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Abstract—Left-right and conjugation actions on matrix
tuples have received considerable attention in theoretical
computer science due to their connections with poly-
nomial identity testing, group isomorphism, and tensor
isomorphism. In this paper, we present polynomial-time
algorithms for computing canonical forms of matrix tuples
over a finite field under these actions. Our algorithm builds
upon new structural insights for matrix tuples, which
can be viewed as a generalization of Schur’s lemma for
irreducible representations to general representations.

Index Terms—canonical form, matrix tuples, tensors,
group isomorphism, computer algebra

I. INTRODUCTION

Representing objects in a canonical and succinct way
that can exhibit the underlying properties and structures
of the objects is a fundamental problem in mathematics
and computer science.

A classic example is the Jordan normal form for
matrices in linear algebra. It not only transforms the
matrices into a canonical form under the similarity
relation1, but it also demonstrates important structural
information such as characteristic polynomials, algebraic
and geometric eigenvalue multiplicities, the structure
of generalized eigenvectors, and invariant subspace de-
compositions. The Jordan normal form is an important
archetype in some mathematical areas. For example, it
leads to Jordan–Chevalley decompositions, a useful tool
in the study of linear algebraic groups [Bor91]. It also
implies that the classification problem for matrices under
the conjugation action is “tame” which basically means
it is classifiable in the representation theory of finite-
dimensional algebras [Rin97]. The Jordan normal form
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1Two n×n matrices A and B are similar if there exists an invertible
matrix T such that A = TBT−1. Then A and B are similar if and
only if their Jordan normal forms are the same.

is also found useful in spectral graph theory [DGT17],
[Her94].

The general canonical form problem aims to
transform combinatorial and algebraic objects, such
as graphs [Bab19], [BCS+13], [BL83], [SW15],
[SW19], [WL68], tensors [NQT24], [Wei84], and
groups [BEO02], into a canonical representation such
that for equivalent inputs, the output representation is
the same. The study of these canonical forms leads to
the development of a wide range of structural theo-
ries [BCS+13], [SW15], [SW19], [WL68].

In this paper, we study the canonical representations
of matrix tuples over finite fields. A matrix tuple is a
sequence of matrices of the same size over the same
finite field. We consider two actions for matrix tuples: the
left-right action and the conjugation action. For a matrix
tuple (A1, . . . , Aℓ) of size n×m, the left-right action by
an n×n invertible matrix L and an m×m invertible ma-
trix R transforms (A1, . . . , Aℓ) into another matrix tuple
(LA1R

−1, . . . , LAmR−1). For the conjugation action,
it requires the matrix tuple to be square matrices, and
the conjugation action by an invertible matrix L sends
(A1, . . . , Aℓ) to (LA1L

−1, . . . , LAℓL
−1). Two matrix

tuples are equivalent if there exists a left-right action that
transforms one matrix tuple into another, and two square
matrix tuples are conjugate if there is a conjugation
action that transforms one matrix tuple into another.

A canonical form algorithm for the matrix tuples
in the equivalence case needs to satisfy the following
conditions: given a matrix tuple A = (A1, . . . , Aℓ),
the algorithm outputs A∗ = (A∗

1, . . . , A
∗
ℓ ), such that

A and A∗ are equivalent, and for any matrix tuple
A′ = (A′

1, . . . , A
′
ℓ) equivalent to A, the algorithm

outputs the same A∗. In other words, A∗ serves as
a representative in the set of matrix tuples equivalent
to A. A canonical form algorithm in the matrix tuple
conjugation case is defined in the same way by replacing
“equivalent” with “conjugate” in the above.

The main result of this article is polynomial-time
canonical form algorithms for matrix tuples under equiv-
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alence or conjugation actions over finite fields. In the
following, we shall introduce motivations for studying
this problem and then describe our results in more detail.

A. Motivations

Matrix tuples, which encode systems of linear trans-
formations or bilinear forms, have been studied in var-
ious scenarios. We motivate the study of matrix tuples
and their canonical form from both theoretical computer
science and mathematics perspectives.

1) Motivations from theoretical computer science:
Orbit closure intersection problems. Matrix tu-
ples under the left-right action have received con-
siderable attention in theoretical computer science
[AZGL+18], [DM20], [GGdOW20], [HH21], [IQ23],
[IQS17], [IQS18].

One reason for interest in this action is the symbolic
determinant identity testing (SDIT) problem. SDIT asks
whether, for a given matrix tuple, the linear span of
the matrices in this tuple contains a full-rank matrix.
Derandomizing SDIT implies circuit lower bounds that
seem beyond current techniques [KI04]. As the left-right
action preserves matrix ranks, it is desirable to study the
equivalence classes of matrix tuples under the left-right
action, as pursued in several works mentioned above as
well as in [Mul17], [MW21].

In particular, the orbit closure intersection problems
for the left-right and conjugation actions have surprising
connections to many areas of mathematics [GGdOW20],
[IQS18]. By [DM17], they can be formulated as an
instance of symbolic determinant identity testing. Re-
cent advances [AZGL+18], [DM20], [IQ23] provide
deterministic polynomial-time algorithms for these orbit
closure intersection problems.

Matrix tuples from group isomorphism. Testing the
isomorphism of (finite) groups has been extensively
studied since the 1970s. However, even after more than
half a century, the best-known algorithm for group
isomorphism remains a quasi-polynomial time algorithm
dating back to the 1970s [FN70], [Mil78]. Improving
the running time for group isomorphism is of interest in
both computer science and mathematics, as evidenced by
Gowers’ question [Gow11], which led to Wilson’s work
[Wil19]. On the other hand, due to the recent break-
through in graph isomorphism by Babai [Bab16], group
isomorphism has become a major bottleneck in making
any further progress on graph isomorphism [Bab16].

Very recently, Sun proposed an nO((log n)5/6)-time
algorithm for testing isomorphism of p-groups of class
2 and exponent p [Sun23]. This result removes a major
barrier for an no(log n)-time algorithm for group iso-
morphism. In Sun’s work, the problem is reduced to
understanding three matrix tuples under different actions,

two of which are left-right actions. Therefore, it is
conceivable that understanding the structure of matrix
tuples can shed new light on further improvements to
group isomorphism.

Towards understanding tensor isomorphism and
canonical form. Matrix tuples under equivalence ac-
tions also serve as an intermediate step to generalize
our knowledge from matrices to tensors. Tensors have
become increasingly important for computer science, not
to mention their natural roles in statistics and quantum
information.

Equivalence relations of tensors are natural general-
izations of equivalence relations of matrices, such as
the similarity relation discussed in the context of Jordan
normal forms. One natural equivalence between tensors
is as follows: Let (A1, . . . , An) and (B1, . . . , Bn) be
two tuples of n × n matrices. We say that they are
isomorphic as tensors if there exist n × n invertible
matrices L,R, T = (ti,j), such that for every i ∈ [n],
LAiR

−1 =
∑

j∈[n] ti,jBj . The tensor isomorphism
problem then asks to decide whether two given matrix
tuples are isomorphic as tensors, and the tensor canonical
form problem asks to compute a canonical form of the
input matrix tuple that is invariant under the isomorphism
as tensors.

The tensor isomorphism problem has been studied
in a series of works [CGQ+24], [GQ23a], [GQ24],
[GQT22], [GQ23b], with applications found in quan-
tum information [CGQ+24], [GQ23a]. Current evidence
suggests that tensor isomorphism is a hard problem.
For n × n × n tensors over a finite field Fq , the
best algorithm with worst-case analysis runs in time
qÕ(n1.5) [IMQ+24], [Sun23], with average-case analysis
in time qO(n) [BLQW20], [LQ17], and with heuris-
tic analysis in time q

1
2n · poly(n, log q) [NQT24]. In-

deed, because of these difficulties, digital signature
schemes based on the assumed hardness of tensor iso-
morphism or equivalent problems have been proposed,
including MEDS [CNP+23a], [CNP+23b] and ALTEQ
[BDN+23], [TDJ+22], which are in submission to the
NIST call for post-quantum digital signature schemes
[Nat22]. Furthermore, recent research suggests that the
tensor canonical form problem is also important to study
in cryptography. For example, in [NQT24], canonical
forms for tensors are used as an isomorphism invariant
for birthday paradox-based algorithms.

We believe that computing canonical forms for ma-
trix tuples is an important intermediate step for the
isomorphism and canonical form problems of tensors
because matrix tuple equivalence is a more restricted
form of tensor isomorphism. Indeed, the best algorithms
for tensor isomorphism [IMQ+24], [NQT24], [Sun23]
are obtained by partially fixing the matrices in one
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direction of the tensor and then reducing the problem to
certain equivalence problems for matrix tuples. Hence,
we believe that understanding the structural and canon-
ical form of matrix tuples is an important intermediate
step toward understanding the structure and canonical
form of tensors.

2) Motivations from mathematics: Matrix tuples as
a wild classification problem. In the representation
theory of associative algebras, classifying representations
of quivers is a central topic [Rin97], dating back to
the work of Gelfand and Ponomarev [GP69]. Roughly
speaking, a classification problem is tame if it is clas-
sifiable (such as Jordan normal forms), and wild if it
is not classifiable (defined as “containing” the prob-
lem of classifying pairs of matrices under simultaneous
conjugation) (cf. [Ben98]). The celebrated tame-wild
dichotomy was proved by Drozd [Dro79]. Classifying
matrix tuples under equivalence (for no less than three
matrices) or conjugation relations (for no less than two
matrices) are well-known wild classification problems.

Isomorphism and canonical form algorithms. The
wildness in classifying matrix tuples does not obstruct
solutions to computational problems about them. In-
deed, polynomial-time algorithms are known for test-
ing whether two matrix tuples are conjugate or equiv-
alent [BL08], [IKS10], [IQ19]. In particular, testing
whether two matrix tuples are conjugate is a central
problem in computer algebra [BW15], with practical al-
gorithms implemented in computer algebra systems such
as GAP [GAP17] and Magma [BJP97]. Interestingly,
to the best of our knowledge, these algorithms have
not led to a canonical form algorithm for matrix tuple
conjugation or equivalence so far.

For canonical form problems, Belitskii and Serge-
ichuk presented algorithms for the canonical form prob-
lems for these actions over algebraically closed fields
[Bel00], [BS03], [Ser00]. However, the complexity of
the Belitskii–Sergeichuk algorithm seems missing in the
literature2, and it is unclear to us whether their algorithm
extends to the finite field setting. Nevertheless, their
algorithms indicate that non-trivial algorithms can be
designed for the canonical form problem despite the
wildness of the classification problem.

B. Main results

We now state our main result. Let M(n × m,Fq)
denote the linear space of n ×m matrices over Fq and
M(n×m,Fq)

ℓ denote the linear space of matrix tuples
of length ℓ with each matrix in M(n×m,Fq).

2For example, there may be issues with the field extension degree
required for the resulting canonical forms.

Theorem I.1. There is a randomized Las-Vegas algo-
rithm to compute a canonical form of a matrix tuple
in M(n × m,Fq)

ℓ under the equivalence relation in
poly(n,m, ℓ, log q) time.

Theorem I.1 relies on computing matrix algebra struc-
tures by Friedl, Ivanyos, and Rónyai [FR85], [Iva00],
[Rón90]. Since the algorithms for computing matrix
algebra structures over finite fields utilize polynomial
factoring [Ber67], [CZ81], our algorithm for Theorem I.1
is a Las-Vegas randomized algorithm.

It is well-known that a canonical form algorithm
for matrix tuple equivalence implies a canonical form
algorithm for matrix tuple conjugation. Therefore, The-
orem I.1 also provides a canonical form algorithm for
matrix tuple conjugation.

Corollary I.2. There is a randomized Las-Vegas algo-
rithm to compute a canonical form of a matrix tuple
in M(n × n,Fq)

ℓ under the conjugation relation in
poly(n, ℓ, log q) time.

The key to Theorem I.1 is a structural result for matrix
tuples. To state our structural result, we introduce some
definitions. Similar to a block-diagonal matrix, a block
diagonal matrix tuple is a matrix tuple where a sequence
of matrix tuple blocks lies along the diagonal, and all
other entries in each matrix are zero. A matrix tuple
is decomposable if it is equivalent to a block-diagonal
matrix tuple with at least two blocks; otherwise, it is
indecomposable.

A row-submatrix tuple B of a matrix tuple A is a
matrix tuple such that there exists a (not necessarily
square) matrix L such that B = LA. A row-submatrix
tuple B of A is an indecomposable-block-corresponding
row-submatrix tuple, or IBC-tuple for short, if A is
equivalent to a block-diagonal matrix tuple D such
that B corresponds to an indecomposable block of D.
In other words, there are invertible matrices L and R
such that D = diag(D1, . . . ,Dd) = LAR−1 and
BR−1 = (B1R

−1, . . . , BℓR
−1) equals

[
0 Di 0

]
as

a row-submatrix tuple of D for some block Di.

Theorem I.3. For a matrix tuple A and an IBC-tuple B
of A, let V ′

B denote the set of all the IBC-tuples B′ right-
equivalent to B, i.e., there exists an invertible matrix R
such that B′ = BR−1, and let VB be the linear span of
V ′
B. Then there exists a subspace KB of VB, such that

V ′
B = VB \KB.

To understand why Theorem I.3 is interesting, note
that the structure of V ′

B, the set of IBC-tuples right-
equivalent to B, could be highly nonlinear. On the other
hand, VB is a linear space of row-submatrix tuples.
Theorem I.3 then suggests that V ′

B can be viewed as
a quotient space of VB over the subspace KB, so it is
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close to being linear.
Theorem I.3 can be seen as a generalization of the

fundamental Schur’s lemma in representation theory.
Roughly speaking, a matrix tuple A under the left-right
action can be viewed as a representation of the so-called
Kronecker quivers [Ben98]. Schur’s lemma states that
if A is not just indecomposable but also simple (also
known as irreducible, a condition stronger than indecom-
posable, see [Ben98]), then the endomorphism algebra of
A is a division algebra, which implies Theorem I.3 for
indecomposable and simple matrix tuples by specifying
KA as the zero space.

Our result can be viewed as a generalization of Schur’s
lemma to general representations. We remark that such a
generalization is nontrivial, even with the known charac-
terization of endomorphism algebras of indecomposable
modules as local algebras [Alp93, Section 2, Theorem
2]. In particular, Theorem I.3 for indecomposable sub-
representations in the general situation is affected by
the interactions between non-equivalent indecomposable
subrepresentations. Furthermore, unlike Schur’s lemma,
which is concerned with endomorphism algebras or
homomorphisms, the subject in Theorem I.3 is inde-
composable subrepresentations up to right equivalence,
which seems not studied in the literature. Our main con-
tribution is to discover and utilize this structural result
in the process of devising canonical form algorithms.

II. OVERVIEW

In this section, we provide a high-level overview of the
algorithm to compute canonical forms for matrix tuples
under the left-right action in polynomial time.

For convenience, we assume that all the vectors are
row vectors throughout the paper. For a matrix tuple A =
(A1, . . . , Aℓ) ∈ M(n×m,Fq)

ℓ, we define a tuple of row
vectors a ∈ (Fm

q )ℓ as a row tuple of A if there exists
a row vector v ∈ Fn

q such that a = vA, where vA =
(vA1, . . . , vAℓ). We refer to vAi as the i-th coordinate
of a for every i ∈ [ℓ]. For example, consider the matrix
tuple A = (A1, A2) ∈ M(3× 4,F2)

2:

A1 =

1 0 1 0
0 1 0 0
0 1 1 1

 , A2 =

0 0 0 1
1 1 0 0
0 0 1 0

 .

Then a = ((1, 1, 0, 1), (0, 0, 1, 1)) is a row tuple
of A because a = (1, 0, 1)A, and (1, 1, 0, 1)
is the first coordinate of a. On the other hand,
a′ = ((1, 1, 1, 1), (1, 1, 0, 1)) is not because no row
vector v ∈ F3

2 satisfies a′ = vA.

In this paper, we investigate IBC-tuples of a matrix
tuple. Structurally, we prove Theorem I.3. Algorithmi-
cally, we give an algorithm to compute a representative
IBC-tuple sequence, denoted as B1, . . . ,Bk, for an input

matrix tuple A. This sequence consists of IBC-tuples
that are mutually non-equivalent (treating IBC-tuples as
matrix tuples), and every IBC-tuple of A is equivalent
to one of the IBC-tuples in the sequence. Moreover,
the representative IBC-tuple sequence produced by our
algorithm is canonical. That is, for two equivalent matrix
tuples A and A′, the representative IBC-tuple sequences
B1, . . . ,Bk for A and B′

1, . . . ,B
′
k for A′ satisfy that

Bi and B′
i are right-equivalent for every i ∈ [k].

Based on such a representative IBC-tuple sequence,
we can compute the canonical form of the matrix tuple
by selecting IBC-tuples in a certain way from the linear
spaces spanned by IBC-tuples right-equivalent to each
of B1, . . . ,Bk according to Theorem I.3.

In this overview, we focus on computing a represen-
tative IBC-tuple sequence for a matrix tuple canonically.
We emphasize that this is a challenging task because an
IBC-tuple may have a lot of equivalent IBC-tuples that
are not right-equivalent to itself. Selecting a representa-
tive IBC-tuple among these equivalents canonically re-
quires an in-depth analysis of the structure of equivalent
IBC-tuples in the input matrix tuple.

Our algorithm systematically explores the structure of
the matrix tuple by detecting non-trivial characteristic
subspaces of row tuples. It continues this process until
the information gathered from these characteristic sub-
spaces enables the construction of the desired IBC-tuples
in a canonical way. Here, a linear subspace of row tuples
(or row vectors) for a matrix tuple is characteristic if,
under any automorphism of the matrix tuple by left-right
action, the subspace remains invariant.

The characteristic subspace naturally emerges when
specific row tuples or row vectors are distinguished from
others. For instance, let us consider a matrix tuple where
the first matrix is not full row rank. In this case, all
the row tuples with zero vector as their first coordinate
form a characteristic row tuple subspace within the linear
space spanned by all the row tuples of the matrix tuple.
As another example, all the row vectors in the first
matrix of a matrix tuple form a characteristic row vector
subspace. However, in some cases, identifying the char-
acteristic row tuple subspace is not as straightforward
as illustrated in previous examples, requiring a careful
analysis of the matrix tuple structure.

A. Matrix tuple without non-trivial characteristic row
tuple subspace

The first question is under which circumstances the
matrix tuple does not have a non-trivial characteristic
row tuple subspace and how to compute a representative
IBC-tuple sequence canonically in such cases. To address
this question, let us consider the case in which the matrix
tuple is square. Without loss of generality, we assume
that every matrix in the matrix tuple is full rank. Other-
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wise, it would be possible to obtain some characteristic
row tuple subspace using the aforementioned approach.

For a length-ℓ matrix tuple A = (A1, . . . , Aℓ),
we investigate the induced matrix tuple G =
(A−1

1 A2, . . . , A
−1
1 Aℓ) of length ℓ − 1 under the con-

jugation action. We show that A has no nontrivial
characteristic row tuple subspace if only if the matrix
algebra generated by G is isomorphic to a finite field.
Furthermore, our algorithm verifies whether the matrix
algebra generated by G is a finite field. If it is not, our
algorithm proceeds to produce a characteristic row tuples
subspace of A based on the classification of matrix
algebra by the Artin–Wedderburn–Mal’tsev theory. If the
matrix algebra generated by G is isomorphic to a finite
field, we show that all the IBC-tuples of the matrix tuple
are equivalent, and thus, any representative IBC-tuple
sequence contains a single IBC-tuple. In addition, we
give an algorithm to select a representative IBC-tuple
canonically. Specifically, the IBC-tuples selected for the
sequence among equivalent input matrix tuples are right-
equivalent.

Let us consider an example with A = (A1, A2, A3) ∈
M(4× 4,F2)

3 being the following matrix tuple

A1 =


1 0 1 0
0 1 0 0
0 1 1 1
1 1 1 1

 , A2 =


0 0 0 1
1 1 0 0
0 0 1 0
0 1 1 0

 ,

A3 =


1 0 1 1
1 0 0 0
0 1 0 1
1 0 0 1

 .

It can be verified that all the Ai matrices are invertible.
Let G = (A−1

1 A2, A
−1
1 A3). The matrix algebra gener-

ated by G is isomorphic to F4.
For the case that the matrix algebra generated by

G is isomorphic to a finite field, we observe that if
an IBC-tuple B contains a row tuple a (i.e., there
is a row vector v such that a = vB), then all the
row tuples containing a vector that is a linear com-
bination of the coordinates of a must also be in B.
For example, start with the row tuple a1 = e1A =
((1, 0, 1, 0), (0, 0, 0, 1), (1, 0, 1, 1)), the row tuple a2 =
(1, 1, 0, 1)A = ((0, 0, 0, 1), (1, 0, 1, 1), (1, 0, 1, 0)) is in
any IBC-tuple containing a1 because the first coordinate
of a2 is the same as the second coordinate of a1.

On the other hand, we show that in this case, any
row-submatrix tuple C can be decomposed into one or
a few IBC-tuples if and only if any row tuple containing
a coordinate being a row vector in C is contained in C.
As any row tuple containing a row vector that is a linear
combination of coordinates of a1 and a2 is also a linear
combination of a1 and a2, the row-submatrix tuple B of

two rows with a1 as the first row and a2 as the second
row is an IBC-tuple of A.

Furthermore, let a′1 be an arbitrary row tuple of A and
a′2 be the row tuple of A whose first coordinate equals
the second coordinate of a′1. Then the row-submatrix
tuple B′ of two rows with a′1 as the first row and a′2
as the second row is also an IBC-tuple of A, right
isomorphic B. Hence, a representative IBC-tuple can be
obtained by identifying row tuples that have to belong
to the same IBC-tuple (as a1 and a2 in this example)
and defining the relations of these row tuples canonically
(as the second coordinate of the first row of the IBC-
tuple equals the first coordinate of the second row in
this example).

As another example, let A′ = (A′
1, A

′
2, A

′
3) be the

matrix tuple with

A′
1 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 , A′
2 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 1 0

 ,

A′
3 =


0 1 0 0
0 0 1 1
0 0 0 1
1 1 0 0

 .

Because the matrix algebra generated by
((A′

1)
−1A′

2, (A
′
1)

−1A′
3) has a nontrivial radical

(i.e., the largest nilpotent ideal of the matrix algebra)
generated by the following matrices

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,

the linear span of the row vectors in the matrices of
the radical, i.e., ⟨{(0, 0, 0, 1), (0, 0, 1, 0)}⟩, is a char-
acteristic row vector subspace of A′. Consequently,
⟨{e2A′, e3A

′}⟩ is a characteristic row tuple subspace
because the row tuples in this subspace have all coordi-
nates in the characteristic row vector subspace. We will
address this situation in Section II-C.

Next, we turn to the scenario where the matrix tuple
is a rectangle with no obvious characteristic row tuple
subspace. In this case, the rectangle must have more
columns than rows because otherwise, there are charac-
teristic row tuple subspaces, like the linear space spanned
by row tuples with the i-th coordinate being zero.

On the other hand, although there is no characteristic
row tuple subspace for such rectangle matrix tuples,
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there must be nontrivial characteristic row vector sub-
spaces because there are more columns than rows. Let
Ui be the linear space spanned by row vectors of the i-th
matrix in the matrix tuple. Ui is a nontrivial characteristic
row vector subspace for each i if the i-th matrix is
nonzero.

In our algorithm, we utilize the correspondence be-
tween these characteristic row vector subspaces to either
identify some characteristic row tuple subspaces or re-
duce the rectangle matrix tuple problem to the square
matrix tuple problem. Specifically, if Ui and Uj have
some nontrivial intersection, then such an intersection
allows us to find some nontrivial characteristic row
tuple subspace. Otherwise, the entire row vector space
corresponds to a direct sum of some of the Ui row
vector subspaces. In this case, one can canonically define
the correspondence between row vectors from different
Ui subspaces and then create a square matrix tuple
corresponding to the rectangle matrix tuple in terms
of the IBC-tuple structure. Hence, computing a repre-
sentative IBC-tuple sequence for the rectangle matrix
tuple is reduced to computing a representative IBC-tuple
sequence for the constructed square matrix tuple.

B. Matrix tuple with direct sum row tuple decomposition

In Section II-A, we either obtain some characteristic
row tuple subspace or have a complete characterization
of the IBC-tuples and have an algorithm to construct
a representative IBC-tuple sequence for such a matrix
tuple. The next major question is how to canonically
compute a representative IBC-tuple sequence given some
nontrivial characteristic row tuple subspaces. In this
section, we consider the base case that the entire row
tuple space is the direct sum of some characteristic
row tuple subspaces. We will study the general case in
Section II-C.

The solution for the direct sum of characteristic row
tuple subspaces is to identify the correspondence be-
tween row tuples from different characteristic row tuple
subspaces and construct a new matrix tuple without
nontrivial characteristic row tuple subspaces by merging
corresponding row tuples from different characteristic
row tuple subspaces into a row tuple in the new matrix
tuple. For example, consider the following matrix tuple
A = (A1, . . . , A4) ∈ M(4× 4,F2)

4.

A1 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 , A2 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,

A3 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , A4 =


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0



Naturally, A has two characteristic row tuple subspaces:
T1, which contains all the row tuples of A whose
first coordinates are zero, i.e., T1 = ⟨{e1A, e2A}⟩,
and T2 which contains all the row tuples of A whose
second coordinates are zero, i.e., T2 = ⟨{e3A, e4A}⟩.
Consequently, let U1 be the linear space spanned by
the second coordinates of the row tuples in T1 (i.e.,
U1 = ⟨{e1, e2}⟩) and U2 be the linear space spanned
by the first coordinates of the row tuples in T2 (i.e.,
U2 = ⟨{e3, e4}⟩). U1 and U2 are characteristic row
vector subspaces, and the entire row vector space of A
is the direct sum of U1 and U2.

Since both the second coordinates of T1 and the fourth
coordinates of T2 are row vectors in U2, we can define
an isomorphism f : T1 → T2 such that f(a) = b for
any a ∈ T1,b ∈ T2 if and only if the second coordinate
of a is equal to the fourth coordinate of b. Then, by
choosing an arbitrary linear basis of the row tuples in
T1, we can construct a matrix tuple C = (C1, . . . , C8) =
M(2× 4,F2)

8 such that for any c as a row tuple of C,
the first four coordinates of c corresponds to a row tuple
a of T1, and the last four coordinates of c correspond to
the f(a) of T2. One example of C is

C1 =

[
0 0 0 0
0 0 0 0

]
, C2 =

[
1 0 0 0
0 1 0 0

]
,

C3 =

[
0 1 0 0
1 0 0 0

]
, C4 =

[
0 0 0 0
0 0 0 0

]

C5 =

[
0 0 1 0
0 0 0 1

]
, C6 =

[
0 0 0 0
0 0 0 0

]
,

C7 =

[
0 0 0 1
0 0 1 0

]
, C8 =

[
1 0 0 0
0 1 0 0

]
.

By the correspondence between C and A, we show
that the IBC-tuples of C and A have a one-to-one
correspondence. Therefore, once we obtain a canonical
representative IBC-tuple sequence of C according to
Section II-A, we can compute a representative IBC-tuple
sequence of A canonically.

C. Matrix tuple with hierarchical row tuple decomposi-
tion

We discuss the algorithm for constructing the rep-
resentative IBC-tuple sequence of a matrix tuple for
general characteristic row tuple subspaces. The challenge
arises from the potential impossibility of decomposing
the entire row tuple space of the matrix tuple into a
direct sum of a few characteristic row tuple subspaces,
as demonstrated by A′ defined in Section II-A.
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1) Hierarchical row tuple decomposition and quotient
matrix tuple: We organize the characteristic row tuple
subspaces hierarchically to unveil the direct sum property
for characteristic row tuple subspaces level by level via
maintaining a hierarchical row tuple decomposition. For
simplicity, in this overview, we assume the hierarchical
row tuple decomposition contains only two levels.

A two-level hierarchical row tuple decomposition con-
sists of a sequence of characteristic row tuple subspaces
T1, . . . , Tζ and a parameter 1 < h ≤ ζ. The decompo-
sition is hierarchical in the following sense: Let W be
the linear space spanned by the row vectors in the row
tuples of Th, . . . , Tζ . Then, the following two conditions
hold:

1) Let S be the linear space spanned by row tuples
with all coordinates in W . Then Th, . . . , Tζ is a
direct sum decomposition of S.

2) All the row tuples of the matrix tuple become the
direct sum of T1, . . . , Th−1 after shrinking all the
row vectors in W to zero for each row tuple of the
matrix tuple. (The row tuples in Th, . . . , Tζ and the
row tuples in T1, . . . , Th−1 that are also in S shrink
to zero row tuples.)

Based on a two-level hierarchical row tuple decom-
position of a matrix tuple, we can construct a quotient
matrix tuple for the matrix tuple by shrinking all vectors
in W to zero. We ensure that the resulting matrix
tuple has all the rows linearly independent by arbitrarily
choosing a linear basis of the row tuples after shrinking.
For example, let A = (A1, A2) ∈ M(8× 8,F2)

2 with

A1 =



1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1


,

A2 =



0 1 0 0 0 0 0 1
1 1 1 0 0 0 0 0
0 0 0 1 0 0 1 1
0 0 1 1 0 0 0 0
1 1 1 0 0 1 0 0
1 1 1 0 1 1 1 0
0 0 0 0 0 0 0 1
0 0 1 1 0 0 1 1


.

(1)

Let T1 be the linear space spanned by all the row tuples
of A. By Section II-A, using the radical of the matrix
algebra generated by A−1

1 A2, A has a characteristic
row tuple subspace T2 = {e3A, e4A, e7A, e8A}. T1

and T2 with h = 1 form a two-level hierarchical
row tuple decomposition of A. Consequently, W =

⟨{e3, e4, e7, e8}⟩, and the matrix tuple Q = (Q1, Q2)
with

Q1 =


1 0 0 0
0 1 0 0
0 1 1 0
0 1 0 1

 , Q2 =


0 1 0 0
1 1 0 0
1 1 0 1
1 1 1 1

 (2)

is a quotient matrix tuple of A such that e1, e2, e3 and e4
of Q correspond to e1+W, e2+W, e5+W and e6+W ,
where v +W denotes {v + w : w ∈ W}.

2) IBC-tuple construction via quotient matrix tuple:
To obtain the IBC-tuples for an input matrix tuple, we
investigate the relations between the IBC-tuples of the
quotient matrix tuple and the input matrix tuple.

As the base case, by the definition of a two-level hi-
erarchical row tuple decomposition, any quotient matrix
tuple is associated with a direct sum row tuple decompo-
sition induced by T1, . . . , Th−1. Hence, we can use the
approach in Section II-B to obtain a representative IBC-
tuple sequence for an arbitrary quotient matrix tuple.
In the rest of this section, we give an overview of
our approach to computing a representative IBC-tuple
sequence for a matrix tuple A based on a representative
IBC-tuple sequence for a quotient matrix tuple Q of A.

First, consider an arbitrary block-diagonal matrix tuple
D equivalent to A such that all the blocks of D are
indecomposable. We observe that the row vectors from
different blocks of D that correspond to row vectors in
W (the row vectors shrunk to zero when computing the
quotient matrix tuple) of A via a left-right action span
a row vector subspace of D corresponding to W of A.
If we shrink the row vectors in this row vector subspace
to zero for D, similar to constructing a quotient matrix
tuple for A, then we get a block-diagonal matrix tuple
equivalent to Q. We show that this block-diagonal matrix
tuple has every block corresponding to a few IBC-tuples
of Q. So, we want to understand the following question:
given an IBC-tuple B for Q, if A has an IBC-tuple C
containing a row-submatrix tuple corresponding to B via
the correspondence between A and Q, what is such a
row-submatrix tuple?

To answer this question, we extend the IBC-tuples for
Q to row-submatrix tuples of A. We say a row-submatrix
tuple C of A is an extension of an IBC-tuple B of Q
in A if C corresponds to B via the correspondence
between A and Q. For example, consider the matrix
tuple A defined by Equation (1) and quotient matrix
tuple Q defined by Equation (2). Using the result from
Section II-A, The following B is an IBC-tuple of Q,

B =

([
1 0 0 0
0 1 0 0

]
,

[
0 1 0 0
1 1 0 0

])
(3)
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and the following C is an extension of B in A

C =

([
1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0

]
,[

0 1 0 0 0 0 0 1
1 1 1 0 0 0 0 0

])
.

(4)

There are many feasible extensions for an IBC-tuple
of Q in A, but not all of them can be contained by an
IBC-tuple of A. By investigating the relations between
extensions and row vectors in W , we observe that for
an extension to be contained in an IBC-tuple of A, the
linear span of row vectors in the extension must contain
only the necessary row vectors from W . We refer to such
extensions as “essential extensions”.

For example, the C defined by Equation (4) is not
essential for B as defined by Equation (3) because there
is an IBC-tuple of A containing an extension of B but
not containing the row vectors e7 and e8, which are
vectors in W that are also in the linear space spanned by
row vectors of C. The row-submatrix tuple C′ defined
below is an essential extension of B because all the IBC-
tuples of A containing an extension of B always contain
the row vector e3, which is the only vector in W and
also in the linear space spanned by the row vectors of
C′.

C′ =

([
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

]
,[

0 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0

])
We show that such essential extensions exist, and if

an IBC-tuple of A contains a row-submatrix tuple corre-
sponding to B, then the IBC-tuple of A must contain an
essential extension of B. We also give an algorithm to
compute the canonical essential extensions. Furthermore,
we show that if the IBC-tuples right-isomorphic to a
given IBC-tuple of Q satisfy Theorem I.3, then the
essential extensions obtained for these IBC-tuples by our
algorithm also have the linearity similar to Theorem I.3.

Second, we explore the connection between essential
extensions of IBC-tuples of Q and row tuples in the
linear span of Th, . . . , Tζ by constructing a new matrix
tuple, called the compression matrix tuple. Roughly
speaking, to construct the compression matrix tuple, for
each essential extension obtained, we use a new row
tuple to canonically encode the intersection of W and
the linear space spanned by row vectors of the essential
extension. By the linearity of essential extensions for
right-equivalent IBC-tuples of Q, the new row tuples
constructed for extensions of right-equivalent IBC-tuples
of Q also span a linear space of row tuples.

The compression matrix tuple E consists of row tuples
with each coordinate in W . It contains two parts: one
part corresponds to the row tuples of A with all row

vectors in W (i.e., row tuples in Th, . . . , Tζ), and another
part corresponds to the newly constructed row tuples
from essential extensions.

The construction of the compression matrix tuple
naturally results in a direct sum decomposition of the
characteristic row tuple subspaces. Therefore, we apply
the algorithm described in Section II-B to find the IBC-
tuples of the compression matrix tuple. If the algorithm
in Section II-B returns a new characteristic row tuple
subspace of E, then we can use this characteristic row
tuple subspace to further refine the hierarchical row
tuple decomposition we have for A. We then restart
the entire process with the refined hierarchical row tuple
decomposition.

Finally, we study the consequence of the algorithm
in Section II-B returning a representative IBC-tuple
sequence for the compression matrix tuple E. We show
that in this case, for any block-diagonal matrix tuple
DA equivalent to A, there exists a block-diagonal matrix
tuple DE equivalent to E, such that there is a one-to-one
correspondence between the blocks of DA and blocks
of DE, thereby implying a correspondence between
IBC-tuples of A and IBC-tuples of E. By carefully
analyzing this correspondence, we give an algorithm for
constructing a representative IBC-tuple sequence for A
canonically guided by the IBC-tuples of E.
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