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Abstract—The finite group isomorphism problem asks to
decide whether two finite groups of order N are isomor-
phic. Improving the classical NO(logN)-time algorithm for
group isomorphism is a long-standing open problem. It is
generally regarded that p-groups of class 2 and exponent p
form a bottleneck case for group isomorphism in general.
The recent breakthrough by Sun (STOC ’23) presents an
NO((logN)5/6)-time algorithm for this group class.

In this paper, we improve Sun’s algorithm by presenting
an N Õ((logN)1/2)-time algorithm for this group class. We
also extend our result to the more general p-groups of
Frattini class 2. Our algorithm is obtained by sharpening
the key technical ingredients in Sun’s algorithm and build-
ing connections with other research topics. One intriguing
connection is with the maximal and non-commutative ranks
of matrix spaces, which have recently received considerable
attention in algebraic complexity and computational invari-
ant theory. Results from the theory of Tensor Isomorphism
complexity class (Grochow–Qiao, SIAM J. Comput. ’23) are
utilized to simplify the algorithm and achieve the extension
to p-groups of Frattini class 2.

Index Terms—group isomorphism, tensors, matrix
spaces, matrix tuples, computer algebra

I. INTRODUCTION

A. Finite group isomorphism

The finite group isomorphism problem (GpI) asks
to decide whether two finite groups of order N are
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isomorphic or not. Tarjan observed that GpI can be
solved in time N logN+O(1) [Mil78], and to now, only
the constant before logN on the exponent has been
improved [Ros13].

It has long been known that when the group order N
is a power of prime p, namely when the groups are p-
groups, GpI seems the most difficult. Even for p-groups
that are “just above” abelian groups, namely p-groups of
class 2 and exponent p,1 no essential progress had not
been made, until the recent breakthrough of Sun [Sun23].

Theorem I.1 ( [Sun23, Theorem 1.1]). Given two p-
groups of class 2 and exponent p of order N , there exists
an algorithm in time NO((logN)5/6) to decide whether
they are isomorphic or not.

Our first result is to improve the running time from
[Sun23] as follows.

Theorem I.2. Let p be an odd prime. Given two p-
groups of class 2 and exponent p of order N , there exists
an algorithm in time N Õ((logN)1/2) to decide whether
they are isomorphic or not.

In Theorem I.2, Õ on the exponent hides a poly-
logarithmic factor, i.e. Õ((logN)1/2) = O((logN)1/2 ·
(log logN)O(1)).

We also broaden the group class for which this running
time holds. That is, we extend from p-groups of class 2
and exponent p to p-groups of Frattini class 2.

A p-group G is of Frattini class 2, if there exists H ≤
G, such that H is central, and both H and G/H are
elementary abelian. p-groups of Frattini class 2 plays
an important role in the enumeration of finite groups

1A p-group G is of class 2 and exponent p, if the centre Z(G)
contains the commutator subgroup [G,G], and every g ∈ G satisfies
that gp = id.
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[BNV07], as it gives a lower bound on the number of
p-groups by the celebrated work of Higman [Hig60].

Theorem I.3. Let p be an odd prime. Given two p-
groups of Frattini class 2 of order N , there exists an
algorithm in time N Õ((logN)1/2) to decide whether they
are isomorphic or not.

B. From groups to matrix spaces

A key to several recent works on p-group isomorphism
[LQ17], [Sun23], [GQ24], as well as to this work, is to
examine the following linear algebraic problem.

Let M(n, q) be the linear space of n×n matrices over
Fq the finite field of order q. Let GL(n, q) be the general
linear group of degree n over Fq . Recall that a matrix
A ∈ M(n, q) is alternating, if for any v ∈ Fn

q , we have
vtAv = 0. The linear space of n×n alternating matrices
over Fq is denoted by Λ(n, q).

Let A,B ≤ Λ(n, q) be two alternating matrix spaces.
We say that A and B are congruent2, if there exists T ∈
GL(n, q) such that A = T tBT := {T tBT | B ∈ B}.
The alternating matrix space congruence problem (Alt-
MSC) asks to decide A and B, given by their linear
bases, are congruent or not.

Alt-MSC is closely related to testing isomorphism of
p-groups of class 2 and exponent p, because of Baer’s
correspondence [Bae38]. To make this explicit, it is
convenient to introduce the following notation. For an
alternating matrix space A ≤ Λ(n, q) of dimension m,
we define its length to be ℓ = n+m.

Our main technical result is then the following.

Theorem I.4. Let A,B ≤ Λ(n, q) be two alternating
matrix spaces of dimension m, and let ℓ = n+m be their
length. Then there exists an algorithm in time qÕ(ℓ1.5)

that decides whether A and B are congruent.

Theorem I.4 improves [Sun23, Theorem 1.2], where
the running time was qO(ℓ1.8·log q). As solving GpI for
p-groups of class 2 and exponent p in time polynomial
in the group order is equivalent to solving Alt-MSC over
Fp of length ℓ in time pO(ℓ) (see [GQ17]), Theorem I.2
follows from Theorem I.4 immediately.

C. On the techniques

The overall strategy: reducing to matrix tuple con-
gruence. The algorithm in [Sun23] for Alt-MSC is a
reduction from Alt-MSC to the following problem. Let
A = (A1, . . . , Am) and B = (B1, . . . , Bm) ∈ Λ(n, q)m

be two tuples of alternating matrices. We shall call ℓ :=
n+m the length of A. They are congruent if there exists
T ∈ GL(n, q) such that for all i ∈ [m], Ai = T tBiT .

2In [Sun23], [LQ17], this was called “isometric”. We choose to
use “congruent” as this is in line with the classical notion of matrix
congruence [Mal63].

The alternating matrix tuple congruence problem (Alt-
MTC) asks to decide whether two alternating matrix
tuples are congruent.

Roughly speaking, in [Sun23], the algorithm for Alt-
MSC of length ℓ over Fq is obtained by reducing
to qO(ℓ1.8·log q)-many instances of Alt-MTC3of length
poly(ℓ), and using that Alt-MTC over finite fields of
characteristic ̸= 2 can be solved in deterministic time
poly(ℓ, q) in [IQ19].

In this work, we achieve Theorem I.4 by following the
same strategy as in [Sun23]. We devise a reduction from
Alt-MSC of length ℓ over Fq to qÕ(ℓ1.5)-many instances
of Alt-MTC of length poly(ℓ).

An outline of Sun’s algorithm. We give an outline
of Sun’s algorithm in [Sun23]. Let A,B ≤ Λ(n, q)
be two alternating matrix spaces of dimension m. Let
(A1, . . . , Am) ∈ Λ(n, q)m be an ordered basis for A,
and (B1, . . . , Bm) ∈ Λ(n, q)m be an ordered basis for
B. The question becomes to compute T ∈ GL(n, q)
and C = (ci,j) ∈ GL(m, q), such that ∀i ∈ [m],
T tAiT =

∑
j∈[m] ci,jBj .

The first key idea, called matrix space individual-
isation, is the following. Let L ∈ M(s × n, q) and
R ∈ M(n × s, q), and consider LAR = {LAR | A ∈
A} ≤ M(s, q). If dim(LAR) = dim(A), then each
A ∈ A gets a unique label, namely LAR. A consequence
that there exists a canonical basis of A based on LAR, so
we will reduce to the matrix tuple congruence problem.

However, it is possible that dim(LAR) < dim(A),
that is, K := {A ∈ A | LAR = 0} is a non-trivial
subspace of A. Fortunately, it can be shown that, for
appropriate choices of s, random L and R yield K that
consists of matrices of low rank. This leads to the second
key idea: as K is a low-rank matrix space, it can be
arranged in a format that every A ∈ K has the last few
rows and columns being non-zero. This is referred to as
the low-rank matrix characterisation in [Sun23].

Given the above, Sun applied matrix space individu-
alisation and low-rank matrix characterisation to three
directions of the n × n × m tensor (A1, . . . , Am).
This gives a so-called semi-canonical tensors associated
with A. To decide isomorphism between semi-canonical
tensors, the semi-canonicity ensures that the underlying
transformation matrices must be of a certain format.
Such structural restrictions lead to a special form of
matrix tuple congruence problem, solvable by using the
algorithm from [IQ19].

Sharpening some key techniques in [Sun23]. Our
algorithm follows the strategy of Sun’s algorithm, and it

3Note that some technicality appears here, namely the Alt-MTC
instances have some restrictions on the congruence matrices; see
Section IV-C.
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improve the two novel techniques proposed in [Sun23]
to near optimal (up to a logarithmic factor).

The first one is the matrix space individualisation.
Briefly speaking, for an alternating matrix space A ≤
Λ(n, q), we use L ∈ M(s× n, q) and R ∈ M(n× s, q),
and label each A ∈ A by the smaller matrix LAR.
For the sake of the second technique, we also need
that K = {A ∈ Λ(n, q) | LAR = 0} consists of
matrices of rank ≤ r, where r is a parameter and will
be determined later. Here we need s, the size parameter
of L and R, to be upper bounded by some function of
r. We improve this upper bound over that in [Sun23,
Lemma 3.2] (as seen in Lemmas III.3 and III.4), and
the number of individualisations (the number of rows of
L and the number of columns of R) is optimal, matching
the random sampling lower bound (Remark IV.3).

The second one is the so-called low-rank matrix
space characterisation. Recall that from the first step we
obtained K ≤ Λ(n, q) which consists of matrices of rank
≤ r. The purpose of the second technique is to put every
A ∈ K in the form of [

0 A2

A3 A4

]
where 0 is of size c × e, such that (n − c) + (n − e),
the sum of the number of rows in A3 and the number
of columns in A2, is upper bounded by some function
of r. We improve this upper bound over from O(r2) in
[Sun23, Lemma 4.6] to Õ(r), which is optimal up to a
logarithmic factor (Remark IV.6).

Connections with other problems. We realise some
connections of the results and techniques in [Sun23] with
some problems that have received considerable attention
and utilising some recent powerful results.

First, we observe that the low-rank matrix space
characterisation as in [Sun23] is closely related to non-
commutative ranks of matrix spaces. Non-commutative
ranks of matrix spaces has been studied since the 1970s
[Coh75], [FR04], and recently received considerable
attention in computational complexity [HW15], [Mul17].
Some recent works show that non-commutative ranks of
matrix spaces can be computed in deterministic polyno-
mial time [GGdOW20], [IQS18], [HH21]. The so-called
low-rank matrix space characterisation in [Sun23] is in
fact an upper bound of the non-commutative rank of a
matrix space in terms of its maximum rank. This has
been known over large enough fields [Fla62], [FR04],
while [Sun23, Lemma 4.6] works over any field.

Second, we note that the alternating matrix tuple
congruence problem (Alt-MTC) obtained in [Sun23] has
certain restrictions on the congruence matrix structure.
This suggests a new family of “restricted” alternating
matrix tuple congruence problems, and it is interesting

to systematically examine current techniques in [IQ19]
for these problems.

Simplifications of the algorithm in [Sun23]. Besides
improving some key techniques in [Sun23], we also
simplify the algorithm in several ways.

First, our improvement of [Sun23, Lemma 4.6] makes
use some classical results about non-commutative ranks
as in [Fla62], [FR04], [IQS18]. We also make use of
the fact that non-commutative ranks can be computed in
polynomial time to simplify the algorithm.

Second, we simplify the algorithm in [Sun23] by
applying individualisation and refinement, and low-rank
matrix space characterisation, in one direction, instead of
applying these to three directions as in [Sun23]. As a re-
sult, the resulting semi-canonical tensors (Section III-C)
have a simpler structure. This is made possible by start-
ing with the matrix space equivalence problem (MSE).

Definition I.5 (Matrix space equivalence problem
(MSE)). Given two matrix spaces A,B ≤ M(n1×n2, q)
of dimension n3, decide if there exist L ∈ GL(n1, q) and
R ∈ GL(n2, q), such that A = LtBR = {LtBR | B ∈
B}.

For A ≤ M(n1 × n2, q) of dimension n3, ℓ =
n1 + n2 + n3 is called the length of A. It was recently
shown in [GQ23b] that solving Alt-MSC of length ℓ over
Fq reduces to solving MSE of length O(ℓ) over Fq . This
justifies working with MSE instead of Alt-MSC. The
results and techniques in [GQ23b] also play an important
role in Theorem I.3. We remark that [GQ23b] falls into
the Tensor Isomorphism complexity class framework
initiated in [GQ23a].

Third, in [Sun23], some gadgets are designed to
enforce these structural restriction on the congruence ma-
trices of the Alt-MTC problem. Here, we show that one
restricted Alt-MTC problem in this setting can be solved
efficiently by a short reduction to the key technical
problem, called the ∗-symmetric element decomposition
problem, solved in [IQ19].

Structure of the paper. After presenting some prelimi-
naries in Section II, we prove Theorem I.4 in Section III,
modulo some technical results that will be proved in
Section IV. Finally we prove Theorem I.3 in Section V.

II. PRELIMINARY

Notations. For n ∈ N, [n] := {1, 2, . . . , n}. Unless
otherwise stated, the base of logarithm is 2.

Vector spaces. Let F be a field. Let Fn be the linear
space of length-n column vectors over F. We use bi to
denote the ith standard basis vector of Fn. For a prime
power q, we use Fq to denote the finite field of order
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q. Let GL(n,F) be the general linear group of degree n
over F.

Matrix spaces. We use M(n1 × n2,F) for the linear
space of n1 × n2 matrices over F, and let M(n, q) :=
M(n × n,Fq). A matrix space A is a subspace of
M(n1×n2,F), denoted by A ≤ M(n1×n2,F). A matrix
A ∈ M(n, q) is alternating, if for any v ∈ Fn

q , we have
vtAv = 0. The linear space of n×n alternating matrices
over Fq is denoted by Λ(n, q).

Matrix space equivalence relations. Let A,B ≤
M(n1 × n2,F). Let L ∈ M(s × n1,F) and R ∈
M(n2 × t,F). Then LAR := {LAR | A ∈ A} ≤
M(s × t,F). We say that A,B are equivalent, if there
exist P ∈ GL(n1,F) and Q ∈ GL(n2,F), such that
A = P tBQ. We say that A and B are congruent, if
there exists T ∈ GL(n,F), such that A = T tBT .

Matrix tuples. We use M(n1 × n2,F)n3 to denote
the linear space of n3-tuples of n1 × n2 matrices, and
let M(n, q)k := M(n × n,Fq)

k. Given a matrix tuple
A = (A1, . . . , An) ∈ M(n1×n2,F)n3 , and two matrices
P ∈ M(s × n1,F) and Q ∈ M(n2 × t,F), PAQ :=
(PA1Q, . . . , PAnQ) ∈ M(s× t,F)n. The definitions of
matrix tuple equivalence, conjugacy and congruence are
similar to those for matrix spaces as above.

Canonical ordered bases of vector and matrix spaces.
Let U ≤ Fn and d = dim(U). We say that an ordered
basis (u1, . . . , ud) ∈ Ud is a canonical basis of U , if
there exists a polynomial-time algorithm that, given any
ordered basis (u′

1, . . . , u
′
d) of U , outputs (u1, . . . , ud).

Viewing (u1, . . . , ud) as an n × d matrix over F, this
is the canonical form problem for GL(d,F) acting on
M(n × d,F) from the right. For d-dimensional spaces
in Fn, this problem is efficiently solvable by performing
Gaussian elimination on the columns of matrices M(n×
d,F), which gives the reduced column echelon form as
a canonical basis.

Let Q ≤ M(s,F) be a matrix space. We can view
M(s,F) as Fs2 by sending A ∈ M(s,F) to vA ∈ Fs2

by concatenating the columns of A. A canonical linear
basis of Q ≤ M(s,F) can then be obtained by using the
canonical basis algorithm for Fs2 in the last paragraph.

Ranks of matrix spaces. Let A ≤ M(n,F). The
maximum rank of A is mrk(A) := max{rk(A) |
A ∈ A}. For U ≤ Fn, the image of U under A
is A(U) := span{∪A∈AA(U)}. For g ∈ N, we say
that U is a g-shrunk subspace of A, if dim(U) −
dim(A(U)) ≥ g. The non-commutative corank of
A ≤ M(n,F) is defined as co-ncrk(A) := max{g ∈
N | ∃g-shrunk subspace of A}. The non-commutative
rank of A ≤ M(n,F) is defined as ncrk(A) := n −
co-ncrk(A).

Canonical shrunk subspaces. Let K ≤ M(n,F) with
co-ncrk(K) = g. Then there exists a unique g-shrunk
subspace of K of the smallest dimension [IMQ22,
Proposition 7]. This will be called the canonical g-
shrunk subspace. The algorithm in [IQS18] computes
this canonical g-shrunk subspace of K (see the paragraph
after the proof of [IMQ22, Proposition 7]).

Tensors. A 3-way array or a tensor of size n1×n2×n3

is A = (ai,j,k) where i ∈ [n1], j ∈ [n2], and k ∈ [n3],
and ai,j,k ∈ F. Let T(n1 × n2 × n3,F) be the linear
space of n1 × n2 × n3 tensors over F. Let T(n,F) :=
T(n× n× n,F).

Let A = (ai,j,k) ∈ T(n1 × n2 × n3,F) be a tensor.
We can slice A along one direction and obtain a matrix
tuple, and the matrices in this tuple are then called
slices. For example, slicing along the first coordinate,
we obtain its horizontal matrix tuple (A1, . . . , An1) ∈
M(n2 × n3,F)n1 , where Ai(j, k) = A(i, j, k) are called
horizontal slices. Similarly, by slicing along the second
coordinate, we obtain its vertical matrix tuple which is
an n2-tuple of n1×n3 matrices, and the matrices in this
tuple are called vertical slices. By slicing along the third
coordinate, we get its frontal matrix tuple, which is an
n3-tuple of n1 × n2 matrices, and the matrices in this
tuple are called frontal slices.

III. ALGORITHM FOR ALTERNATING MATRIX SPACE
CONGRUENCE

In this section we prove Theorem I.4, which is ob-
tained by combining Theorem III.2 with Theorem III.1.

A. From matrix space congruence to matrix space equiv-
alence

Let A,B ≤ Λ(n, q), and suppose m = dim(A) =
dim(B). Let ℓ = n + m be their length. Our goal is
to devise an algorithm to test whether A and B are
congruent in time qÕ(ℓ1.5).

To this end, as indicated in Section I-C, we shall
study the matrix space equivalence problem (MSE) as
in Definition I.5. Recall that for A ≤ M(n1 × n2, q)
of dimension n3, the length of A is defined as ℓ =
n1 + n2 + n3.

Our focus on MSE is justified by the following result
from [GQ23b].

Theorem III.1 ( [GQ23b, Theorem 1.10]). There is a
reduction from Alt-MSC of length ℓ over Fq to MSE of
length O(ℓ) over Fq in time poly(ℓ, log q).

Theorem III.1 implies that for any constant 1 ≤ c ≤ 2,
an algorithm solving MSE of length ℓ over Fq in time
qÕ(ℓc) implies an algorithm solving Alt-MSC of length
ℓ over Fq in time qÕ(ℓc).

We now state our result for matrix space equivalence.
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Theorem III.2. There is a qÕ(ℓ1.5)-time algorithm for
testing equivalence of matrix spaces of length ℓ over Fq .

A simplification: from cuboids to cubes. Recall that we
want to test if two matrix spaces A,B ≤ M(n1×n2, q) of
dimension n3 are equivalent. A minor simplification is to
reduce to the case when A′,B′ ≤ M(n, q) of dimension
n where n = max{n1, n2, n3} (Proposition IV.11 in
Section IV-D). Note that the lengths of A′ and B′ are
linear in the lengths of A and B, so working with A′

and B′ is fine for proving Theorem III.2.
In the following, we assume that we have A,B ≤

M(n, q) of dimension n. We wish to test if there exist
P,Q ∈ GL(n, q), such that P tAQ = B.

B. Sun’s techniques and our improvements

We review two techniques from Sun’s algorithm
[Sun23] and introduce our improvements, and explain
how they affect the final running time of the algorithm.
Let A ≤ M(n, q) be a matrix space of dimension n.

Technique 1: Individualisation by left-right restric-
tions. The first is an individualisation-type technique.
That is, for L ∈ M(s × n, q) and R ∈ M(n × s, q),
define ker(A, L,R) := {A ∈ A | LAR = 0} ≤ A and
im(A, L,R) = {LAR | A ∈ A} ≤ M(s, q). Once L
and R are fixed, we compute a canonical linear basis of
im(A, L,R).

The purpose of a canonical linear basis is to assign
the every element in the quotient space A/ ker(A, L,R)
a unique “label”. This leaves the ambiguity caused by
ker(A, L,R), so we need the second technique, namely
making use of low-rank matrices. For this purpose, we
require L and R to satisfy that (1) ker(A, L,R) consists
of matrices of rank ≤ r where r is sufficiently smaller
than n, and (2) the size s for L ∈ M(s × n, q) and
R ∈ M(n× s, q) is upper bounded by some function r.
The existence of such L and R with these properties is
ensured by a probabilistic argument in [Sun23].

Lemma III.3 ( [Sun23, Lemma 3.2]). Let A ≤ M(n, q)
be a matrix space of dimension n. Fix some r ∈ [n], and
let

s = ⌈32 ·max{n log q√
r

,
√
r}⌉. (1)

Then there exist L ∈ M(s× n, q) and R ∈ M(n× s, q),
such that ker(A, L,R) consists of matrices of rank ≤ r.

We improve the parameters in Lemma III.3 and put it
as a probabilistic statement as follows. The proof of the
following lemma is in Section IV-A.

Lemma III.4. Let A ≤ M(n, q) be a matrix space of
dimension n. Fix some r ∈ [n], and let

s = ⌈3 ·max{n
r
, r}⌉. (2)

Then with at least probability of 1 − 1
qr , uniformly

randomly sampled L ∈ M(s×n, q) and R ∈ M(n×s, q)
satisfy that ker(A, L,R) consists of matrices of rank
≤ r.

Note that Lemma III.4 allows us to choose r = ⌈
√
n⌉

which gives s = O(
√
n). On the other hand, to achieve

s = O(
√
n) in [Sun23, Lemma 3.2] requires r = O(n)

which is not useful for the next step. Lemma III.4 also
gets rid of the log q factor of n√

r
as in Equation 1, which

in [Sun23] affects the final exponent on the logN as in
Theorem I.1.

Technique 2: Low-rank matrix space characterisa-
tion. From the above, we obtain K := ker(A, L,R) ≤
M(n, q) which consists of matrices of rank ≤ r, where
r is small compared with n. Then there exists U ≤ Fn

q

of dimension e, such that K(U) is of dimension d, and
letting g := dim(U)− dim(K(U)) = e− d, h := n− g
is a function in r. Non-commutative ranks (ncrk), non-
commutative coranks (co-ncrk), and maximum ranks
(mrk) for matrix spaces are defined in Section II.

In [Fla62], Flanders showed that when the field order
q ≥ r + 1, then h = n − g ≤ 2r (see [FR04]). When
the field order can be small, the following was shown in
[Sun23].

Lemma III.5 ( [Sun23, Lemma 4.6]). Let K ≤ M(n,F).
Suppose mrk(K) = r. Then ncrk(K) ≤ O(r2).

We improve the parameters in Lemma III.5 in the
following lemma, whose proof is in Section IV-B.

Lemma III.6. Let K ≤ M(n,F). Suppose mrk(K) = r.
Then ncrk(K) ≤ O(r log r).

Summarising the improvements and the final running
time. The two improvements in Lemmas III.4 and III.6
contribute to the reduction from qO(ℓ1.8·log q) in [Sun23,
Theorem 1.2] to qÕ(ℓ1.5) in Theorem I.4 as follows.
Recall that s is the size parameter of the individualising
matrices, and h = ncrk(K) is the non-commutative rank
of K.

Briefly speaking, as shown in Section III-E, the main
factor in the running time is qO((s+h)n). In [Sun23],
because of Lemmas III.3 and III.5, the relations be-
tween r, s and h lead to setting r = ⌈n0.4⌉, so
s = O(max{n · log q/

√
r,
√
r}) = O(n0.8 log q),

and h = O(r2) = O(n0.8). This gives the running
time qO(n1.8·log q). Here, because of Lemmas III.4 and
III.6, the relations between r, s and h lead to setting
r = ⌈

√
n⌉, so s = O(max{n/r, r}) = O(

√
n), and

h = O(r log r) = Õ(
√
n). This gives the running time

qÕ(n1.5).
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C. Semi-canonical tensors of matrix spaces

We use the two techniques in Section III-B to associate
A ≤ M(n, q) with certain tensors A ∈ T(n, q) in a
specific format, such that those (P,Q, S) ∈ GL(n, q)×
GL(n, q) × GL(n, q) preserving this format needs to
satisfy certain structural constraints.

In the following, we use a parameter r which is the
target rank. It will be set as ⌈

√
n⌉ based on the discussion

at the end of Section III-B.

Semi-canonical tensors. Let A ≤ M(n, q) be of dimen-
sion n. For L ∈ M(s×n, q) and R ∈ M(n×s, q), let K =
ker(A, L,R) ≤ A and Q = im(A, L,R) ≤ M(s, q).
Let a = dim(K) and b = dim(Q), so a + b = n. We
can then arrange an ordered linear basis (A1, . . . , An) ∈
M(n, q)n of A, such that K = span{A1, . . . , Aa}.

Suppose mrk(K) ≤ r. Let g = co-ncrk(K), and h =
ncrk(K) = n− g. Let U ≤ Fn

q be the canonical shrunk
subspace of K (Section II). Let e := dim(U), f :=
n − e, d := e − g = dim(K(U)), and c := n − d.
By left and right multiplying suitable change-of-basis
matrices, we can assume U = span{b1, . . . ,be}, and
K(U) = {bc+1, . . . ,bn}, and get an n×n matrix tuple
A = (A1, . . . , An). For i ∈ [n], let

Ai =

[
Ai,1 Ai,2

Ai,3 Ai,4

]
,

where Ai,1 ∈ M(c× e,F). Then for i ∈ [a], Ai,1 = 0.
Because of the canonical basis of im(A, L,R) and the

canonical shrunk subspace U of K, following [Sun23],
we call this A a semi-canonical tensor associated with A,
L, and R. The shape of A is then (a, b, c, d, e, f) ∈ N6

as above – that is, a = dim(K), e = dim(U) where U is
the canonical shrunk subspace, and d = dim(K(U)), and
b = n−a, f = n−e, and c = n−d. Figure 1 illustrates
the form of a semi-canonical tensor with parameters in
its shape.

a

b

c

d

fe

O

Fig. 1. A semi-canonical tensor.

Briefly speaking, L ∈ M(s×n, q) and R ∈ M(n×s, q)
satisfying mrk(ker(A, L,R)) ≤ r will result in a semi-
canonical tensor. This tensor is obtained by applying
appropriate change-of-basis matrices along the three

directions, so that K = ker(A, L,R) is spanned by the
first few frontal slices, the canonical shrunk subspace U
of K is spanned by the first few standard basis vectors,
and the image of U under K is spanned by the last few
standard basis vectors.

Structural restrictions on the equivalence matrices.
Suppose L ∈ M(s × n, q) and R ∈ M(n × s, q)
give rise to two semi-canonical 3-way arrays A and B

from A ≤ M(n, q) as above. Suppose we wish to test
equivalence between A and B respecting L and R. This
means that the canonical objects associated with L and
R need to be respected too. Therefore, the equivalence
matrices (P,Q, S) ∈ GL(n, q) × GL(n, q) × GL(n, q)
need to satisfy the following:

1) S preserves the canonical basis of im(A, L,R),
2) Q preserves the canonical shrunk subspace U of K,

and
3) P preserves the image of the canonical shrunk

subspace of K.
As we have arranged that ker(A, L,R) =
span{A1, . . . , Aa} and (LAa+1R, . . . , LAnR) is
the canonical ordered basis of im(A, L,R), S is of the
form [

S1 S2

0 Ib

]
,

where S1 is of size a×a. As we have arranged the canon-
ical shrunk subspace U of K to be span{b1, . . . ,be},
Q is of the form [

Q1 Q2

0 Q4

]
,

where Q1 is of size e × e. As we have arranged K(U)
to be span{bc+1, . . . ,bn}, P is of the form[

P1 0
P3 P4

]
,

where P1 is of size c× c.
Observe that [

Q2

Q4

]
is of size n × f , and

[
P3 P4

]
is of size d × n. And

recall that d+f = (n−e)+(e−g) = n−g = ncrk(K).

D. Testing equivalences between semi-canonical tensors

Based on the discussions in Section III-C, the follow-
ing problem is crucial.

Problem III.7. Suppose we are given two 3-way arrays
A and B in T(n, q). Let A = (A1, . . . , An) be the frontal
matrix tuple of A, and B = (B1, . . . , Bn) be the frontal
matrix tuple of B. For i ∈ [n], let

Ai =

[
Ai,1 Ai,2

Ai,3 Ai,4

]
,
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where Ai,1 is of size c× e. Similarly, i ∈ [n], let

Bi =

[
Bi,1 Bi,2

Bi,3 Bi,4

]
,

where Bi,1 is of size c×e. For i ∈ [a], Ai,1 = Bi,1 = 0.
Let d = n− c, f = n− e, and b = n− a.

The problem is to decide equivalence of A and B

under the action of (P,Q, S) ∈ GL(n, q)×GL(n, q)×
GL(n, q), where

P =

[
P1 0
P3 P4

]
with P1 ∈ GL(c, q),

Q =

[
Q1 Q2

0 Q4

]
where Q1 ∈ GL(e, q), and

S =

[
S1 S2

0 Ib

]
where S1 ∈ GL(a, q).

We will reduce Problem III.7 to the following con-
ditioned alternating matrix tuple congruence (Cond-
Alt-MTC) problem. To introduce this problem, it is
convenient to introduce the following. Let n ∈ N.
For n1, . . . , ns ∈ Z+ with n1 + · · · + ns = n, let
D(n1, . . . , ns,F) ≤ GL(n,F) be the group of invert-
ible block-diagonal matrices with the block sizes being
n1, . . . , ns. For t ∈ N, let I(n : t,F) ≤ GL(n,F) be the
group consisting of invertible matrices of the form[

S1 S2

0 It

]
.

Let DI(n1 : t1, . . . , ns : ts,F) be the group of invert-
ible block-diagonal matrices with the block sizes being
n1, . . . , ns, and each block consisting of matrices from
T (ni : ti,F).

Problem III.8 (Conditioned alternating matrix tuple
congruence (Cond-Alt-MTC)). Given the linear bases of
A and B ∈ Λ(n, q), decide if they are congruent by a
matrix from I(n1 : t1, . . . , ns : ts,F).

In Section IV-C, we show the following.

Lemma III.9. There is a polynomial-time algorithm
for the conditioned alternating matrix tuple congruence
problem over finite fields.

Based on the above, we can solve Problem III.7.

Theorem III.10. There exists an algorithm solving
Problem III.7 in time q(d+f)n · poly(n, log q).

Proof. Note that [
Q2

Q4

]

is of size n× f , and
[
P3 P4

]
is of size d× n. As we

can accommodate a multiplicative factor of q(d+f)n, we
can enumerate all matrices of the form[

Q2

Q4

]
where Q4 is invertible, and

[
P3 P4

]
where P4 is

invertible. For each fixed[
Q2

Q4

]
and

[
P3 P4

]
, by applying appropriate change of basis

matrices, we can assume that

P =

[
P1 0
0 Id

]
with P1 ∈ GL(c, q),

Q =

[
Q1 0
0 If

]
where Q1 ∈ GL(e, q).

We now examine the action of

P =

[
P1 0
0 Id

]
, Q =

[
Q1 0
0 If

]
, and S =

[
S1 S2

0 Ib

]
on A. Recall that the frontal matrix tuple of A is( [ 0 A1,2

A1,3 A1,4

]
, . . . ,

[
0 Aa,2

Aa,3 Aa,4

]
,[

Aa+1,1 Aa+1,2

Aa+1,3 Aa+1,4

]
, . . . ,

[
An,1 An,2

An,3 An,4

] )
.

We then consider the following three sub-arrays of A.
The first one is A′ ∈ T(n × f × n, q), whose frontal

slices are ( [A1,2

A1,4

]
,

[
A2,2

A2,4

]
, . . . ,

[
An,2

An,4

] )
.

As

Q =

[
Q1 0
0 If

]
,

the action of (P,Q, S) on its vertical slices is trivial.
So let its vertical matrix tuple be A′ = (A′

1, . . . , A
′
f ) ∈

M(n, q)f , with P acting on its left, and S acting on its
right.

The second one is A′′ ∈ T(d×e×n, q), whose frontal
slices are (A1,3, A2,3, . . . , An,3). As

P =

[
P1 0
0 Id

]
,

the action of (P,Q, S) on its horizontal slices is
trivial. So let its horizontal matrix tuple be A′′ =
(A′′

1 , . . . , A
′′
d) ∈ M(e×n, q)d, with Q1 ∈ GL(e, q) acting

on its left, and S acting on its right.
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The third one is A′′′ ∈ T(c× e× b, q), whose frontal
slices are (Aa+1,1, Aa+2,1, . . . , An,1). As

S =

[
S1 S2

0 Ib

]
and A1,1 = · · · = Aa,1 = 0, the action of (P,Q, S)
on its frontal slices is trivial. So let its frontal matrix
tuple be A′′′ = (A′′′

1 , . . . , A′′′
b ) ∈ M(c × e, q)b, with

P1 ∈ GL(c, q) acting on its left and Q1 ∈ GL(e, q)
acting on its right.

A pictorial demonstration of A′, A′′, and A′′′ can be
found in Figure 2.

We perform the above array decomposition to B to
obtain three matrix tuples B′, B′′, and B′′′. This leads to
three matrix tuple equivalence instances with correlated
actions as follows.
• Input: Three pairs of matrix tuples: A′,B′ ∈

M(n, q)f , A′′,B′′ ∈ M(e×n, q)d, and A′′′,B′′′ ∈
M(c× e, q)b.

• Output: “Yes” if there exist P1 ∈ GL(c, q), Q1 ∈
GL(e, q), and

S =

[
S1 S2

0 Ib

]
∈ GL(n, q),

such that the following holds. Let

P =

[
P1 0
0 Id

]
∈ GL(n, q).

Then P tA′S = B′, Qt
1A

′′S = B′′, and
P t
1A

′′′Q1 = B′′′. “No” if no such P1, Q1, and
S exist.

We assemble the above three matrix tuple equivalence
instances into one alternating matrix tuple congruence
instance as follows. Let

Ã = (Ã1, . . . , Ãf+d+b) ∈ Λ(2n+ e, q)f+d+b

be as follows. For i ∈ [f ],

Ãi =

 0 0 A′
i

0 0 0
−A′t

i 0 0

 ,

where A′
i ∈ M(n, q). For i ∈ [f + 1, f + d],

Ãi =

0 0 0
0 0 A′′

i−f

0 −A′′t
i−f 0

 ,

where A′′
i ∈ M(e× n, q). For i ∈ [f + d+1, f + d+ b],

Ãi =

 0 A′′′
i−f−b 0

−A′′′
i−f−b 0 0

0 0 0

 ,

where A′′′
i ∈ M(c× e, q). Do the same for B′, B′′, and

B′′′ to obtain B̃ ∈ Λ(2n+ e, q)f+d+b. We then need to

test the congruence of alternating matrix tuples Ã and
B̃ under the action of T ∈ diag(P1, Id, Q1, S) where

S =

[
S1 S2

0 Ib

]
.

This is an instance of Cond-Alt-MTC, which can be
solved in polynomial time by Lemma III.9. This con-
cludes the proof.

E. Algorithm description

We now briefly summarise the contents from Sec-
tion III-B to Section III-D. Recall that we wish to test
if A,B ≤ M(n, q) of dimension n are equivalent or
not. In Section III-B, we introduced two key techniques
(individualisation by left and right matrices, low-rank
matrix space characterisation) from [Sun23] and our
improvements. In Section III-C, by utilising the two tech-
niques, given appropriate left and right individualising
matrices L ∈ M(t×n, q) and R ∈ M(n×t, q), we obtain
a tensor called a semi-canonical tensor A ∈ T(n, q) of A
w.r.t. L and R. Because of the canonical objects in this
procedure, we see that there are structural restrictions on
the equivalence matrices of two semi-canonical tensors
A, B ∈ T(n, q) of A from the same L and R. In
Section III-D, we study the tensor equivalence with
structural restriction problem from the previous step.
We show that this problem reduces to the conditioned
alternating matrix tuple congruence problem, with some
conditions on the congruence matrices. This problem can
be solved in polynomial time (Section IV-C).

Based on the above, an algorithm for testing equiva-
lence of A,B ∈ M(n, q) is as follows.

1) Compute a semi-canonical tensor A of A w.r.t. L ∈
M(s × n, q) and R ∈ M(n × s, q), with the target
rank being r. Let the shape of A be (a, b, c, d, e, f).

2) Enumerate all L′ ∈ M(s × n, q) and R′ ∈ M(n ×
s, q) and compute a semi-canonical tensor B of B
w.r.t. L′ and R′. For each B of the same shape
as A, test if A and B are equivalent in the sense
of Problem III.7, which can be solved in time
q(d+f)n · poly(n, log q) by Theorem III.10. If for
some B the algorithm in Theorem III.10 reports
“Yes”, then return “Yes”.

3) Return “No”.
To compute a semi-canonical tensor on the A side

with the target rank r, we can do the following.
1) First, randomly sample L ∈ M(s × n, q) and

R ∈ M(n × s, q), where s = ⌈3 · max{n
r , r}⌉

by Lemma III.4. Let K := ker(A, L,R). Set
a := dim(K), and b := n − a. Test whether
mrk(K) ≤ r, by going over all the matrices in
K, in time qa · poly(n, log q). By Lemma III.4, the
probability of mrk(K) ≤ r is lower bounded by
1− 1

qr

1415

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on December 04,2024 at 18:31:51 UTC from IEEE Xplore.  Restrictions apply. 



A′
1

f many slices

A′ A′′

d many slices

A′′′

b many slic
es

A′′
1

A′′′
1

Fig. 2. Construction of matrix tuples from semi-canonical tensors.

2) Second, we have K := ker(A, L,R) such that a =
dim(K) and mrk(K) ≤ r. By a basis change, we
arrange a matrix tuple (A1, . . . , An), such that (1)
A = span{A1, . . . , An}, (2) K := ker(A, L,R) =
span{A1, . . . , Aa}, and (3) (LAa+1R, . . . , LAnR)
is the canonical ordered basis of im(A, L,R). This
canonical ordered basis of im(A, L,R) can be
computed efficiently as described in Section II.

3) Third, let g = co-ncrk(K), and h = ncrk(K) =
n − g. Compute the canonical shrunk subspace
U of K by the algorithm in [IQS18] (see Sec-
tion II). By Lemma III.6, h ≤ O(r log r). Let
e := dim(U), f := n − e, d := e − g =
dim(K(U)), and c := n − d. By applying suitable
basis changes, we can set U = span{b1, . . . ,be},
and K(U) = {bc+1, . . . ,bn}. This then gives us a
semi-canonical tensor of A w.r.t. L and R.

To enumerate semi-canonical tensors on the B side
follows the same steps, so we omit here.

Correctness. We need to argue that A and B are equiv-
alent if and only if the above algorithm returns “Yes”.
First, if the algorithm returns “Yes”, then this means that
there is a series of matrices multiplying on the three
directions of A to arrive at B, so A and B are equivalent.
Second, suppose A and B are equivalent, namely there
exist P,Q ∈ GL(n,F) such that A = P tBQ. Recall that
L and R are the left and right individualising matrices
which we fixed on the A side. Then the left and right
individualising matrices LP t and QR on the B side
will give rise to a semi-canonical tensor B that are
related by the special equivalence matrices as defined in
Problem III.7. As Theorem III.10 solves Problem III.7,
the algorithm will return “Yes”.

Running time. To compute a semi-canonical tensor
of A takes poly(n, log q) time. To enumerate L′ ∈
M(s × n, q) and R′ ∈ M(n × s, q) takes qsn time. To

solve Problem III.7 takes q(d+f)n · poly(n, log q) time.
Therefore the total running time is upper bounded by
q(s+d+f)n · poly(n, log q) time. Recall that r = ⌈

√
n⌉.

By Lemma III.4, s = O(r). By Lemma IV.5, d + f =
ncrk(K) ≤ O(r log r) = O(

√
n log n). Therefore, the

total running time is bounded by qÕ(n1.5).

IV. TECHNICAL RESULTS TO SUPPORT
THEOREM III.2

A. On the individualisation step

Lemma IV.1. Suppose A ∈ M(m × n, q) is of rank at
least r. For uniformly randomly sampled L ∈ M(s ×
m, q) and R ∈ M(n× s, q), Pr[LAR = 0 ∈ M(s, q)] ≤

1
qr(s−1)−(r+1)2/4

.

Proof. First of all, we prove Pr[rk(A) = r, LAR = 0 ∈
M(s, q)] ≤ 1

qr(s−1)−(r+1)2/4
. Without loss of generality,

we may assume

A =

[
Ir 0
0 0

]
.

Let L =
[
L1 L2

]
, where L1 ∈ M(s× r, q), and

R =

[
R1

R2

]
,

where R1 ∈ M(r × s, q). Then Pr[rk(A) = r, LAR =
0 ∈ M(s, q)] = Pr[L1R1 = 0 ∈ M(s, q)]. Observe that

Pr[L1R1 = 0 ∈ M(s, q)]

=
∑

0≤k≤min{r,s}

Pr[L1R1 = 0 | rk(R1) = k]

· Pr[rk(R1) = k]

≤r · max
0≤k≤min{r,s}

{Pr[L1R1 = 0 | rk(R1) = k]

· Pr[rk(R1) ≤ k]}.

Now let us focus on Pr[L1R1 = 0 | rk(R1) = k] ·
Pr[rk(R1) ≤ k], where 0 ≤ k ≤ min{r, s}.
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First, we have

Pr[L1R1 = 0 | rk(R1) = k] =
q(r−k)·s

qrs
=

1

qks
.

Second, to upper bound Pr[rk(R1) ≤ k], we can
equivalently consider when R1 has a column space
of dimension ≤ k. Then it is straightforward to see
that

(
r
k

)
q
· qks is an upper bound for the number of

r × s matrices of rank ≤ k. Here,
(
r
k

)
q

is the Gaus-
sian binomial coefficient which counts the number of
k-dimensional subspaces of Fr

q , and qks accounts for
the possibilities of choosing s many column vectors
from each k-dimensional subspace. Using the bound(
r
k

)
q
≤ qk(r−k)+k [BNV07, Proposition 3.16], it follows

that

Pr[rk(R1) ≤ k] ≤ qk(r−k)+k

qrs
· qks.

Based on the above, we have

Pr[L1R1 = 0 | rk(R1) = k] · Pr[rk(R1) ≤ k]

≤ 1

qks
· 1

qrs+k2−kr−k
· qks

=
1

qrs+k2−kr−k
.

Note that 1
qrs+k2−kr−k

achieves maximum at k = (r +

1)/2, with the value 1
qrs−(r+1)2/4

. It follows that

Pr[rk(A) = r, LAR = 0 ∈ M(s, q)]

≤r · max
0≤k≤min{r,s}

{Pr[L1R1 = 0 | rk(R1) = k]

· Pr[rk(R1) ≤ k]}

≤ r

qrs−(r+1)2/4

≤ qr

qrs−(r+1)2/4

=
1

qr(s−1)−(r+1)2/4
.

To complete the proof, we claim that for uniformly
randomly sampled L ∈ M(s×m, q) and R ∈ M(n×s, q),

Pr[rk(A′) ≥ r, LA′R = 0 ∈ M(s, q)]

≤Pr[rk(A) = r, LAR = 0 ∈ M(s, q)].

Again, without loss of generality, we assume

A′ =

[
Ir′ 0
0 0

]
where r′ ≥ r. Let L =

[
L′
1 L′

2

]
, where L′

1 ∈ M(s ×
r′, q), and

R =

[
R′

1

R′
2

]
,

where R′
1 ∈ M(r′×s, q). Then Pr[rk(A′) = r′, LA′R =

0 ∈ M(s, q)] = Pr[L′
1R

′
1 = 0 ∈ M(s, q)]. Now it

suffices to show that for any r′ ≥ r, Pr[L′
1R

′
1 =

0] ≤ Pr[L1R1 = 0] for uniformly randomly sampled
L1 ∈ M(s× r, q), R1 ∈ M(r × s, q), L′

1 ∈ M(s× r′, q)
and R′

1 ∈ M(r′ × s, q). This can be done by further
partitioning L′

1 ∈ M(s × r′, q) and R′
1 ∈ M(r′ × s, q),

i.e., letting L′
1 =

[
L′′
1 L′′

2

]
where L′′

1 ∈ M(s × r, q),
and

R′
1 =

[
R′′

1

R′′
2

]
where R′′

1 ∈ M(r × s, q). Thus, Pr[L′
1R

′
1 = 0] =

Pr[L′′
1R

′′
1 +L′′

2R
′′
2 = 0] ≤ Pr[L′′

1R
′′
1 = 0] = Pr[L1R1 =

0]. This concludes the proof.

Proposition IV.2. Let A ≤ M(m × n, q) be a matrix
space of dimension d. Let s = 2+⌈d

r+
(r+1)2

4r ⌉. Then with
probability at least 1− 1

qr , uniformly randomly sampled
L ∈ M(s ×m, q) and R ∈ M(n × s, q) satisfy that for
any A ∈ A of rank ≥ r, LAR is not zero.

Proof. Suppose L and R are uniformly randomly sam-
pled matrices. By union bound and Lemma IV.1,
Pr[∃A ∈ A, rk(A) ≥ r, LAR = 0] ≤ qd · Pr[rk(A) ≥
r, LAR = 0] ≤ qd

qr(s−1)−(r+1)2/4
. Therefore, when s =

2+ ⌈d
r + (r+1)2

4r ⌉, Pr[∀A ∈ A, rk(A) ≥ r, LAR ̸= 0] ≥
1− qd

qr(s−1)−(r+1)2/4
≥ 1− 1

qr , which ensures such L and
R with the desired probability.

Lemma III.4, restated. Let A ≤ M(n, q) be a matrix
space of dimension n. Fix some r ∈ [n], and let

s = ⌈3 ·max{n
r
, r}⌉. (3)

Then with probability at least 1− 1
qr , uniformly randomly

sampled L ∈ M(s × n, q) and R ∈ M(n × s, q) satisfy
that ker(A, L,R) consists of matrices of rank ≤ r.

Proof of Lemma III.4.. By Proposition IV.2, it suffices
to show that 3 · max{n

r , r} ≥ 2 + n
r + (r+1)2

4r for all
n ≥ 2.

If n
r ≥ r, then 3 · n

r − (2 + n
r + (r+1)2

4r ) ≥ 2r − 2 −
(r+1)2

4r , which is positive for all r ≥ 2. When r = 1,
3 ·max{n

r , r} − (2 + n
r + (r+1)2

4r ) = 3n − (n + 3) ≥ 0
for all n ≥ 2.

If n
r ≤ r, then 3r−(2+ n

r +
(r+1)2

4r ) ≥ 2r−2− (r+1)2

4r ,
which is positive for all r ≥ 2.

Remark IV.3. The parameters in Lemma III.4 are
near optimal in the following sense. Consider an n-
dimensional A ≤ M(n, q), such that every A ∈ A
is of rank r := ⌈

√
n⌉. By increasing by 1 if needed,

assume that r is even. Then the number of r/2-
dimensional subspaces contained in ker(A) for some
A ∈ A could be as many as qn ·

(
n−r/2
r/2

)
q

=

qn · q(n−r)r/2+Θ(r) = q(n−r/2)r/2+3n/4+Θ(r), which
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is much larger than
(

n
r/2

)
q

= q(n−r/2)r/2+Θ(r), the
number of r/2-dimensional subspaces in Fn

q . From this
perspective, the best we can hope for the size s in L
and R is cr for some constant c > 1, and this is indeed
achievable by Lemma III.4.

B. Non-commutative and commutative ranks over small
fields

Let A ≤ M(n,F) be a matrix space. Recall that the
maximum rank and the non-commutative ranks of A,
mrk(A) and ncrk(A), were defined in Section II. We re-
call some previous results. First observe that mrk(A) ≤
ncrk(A). We are interested in upper bounding ncrk(A)
by mrk(A).

When the field order is large, the following was
known.

Theorem IV.4 ( [Fla62, Lemma 1]; see [FR04, Corollary
2]). Let K ≤ M(n,F). Suppose mrk(K) = r and |F| ≥
r + 1. Then ncrk(K) ≤ 2r.

Lemma III.6, restated. Let K ≤ M(n,F). Suppose
mrk(K) = r. Then ncrk(K) ≤ O(r log r).

Proof of Lemma III.6. Because of Theorem IV.4, we
only need to show this for the case of |F| ≤ r. Our
strategy is to use extension fields of F.

In the following, F is a finite field of order s.
Suppose K ≤ M(n,F) is of dimension m, and

A1, . . . , Am ∈ M(n,F) form a linear basis of K. Let
E be an extension field of F of degree d. Let KE =
{α1A1 + · · · + αmAm | ∀i ∈ [m], αi ∈ E} ≤ M(n,E).
To distinguish K and KE, we shall write K as KF in the
following.

Note that |E| = |F|d = sd. Let d = ⌈log(r)⌉ + 1,
so |E| = sd ≥ 2⌈log(r)⌉+1 ≥ r + 1. By Theorem IV.4,
ncrk(KE) ≤ 2 ·mrk(KE). As the non-commutative rank
remains the same over field extensions (see [IQS18,
Lemma 5.3]), we have

ncrk(KF) = ncrk(KE) ≤ 2 ·mrk(KE). (4)

Our goal is to upper bound mrk(KE) by r =
mrk(KF). This is achieved by the following lemma,
whose proof is put in Section IV-B1.

Lemma IV.5. Let F be a field and E be an extension field
of F of degree d. Let K ≤ M(n,F), and KE = K ⊗F E.
Then mrk(KE) ≤ mrk(K) · d.

Back to our setting, we combine Lemma IV.5, d =
⌈log(r)⌉+ 1, and Equation 4 to obtain

ncrk(KF) =ncrk(KE)

≤2 ·mrk(KE)

≤2 ·mrk(KF) · d
=O(r log r).

This concludes the proof.

Remark IV.6. Note that Lemma III.6 is optimal up
to a logarithmic factor, because of the basic fact that
mrk(KF) ≤ ncrk(KF).

1) Proof of Lemma IV.5:

Proof of Lemma IV.5. We may write K as KF for clarity
in the following. Let r = mrk(KF) and r̃ = mrk(KE).
Our goal is to show that r̃ ≤ r · d.

Suppose A1, . . . , Am ∈ M(n,F) form a linear basis of
KF. So KF = {c1A1 + · · ·+ cmAm | ∀i ∈ [m], ci ∈ F},
and KE = {γ1A1 + · · · + γmAm | ∀i ∈ [m], γi ∈ E}.
As r̃ = mrk(KE), there exist β1, . . . , βm ∈ E, such that
B = β1A1 + · · ·+ βmAm is of rank r̃.

As E is an extension field of F of degree d, there
exists {α1, . . . , αd} ⊆ E as an F-linear basis of E. We
can then write, for every i ∈ [m], βi =

∑
j∈[d] ai,jαj ,

ai,j ∈ F. It follows that B = β1A1 + · · · + βmAm =∑
i∈[m](

∑
j∈[d] ai,jαj)Ai =

∑
j∈[d](

∑
i∈[m] ai,jAi)αj .

For j ∈ [d], let Cj =
∑

i∈[m] ai,jAi, which is in KF. So
B =

∑
j∈[d] αjCj . By the subadditivity of matrix ranks,

r̃ = rk(B) ≤
∑

j∈[d] rk(Cjαj). So there exists some
k ∈ [d], such that rk(Ck) = rk(Ck · αk) ≥ r̃/d. As
Ck ∈ KF, we have r ≥ rk(Ck) ≥ r̃/d. This concludes
the proof.

C. Solving conditioned alternating matrix tuple congru-
ence

In this section, we give an algorithm for the con-
ditioned alternating matrix tuple congruence problem
(Cond-Alt-MTC) to prove Lemma III.9. We first re-
duce to the block-diagonal group setting (i.e. resolving
I(n : t, q) components), using a technique from [Sun23].
We then solve the block-diagonal alternating matrix tuple
congruence directly by a simple reduction to a problem
solved in [IQ19].

1) Reducing the block-diagonal Alt-MTC problem:
Our problem in this subsection is to test if A,B ∈
Λ(n, q)m are congruent under DI(n1 : t1, . . . , ns : ts, q).
We will construct A′,B′ ∈ Λ(n+ 3, q)m

′
, such that A

and B are congruent by DI(n1 : t1, . . . , ns : ts, q) if and
only if A′, B′ are congruent by D(n1, . . . , ns, 3, q). To
achieve this, the following facts are useful.

Lemma IV.7. 1) Let u1, u2, v1, v2 ∈ Fn. Then u1u
t
2−

u2u
t
1 is a scalar multiple of v1vt2−v2v

t
1 if and only

if span{u1, u2} = span{v1, v2}.
2) Let u1, u2, u3 ∈ Fn. Suppose u1u

t
2 − u2u

t
1 =

b1b
t
2 − b2b

t
1, u1u

t
3 − u3u

t
1 = b1b

t
3 − b3b

t
1, and

u2u
t
3 − u3u

t
2 = b2b

t
3 − b3b

t
2. Then there exists

λ ∈ {1,−1} ⊆ F, such that u1 = λb1, u2 = λb2,
and u3 = λb3.
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3) Let u ∈ Fn, and i ∈ [3, n]. Suppose b1u
t − ubt

1 =
b1b

t
i−bib

t
1 and b2u

t−ubt
2 = b2b

t
i−b2b

t
1. Then

u = bi.

Proof. (1) is classical and can be verified easily.
For (2), we have span{u1, u2} = span{b1,b2},

span{u1, u3} = span{b1,b3}, and span{u2, u3} =
span{b2,b3} by (1). Therefore, u1 ∈ span{b1,b2} ∩
span{b1,b3}, so u1 = αb1. Similarly, u2 = βb2, and
u3 = γb3. We further note that αβ = βγ = αγ = 1,
which gives α = β = γ = 1 or α = β = γ = −1.

For (3), we have span{b1, u} = span{b1,bi} and
span{b2, u} = span{b2,bi} by (1). Therefore, u ∈
span{b1,bi}∩ span{b2,bi} by (1). It follows that u =
αbi. Comparing the coefficients of b1u

t−ubt
1 = b1b

t
i−

bib
t
1, we further have α = 1, so u = bi.

Based on Lemma IV.7, we construct A′ =
(A′

1, . . . , A
′
m) ∈ Λ(n+3, q)m

′
, where m′ = m+3+2 ·

(t1 + · · ·+ ts), from A = (A1, . . . , Am) ∈ Λ(n, q)m as
follows.

• For i ∈ [m],

A′
i =

[
Ai 0
0 0

]
.

• A′
m+1 = bn+1b

t
n+2 − bn+2b

t
n+1, A′

m+2 =
bn+1b

t
n+3−bn+3b

t
n+1, and A′

m+3 = bn+2b
t
n+3−

bn+2b
t
n+3.

• Suppose i ∈ [n] satisfies bt
iT = bt

i for any T ∈
DI(n1 : t1, . . . , ns : ts,F). Note that such an i
belongs to an identity component in the definition
of DI(n1 : t1, . . . , ns : ts,F), and there are t1 +
· · ·+ ts such i. For each such i, add b1b

t
i − bib

t
1

and b1b
t
i − bib

t
1 to the A′ tuple.

Proposition IV.8. Let A ∈ Λ(n,F)m and A′ ∈
Λ(n + 3,F)m′

be as above. Similarly construct B′ ∈
Λ(n+ 3,F)m′

from B ∈ Λ(n,F)m. Then A and B are
congruent under DI(n1 : t1, . . . , ns : ts,F) if and only
if A′ and B′ are congruent under D(n1, . . . , ns, 3,F).

Proof. The only if direction is easy to verify. For the if
direction, suppose T ∈ D(n1, . . . , ns, 3,F) satisfies that
T tA′T = B′. By the constructions of A′

m+i and B′
m+i

for i = 1, 2, 3 and Lemma IV.7 (2), the last three rows
of T are

λ ·

bt
n+1

bt
n+2

bt
n+3


where λ ∈ {1,−1}. Then by the constructions of the
last 2(t1, . . . , ts) matrices in A′ and B′ and Lemma IV.7.
(3), for every i ∈ [n] in an identity component in the
definition of DI(n1 : t1, . . . , ns : ts,F), we have the ith
row of T is λ · bt

i . By multiplying λ in case it is −1,
we have that

T =

[
T ′ 0
0 I3

]

for some T ′ ∈ DI(n1 : t1, . . . , ns : ts,F), and this T ′

is a congruence matrix from A to B. This concludes the
proof.

2) Solving the block-diagonal Alt-MTC problem: Our
problem in this subsection is to test if A, B ∈ Λ(n, q)m

are congruent under D(n1, . . . , ns, q). We solve this by
reducing to an algorithmic problem about ∗-algebras that
was solved in [IQ19]. Here we give a concise and self-
contained description.

To start with, instead of finding T ∈ D(n1, . . . , ns, q)
such that T tAT = B, we first compute T, S ∈
D(n1, . . . , ns, q) such that T tA = BS, if such S and
T exist. This is the matrix tuple equivalence problem
under D(n1, . . . , ns, q).

Proposition IV.9. Let q be an odd prime power. To test if
A,B ∈ M(n, q)m are equivalent under D(n1, . . . , ns, q)
can be solved in deterministic polynomial time. If A
and B are equivalent, then the algorithm returns T, S ∈
D(n1, . . . , ns, q) such that T tA = BS.

Proof. Similar to [IQ19, Proposition 3.2]. For Ai ∈
M(n,F), construct

Ãi =

[
0 Ai

0 0

]
∈ M(2n,F).

Similarly construct B̃i.
Then set

Ã0 = B̃0 =

[
In 0
0 0

]
.

For i ∈ [s], let

Cn+i = diag(0n1
, . . . ,0ni−1

, Ii,0ni+1
, . . . ,0ns

).

Then for i ∈ [s], set

Ã′
i = B̃′

i =

[
Cn+i 0
0 0

]
,

and
Ã′′

i = B̃′′
i =

[
0 0
0 Cn+i

]
∈ M(2n,F).

Consider Ã = (Ã0, Ã1, . . . , Ãm, Ã′
1, . . . , Ã

′
s, Ã

′′
1 , . . . , Ã

′′
s )

and B̃ = (B̃0, B̃1, . . . , B̃m, B̃′
1, . . . , B̃

′
s, B̃

′′
1 , . . . , B̃

′′
s ) ∈

M(2n,F)1+m+2s. It can be verified that A,B are
diagonal equivalent if and only if Ã and B̃ are conjugate.
The latter problem is called the module isomorphism
problem and can be decided in deterministic polynomial
time [BL08], [IKS10].

Note that if A and B are congruent under
D(n1, . . . , ns, q), then they must be equivalent under
D(n1, . . . , ns, q). In this case, Proposition IV.9 gives
us T, S ∈ D(n1, . . . , ns, q) such that T tA = BS. If
S = T−1 then we are done. If not, we need the follow-
ing ∗-algebra machinery for D(n1, . . . , ns, q), following
[BW12], [IQ19].
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Some ∗-algebra background. For A ∈ Λ(n, q)m, define

DAdj(A, n1, . . . , ns)

= {T, S ∈ diag(n1, . . . , ns, q) | T tA = AS},

called the adjoint algebra corresponding to
D(n1, . . . , ns, q). It can be verified that this is a
subalgebra of M(n, q)⊕M(n, q)op.4 Because A consists
of alternating matrices, DAdj(A, n1, . . . , ns) comes
with an involutive anti-automorphism ∗ as follows: for
(T, S) ∈ DAdj(A, n1, . . . , ns), (T, S)∗ = (S, T ).

For A ∈ Λ(n, q)m, let RKer(A) = {u ∈ Fn | ∀A ∈
A, Au = 0}. For i ∈ [s], let Ui = span{bi | i ∈
[n1 + · · · + ni + 1, n1 + · · · + ni+1]. If for every i ∈
[s], RKer(A) ∩ Ui = 0, we say that A is diagonally
non-degenerate. If A is diagonally degenerate, then we
can obtain its non-degenerate part A′ ≤ Λ(n′, q)m by
restricting to complement subspaces of RKer(A) ∩ Ui.
It is easy to show the following.

Proposition IV.10. 1) A and B are diagonally con-
gruent if and only if their non-degenerate parts A′

and B′ are diagonally congruent.
2) A is diagonally non-degenerate if and only if the

projection of DAdj(A, n1, . . . , ns) to the first com-
ponent is surjective.

Proposition IV.10 (1) allows us to focus on the non-
degenerate setting, and Proposition IV.10 (2) allows us
to view DAdj(A, n1, . . . , ns) ⊆ M(n, q) (instead of
M(n, q) ⊕ M(n, q)op), and the ∗ operation is defined
as: for T ∈ DAdj(A, n1, . . . , ns), T ∗ is the unique
S ∈ M(n, q) such that T tA = AS.

Getting back from ∗-algebras. Recall that we ob-
tained T, S ∈ D(n1, . . . , ns, q) such that T tA = BS.
We then utilise DAdj(A, n1, . . . , ns) as follows. Let
E = T−1S−1. By the same proof of [IQ19, Claim
3.3], E ∈ DAdj(A, n1, . . . , ns), and E∗ = E. By
the same proof of [IQ19, Proposition 3.4], A and
B are diagonally congruent if and only if there ex-
ists X ∈ DAdj(A, n1, . . . , ns) such that there exists
X∗X = E. This ∗-symmetric decomposition problem
admits a deterministic poly(n,m, log q)-time or a ran-
domised poly(n,m, q)-time solution over finite fields of
odd characteristics [IQ19]. This then give a solution to
the diagonal alternating matrix tuple congruence problem
as desired.

D. From cuboids to cubes
Proposition IV.11. There is a polynomial-time reduction
from matrix space equivalence for n3-dimensional ma-
trix spaces in M(n1 × n2,F) to that for n-dimensional
matrix spaces in M(n,F) with n ≤ max{n1, n2, n3}.

4M(n, q)op is the opposite matrix algebra where the multiplication
◦ is defined as A ◦ B = BA where BA denotes the normal matrix
multiplication.

Proof. Let A ≤ M(n1×n2,F). The left common kernel
of A is LKer(A) = {u ∈ Fn1 | ∀A ∈ A, utA = 0}.
The right common kernel of A is RKer(A) = {u ∈
Fn2 | ∀A ∈ A, Au = 0}. We say that A is degenerate,
if its left or right common kernel is non-trivial. Suppose
A = span{A1, . . . , Am} where Ai ∈ M(n1 × n2,F).
If dim(LKer(A)) = d and dim(RKer(A)) = e, then
let n′

1 = n1 − d and n′
2 = n2 − e. Then there exist

L ∈ GL(n1,F) and R ∈ GL(n2,F), such that for every
i ∈ [m],

LAiR =

[
A′

i 0
0 0

]
where A′

i ∈ M(n′
1 × n′

2,F). We call A′ =
span{A′

1, . . . , A
′
m} ≤ M(n′

1×n′
2,F) the non-degenerate

part of A.
Let A,B be two n3-dimensional spaces in M(n1 ×

n2,F). Clearly, for A and B to be equivalent, their left
(resp. right) kernels must be of the same dimension.
Therefore, if they are degenerate, we compute their non-
degenerate parts A′,B′ ≤ M(n′

1 × n′
2,F). It is easy to

show that A and B are equivalent if and only if A′ and
B′ are equivalent. We therefore assume that A and B are
non-degenerate in the following.

Now let A = span{A1, . . . , An3} ≤ M(n1 × n2,F).
Let A be an n1 × n2 × n3 tensor, whose frontal
matrix tuple is (A1, . . . , An3

). Similarly, let B =
span{B1, . . . , Bn3

}, and let B be an n1×n2×n3 tensor,
whose frontal matrix tuple is (B1, . . . , Bn3).

Suppose n3 = max{n1, n2, n3}. Then we set n = n3,
set n× n matrices

A′
i =

[
Ai 0
0 0

]
,

and consider A′ = span{A′
1, . . . , A

′
n}. So A′ is an n-

dimensional matrix space in M(n,F). Similarly, do this
for B to obtain an n-dimensional matrix space B′ in
M(n,F). Then we have that A and B are equivalent if
and only if A′ and B′ are equivalent.

Suppose n1 = max{n1, n2, n3}. Then we set n =
n1, and slice A along the first coordinate to get its
horizontal tuple (A′

1, . . . , A
′
n) ∈ M(n2 × n3,F)n. Let

A′ = span{A′
1, . . . , A

′
n} ≤ M(n2 × n3,F), and do the

same for B to get B′ ≤ M(n2 × n3,F). It is clear that
A and B are equivalent if and only if A′ and B′ are
equivalent. We can then pad 0’s to make A′′ ≤ M(n,F)
and B′′ ≤ M(n,F) as in the last paragraph so that A′ and
B′ are equivalent if and only if A′′ and B′′ are equivalent.

The case of n2 = max{n1, n2, n3} is the same as n1,
by replacing horizontal slices with vertical slices. This
concludes the proof.

E. Strengthening to computing the coset of isomor-
phisms

Let A,B ≤ M(n, q). The algorithm in Section III-E
decides whether A and B are equivalent in time qÕ(n1.5).
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In this section, we explain that this algorithm can be
combined with results in [BW12] to compute the coset
of equivalences in the same running time.

For this we need some notations. For A,B ≤ M(n, q),
let Iso(A,B) = {(P,Q) ∈ GL(n, q) × GL(n, q) |
P tAQ = B}. Let Aut(A) = {(P,Q) ∈ GL(n, q) ×
GL(n, q) | P tAQ = A}. Note that Aut(A) is a
subgroup of GL(n, q) × GL(n, q), and Iso(A,B) is a
coset of Aut(A).

As customary in computing with groups, a coset
C of a subgroup H ≤ G is represented by a coset
representative and a generating set of H . The algorithm
in Section III-E returns an equivalence in Iso(A,B). To
see this, we start with the fact that the algorithms for
Alt-MTC [IQ19] returns an explicit congruence matrix
(see [IQ19, Theorem 1.7]). Then it is routine to check
that this congruence matrix as a solution to the block-
diagonal Alt-MTC can be transformed to an equivalence
from A to B.

Therefore, the remaining task is to compute a gener-
ating set for Aut(A). This can also be done similarly
as above, by running the algorithm in Section III-E for
A and A. At the bottom, we need the polynomial-time
algorithms for computing a generating set of the group
of congruence matrices for alternating matrix tuples in
[BW12]. We then collect these at most qÕ(n1.5)-many
cosets, and transform them into a generating set of
size at most qO(n) using Sims’ algorithm (cf. [Ser03]).
Much smaller generating sets can be obtained by e.g.
more advanced algorithms dealing with matrix groups
[BBS09], but this is not necessary for the purpose of
this article.

V. ON FRATTINI CLASS 2 GROUP ISOMORPHISM

We will first introduce the linear algebraic problem
underlying testing isomorphism of p-groups of Frattini
class 2, and show that this problem can be reduced to
Alternating Matrix Space Isometry. We will then review
the reduction from Frattini class 2 group isomorphism
to this linear algebraic problem.

A. Inhomogeneous alternating matrix space congruence

Recall the definition of alternating matrix space con-
gruence (Alt-MSC): given A,B ≤ Λ(n, q), decide if
there exists T ∈ GL(n, q), such that A = T tBT .

We now introduce the following inhomogeneous ver-
sion of Alt-MSC, called Inhomogeneous Alternating
Matrix Space Congruence (Inhom-Alt-MSC), as follows.
Consider Λ∗(n, q) := Fn

q ⊕ Λ(n, q) = {(v,A) | v ∈
Fn
q , A ∈ Λ(n, q)}. Note that Λ∗(n, q) is a linear space

over Fq of dimension n +
(
n
2

)
. Then T ∈ GL(n, q)

has a natural action ◦ on Λ∗(n, q) by sending (v,A) ∈
Λ∗(n, q) to T ◦ (v,A) := (Tv, T tAT ).

Subspaces of Λ∗(n, q) are called inhomogeneous al-
ternating matrix spaces. For T ∈ GL(n, q) and A ≤
Λ∗(n, q), let T ◦ A := {T ◦ (v,A) | (v,A) ∈ A}.
Then Inhom-Alt-MSC is the problem of deciding, given
A,B ≤ Λ∗(n, q), whether there exists T ∈ GL(n, q)
such that A = T ◦B. Such such T exists, then A and B
are said to be congruent.

We show that Inhom-Alt-MSC reduces to Alt-MSC.
For this we use the following definition and result from
[GQ23b].

Definition V.1 (Block-diagonal alternating matrix space
congruence, BDiag-Alt-MSC). Given A,B ≤ Λ(n, q)
and n = n1 + n2, decide if there exists T =
diag(T1, T2) ∈ D(n1, n2, q), such that A = T tBT .

Theorem V.2 ( [GQ23b]). There exists a polynomial-
time algorithm that, given m-dimensional A,B ≤
Λ(n, q) and n = n1 + n2, outputs (m+ 1)-dimensional
A′ and B′ ≤ Λ(n′, q) with n′ = O(n), such that A and
B are congruent by D(n1, n2, q) if and only if A′ and
B′ are congruent by GL(n′, q).

Note that Theorem V.2 is about matrix space congru-
ence, not the matrix tuple congruence as discussed in
Section IV-C.

We can then formulate Inhom-Alt-MSC as an instance
of BDiag-Alt-MSC but with a further restriction. Let
A ≤ Λ∗(n, q), and suppose (v1, A1), . . . , (vm, Am)
form a linear basis of A. Then for i ∈ [m], construct

Ãi =

[
Ai vi
−vti 0

]
,

and let Ã = span{Ã1, . . . , Ãm} ≤ Λ(n + 1, q).
Similarly, starting from B ≤ Λ∗(n, q), construct B̃ ≤
Λ(n + 1, q) in the same way. The following lemma is
easy, so we omit its proof.

Lemma V.3. Let A,B ≤ Λ∗(n, q) and Ã, B̃ ≤ Λ(n +
1, q) be as above. Then A and B are congruent if and
only if Ã and B̃ are congruent by some

T =

[
T ′ 0
0 1

]
∈ GL(n+ 1, q)

where T ′ ∈ GL(n, q).

We can state the main result in this subsection as
follows.

Proposition V.4. Inhom-Alt-MSC for m-dimensional
A,B ≤ Λ∗(n, q) can be solved in time qÕ((n+m)1.5).

Proof. Given A,B ≤ Λ∗(n, q), construct m-dimensional
Ã, B̃ ≤ Λ(n + 1, q) as in Lemma V.3. Then construct
(m + 1)-dimensional Ã′, B̃′ ≤ Λ(n′, q) using Theo-
rem V.2, with the block sizes being n1 = n and n2 = 1.
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By Lemma V.3, A and B are congruent if and only if
Ã and B̃ are congruent by

T =

[
T ′ 0
0 1

]
∈ GL(n+ 1, q) (5)

where T ′ ∈ GL(n, q).
By Theorem V.2, we have Ã′ and B̃′ are congruent if

and only if Ã and B̃ are congruent by

S =

[
S′ 0
0 λ

]
∈ GL(n+ 1, q)

where S′ ∈ GL(n, q).
The difference between λ in the lower-right corner

of S, and 1 in the lower-right corner of T , is what we
need to overcome now. For this, we use the observation
that the coset of congruence matrices can be computed
for Ã′ and B̃′ (see Section IV-E). As the reduction
in Theorem V.2 also allows for translating cosets from
one solution to another [GQ23b], this then gives us a
congruence matrix

S =

[
S′ 0
0 λ

]
from Ã to B̃, and a generate set for the group

Aut(Ã) := {R =

[
R′ 0
0 γ

]
| RtÃR = A}.

Let Aut1(Ã) = {γ | ∃R′ ∈ GL(n, q), diag(R′, γ) ∈
Aut(Ã)}, which is a subgroup of F×

q , the multiplicative
group of Fq . Note that a generating set for Aut1(Ã) can
be easily obtained from a generating set for Aut(Ã) by
restricting to the lower-right corner entries. The question
of the existence of T as in Equation 5 becomes to decide
if λ−1 is in Aut1(Ã). This is solvable easily in time
O(q) as we can list elements in Aut1(Ã) in this time
bound.

This concludes the proof.

B. Testing isomorphism of p-groups of Frattini class 2

We collect some basic facts about p-groups of Frattini
class 2, which are mostly from [BNV07].

Let G be a group. The Frattini subgroup Φ(G) of G
is the characteristic subgroup defined as the intersection
of maximal subgroups of G.

If G is a p-group, then G/Φ(G) is elementary abelian,
and Φ(G) = Gp[G,G] where Gp is the subgroup
generated by {xp | x ∈ G} [BNV07, Lemma 3.12].
In particular, Φ(G) is generated by xp and [x, y] for
x, y ∈ G. These lead to the following.

Proposition V.5. Let G be a p-group given by its Cayley
table. Then there exist a polynomial-time algorithm to
compute Φ(G).

A p-group G is of Frattini class 2 (or Φ class 2 for
short), if there exists H ≤ G, such that H is central, and

both H and G/H are elementary abelian, or equivalently,
if Φ(G) is elementary abelian and is contained in Z(G).
These lead to the following.

Proposition V.6. Let G be a p-group given by its Cayley
table. Then there exist a polynomial-time algorithm to
decide if G is of Frattini class 2.

The relatively free p-group of Φ class 2 with n
generators, denoted by FΦ-2,p,n, is the quotient of the
free group Fn with n generators by the relations xp2

,
[x, y]p, and [x, y, z]. The Frattini subgroup of FΦ-2,p,n,

Φ(FΦ-2,p,n), is isomorphic to Z(
n
2)+n

p . The Frattini quo-
tient of FΦ-2,p,n, FΦ-2,p,n/Φ(FΦ-2,p,n), is isomorphic to
Zn
p .
By [BNV07, Lemma 4.1], every p-group of Frattini

class2 is isomorphic to FΦ-2,p,n/N for some N ≤
Φ(FΦ-2,p,n). This N can be efficiently computed as
follows.

Proposition V.7. Let G be a p-group of Frattini class 2,
given by its Cayley table. Then there exist a polynomial-

time algorithm to compute N ≤ Z(
n
2)+n

p , such that
viewing N as a subgroup of Φ(FΦ-2,p,n), we have
G ∼= FΦ-2,p,n/N .

Proof. First, compute Φ(G) via Proposition V.5. Sup-
pose that G/Φ(G) ∼= Zn

p and Φ(G) ∼= Zm
p . Let

g1, . . . , gn be a set of group elements such that giG
generate G/Φ(G). Let h1, . . . , hm be a set of generators
of Φ(G). View hi as a linear basis of Zm

p , we can
compute gpi , [gi, gj ] as vectors in Zm

p . This gives us
an m × (n +

(
n
2

)
) matrix S over Fp. The right ker-

nel of S is then a subspace N of F(
n
2)+n

p , recording
relations on gpi and [gi, gj ] in G. It is then clear that
G ∼= FΦ-2,p,n/N .

Suppose FΦ-2,p,n/Φ(FΦ-2,p,n) ∼= Zn
p , so

Aut(FΦ-2,p,n/Φ(FΦ-2,p,n)) ∼= GL(n, p). When
p > 2, by [Hig60, Theorem 2.2], the induced
action of Aut(FΦ-2,p,n/Φ(FΦ-2,p,n)) on Φ(FΦ-2,p,n)
is equivalent to the natural action of T ∈ GL(n, p)
on (v,A) ∈ Fn

p ⊕ Λ(n, p), i.e. with the result being
(Tv, T tAT ). Therefore, in the following, we shall
identify Φ(FΦ-2,p,n) as Fn

p ⊕ Λ(n, p).
Suppose G1, G2 are two p-groups of Frattini class

2, with Gi/Φ(Gi) ∼= Zn
p , and Φ(Gi) ∼= Zm

p , for
i = 1, 2. By Proposition V.7, we have N1, N2 ≤
Fn
p ⊕ Λ(n, p), such that G1

∼= Φ(FΦ-2,p,n)/N1, and
G2

∼= Φ(FΦ-2,p,n)/N2. By [BNV07, Lemma 4.3], G1

and G2 are isomorphic if and only if there exists
T ∈ GL(n, p) such that T sends N1 to N2 as subspaces.
Note that dim(N1) = dim(N2) = n +

(
n
2

)
− m.

We therefore compute the dual spaces of N1 and N2,
denoted as N ′

1 and N ′
2, in (Fn

p ⊕ Λ(n, p))∗. Note that
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dim(N ′
1) = dim(N ′

2) = m. It can be verified that (1)
N1 and N2 are in the same orbit of GL(n, p) if and only
if N ′

1 and N ′
2 are in the same orbit of the dual action

of GL(n, p), and (2) the dual action of GL(n, p) (on
(Fn

p ⊕ Λ(n, p))∗) is equivalent to the original action.
Based on the above, we have the following.

Lemma V.8. Suppose G1, G2 are two p-groups of Frat-
tini class 2 of order pℓ, given by their Cayley tables.
Then we can construct two inhomogeneous alternating
matrix spaces A1,A2 of length ℓ, such that G1

∼= G2 if
and only if A1 and A2 are congruent as inhomogeneous
alternating matrix spaces.

Theorem I.3 is then obtained by combining
Lemma V.8 with Proposition V.4.
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