministic capabilities developed in this field [49].

These future enhancements will further solidify UQpy as a leading
software in the field and will be made possible by the streamlined
architecture, development, and integration processes described herein.
Please note that the list above is subject to change in future releases.
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