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Object detection plays a pivotal role in various !elds, for example, a smart tra"c system relies on the de-
tected results for decision-making. However, existing studies predominately utilize optical camera and LiDAR,
which exhibit limitations in adverse outdoor environments, such as foggy weather. To address these chal-
lenges, millimeter-waves (mmWaves) attract researchers’ attention to detect objects in severe conditions since
they can work e#ectively in low-visibility conditions and overcome small obstacles. Yet, previous mmWave-
based works have shown limited performance, such as no shape information for objects. Therefore, we design
and implement a two-stage system, mmBox, to accurately predict bounding boxes with depth for vehicles and
pedestrians, which !rst generates heatmaps in di#erent dimensions and then leverages a deep learning model
to extract features for predictions. To evaluate the performance of mmBox, we collected real-world mmWave
re$ections from urban tra"c intersections and dense-fog environments. The extensive evaluation metrics
show remarkable accuracy and the low latency of our model.

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing systems and
tools; • Computing methodologies → Computer vision tasks; • Hardware → Sensor applications
and deployments;
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1 Introduction
Improving pedestrian safety at tra"c intersections is a paramount concern, especially when con-
sidering the grim reality that pedestrian accidents at these junctions constitute the leading cause
of fatal injuries on the road, thereby signi!cantly compromising overall road safety [1–3]. While
many existing works aimed to mitigate these risks, including smart tra"c symbols [4], tra"c
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education programs [5], safety software in the vehicle [6], and vehicle hardware enhancements
[7–9], pedestrian collision still persists during inclement weather conditions such as heavy rain,
fog, snow, and reduced visibility [10–12]. These adverse weather scenarios demand a more proac-
tive and dynamic approach to detecting pedestrians and vehicles near tra"c intersections. We can
actively monitor pedestrians with tra"c cameras [13], but cameras fail to work during low light
and harsh weather conditions [14], the time when system is required to work e#ectively. LiDAR-
based object detection works well with low light, but fails to work during foggy conditions [15].
Furthermore, LiDARs are expensive and bulky [16], making them infeasible for mass deployment
across tra"c intersections.

Recently, millimeter-wave (mmWave), operating at a very high frequency between 30 GHz
and 300 GHz [17], has garnered signi!cant attention from researchers owing to its distinctive
advantages. Compared with other wireless signals, for example, WiFi [18, 19] and ultrasound [20,
21], mmWave exhibits the ability to penetrate various small particles, such as rain droplets, snow,
and fog, o#ering high-range resolution at the centimeter level [22], which enables it to be applied
in extreme conditions. Moreover, due to the small wavelength of mmWave, antennas to receive
it are tiny, which allows the packing of many antennas into palm-sized mmWave radar devices.
Having a large number of antennas facilitates Multi-Input Multi-Output (MIMO) by providing
a large number of virtual antennas to increase the angle resolution. MIMO creates the virtual
antenna arrays of M × N receiver antennas, with a single transmitter with M transmitters and N
receivers. The utilization of a signi!cant number of antennas in mmWave radar systems results in
better resolution for both angles compared with traditional radar-ranging applications [23].

Therefore, numerous studies [24–26] have leveraged mmWave devices to detect vehicles and
pedestrians on the road. RODNet [25] and DANet [27] process mmWave signals to range-azimuth
heatmaps and then employ a deep learning network to detect vehicles, pedestrians, and cyclists.
However, they only predict the object’s probability of cluster without detailed shape information.
Another notable approach is Radatron [24], which utilizes the cascaded mmWave device with a
large number of antennas to predict the 2D bounding box of vehicles in Bird’s-Eye-View (BEV).
While successful in providing the width and length of vehicles, Radatron does not provide detec-
tion for pedestrians, which is a crucial aspect in road safety. Due to the specularity of mmWave
and small re$ective surfaces, the re$ected signals from pedestrians with weak re$ectivity are chal-
lenging to capture. Furthermore, predictions in the front view o#er advantages for users in un-
derstanding the scene, as the front view closely resembles human observation and camera images.
Vision-based works in object detection achieve high performance in clear weather with various
state-of-the-art models [28–30], contributing to the widespread use of cameras in most smart de-
vices. Results of mmWave systems obtained in the front view can be seamlessly integrated with
other vision-based works [31] to enhance decision-making. Conversely, papers focusing on ob-
ject detection in BEV, which are not feasible to convert to the front view, miss the opportunity to
collaborate with prevalent vision-based works.

In this article, we propose a novel two-stage system, mmBox, designed to generate heatmaps
from mmWave signals and subsequently extract valuable features from these heatmaps, enabling
the precise predictions of bounding boxes with depth values for both vehicles and pedestrians in
the front view (Figures 1(a) and 1(b)). Instead of merging multiple frames of mmWave signals to
increase the density of detected points [32], mmBox utilizes a single frame of mmWave signals,
ensuring a low latency system. The results detected in the front view allow users to easily under-
stand the positions of vehicles and pedestrians even when the camera, LiDAR and other sensors
cannot work under the extreme weather conditions. This radar-based detection can be seamlessly
integrated with existing vision-based models to enhance decision-making, particularly in light rain
or foggy weather.
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Fig. 1. (a) Example of outdoor street scene with bounding boxes for pedestrians and vehicles. The various ve-
hicles, pedestrians, fire hydrant, grass, and street lamp make the mmWave sensing di!icult to detect targets.
(b) This figure illustrates the corresponding bounding boxes with depth value for vehicles and pedestrians
under dense fog conditions. (c) An example of mmWave measurement in outdoor street scene. The target
car is placed at 10.3 m from the mmWave transceiver. (d) The received power shows strong reflections of the
car at 10.3 m, and there are other reflection peaks from surrounding objects.

To achieve these desirable features, detecting both vehicles and pedestrians in the front view
with high precision and low latency, mmBox needs to address two primary challenges. The !rst
challenge is associated with the hardware limitation of mmWave devices. Given the high resolu-
tion of the cascaded mmWave device (even 5 cm in range and 1.2◦ in azimuth [24]), recognizing
objects with length and width in BEV can be solved with high performance. However, the resolu-
tion in elevation is very low, as the mmWave device has limited virtual channels in this dimension.
The height information in a range-azimuth heatmap is restricted, and the coordinate di#erences
between the range-azimuth of inputs and elevation-azimuth of outputs will make the predicted
bounding box shift. However, generating 2D bounding boxes in the image plane requires accurate
height measurement of objects, which challenges the performance of our system. To overcome
this challenge, we design an algorithm using a Gaussian !lter to project all detected points with
energy distribution into the elevation-azimuth plane, which provides more height information and
accurate locations of objects. In a deep learning network, we leverage the same feature extractor
to capture valuable information and then fuse it with range-azimuth heatmaps at di#erent feature
levels. We also applied an anchor-based method to extract prede!ned knowledge by K-means on
ground-truth shape distributions of various targets. Hence, our anchor-based model extracting fea-
tures from the elevation-azimuth heatmap can accurately predict the height and location of detected
objects in the front view.

Secondly, our work involves an outdoor environment featuring diverse objects (Figure 1(a)),
such as vegetation, display boards, tra"c lights, and !re hydrants. The received mmWave signals
are from objects of interest as well as other surrounding objects that introduce noise in the re$ec-
tions. Additionally, outdoor scenarios do not have controlled environments, and thermal noises
also deteriorate the mmWave signals [33]. Compared with vehicles, the re$ected mmWave sig-
nals from pedestrians featuring with small re$ective surfaces are di"cult to receive in outdoor
surroundings. The single-frame input instead of combining multiple frames increases the possi-
bility of missing objects. To address this problem, we distinguish between moving and stationary
detected objects in dynamic and static range-azimuth heatmaps. This separation eliminates noise
from the surroundings and captures more features, enhancing the detection accuracy compared
with using a single heatmap. Since most of the moving objects across all of the tra"c intersections
are pedestrians and vehicles, having separate dynamic range-azimuth heatmaps makes mmBox
robust and generalizable. In addition, we design a multiple-feature fusion strategy to e#ectively
extract di#erent features from both heatmaps and fuse them into three levels. This design enables
the deep fusion of object representations from various inputs, signi!cantly improving the perfor-
mance of mmBox. We also implement our cascade mmWave device and collect data with 32 chirps
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per frame, providing more information from re$ected signals of surroundings. Therefore, the sepa-
rate dynamic and static heatmaps, feature-fusion method, and multiple chirps of a single frame make
our system robust and reliable to detect vehicles and pedestrians in challenging outdoor conditions.

Generally, mmBox consists of two stages. In the !rst stage, its Heatmap Generation module pro-
cesses raw mmWave signals to produce heatmaps in multiple dimensions. Given that the mmWave
device has high resolution in range and azimuth dimensions, we !rst generate separate static
and dynamic range-azimuth heatmaps for both stationary and moving objects. To compensate for
the height information and provide accurate object locations, we produce an elevation-azimuth
heatmap. In the second stage, we employ a Multi-Scale Bounding Box Generator model to separately
extract features from those heatmaps and correctly fuse them at di#erent levels to generate predic-
tions. To facilitate convergence during the training process, our model applies 3× 3 prede!ned an-
chors produced by K-means on ground-truth data distribution rather than predicting actual value.
The anchor-based method maps objects in di#erent sizes to three-level feature maps,; for every
level, we leverage three anchors with di#erent height to width ratios to match with various objects,
which signi!cantly improves the performance of mmBox compared with the anchor-free approach.
During inference, we !lter out low con!dent bounding boxes and then apply a non-maximum-
suppression algorithm to eliminate overlapped high-con!dence 2D bounding boxes that corre-
spond to the same object, ensuring that the !nal predictions are accurate and not redundant.

We prototype an o#-the-shelf mmWave device and camera to collect experimental data in a
real tra"c intersection scene. In total, we collected 29,110 samples with re$ected mmWave sig-
nals, depth images, and gray-scale images. Even though manually labeling 2D bounding boxes
as ground truth is accurate, it is time-consuming. Given that YOLO [28] is the state-of-the-art
(SOTA) vision-based approach for 2D bounding box detection, we develop a self-labeling program
called BoxLabeling based on pre-trained YOLO to automatically detect vehicles and pedestrians us-
ing gray-scale images and !nd the related distance from depth image. We use 23,288 frames of data
to train the model and 5,822 for validation, respectively. The results of mmBox combining range-
azimuth heatmaps and elevation-azimuth heatmaps show that our system achieves 0.659 inmAP50
and 0.320 m in mean 50th% Depth Error. To evaluate the performance under adverse outdoor en-
vironments, we prototype a plexiglass cuboid box to simulate dense fog. In total, we collect 2,392
samples to !ne-tune and validate the pre-trained model. ThemAP50 of fog data is still high at 0.688,
which indicates that mmBox can be applied in extreme outdoor environments. Moreover, our pro-
posed deep learning model exhibits low latency, taking only 27.2 ms to generate predictions for a
single frame of data, and the frames per second (FPS) is 36.8.

In summary, we have the following contributions. (1) We propose an algorithm to separately
generate static and dynamic range-azimuth heatmaps from mmWave re$ections capturing
stationary and dynamic objects, which denoise the signals from complex outdoor environments
and enrich the features for accurate detection of vehicles and pedestrians. (2) We further generate
the elevation-azimuth heatmap to compensate the height information and provide accurate
locations of objects. (3) We present a multi-scale object detection model that correctly fuses
features from multiple inputs to detect pedestrians and vehicles across tra"c intersections. (4)
We collected the data samples across the tra"c intersections with foggy conditions and evaluated
our network under harsh weather conditions. To catalyze the research, we will open-source our
dataset and codebase.

2 Background and Fundamental Challenges
2.1 Millimeter Wave Sensing
In mmWave imaging, a device periodically transmits Frequency Modulated Continuous
Wave (FMCW) signals, which linearly increase with time in a certain bandwidth, and receives a
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mixture of re$ections from objects in the surroundings and the transmitted signals. By measuring
the frequency of the received signals, the distance of the object can be calculated. Speci!cally,
for one object, the transmitted FMCW will be re$ected by the surface of the object, and the
received FMCW contains a constant frequency tone representing the object’s distance. In the
multiple objects case, the mixture of di#erent frequency tones can be distinguished by applying
Fast Fourier Transforms (FFTs). The antenna array in vertical and horizontal directions,
such as 2 × 4, can identify the relative azimuth and elevation angles since receiving antennas
get re$ection signals with di#erent phases generated by the same object. Thus, the distance,
azimuth angles, and elevation angles from di#erent objects can be mapped into a heatmap with
exact locations. The speci!c short wavelength and wide bandwidth enable mmWaves to achieve
higher resolution than other low-frequency signals, such as WiFi. It can also work well under
low-light or no-light environments, and its ability to penetrate small obstacles enables mmWaves
to be resilient for adverse weather, such as heavy fog [34], whereas an optical camera sensor
captures extremely limited information in such environments. Furthermore, mmWave can be
applied in non-destructive and privacy-sensitive situations, for example, monitoring human
activities [35]. Therefore, the mmWave sensor, featuring high resolution in light-free conditions,
resilience in extreme conditions, and privacy protection, has signi!cant potential for outdoor
object detection.

2.2 Challenges in Outdoor mmWave-Based Object Detection
Our objective is to develop a 2D object detection system in the front view using mmWave signals,
aiming for precise prediction of bounding boxes with depth values for vehicles and pedestrians.
However, there exist two primary challenges. (1) Di!culty in Obtaining Height Information.
The mmWave device achieves high resolution in the range and azimuth dimensions, allowing for
accurate generation of bounding box detections with width and length in the BEV, as demon-
strated by past mmWave-based works such as Radatron. However, the resolution in the eleva-
tion dimension is notably low due to the limited virtual channels in the vertical direction. While
some researchers attempt to generate point clouds from re$ected mmWave signals to obtain 3D
information, including elevation, the visualized distribution of generated point cloud data (PCD)
reveals limited resolution in elevation angle [36]. Additionally, noise-!ltered points lead to signi!-
cant sparsity, posing a challenge for deep learning models to extract su"cient features. Moreover,
the commonly used range-azimuth heatmap provides restricted height information, as di#erences
between re$ective points of the same target can be ignored when the distance dramatically in-
creases in outdoor scenarios. For example, when the distance between the mmWave device and
target pedestrian is high, the projected points of the head and feet may not be discerned in the
range-azimuth plane. (2) Complex Outdoor Environment. Our dataset is collected from real
outdoor tra"c intersection scenes. Compared with simple indoor applications, outdoor environ-
ments encompass more complicated objects and surroundings, signi!cantly elevating the di"culty
of extracting valuable features from sparse and noisy mmWave re$ections. For example, Figure 1(a)
demonstrates one sample from our dataset in the busy tra"c intersection, featuring diverse vehi-
cles and pedestrians alongside various other re$ectors, such as the !re hydrant, grass, and street
lamp. As depicted in Figures 1(c) and 1(d), the received mmWave signals include various re$ec-
tions from objects surrounding the target car. Di#erent materials have distinct re$ectivity, for
example, the metallic objects re$ect signals strongly while the non-metallic objects have weaker
re$ectivity. Compared with vehicle detection, our system faces challenges in accurately generating
bounding boxes for non-metallic entities such as pedestrians with small re$ective surfaces in the
distance.
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3 System Design
3.1 Overview
mmBox aims to develop a front-view object detection system capable of accurately detecting ve-
hicles and pedestrians using bounding boxes in challenging outdoor scenarios. The basic idea of
mmBox is to leverage deep learning models to extract valuable features from mmWave signals and
subsequently generate bounding boxes with depth information for both vehicles and pedestrians.
However, the complex mmWave re$ection signals make direct utilization for deep learning models
di"cult. Moreover, previous solutions, such as combining multiple frames as one input to improve
density of valuable information, are impractical for moving objects due to the time-consuming na-
ture of capturing and processing multiple frames. To address these limitations, mmBox utilizes a
heatmap produced by a single frame, which provides a visual representation of mmWave signals
in the form of image-like data and describes the energy distribution of re$ections. Speci!cally,
we generate two Range-Azimuth Heatmaps (RAMaps) to separate re$ections of stationary
and moving objects, capturing more features compared with a single heatmap. Separating static
and dynamic RAMaps makes mmBox robust and generalizable across diverse tra"c intersections.
Recognizing that the mmWave device o#ers numerous virtual channels on range and azimuth di-
mensions, and that most movements of vehicles and pedestrians occur in this coordinate space, we
initially utilize RAMaps to train the deep learning model and generate predictions. However, even
though the RAMaps provide detailed information in the BEV, accurately extracting height features
of objects remains challenging due to the restricted height information. Additionally, the convolu-
tion !lter, which extracts features from a local region of inputs in the range-azimuth coordinate,
can lead to a signi!cant shift between predicted and ground truth object location in the elevation-
azimuth coordinate. Therefore, we redesign this system to incorporate an Elevation-Azimuth
Heatmap (EAMap) with static and dynamic RAMaps for higher accuracy. Figure 2 depicts an
overview of our methodology, consisting of two key modules: Heatmap Generation, responsible
for transforming raw mmWave signals into static and dynamic RAMaps to capture stationary
and moving objects in the BEV and an EAMap to map re$ected points from objects into front
view with energy distribution; and a Multi-Scale Bounding Box Generator, tasked with extracting
features from heatmaps and producing accurate bounding boxes with distance values for vehicles
and pedestrians across various scales. To automatically generate ground truth, we develop a BoxLa-
beling program capable of producing bounding boxes and depth values from captured grayscale
images and depth images.

3.2 RAMaps Only
In this section, we only consider static and dynamic RAMaps for Heatmap Generation, which uti-
lizes Doppler FFT on mmWaves to distinguish moving and stationary objects and subsequently
visualizes them with energy distribution. BoxLabeling is applied to automatically produce ground
truth bounding boxes with depth for training and evaluating the deep learning model. To correctly
predict bounding boxes, mmBox employs a Multi-Feature Fusion Extractor to fuse features from
both RAMaps in three di#erent sizes. As the height and width of inputs reduce, convolutional neu-
ral units compute global information from inputs, but the small objects might be ignored in deep
layers. To address this issue, mmBox designs a Three-Level Bounding Box Predictor to adapt di#erent
sizes of objects. Since convolution !lters in deep layers can capture whole shape features of large
objects while preserving more valuable features of small objects in large feature maps, we use a
strategy of three-level predictions to separately cover various scale target objects. Instead of using
a classi!er module to build mapping between features and ground truth values, mmBox directly
utilizes convolution layers to produce results, which decreases computing costs and speeds up the
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Fig. 2. The two-stage system pipeline of mmBox . In the first stage, the 32 chirps of mmWave signals captured
from an outdoor street scene are processed by a Heatmap Generation module, which eliminates noise and
generates both static and dynamic RAMaps and an EAMap. In the second stage, a Multi-Scale Bounding Box
Generator fuses features from heatmaps at three levels and accurately predicts bounding boxes with depth
values for vehicles and pedestrians.

model. Furthermore, mmBox applies K-means on the ground-truth data distribution to produce pre-
de!ned anchors, which contain 3 di#erent ratios of height to width at 3 levels. Thus, the Three-Level
Bounding Box Predictor module only needs to generate the correct o#sets based on anchors, accel-
erating the process of convergence during training. Due to the sparsity of valid bounding boxes in
the predictions, fewer positive samples might lead to the gradient disappearance problem in loss
calculation. To increase the number of positive samples, we leverage a nearest points strategy to
map one target object to multiple closed grids. For loss computation, mmBox takes EIoU to com-
pute bounding box loss and Binary Cross Entropy to quantify classi!cation, con!dence, and depth
value errors. To generate accurate predictions for vehicles and pedestrians, a con!dence !lter and
Non-maximum Suppression are applied to remove low con!dent and overlapping bounding boxes.

3.2.1 Heatmap Generation. mmBox uses the received mmWave signals from the objects to pre-
dict the 2D bounding boxes of vehicles and pedestrians. Rather than using the raw mmWave signals
for object detection, mmBox generates the heatmaps in the spatial domains by processing the raw
re$ected signals from multiple receiver antennas of the mmWave device. Re$ections from objects
at the mmWave device are complex time domain signals with I and Q channels corresponding to
the amplitude and phase. Multiple transmitters and receivers of mmWave devices with !xed spac-
ing enable many virtual antennas in azimuth directions, separated by λ/2, enabling wider aperture
and better azimuth resolution. With known spacing between the virtual antennas, we can look at
the tiny phase di#erence caused by antenna separation to determine the Angle of Arrival (Azimuth
Angle), and the Time of Flight (TOF) of the mmWave signal determines the range. Adding the re-
$ected energy from the objects with the same azimuth angle and range generates the 2D heatmap.
Strong re$ective or nearby objects have higher re$ected energy and, hence, have strong peaks in
the heatmap compared with other noisy re$ections. A heatmap represents the object’s location
in the range and azimuth direction, ignoring minute displacement in the phase caused by noise.
Heatmap generation is a two-stage process. First, we generate 2D heatmaps from 1D complex
signals and then align the Field-of-View (FoV) of mmWave heatmaps with ground-truth ZED
camera images.

Static and Dynamic RAMap Generation: We use FMCW to transmit the mmWave signal to-
wards the object with a custom-designed frame. In a single frame, it has fast-time samples (single
chirp), which capture the re$ections to generate the RAMap of the objects. However, we design
multiple chirps in a single frame, which are slow-time samples and capture the movement of the
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Fig. 3. Field-of-View (FoV) representation of mmWave device and stereo camera.

objects in the environment. Since frame duration is ∼ 100 ms, the mmWave signals from static
objects in all the chirps of a single frame will be similar, as opposed to dynamic objects. Re$ected
signals from dynamic objects will show minute changes on the chirps. We use the slow-time sam-
ples of the single frame to separate the static and dynamic objects.

Separating mmWave heatmaps into static and dynamic heatmaps maps the surrounding objects
into two sets. All the static objects, such as tra"c light poles, vegetation and roads, map to the
static heatmap. All other moving objects, such as vehicles and pedestrians, map to the dynamic
heatmap. Since most of the moving objects across all tra"c intersections are pedestrians and vehi-
cles, having a separate dynamic RAMap makes mmBox robust and generalizable. Compared with
sparse PCD produced by mmWave signals, extracting features from heatmaps is easier and more
reliable. Mapping objects into dynamic and static RAMaps can bene!t the deep learning model
to better distinguish overlapped moving and static objects when the number of target objects in
one frame increases. To eliminate noise and generate high-quality heatmaps, Static and Dynamic
RAMap Generation leverages 4 steps to process raw mmWave re$ection signals. Range FFT is !rst
applied on raw mmWave re$ection to get distance information by changing time domain signals
to frequency domain. Due to the moving objects, re$ected signals in multiple chirps vary with
time. Doppler FFT maps objects with di#erent speeds in the di#erent Doppler bins. Then, Angle
FFT extracts the azimuth angle from Range-Doppler data by applying FFT across unique virtual
antenna channels. Finally, we generate a static RAMap by consolidating the middle three Doppler
bins and using the remaining bins to generate dynamic RAMap. The camera sensor has a smaller
FoV than the mmWave device; thus, we prune the RAMap to match with the ground truth FoV.

Field-of-View Alignment: To ensure that both devices look at the same portion of the envi-
ronment, we need to !x the FoV of the devices and translate them to the same coordinate system
(as Figure 3 shows). First, with many virtual antennas available in the azimuth dimension, the
mmWave device has a wider FoV compared with stereo cameras. An mmWave device has a total
of 140 degrees FoV, ranging from -70 to 70 degrees [37], while the stereo camera only has 70 de-
grees FoV [38]. Similarly, for the vertical FoV, we remove the portion of the camera image that is
not covered by mmWave samples since the mmWave vertical FoV is smaller than the camera FoV.
Therefore, we ignore the region of mmWave samples outside the FoV of the stereo camera. Second,
despite placing the mmWave device and stereo camera as close as possible, the center points of
the devices are 15 cm apart in the vertical direction and less than 1 cm o#set in the horizontal
direction. We apply positional Y-o#set in the mmWave samples to generate FoV-aligned mmWave
and camera data pairs.
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Fig. 4. The flow of BoxLabeling for producing a ground truth bounding box and depth value.

3.2.2 Ground Truth Bounding Box Generation. The ground truth data for mmBox is based on
camera images. Manually labeling the dataset is time-consuming as it involves marking bounding
boxes, labeling classes, and measuring distances. To streamline this process, we prototyped a self-
labeling program, BoxLabeling, as shown in Figure 4. First, we use the mmWave device and stereo
camera to collect mmWave re$ections, gray-scale images, and depth images. Then, BoxLabeling
applies a YOLO Detection model [28] to generate 2D bounding boxes from gray-scale images con-
taining di#erent objects with various con!dence, an Object Filter to choose pedestrian and vehicle
objects from di#erent labels and set a threshold of 50% to remove low con!dent bounding boxes,
and a Depth Selector to combine depth image to get the correct depth value. Since the valid ranges
of depth image and RAMaps are limited to 20 m, the Depth Selector module further !lters out
bounding boxes more than 20 m in depth. Finally, BoxLabeling outputs the top-left and bottom-
right coordinates of bounding boxes with depth values as ground truth.

3.2.3 Multi-Scale Bounding Box Generator. The basic idea of this module is to extract features
from static and dynamic RAMaps independently and then precisely predict the center point, width,
height, and depth value of bounding boxes for both vehicles and pedestrians. Since the static and
dynamic RAMaps capture stationary and moving objects separately, the distinction makes it easier
for deep learning models to learn object features from heatmaps, respectively. However, correctly
fusing features from di#erent inputs remains a challenge for deep learning models [39]. To address
this, mmBox designs a Multi-Feature Fusion Extractor module to separately extract features from
both RAMaps and fuse them in three di#erent scales to improve performance. Considering the
signi!cant variability in bounding box dimensions in the front view due to distance and object
category variations, mmBox employs a Three-Level Bounding Box Predictor to match di#erent size
objects to three level predictions. To ensure that the features produced by the Multi-Feature Fusion
Extractor get enough local and global information, the Three-Level Bounding Box Predictor uses
reverse convolution to upsample global features and concatenate with other layers containing
more local features to enrich valuable information. Additionally, directly predicting width and
height of the bounding box makes it di"cult for a deep learning model to converge, as the width
and height vary dramatically. To facilitate this process, mmBox de!nes 3×3 anchors with di#erent
sizes, produced by K-means clustering on ground truth bounding boxes. As a result, the model only
predicts o#sets of the width and height based on prede!ned anchors. Figure 5 illustrates the whole
pipeline of the Multi-Scale Bounding Box Generator.

Multi-Feature Fusion Extractor: This module is designed to extract features from two sep-
arate RAMaps that capture stationary and moving objects. However, correctly fusing multiple
features from di#erent inputs is a challenge for deep learning models. Instead of fusing them in
a speci!c layer, such as at the beginning, the Multi-Feature Fusion Extractor concatenates features
from both static and dynamic RAMaps in three di#erent feature sizes, which can fuse features
more deeply and improve model performance. As depicted in Figure 5(a), the Focus layer !rst
slices the initial heatmap into 4 low-resolution images and expands the channels to 64. To further
extract global features, we continuously reduce the height and width of the feature map and utilize
Dark Block and Spatial Pyramid Pooling (SPP) [40] to extract detailed object information. The
core idea of Dark Block (Figure 6(a)) is using multiple shortcut structure, similar to ResNet [41],

ACM Trans. Internet Things, Vol. 5, No. 4, Article 22. Publication date: October 2024.



22:10 Z. Gu et al.

Fig. 5. (a) The architecture of the Multi-Feature Fusion Extractor, which takes static and dynamic RAMaps
as inputs and fuses features in multiple scales to output three-level feature maps. DB represents the Dark
Block. (b) The architecture of the Three-Level Bounding Box Predictor, which further fuses feature maps
and generates bounding box predictions in three levels. (c) The process of generating predefined anchors,
computing loss, and producing the actual predictions.

Fig. 6. (a) The architecture of Dark Block. C represents the combination of convolution layers, batch normal-
ization, and LiSU activation function. N indicates the number of times that this residual structure is repeated.
(b) The architecture of SPP, where MP represents a MaxPooling2D layer.

to preserve more local features while extracting global object information. To enrich features, SPP
(Figure 6(b)) takes 3 MaxPooling2D layers with various kernel sizes to re!ne features further. Ta-
ble 1 demonstrates the exact parameters of every layer mentioned in Figure 6. During the process
of producing feature maps, we fuse two features from di#erent inputs in equal channels and use
Multiple Layer Perception (MLP) to generate feature maps in 3 levels.
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Table 1. Parameters for Dark Block and SPP

C1 C2 C3 C4 C5 C6 C7 MP1 MP2 MP3 C8
Filter Size 1x1 1x1 1x1 1x1 3x3 1x1 1x1 5x5 9x9 13x13 1x1

Stride 1 1 1 1 1 1 1 1 1 1 1
Padding 0 0 0 0 0 0 0 2 4 6 0

Channel # (in, out) (n,2n) (2n,n) (2n,n) (n,n) (n,n) (2n,2n) (2n,n) (n,n) (n,n) (n,n) (4n,n)

ALGORITHM 1: Process of Generating Predicted Bounding bBox Based on Prede!ned Anchors
Input: outputs of 3-level Bounding Box Predictor O ; 3 × 3 prede!ned anchors A.
Output: translated bounding boxes Results .
Initialize Results with the same shape of O .
for every level output o in O do

Normalize to (0,1), o′ = Siдmoid(o).
Build grid matrix with the same shape of o′.
for each pixel p in o′ do

Get center points o#set (x ,y) and height and width o#set (h,w) from p.
Find (дridx ,дridy ) according to the position of p.
Calculate real center point, x ′ = (x ∗ 2) − 0.5 + дridx ,y ′ = (y ∗ 2) − 0.5 + дridy .
Get anchors (anchorh ,anchorw ) matched with this level from A.
Calculate real height and width, h′ = (h ∗ 2)2 ∗ anchorh ,w ′ = (w ∗ 2)2 ∗ anchorw .
Scale (x ′,y ′,h′,w ′) to real size and save into Results .

end for
end for
return Results

Three-Level Bounding Box Predictor: The bounding box size of objects can vary signi!-
cantly based on category and distance. For example, the bounding box of a distant car is notably
smaller than one nearby, and the bounding box of a bus is distinctly di#erent from a car. Due to
the various scales of bounding boxes, small objects in a feature map might be ignored as the size
reduces, whereas large objects pretend to be easily observed by convolution !lters in reduced a
feature map. Therefore, we implement the Three-Level Bounding Box Predictor to predict objects in
di#erent scales. As demonstrated in Figure 5(b), the predictor utilizes three feature maps from the
Multi-Feature Fusion Extractor and !nally outputs three-level predictions. The small size of predic-
tions mainly focuses on the large bounding boxes, such as small objects at a short distance, while
large-scale predictions consider larger bounding boxes more. Speci!cally, to further improve per-
formance, this module !rst upsamples global object features and concatenates them with detailed
local features. Then, the combination of all feature maps is downsampled and concatenated with
every layer. Finally, MLP is applied to re!ne the features and accurately predict bounding boxes
for vehicles and pedestrians.

Prede"ned Anchors: Due to the variety of bounding boxes for di#erent objects, directly pre-
dicting the exact shape of vehicles and pedestrians will take a long time to converge. To speed up
the training process, mmBox proposes a prede!ned anchor-based prediction method. Figure 5(c)
illustrates the anchor-based approach. K-means is applied to !nd 3 × 3 center points, as well as
prede!ned anchors, from the height and width of ground truth. These 3 × 3 anchors are matched
with three-level predictions in 3 di#erent shapes. Based on the prede!ned anchors, the process of
generating predicted boxes is de!ned as Algorithm 1.

Prediction: During the training process, mmBox directly compares the outputs of the Three-
Level Bounding Box Predictor with a generated target from ground truth for loss computation and
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Fig. 7. The limitations of RAMaps. The vehicles and pedestrians are captured in the range-azimuth coordi-
nate by the RAMap, whereas the camera view depicts actual bounding boxes in elevation-azimuth space.
Di!erent objects are marked with various colors.

back-propagation, but such predictions cannot be directly used for evaluation and testing. To cor-
rectly generate bounding boxes and eliminate redundant results, mmBox uses a con!dence !lter to
remove boxes with low con!dence and Non-Maximum Suppression (NMS) to !lter out boxes
of the same object (Figure 5(c)). NMS works based on the Intersection over Union (IoU) of pre-
dicted bounding boxes with the same label. If the IoU of overlapping boxes exceeds a threshold,
which is set 0.3 for mmBox, NMS will keep the box with the highest con!dence and discard other
intersecting boxes.

3.3 RAMaps + EAMap
As Figure 2 shows, the generated bounding boxes for vehicles and pedestrians are predicted on the
elevation-azimuth coordinate (camera view), which includes height information and facilitates hu-
mans to recognize the shape of objects. However, the inputs are in range-azimuth space, leading
to several problems. (1) Predicting object shapes is challenging because the height information
in RAMaps is restricted. When collecting mmWave re$ection signals, distances between the mea-
suring point and each part of object are di#erent. For example, if the mmWave device is at the
same height as a pedestrian’s head, the measured distance of the feet will be greater than the
distance of the head. As a result, the height features will be compressed in RAMaps, making it
di"cult for the deep learning model to extract and predict object shapes accurately. Especially in
the outdoor scenes, di#erences between re$ective points of the same target are ignored owing to
the increased distance. Figure 7 demonstrates this process, showing that vehicles and pedestrians
are mapped to range-azimuth coordinates as RAMaps, but the target spots do not directly pro-
vide the shape features of objects. (2) The predicted position of a bounding box might be shifted.
Our deep learning model applies the convolution !lter to extract features from RAMaps. With the
reduction of height and width, the output layers of the Multi-Feature Fusion Extractor generate
three feature maps for di#erent scale objects. The features in each pixel originate from the limited
regions of elevation-azimuth space. However, the positions of objects in RAMaps might shift in
the front view. For instance, in Figure 7, the pedestrian is projected to range-azimuth space. Due
to the short distance, the spot related to the pedestrian is closer to the bottom of RAMap, but in
elevation-azimuth coordinate, the center point of pedestrian appears near the top (see blue box
in camera view). Hence, relying solely on RAmaps challenges our system in accurately predicting
the actual position of bounding boxes. To address these problems, we redesign mmBox to further
incorporate the EAMap to improve the accuracy. The EAMap captures shape features of objects
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Fig. 8. Examples from a generated EAMap. From le" to right, the columns represent the gray-scale image,
static RAMap, dynamic RAMap, and EAMap, respectively.

in the same view as prediction; thus, the produced features directly relate to the actual position
of the targets. Additionally, the height information is clearly demonstrated on the EAMap, even
though it provides limited features due to low elevation resolution of the mmWave device. To fuse
the compensated height information from the EAMap, the Heatmap Generation module employs
EAMap Generation to project detected points into the elevation-azimuth space by a Gaussian !lter,
and the Multi-Scale Bounding Box Generator is extended to a three-input model.

3.3.1 EAMap Generation. To generate the EAMap, we !rst process raw mmWave re$ection sig-
nals to detect points. Then, the detected points are projected to the elevation-azimuth coordinate.
Algorithm 2 (Appendix A) details all the steps. To eliminate noise and accurately detect valid points,
Constant False Alarm Rate (CFAR) is applied to !nd overlapped detection in Doppler and Range.
Angle FFT can get angles in elevation and azimuth dimensions. Since the mmWave transceiver and
camera are in di#erent positions (see Figure 10(a)), we further use o#sets in 3D space to calibrate
all detected points. Finally, the Gaussian !lter takes SNR of calibrated points to calculate energy
distribution and map to the EAMap in correct positions, which are decided by the prede!ned win-
dow size of the Gaussian !lter and closest positions from projected points in elevation-azimuth
space. Figure 8 demonstrates some examples of the generated EAMap, which directly provides the
height information of objects and the location of the target related to the front view. For example,
in the !rst and second rows, we can identify pedestrians on the road from gray-scale images. Dy-
namic RAMaps correctly capture those targets even though some strong re$ective objects exist,
and EAMaps provide height features in the front view. The third row, including more vehicles and
pedestrians, demonstrates RAMaps’ e#ectiveness in capturing valuable information in heatmaps.

3.3.2 Multi-Scale Bounding Box Generator. The Multi-Scale Bounding Box Generator in the
RAMaps-only model mainly focuses on extracting valuable features from dynamic and static
RAMaps. However, with the introduction of the EAMap as an input to provide height information
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Fig. 9. The architecture of a redesigned Multi-Scale Bounding Box Generator is illustrated. It involves to
extracting features from an EAMap and fusing with the outputs of a Multi-Feature Fusion Extractor for sub-
sequent use in a Three-Level Bounding Box Predictor.

and directly related positions, it becomes necessary to redesign the architecture of this model to
adapt three inputs (Figure 9). While this new architecture retains most components of the previ-
ous model, it builds an additional Feature Extractor to capture height and position features. The
Feature Fusion concatenates features from both parts and employs a multi-layer perceptron (MLP)
to generate three-level feature maps for the Three-Level Bounding Box Predictor. Speci!cally, in the
Feature Extractor, Dark Block and SPP are applied to reduce the height and width of feature maps
and to increase channels.

3.4 Loss Computation
The !nal outputs of the Three-Level Bounding Box Predictor consist of predictions in three di#erent
scales, making loss computation challenging since we cannot directly compare the ground truth
bounding box with predicted results. To solve this problem, mmBox maps ground truth boxes
into three levels, similar to predicted results. The process is detailed in Algorithm 3. First, we
initialize three-level grid matrices, the same as predictions. Then, according to the center point
coordinates of ground truth bounding boxes, we place these boxes with thresholded shapes based
on the ratio of prede!ned anchors into grid matrices. However, due to the limited number of
target objects in a single frame, the valid grids of generated targets are very sparse, which leads
to serious convergence problems during loss computation. To address this, we employ a nearest
points strategy to map the ground truth bounding box into the three closest positions, thereby
increasing the density of targets.

The loss computation is composed of 4 components: bounding box loss, con!dence loss, classi-
!cation loss, and depth loss. Many popular algorithms exist to calculate bounding box loss, such
as IoU, de!ned as

IoU (A,B) = |A ( B |
|A ) B | . (1)

However, IoU cannot quantify the closeness if predicted and ground truth boxes don not have
an overlapped area and, if the prediction covers the entire ground truth box, the IoU will always
remain the same regardless of the position changes. GIoU [42] is proposed to include the non-
overlapping area as a part of the loss function, solving the no-overlap issue. DIoU [43] uses the
center point distance instead of the no-overlapping area, accelerating the convergence process and
solving the complete overlap problem. CIoU [43] considers the ratio of height and width to re$ect
the di#erence on bounding box shape. Our work uses EIoU [44], de!ned as follows:

LEIoU = 1 − IoU +
ρ2(b,bдt )

(wc )2 + (hc )2 +
ρ2(w,wдt )

(wc )2 +
ρ2(h,hдt )
(hc )2 , (2)

where b and bдt denote the center points of the predicted and ground truth boxes, wc and hc

represent the width and height of the smallest enclosing box covering the two boxes, and w , h,
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Fig. 10. (a) mmWave cascade device with ZED stereo camera. (b) Zoom-in view of cascaded device with
transmit and receive antennas. (c) An example of le" image from ZED stereo camera of the environment. (d)
EAMap of mmWave signals captured by cascaded device corresponding to the camera image of 10(c).

wдt , and hдt are the width and height of the predicted and ground truth boxes. Compared with
other IoU-based methods, EIoU considers the IoU loss, center points distance, and di#erence of
height and width, which is faster than CIoU. The loss of classi!cation, con!dence, and depth use
Binary Cross-Entropy Loss (BCE Loss):

LBCE(x ,y) = −(y log(x) + (1 − y) log(1 − x)), (3)
where x is prediction and y is ground truth. While the ground truth does not provide con!dence
value for boxes, we treat the result of EIoU as the target con!dence. In general, the !nal loss
function of mmBox is generated as follows:

LmmBox =Wa ∗ LBCE(Conf idence) ∗ (Wb ∗ LEIoU +Wc ∗ LBCE(Label) +Wd ∗ LBCE(Depth)), (4)
whereW represents the weight of each component.

4 Implementation
4.1 Hardware Platform
Due to the lack of open-source data samples of tra"c intersections collected by mmWave devices,
we built a custom hardware setup with a 3D printed structure to include mmWave cascaded radar
and a stereo camera. Figure 10(a) shows the 3D printed structure holding cascaded mmWave radar,
TI MMWCAS-RF-EVM and MMWCASDSP-EVM [37, 45], to collect mmWave re$ections from sur-
rounding vehicles and pedestrians, and a ZED stereo camera [38] to collect the ground-truth cam-
era and depth images. A Commercial-O#-The-Shelf (COTS) mmWave cascaded radar and ZED
stereo camera are aligned and kept as close as possible with the 3D printed structure to maximize
the overlapped FoV. The mmWave cascaded device combines four chipsets [46] to increase the
aperture and achieve high angular resolution (see Figure 10(b)). Each mmWave device chip con-
sists of 3 transmitters and 4 receiver antennas. All the antennas from chipsets are placed to obtain
λ/2 spacing to overcome aliasing. In total, the mmWave cascaded device has 12 transmitters and
16 receivers, providing 192 virtual channels. Among 12 transmitters, 9 are placed in the azimuth
dimension with 2×λ spacing to obtain 144 virtual antennas in the azimuth direction. Out of 144
virtual antennas, 86 are non-overlapping and are separated by λ/2, providing an aperture of 43λ
and 1.4◦ angle resolution. The cascade device uses the following data collection parameters: Start
frequency, 77 GHz; frequency ramp slope, 25 MHz/µS; number of complex Analog-to-Digital
Converter (ADC) samples, 256; ADC sampling rate, 8 MHz/s; chirp duration, 40 µs; frame inter-
val, 100 ms; and maximum receive antenna gain, 48 dB. The device is capable of collecting data
from a maximum range of up to ∼ 48 m with a range resolution of 0.19 m and has a total bandwidth
of 800 MHz. Our stereo camera collects the left, right, and depth images with a resolution of 1 mm.
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Table 2. Number of Di!erent Objects Detected by ZED Stereo Camera
on ∼ 29K Data Samples at the Tra!ic Intersection

Environment Total Data Samples Number of Vehicles Number of Pedestrians
Tra"c Intersection 29110 94730 25833

Since it is an outdoor environment, the depth images are noisy beyond 20 m. Hence, we keep a
20-m working range for the mmWave device and camera.

4.2 Real Data Collection
We collect real datasets by placing our custom setup in the camera tripod at a height of 6 ft and
facing towards the tra"c intersection (see Figure 10(c) for an example). We connect an mmWave
device and stereo camera to the host PC with the Windows operating system. We begin the data
collection process by running a MATLAB program that initiates the mmWave studio and loads
the hardware con!guration parameters, such as chirp pro!le and frame con!guration. We also
initialize the ZED stereo camera by opening the camera port and con!guring it to collect HD1080
images. Since the mmWave device takes longer to con!gure than the ZED stereo camera, the
camera waits for acknowledgment from the mmWave studio before it starts collecting images.
In a single data collection, we collect approximately 30 secs, resulting in 300 data samples, each
separated by 100 ms. The mmWave device collects the raw ADC data !les which are processed to
generate a static heatmap, dynamic heatmap for the range-azimuth domain, and a single EAMap
similar to the camera viewpoint (see Figure 10(d)). Similarly, the ZED camera provides the left and
right RGB and depth images. We use the left image to get the 2D bounding boxes with the pre-
trained YOLO model [28] and localize them combined with depth images to get the median depth
of the di#erent objects. Since both are di#erent types of COTS hardware, tight synchronization
between the mmWave device and the camera is impossible. We solve this problem with software
synchronization by !nding the closest samples. Even though we try to collect mmWave samples
and camera images at 100 ms with software synchronization, we verify the samples by taking
Structural Similarity Index Measure (SSIMs) [47] between camera images, static RAMaps, and
dynamic RAMaps. We observe SSIM between camera images tracks the SSIM between dynamic
RAMaps, and the timestamp di#erence between mmWave heatmaps and camera images is less than
10 ms. Figure 8 shows the synchronized static RAMaps, dynamic RAMaps, EAMaps, and camera
images for tra"c intersections.

We place our setup facing a tra"c intersection so that it can capture various scenarios, such as
pedestrians crossing both directions in the road and vehicles passing through the tra"c light at
di#erent o"ce hours. Table 2 shows the summary of objects presented in our dataset. We consider
two object categories in mmBox: (1) Vehicle for all cars, buses, and trucks; and (2) Pedestrian for
pedestrians and cyclists. Recall that the tra"c intersection is around the campus. Therefore, we
have a large number of pedestrians crossing the road. Also, the road has 6 lanes total, with a
speed limit of up to 35 mph; therefore, we also observe many vehicles. In total, we collected more
than 30,000 data samples over 6 months, resulting in nearly 1 TB of data. After removing data
samples without objects within 20 m, we have 29,110 data samples, out of which we use 23,288
samples in training and the rest of the samples for model benchmarking and testing. To validate
the robustness of our system, we further collect data from 2 di#erent tra"c intersections, such
as single-lane roads and intersections with stop signs. We use 80% of 1,355 processed samples to
!ne-tune the deep learning model and 20% to evaluate the performance.

4.3 Foggy Data Collection
To simulate the extreme outdoor environment, we implement a foggy box to collect data in dense
fog, as shown in Figure 11(a). The foggy box is made of clear plexiglass, which allows mmWave
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Fig. 11. (a) Foggy box implementation. The outside box is made of clear plexiglass. The mmWave device and
camera are put on the 3D printed structure, and the fog machine is placed behind them. (b) RGB image
collected by the ZED camera inside the foggy box without fog. (c) The box filled with dense fog during data
collection. (d) RGB image collected by camera inside the foggy box with dense fog.

to pass through while maintaining dense fog inside. The cascaded mmWave radar and ZED stereo
camera, held by a 3D printed structure, are placed inside the box. To generate dense fog, we put
a Donner DMF-400S fog machine behind the radar and camera to simulate dense fog. To ensure
that this clear plexiglass box does not in$uence the quality of the collected images, Figure 11(b)
shows an RGB image example captured by the camera inside the box without fog. The objects and
surroundings are clearly visible through the foggy box. Before starting data collection, the box is
!lled with dense fog (Figure 11(c)). This extreme foggy weather simulation makes a commonly
used camera ine#ective, capturing nothing (see Figure 11(d)). Therefore, we place the ZED camera
outside the foggy box to collect ground truth data. The radar setup for data collection remains the
same as previously described. In total, we captured 2,392 samples in the tra"c intersection scene.
Due to the di#erence of position and orientation, we use 1,595 frames to !ne-tune the pre-trained
model and the remaining 797 samples to validate the performance of mmBox.

4.4 Network Training
To train our network, we initialize the weights of mmBox from a normal distribution with a mean of
0 and a standard deviation of 0.02. The learning rate starts from 0.0001 and automatically decays
by a multiplicative factor of 0.5 after 10 epochs. To minimize the loss between prediction and
ground truth, we apply Adam [48] as optimizer to update the parameters of the model, as it can
e#ectively learn the mapping between inputs and outputs. Since our model is anchor based, we
use K-means clustering to calculate 9 center points from the width and height of ground truth
boxes and distribute them across 3 layers with 3 di#erent shapes. Our networks converge within
200 epochs. To !ne-tune mmBox with foggy data, we load the pre-trained model and optimize it
with an initial learning rate of 0.00001 by 200 epochs. Our models are implemented using PyTorch
with Python 3.7 and trained on a Tesla v100 graphics processing unit (GPU) server.

5 Experimental Results
We now evaluate the performance of mmBox and analyze the model design. We validate our model
with the commonly used metric Average Precision as the primary evaluation method. Additionally,
we quantify the shape di#erence using the Height and Width Error, evaluate the precision of the
predicted object locations using the Center Point Distance, and analyze Depth Error as mmBox
produces depth values for distances between the objects and the device. We also consider Missed
Objects per Frame and Miss Rate for evaluating the e#ectiveness performance. mmBox features
the robustness of working under extreme environments; thus, we explore the performance un-
der heavy fog conditions. To evaluate the robustness and reliability of our system, we collected
more data from di#erent surroundings to !ne-tune and test our model. Notably, there is no similar
model available for comparison because the previous works, for example, Radatron and RODNet,
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provide limited information and detect objects in the BEV as compared with our front-view work.
In addition, we try to analyze the e#ect of major components and the complexity of this system
to get better understanding of mmBox.

Intersection over Union (IoU): IoU measures the ratio of the overlapping area between two
bounding boxes to the region of union, which is a commonly used method to measure the similarity
of the predicted bounding box and ground truth. In our evaluation methodology, IoU is used as
a threshold for the confusion matrix, which decides whether the object prediction is correctly
matched.

Average Precision (AP) and mean Average Precision (mAP): Precision represents the pro-
portion of true-positive predictions in all generated bounding boxes, whereas Recall measures the
ratio of true-positive predictions to all ground truth targets. By setting the IoU threshold with a spe-
ci!c value, we can separately draw a Precision Recall (PR) curve for vehicles and pedestrians.
AP and mAP calculated from a PR curve, which adapt the all-interpolated method [49] outper-
forming the 11-interpolated from [50], are important metrics for evaluating model performance in
bounding box detection.

Height and Width Error: The shape of the bounding box can be directly re$ected by its height
and width. Therefore, to evaluate the accuracy of the predicted shape, we quantify the Height Error
as the di#erence between the ratio of generated height to ground truth height and 1. Similarly, the
Width Error is calculated in the same manner.

Center Point Distance and Depth Error: The center point, a crucial element that in$uences
the quality of predictions, is derived from the predicted values and the grid coordinates of the Three-
Level Bounding Box Predictor outputs. It represents the exact location of the vehicle or pedestrian.
The location error of prediction can be quanti!ed by the distance between the predicted center
point and ground truth, which is represented in pixels as the object distance on a 2D image cannot
be measured in meters of Euclidean geometry. Additionally, we further generate the depth value to
accurately measure object distance. The Depth Error is calculated as the di#erence between depth
of prediction and ground truth.

Missed Objects per Frame and Miss Rate: To evaluate the e#ectiveness performance of mm-
Box, we introduce Missed Objects per Frame and Miss Rate. Missed Objects per Frame represents
the ratio of the missed objects to total number of frames, whereas Miss Rate is calculated by the
proportion of the missed objects in total objects.

Evaluation Summary: (1) The RAMaps+EAMap model outperforms the RAMaps-only model
by achieving mAP30, mAP50, and mAP75 scores of 0.716, 0.659, and 0.508, respectively, compared
with 0.424, 0.345, and 0.225. This model yields a 125.8% improvement on mAP75. The results high-
light the signi!cant e#ectiveness of the compensatory information provided by EAMap in enhanc-
ing shape, location, and depth accuracy of predictions. (2) By simulating the dense foggy weather
using a prototype foggy box, we demonstrate the robustness of mmBox in generating bounding
boxes in extreme outdoor environments. It achieves themAP50 score of 0.688 even when the camera
could not capture anything for object detection. (3) The use of prede!ned anchors and a three-level
predictor design is more e#ective than the anchor-free method. Additionally, in the comparison of
di#erent feature fusion approaches, mmBox exhibits higher performance compared with multiple
crossed fusion work. (4) The low latency of 27.2 ms of the deep learning model underscores the
potential feasibility of implementing our work in real-time systems.

5.1 Performance Analysis
5.1.1 RAMaps-only. Figure 12(a) illustrates the performance of mmBox onAP30,AP50, andAP75

with IoU thresholds of 0.3, 0.5, and 0.75, respectively, resulting inmAP30,mAP50, andmAP75 values
of 0.424, 0.345, and 0.225, respectively. To explore more metrics, Figures 12(b) to 12(d) present
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Fig. 12. (a)AP30,AP50, andAP75 for vehicles and pedestrians. (b) CDF of Width and Height Error for vehicles
and pedestrians. (c) CDF of Center Point Distance in pixels between prediction and ground truth. (d) CDF
of Depth Error in meters between prediction and ground truth.

Fig. 13. (a) mAP comparison between RAMaps-only and RAMaps+EAMap model under the IoU threshold of
0.30, 0.50, and 0.75. (b) Predictions of RAMaps-only model. (c) Predicted bounding boxes of RAMaps+EAMap
model.

the Cumulative Distribution Function (CDF) of the predicted Height and Width Error, Center
Point Distance in pixels, and Depth Error under the IoU threshold of 0.5. The 50th percentiles of
Height and Width Error of vehicles are 0.033, whereas the pedestrian achieves 0.063 and 0.035 in
Height and Width Error. This small di#erence indicates that the predictions of our model are very
similar to the ground truth on shape. The 50th percentile of Center Point Distance for vehicles is
10.25 pixels, and pedestrians achieve 11.59 pixels. Given that the generated bounding boxes are
designed for HD1080 images, such small center point o#sets still accurately describe the exact
positions of objects. The Depth Error of vehicles and pedestrians in the 50th percentile are 0.504 m
and 0.478 m. With an IoU threshold of 0.5 to match predicted bounding boxes and ground truth,
the Missed Vehicles and Pedestrians per Frame are 1.54 and 0.56, and the Miss Rates for vehicles
and pedestrians are 47% and 63%, respectively. In summary, the results of various metrics show great
potential to predict bounding boxes for vehicles and pedestrians, but the accuracy needs to be improved.

5.1.2 RAMaps + EAMap. While the static and dynamic RAMaps provide detailed information
in the BEV (range-azimuth plane), extracting the height features of objects is challenging. Addition-
ally, the actual position of an object in the front view di#ers from that in both RAMaps. Therefore,
we further use EAMap, projected by the mmWave point cloud, as an additional input to improve
the accuracy of predicted bounding boxes. As Figure 13(a) demonstrates, combining the static
and dynamic RAMaps with EAMap signi!cantly improves the mAP performance. Compared with
the RAMaps-only model, this model achieves improvements of 68.9%, 90.9%, and 125.8% inmAP30,
mAP50, andAP75, respectively. To examine the similarity on shape, Table 3 compares the Width and
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Table 3. Performance Comparison between RAMaps-only and RAMaps+EAMaps Model under Various
Metrics for Vehicles and Pedestrians

50th% WE 50th% HE 50th% CPD 50th% DE MOF Miss Rate
VehicleRAMaps−only 0.033 0.033 10.25 pixels 0.504 m 1.54 47%

VehicleRAMaps+EAMap 0.017 0.018 4.81 pixels 0.272 m 1.02 32%
PedestrianRAMaps−only 0.063 0.035 11.59 pixels 0.478 m 0.56 63%

PedestrianRAMaps+EAMap 0.043 0.023 6.21 pixels 0.367 m 0.23 26%
Metrics: 50th% Width Error (WE), 50th% Height Error (HE), 50th% Center Point Distance (CPD) in Pixels, 50th% Depth
Error (DE) in Meters, Missed Objects Per Frame (MOF), and Miss Rate.
We use the IoU threshold of 0.5 for all evaluations.

Fig. 14. Performance analysis on mAP50 (a), Shape Error (b), and Depth Error (c) with di!erent targets in
one frame. The samples, including 8 and more than 8 targets, are counted in 8+. The evaluations of Shape
Error and Depth Error set the IoU threshold as 0.5.

Height Error and Center Point Distances in pixels between the two models, using an IoU threshold
of 0.5. The results indicate the reduced di#erences in shape and position. The lower height error
demonstrates the e#ectiveness of our design to extract height information from low-elevation res-
olutions of mmWave signals. Figures 13(b) and 13(c) display the prediction comparison for the
same sample. The RAMaps-only model predicts bounding boxes for pedestrians with some o#sets,
because the RAMaps cannot provide corresponding positions in the front view. In contrast, the
RAMaps+EAMap model correctly performs the object position and further improves accuracy on
the height of bounding boxes due to the detailed height information from EAMap. The 50th% of
Depth Error is improved by 0.232 m and 0.111 m for vehicles and pedestrians, respectively. For
e#ectiveness, this model also performs better in terms of Missed Objects per Frame and Miss Rate,
particularly reducing the Miss Rate for pedestrians to 26%. To analyze the performance changes
of di#erent targets in a single sample, we further evaluate the mAP50, Width Error, Height Error,
and Depth Error in 8 cases (Figure 14). mmBox maintains high accuracy across all cases, though
mAP50 for cases with more targets is slightly lower compared with those with less targets. Specif-
ically, when the number of targets reaches 8 or more, the mAP50 degrades to 0.613, which only
drops about 7% compared with the overall performance of 0.659. The predicted shapes of bounding
boxes exhibit small di#erences with ground truth, despite the Width Error $uctuating more than
Height Error. Our system shows similar performance on generated depth between targets and the
mmWave device. In general, the RAMaps+EAMap model outperforms the RAMaps-only model in all
evaluation metrics. Our system is robust enough to accurately predict bounding boxes for vehicles and
pedestrians with low error across various numbers of targets.

5.1.3 Performance under Foggy Conditions. Compared with other sensors, such as LiDAR and
cameras, mmWave is resilient in adverse outdoor environments. For example, mmWave signals
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Fig. 15. Examples of mmBox performance under a foggy environment. The pictures labeled with ground truth
show the actual bounding boxes on real images outside foggy box, and the pictures labeled with prediction
show the predicted bounding boxes on foggy images captured by a camera. The text over the bounding boxes
indicates the class and depth of the objects.

can penetrate fog to reach the surface of an object and get re$ections, whereas LiDAR and cam-
eras will be impeded by the dense fog particles. Therefore, to evaluate mmBox performance under
extreme weather conditions, a foggy box is applied to collect data under dense fog in real tra"c
intersections. Since the position and orientation of collecting foggy data are di#erent from previ-
ous data collection, we further !ne-tune the RAMaps+EAMap model and evaluate under the same
metrics to compare the performance. Figure 15 demonstrates some examples of mmBox predic-
tions. The ground truth shows the actual bounding boxes in the front-view image, whereas the
prediction in the same column represents predicted bounding boxes on a foggy image captured
by a camera. Even in the dense fog, when the camera cannot capture any surrounding informa-
tion, our system mmBox can still accurately predict bounding boxes and depth values of objects,
which enables many potential applications for road safety. The mAP50 on foggy data is still high
at 0.688, indicating that our system can actually work under severe outdoor weather conditions.
As shown in Table 4, mmBox demonstrates robust and consistent performance across various metrics,
underscoring its e!ectiveness in adverse weather conditions.

5.1.4 Robustness to Environmental Dynamics. To evaluate the robustness of mmBox in di#erent
environments, we used the same setup to collect data in more road conditions, such as intersections
with stop signs (Figure 16(a)) and single-lane roads (Figure 16(b)). In total, we processed 1,355
samples from new environments to !ne-tune and evaluate our system. Figure 16(c) presents the
testing results on the new dataset. Although the score of the new dataset is slightly lower than
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Table 4. Performance Analysis on Foggy Data under Various Metrics for Vehicles and Pedestrians

mAP50 50th% WE 50th% HE 50th% CPD 50th% DE MOF Miss Rate
Under fog 0.688 0.045 0.026 6.82 pixels 0.391 m 0.68 26%

Without fog 0.659 0.030 0.021 5.51 pixels 0.320 m 0.63 29%
Metrics: mAP50, 50th% Width Error (WE), 50th% Height Error (HE), 50th% Center Point Distance (CPD) in Pixels,
50th% Depth Error (DE) in Meters, Missed Objects Per Frame (MOF), and Miss Rate.
We use the IoU threshold of 0.5 for all evaluations.

Fig. 16. (a) An example from a new collected dataset. The car is parking in front of stop sign. (b) An example
of a single-lane road from a new collected dataset. (c) The performance comparison onmAP50 for the original
dataset and new dataset from di!erent environments.

the original dataset, mmBox still achieves high performance on mAP50, 0.585, demonstrating the
robustness and reliability of our system across various conditions.

5.2 Ablation Study
To comprehensively understand the Multi-Scale Bounding Box Generator, we now analyze its ma-
jor designs. Due to the variety of ground truth bounding boxes, we apply prede!ned anchors
generated from K-means as the basic knowledge to calibrate the predictions, which facilitates
the training process. These anchors map di#erent sizes of bounding boxes into three level tar-
gets, limiting the shape range of objects in every layer. To verify the e#ects of our anchor-based
method, we train a model that directly predicts actual shape and generates various bounding boxes
in one layer prediction instead of the three-level design. Fusing features in deep learning mod-
els is challenging for multiple inputs. This work fuses both RAMaps and EAMap in three di#er-
ent feature sizes. We further compare the functionality of the mmBox design with other fusion
approaches.

5.2.1 E!ect of Predefined Anchors and Three-Level Predictor. This work aims to extract features
from mmWave and generate accurate bounding boxes for vehicles and pedestrians in the front
view. However, the shapes and sizes of target boxes vary signi!cantly due to the di#erent
distances and categories. For example, a car parked in a close area appears larger than one at a
farther distance in a camera image. This variety makes it challenging for deep learning models to
converge and predict accurately. Hence, we take prede!ned anchors as basic knowledge to map
with di#erent shapes and sizes, accelerating the training process and increasing the accuracy. To
explore the e#ect of this anchor-based method, we remove the anchors design to directly predict
values for width and height of bounding boxes. In addition, mmBox uses three-level predictions
to distinguish di#erent scale bounding boxes and, for every layer, three anchors with di#erent
shapes are applied to match various objects. Since the prede!ned anchors map ground truth boxes
into 3 levels using the threshold on ratio of width and height, we validate the functionality of the
three-level predictor design simultaneously. In the Three-Level Bounding Box Predictor, we keep
most layers the same and only consider the !rst prediction of original outputs as the !nal result.
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Table 5. Performance Comparison between Anchor-Based and
Anchor-Free Design under Various Metrics

mAP50 50th% WE 50th% HE 50th% CPD 50th% DE MOF Miss Rate
Anchor-based 0.659 0.030 0.021 5.51 pixels 0.320 m 0.63 29%
Anchor-free 0.457 0.032 0.023 8.36 pixels 0.304 m 0.99 49%

Metrics: mAP50, 50th% Width Error (WE), 50th% Height Error (HE), 50th% Center Point Distance (CPD) in Pixels,
50th% Depth Error (DE) in Meters, Missed Objects Per Frame (MOF), and Miss Rate.
We use the IoU threshold of 0.5 for all evaluations.

Fig. 17. mAP comparison of the fusion design under IoU thresholds 0.3, 0.5, and 0.75.

Additionally, we adapt the loss computation for one-layer anchor-free prediction to optimize the
model. After training, we analyze performance using the same metrics. Table 5 provides a detailed
comparison of anchor-free and anchor-based design. To better understand the gap, we use the
mean value of vehicles and pedestrians on all metrics. We observe that the anchor-based design
achieves better scores on every evaluation aspect, aligning with our expectations.

5.2.2 E!ect of Feature Fusion Method. Our mmWave device has more virtual antennas to
achieve better resolution in range-azimuth coordinates; the motion of vehicles and pedestrians
primarily occurs in this space. Therefore, we !rst generate RAMaps from mmWave re$ection sig-
nals. Compared with projecting point cloud data from mmWave signals to one heatmap, dynamic
and static RAMaps can capture more valuable features of moving and stationary objects in com-
plex outdoor environments. Our work, mmBox, fuses di#erent inputs at the feature level, which
allows us to deeply extract and fuse features. While other works [51, 52] propose an extreme fusion
method to combine features, our work only fuses features in output layers of the feature extractor.
To validate the importance of our design, we implement the crossed fusion architecture based on
our model. Since the features from static and dynamic RAMaps are in the same plane, we fuse
them in more layers while keeping other parts of the model the same to examine the performance.
Figure 17 shows themAP30,mAP50, andmAP75 as a main comparison between the two fusion meth-
ods. Even though the performance of crossed fusion design is very close to mmBox, it is still lower
on mAP evaluations. The mAP50 of the crossed fusion model is degraded by 0.036 compared with
0.659, that of mmBox. Table 6 demonstrates that the crossed fusion model can predict bounding
boxes for target objects, as indicated by Missed Objects per Frame and Miss Rate. However, the
shapes and center points of predicted boxes show more di#erence than mmBox. Overall, the re-
sults con!rm that our design decision to fuse features only in three output layers of the feature
extractor is e#ective. While the crossed fusion design has comparable performance, it shows slightly
lower mAP scores and greater di!erences in the shapes and center points of predicted boxes. Thus, our
approach, mmBox, provides a better performance with lower computational complexity, resulting in
more accurate predictions.
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Table 6. Performance Comparison between mmBox and Crossed Fusion Design
under Various Metrics for Vehicles and Pedestrians

50th% WE 50th% HE 50th% CPD 50th% DE MOF Miss Rate
mmBox 0.030 0.021 5.51 pixels 0.320 m 0.63 29%

Crossed Fusion 0.060 0.038 11.84 pixels 0.600 m 0.67 32%
Metrics: 50th% Width Error (WE), 50th% Height Error (HE), 50th% Center Point Distance (CPD) in Pixels,
50th% Depth Error (DE) in Meters, Missed Objects Per Frame (MOF), and Miss Rate.
We use the IoU threshold of 0.5 for all evaluations.

Table 7. Parameters, FLOPs, Latency, and
FPS of Deep Learning Model

Parameters FLOPs Latency FPS
137.94 M 53.0 G 27.2 ms 36.8

5.3 Complexity of the Model
For a low-latency system, the costs of generating accurate results signi!cantly a#ect the user’s
experience. The object detection on road requires low response time to detect vehicles and pedes-
trians in emergencies. To evaluate the complexity of mmBox, we run this deep learning model
on a GPU server with Tesla v100 and analyze the number of parameters, Floating Point Opera-
tions Per Second (FLOPs), Latency, and FPS (Table 7). While processing one frame of mmWave
re$ections currently takes 700 ms, this can be reduced to ∼ 230 ms by parallelizing the loading
and calculating processes. The results of the deep learning model show a low latency of 27.2 ms to
correctly generate bounding boxes for the real street scene, which enables the potential feasibility of
deploying mmBox in a real-time system.

6 Related Work
6.1 Indoor and Outdoor Millimeter-Wave Sensing
Millimeter wave’s attributes, such as working under low light, penetrating small objects, and low
cost, attract researchers to apply it to indoor and outdoor sensing systems. Traditional works rely
on improving hardware devices and imaging algorithms to get better resolution. UWBMap [53] uti-
lizes SAR, which can compose a virtual antenna array to emulate a large-aperture radar by moving
the device along with a speci!c trajectory and then building the indoor $oor plan through smoke.
UWBMap develops the prototype with the help of a commercial mobile robot to control moving
speed and direction, which heavily limits its applications. To describe environment information,
point cloud data is an e"cient way compared with Meshes and Voxels. MilliPCD [32] builds a two-
stage model to generate high-resolution point cloud data for indoor environments, which shows
an example of combining traditional mmWave processing algorithms with deep learning models
to further improve mmWave sensing performance. However, indoor environments, which only
need to consider walls, ceilings, $oors, and the like, is much simpler than outdoor surroundings,
which include plenty of objects with variable re$ectivity. MilliPoint [54] extends SAR imaging
into the outdoors with consumer-grade vehicle radar. Radar self-tracking enables SAR to work
along linear motion of vehicles by modeling the relationship between signal variation and radar
movement at millimeter-level precision. However, MilliPoint also inherits the disadvantages of
SAR. It requires that the object and radar device cannot be quasistatic and keep linear motion. The
authors of [26] propose a mmWave radar and RGB-D fusion system to detect obstacles outdoors.
The RGB-D camera provides detailed features as input for deep learning models to classify and get
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positions, whereas mmWave generates velocity and 2D coordinate location. However, the camera
performance will be heavily degraded under extreme outdoor conditions, such as the evening with
insu"cient light and foggy weather. In contrast, mmBox applies mmWave sensing to real outdoor
street scenes, which is much complex than the indoors. To prove the reliability of our system, we
further simulate dense foggy conditions to evaluate the performance under adverse weather. The
results show that mmBox is resilient to accurately detect vehicles and pedestrians in extreme outdoor
environments.

6.2 Object Detection Based on Millimeter-Wave
Object detection is one of fundamental computer vision problems in attempting to provide valu-
able information for environment semantic understanding. In the past works, generating bounding
boxes for object detection can be brie$y categorized into 2 classes by data source. (1) Camera-Based
Works. The optical camera sensor is the most common tool to generate images, which captures
ambient features from surroundings. YOLO [55] utilizes a one-stage model, which frames object
detection as a regression problem, to predict separated bounding boxes and classi!cation probabil-
ity based on image data. However, camera sensors cannot work in low or no-light environments,
which is common in outdoor scenes, even though there are some works concentrating on enhanc-
ing performance under low light. For example, MSR-net [56] showcases a supervised machine
learning model designed to capture the end-to-end mapping between dark and bright images, en-
abling the reconstruction of intricate details. However, its e#ectiveness is constrained in low-light
or completely dark environments. (2) LiDAR-Based Works. LiDAR can proactively emit pulsed
light waves, which enables LiDAR to work without light. High-resolution LiDAR sensors can scan
the surrounding environment and generate dense PCD. YOLO3D [57] employs PCD generated
from LiDAR sensors to capture 3D space information and extends YOLOv2 to perform 3D bound-
ing boxes for object detection. However, even though with the increased practical application of
LiDAR the cost has been lower, LiDAR is still expensive compared with other sensors [58], such
as the millimeter wave sensor. Besides, in harsh outdoor environments, LiDAR’s performance will
be heavily degraded, such as in foggy weather, because the pulsed light wave will be impeded by
small obstacles.

Since the mmWave sensor can work under low visibility or no-light environments and harsh
weather, some articles apply mmWave on outdoor object detection. The authors of [59] present a
PointNet-based model that uses PCD generated from high-resolution radar to estimate 2D bound-
ing boxes. The results show a great potential for outdoor mmWave application on object detection,
but the environment of collecting data is strictly controlled, which only includes one testing car.
RODNet [25] takes the generated radiofrequency images from mmWave and predicts the likehood
of objects in the radar’s FoV, from which it is hard to recognize the shape of objects. Radatron
[24] uses high-resolution cascaded MIMO radar, which achieves in 5-cm range resolution and 1.2◦
in angular resolution, to collect a dataset. This proposed model can generate accurate bounding
boxes from RAMap, but Radatron only considers vehicles on the road, and the prediction in the
BEV makes it di"cult for humans to understand compared with the detected result in the front
view. Considering the attractive attributes of mmWave, some sensor fusion works [60–62] explore
the object detection methods that combine LiDAR and radar to overcome the measurement ambi-
guities and sparsity of mmWave. MVDNet [63] and ST-MVDNet [64] implement the fusion systems
that operate in foggy weather to accurately detect vehicles. However, under extreme foggy con-
ditions, LiDAR’s ability to gather surrounding information is signi!cantly hindered, leaving only
radar working, which greatly degrades the performance of sensor fusion systems. Therefore, our
mmWave-only system, mmBox, e!ectively extracts features from heatmaps and then fuses them in
di!erent levels to generate bounding boxes for vehicles and pedestrians in the front view, which is
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intuitive and allows humans to easily discern the shape of objects. Importantly, the generated EAMap
compensates the height information and improves the location accuracy, and the separate dynamic
and static RAMaps make mmBox robust to adapt to di!erent environments.

7 Discussion and Future Works
Time Complexity of Data Processing: We collect raw mmWave re$ections from outdoor street
scenes and then use the Heatmap Generation module to generate both static and dynamic RAMaps
and EAMap. Even though the deep learning model, Multi-Scale Bounding Box Generator, can gen-
erate results in a low latency of 27.2 ms, the processing time of generating heatmaps, consuming
700 ms, heavily degrades the capability of real time. To solve this problem, we can parallel the
process to generate RAMaps and EAMaps with di#erent processing threads. Parallelization allows
us to load the raw ADC !les and use di#erent threads to generate mmWave heatmaps. It will help
to reduce the processing time to ∼ 230 ms from 700 ms. Since we use a general-purpose central
processing unit (CPU) to process data, dedicated hardware [65] can reduce process time and
bring data processing time into real time.
Improving Performance: mmBox has achieved impressive results across various metrics, yet
there is room to improve the accuracy. For instance, in the six group examples of Figure 15, the
!rst prediction missed one car compared with the ground truth, and the last prediction generated
more bounding boxes than expected. There are two possible approaches to enhance performance.
(1) Collecting a larger dataset. The total number of samples used by mmBox is 29,110 frames, which
is signi!cantly smaller than the benchmark dataset in the computer vision !eld, such as ImageNet
[66]. Since the ability of generalization is strongly correlated with the size of the dataset, collecting
more samples is expected to yield higher scores. (2) Improving the quality of ground truth. This
work developed a self-labeling program, BoxLabeling, to detect objects using YOLO on gray-scale
images and extract corresponding distance values from depth images. Although we have consid-
ered most situations a#ecting quality of labeled ground truth boxes, such as discarding samples
without depth values, there still exist some issues due to the inaccuracy of YOLO detection and
depth error caused by the ZED camera. Using more reliable equipment to detect depth and manu-
ally checking the dataset might resolve these problems.
Extending to 3D Bounding Box: Our work, which involves predicting 2D bounding boxes for
vehicles and pedestrians in outdoor environments, can be extended to 3D bounding box genera-
tion. However, 3D object detection is challenging, since the mmWave signals re$ected by objects
primarily come from the side facing the transceiver, which is insu"cient to construct the 3D shape
of objects. Consequently, extending this work necessitates a more robust and generalized design
for the deep learning model. Moreover, aside from predicting the length, width, and height of ob-
ject, the generated 3D bounding box also needs to account for the rotation angle on all three axes.
For example, when the car is turning left, the rotation angle on the vertical axis must be adjusted.
We plan to address these challenges in future work.

8 Conclusion
In this work, we design a two-stage system, mmBox, which leverages a deep learning model, Multi-
Scale Bounding Box Generator, to e#ectively extract features of RAMaps and EAMap produced
from a single-frame mmWave signal, correctly fuse features, and accurately generate three-level
predictions of bounding boxes and depth values for vehicles and pedestrians. We evaluate the
performance of mmBox under dense foggy conditions to simulate adverse outdoor weather. The
comprehensive metrics of performance analysis prove the e#ectiveness and robustness of mm-
Box to detect objects with depth, and the low latency of the deep learning model underscores its
potential for real-time applications.
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A Appendix

ALGORITHM 2: The Process of Generating EAMap
Input: raw mmWave re$ection signals S .
Output: generated Elevation-Azimuth Heatmap EAMap.
Apply Range FFT and Doppler FFT on S to get Ranдe_Doppler .
Use CFAR to detect peaks on Range dimension and !nd overlapped Detections with Doppler
dimension.
Apply Angle FFT on Detections to detect objects and calculate angles in Azimuth and Elevation.

Fetch points and SNR from previous results.
Apply o#set to calibrate points .
Initialize Elevation-Azimuth Heatmap EAMap.
for every point p in points do

Find closest position pos for p in EAMap.
Apply Gaussian !lter on corresponding SNR to calculate the energy distribution value .
Map value in pos with prede!ned window size.

end for
return EAMap

ALGORITHM 3: The Process of Producing Targets from Ground Truth Bounding Boxes
Input: ground truth bounding boxes GT ; 3x3 prede!ned anchors A; threshold τ .
Output: generated 3-level target from ground truth T .
Initialize T with the same shape of prediction.
for every level target t in T do

for each bounding box дt in GT do
Get center point (x ,y), height and width (h,w), and depth value d from дt .
Fetch 3 anchors a corresponding to the level and scale it.
Calculate the ratios R of (h,w) and each anchor of a.
for each ratio r in R do

if r < τ then
Find nearest positions by (x ,y) in t and save scaled дt into these positions of this
anchor.

end if
end for

end for
end for
return T
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