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A B S T R A C T

The approximate path synthesis of four-bar linkages has been framed and solved with many
different optimization techniques. Here we present a polynomial objective that is invariant
to the number of approximate design positions selected, and a solution technique capable of
finding all minima. The invariance property caps compute time despite increasing the size of
input task specification data. This is performed by collecting a variable amount of task data into
an invariable number of polynomial coefficients, called moments, before numerical optimization
begins. The minima are found by applying the method of random monodromy loops to the zero
gradient polynomial system of the aforementioned objective. This procedure finds all critical
points, including the local and global minimum, and provides an in-process estimate of the
percentage of critical points found. We applied our methodology to four-bar path synthesis
problems of various computational scales by altering dimensional pre-specifications. The most
general case was estimated to have 1,820,238 ± 3810 critical points, while pre-specification of
one or two ground pivots yielded 26,052 and 503 roots, respectively, as validated by a trace
test. The results are applied to a variety of examples.

1. Introduction

The approximate path synthesis of linkages is often formulated and solved as an optimization problem. Algorithms constructed
rom the current selection of optimization techniques can be used to find (1) one design option, (2) several stochastically generated
esign options, or (3) a Pareto front of design options. Apart from the choice of optimization technique, the choice in how to construct
n objective(s) yields widely varying results. In this work, we aim to compute nearly complete solutions to approximate kinematic
synthesis problems. That is, we form nonconvex polynomial objectives and then apply polynomial homotopy continuation to first-
order conditions to compute critical points. Our work is primarily advantageous over past research in that it removes guesswork
over the superiority of local minima, can find minima with small regions of attraction, and, since it aims to find all minima, we can
cross-compare them over auxiliary considerations neglected by the objective.

In a sense, our approach is basic in that we outright compute all stationary points from first-order conditions. However,
such computations have been prohibitive in the past due to the scale of the computation. The enabling technology is the new
algorithms and advances in polynomial homotopy continuation [1], notably, the method of random monodromy loops [2–6].
Although computational power has increased dramatically over the past decades, without the algorithmic advances of homotopy
continuation, there would be no route forward to solving the problems approached in this paper.

The problems solved in this paper are related to path synthesis for the four-bar linkage (schematically shown in Fig. 2). In such
a problem, a planar path is prescribed for a point connected to the coupler link of a four-bar to trace. The goal is to compute the
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dimensions of a four-bar which can approximately reproduce this path. The scale of the computation required to completely solve
uch an optimization problem can be varied by installing simplifications in the form of pre-specified dimensions, which essentially
educe the dimension of the design space. In this vein, we form three different optimization problems: approximate path synthesis
or a four-bar with (1) no dimensions pre-specified, (2) one ground pivot pre-specified, and (3) both ground pivots pre-specified.
he first uses the most computational resources while the last requires the least. For each of these problems, we conduct an ab
nitio computation to estimate the generic number of critical points each optimization problem has. This is performed by forming
umerically general versions of the first-order conditions and solving them with the method of random monodromy loops. The
ize of these finite root sets are analyzed statistically to place confidence bounds on its accuracy [6] and, if possible, certified to
e complete using a trace test [7,8]. The resulting numerically generic finite root datasets can be applied as starting points with
arameter homotopies [9] to solve for practical (not numerically generic) engineering design problems. Such parameter homotopies
rack fewer paths and thus use less computational resources. We demonstrate this functionality for a variety of examples in this
aper.

iterature review

If all dimensions of a four-bar are set to be design variables, then it can be shown that the four-bar can move a coupler point
xactly through nine prescribed points generically. Wampler et al. [10] applied homotopy continuation to this problem and found
he relevant polynomial system to generically have 8652 finite roots which naturally has a 2-way symmetry from relabeling and
3-way symmetry from Roberts’ cognates [11]. Hence, there are 1442 distinct four-bar coupler curves that pass exactly through
ine prescribed points generically thereby solving Alt’s problem [12]. If the two ground pivots of a four-bar are pre-specified and
he rest of the dimensions are set to be design variables, then it can be shown that the four-bar can move a coupler point exactly
hrough five prescribed points. Several authors [13–15] applied homotopy continuation to this problem and found the relevant
olynomial system to generically have 36 nondegenerate, finite roots. In this work, we address analogous problems but applied to
he approximate case, that is, 𝑁-point approximate synthesis.
By alleviating the exactness requirement on the coupler trace, approximate synthesis techniques allow for a greater number of

rescribed task points. These formulations lead to nonlinear optimization problems with many local minima. Examples of nonlinear
rogramming techniques that find only a single minima include [16,17]. As a slight improvement, the initial guess of the nonlinear
rogram could be varied systematically [18] or randomly [19] to hopefully discover more minima. Similar to this work, other
uthors [20] have considered working directly with the first-order necessary conditions, and Rao algorithms [21] explore the
olution population through iterative updates to ultimately find the optimal solution.
Metaheuristic algorithms [22–29] are less prone to settling on an inferior local minimum. Additionally, these algorithms need no

erivative information, no initial guess (usually), and are capable of generating a Pareto front to accommodate multiple objectives.
ombining heuristics in trajectory synthesis affords suitable and optimum solutions even in up to 14-bar linkage mechanisms [30].
owever, metaheuristic algorithms are stochastic in nature, require hyper-parameter tuning, and do not necessarily guarantee one
ill find a global minimum or a complete view of the optimization landscape.
Approximate synthesis techniques accommodate the approximate nature of most practical design problems. Exact synthesis
ethods are often criticized as few practical design problems require such exactness. However, their appeal comes in the form
f their deterministic nature and, assuming complete solutions are obtained, their ability to generate multiple design options of
iverse forms. This paper aims to bring that aspect of completeness to approximate synthesis. Rather than using the approximate
oints directly in the formulation, our approach formulates an objective based off the moments of path points. Setting its gradient
qual to zero leads to a square polynomial system in the design variables. Since this polynomial system is highly nonlinear, it
ossesses many roots, indicating the locations of critical points and potential minima. Polynomial homotopy continuation [31] is
pplied to a numerically general version of this system in order characterize the size of its solution set and compute start points for
ater parameter homotopies. Statistical estimates [6] yield confidence bounds on the root count and, when possible, a trace test [7,8]
s applied to certify the root counts from the previous step. Our work up until this point is numeric but nonetheless generic and
onclusive. Parameter homotopies are used to compute results for specific design problems.
In the proceeding, we formulate synthesis equations and describe our numerical methods in Section 2. Next, we approach

hree four-bar path synthesis problems with various simplifications installed. We consider approximate path synthesis when no
imensions are pre-specified (Section 3), when one ground pivot is pre-specified (Section 4), and when both ground pivots are
re-specified (Section 5). In each case, we present practical design scenarios to showcase the utility of our approach. Section 7
summarizes the contribution (see Fig. 1).

2. Mathematical formulation

2.1. Approximate synthesis equations

Consider the four-bar linkage shown in Fig. 2. Let 𝐴 and 𝐵 be the ground pivots of the linkage, and let 𝑙1, 𝑙2, 𝑙3 be the moving
link lengths as shown with angular displacements, measured counter-clockwise from the 𝑥-axis, as 𝜙1, 𝜙2, 𝜙3, respectively. The
coupler trace point is represented as 𝑃 in the local frame of the coupler.

We introduce a vector variable 𝑄 such that

𝑄 = 𝑃 ,
2

𝑙2
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Fig. 1. Graphical summary of the proposed method for solving the approximate path synthesis design problem.

Fig. 2. Schematic of a four-bar linkage for path synthesis.

which represents the vector 𝑃 normalized by the coupler base, 𝑙2 in the local frame. The coupler trace point in the global frame is
denoted with the vector 𝑋. The use of isotropic coordinates with complex variable/parameter and its respective conjugate rather
han Cartesian scalar coordinates afford simpler mathematical descriptions among other advantages.
However, one can always linearly transform between the two coordinate representations [32]. The transformation of real-valued

artesian coordinates to isotropic is given by

𝑧 = 𝑥 + 𝑦𝑖, 𝑧̄ = 𝑥 − 𝑦𝑖

here 𝑥 and 𝑦 are real values and 𝑧 is a complex value and 𝑧̄ is its conjugate. The transformation from isotropic to Cartesian is
iven by

𝑥 = 𝑧 + 𝑧̄
2

, 𝑦 = 𝑧 − 𝑧̄
2𝑖

Denote 𝛷𝑘 = 𝑒𝑖𝜙𝑘 for 𝑘 = 1, 2, 3 be the 2D rotation operators. Then, the vector loop equations for the left and right dyads are,
respectively,

𝐴 + 𝑙1𝛷1 + 𝑙2𝑄𝛷2 = 𝑋, (1a)

𝐵 + 𝑙3𝛷3 + 𝑙2(𝑄 − 1)𝛷2 = 𝑋. (1b)

Since we are working in isotropic coordinates, the conjugate relationship of the vector loops must be upheld. We denote
∗

3

conjugates with and note that the conjugate of a rotation operator is its reciprocal. That is, for a complex value 𝑧 = 𝑎 + 𝑏𝑖,
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its conjugate is 𝑧∗ = 𝑎− 𝑏𝑖, and for a rotation operator 𝜃, its conjugate is 𝜃∗ = 1
𝜃 . Additionally, since the link lengths are real-valued,

they have no imaginary component and 𝑙∗𝑘 = 𝑙𝑘 for 𝑘 = 1, 2, 3. Hence, the conjugate loop equations are

𝐴∗ + 𝑙1
1
𝛷1

+ 𝑙2𝑄∗ 1
𝛷2

= 𝑋∗, (2a)

𝐵∗ + 𝑙3
1
𝛷3

+ 𝑙2(𝑄∗ − 1) 1
𝛷2

= 𝑋∗. (2b)

The rotation operators are not final design specifications, so they can be eliminated from the loop equations. Eliminating 𝛷1
between Eqs. (1a) and (2a) results in the equation

𝑙2𝑄
∗(𝐴 −𝑋) + (𝑋𝑋∗ − 𝐴∗𝑋 − 𝐴𝑋∗ − 𝑙1s)𝛷2 + 𝑙2𝑄(𝐴∗ −𝑋∗)𝛷2

2 = 0, (3)

here 𝑙1s = 𝑙21 − 𝑙
2
2𝑄𝑄

∗ − 𝐴𝐴∗. Likewise, we eliminate 𝛷3 between Eqs. (1b) and (2b) to obtain the second equation

𝑙2(𝑄∗ − 1)(𝐵 −𝑋) + (𝑋𝑋∗ − 𝐵∗𝑋 − 𝐵𝑋∗ − 𝑙3s)𝛷2 + 𝑙2(𝑄 − 1)(𝐵∗ −𝑋∗)𝛷2
2 = 0, (4)

here 𝑙3s = 𝑙23 − 𝑙
2
2(𝑄 − 1)(𝑄∗ − 1) − 𝐵𝐵∗.

To eliminate 𝛷2, we take note that the operator appears in both Eqs. (3) and (4) quadratically and define a Sylvester’s matrix
epresentation using the previous two polynomials:

𝜂(𝒅;𝑋,𝑋∗) =

|

|

|

|

|

|

|

|

|

𝑄∗(𝐴 −𝑋) 𝑔(𝑋,𝑋∗) 𝑙2𝑄(𝐴∗ −𝑋∗) 0
0 𝑙2𝑄∗(𝐴 −𝑋) 𝑔(𝑋,𝑋∗) 𝑄(𝐴∗ −𝑋∗)

(𝑄∗ − 1)(𝐵 −𝑋) ℎ(𝑋,𝑋∗) 𝑙2(𝑄 − 1)(𝐵∗ −𝑋∗) 0
0 𝑙2(𝑄∗ − 1)(𝐵 −𝑋) ℎ(𝑋,𝑋∗) (𝑄 − 1)(𝐵∗ −𝑋∗)

|

|

|

|

|

|

|

|

|

(5)

here 𝑔(𝑋,𝑋∗) = 𝑋𝑋∗ − 𝐴∗𝑋 − 𝐴𝑋∗ − 𝑙1s and ℎ(𝑋,𝑋∗) = 𝑋𝑋∗ − 𝐵∗𝑋 − 𝐵𝑋∗ − 𝑙3s. Note that 𝑙2 is a common nonzero factor to
olumns 1 and 4, therefore we drop it from the matrix expression. We capitalize on the further numerical advantages provided by
ubstituting 𝑙2s = 𝑙22 in the expanded form of Eq. (5).
The determinant of the Sylvester’s matrix eliminates 𝛷2 and describes a polynomial representation of the coupler trace of a

our-bar linkage with the variables 𝒅 = {𝐴,𝐴∗, 𝐵, 𝐵∗, 𝑙1s, 𝑙2s, 𝑙3s, 𝑄,𝑄∗}. This determinant is also known as a tri-circular sextic curve
ecause, in addition to being real-valued, it is of degree six in (𝑋,𝑋∗). Each 𝑋 and 𝑋∗ only appear with degree up to 3, implying
circularity of three [32].
This tri-circular sextic determinant condition is upheld for all four-bar linkages and their respective Roberts’ cognates [11]. We

enote this determinant condition as 𝜂(𝒅;𝒑𝑗 ) where 𝒅 is the set of design variables as previously defined and 𝒑𝑗 = (𝑋𝑗 , 𝑋∗
𝑗 ) are the

esign parameters, the positions in space through which we intend our determinant curve to intersect. We intend to minimize the
um of squares of a function residual rather than the distance between specified and synthesized points. It is important to note there
re other ways to formulate an objective for approximate synthesis depending on the error one wishes to minimize [33].
From here on, we will denote the determinant curve with specified design positions as 𝜂𝑗 = 𝜂(𝒅;𝒑𝑗 ).
Consider the path generation problem for positions (𝑋𝑗 , 𝑋∗

𝑗 ) for 𝑗 = 1,… , 𝑁 where 𝑁 is the number of positions. It is well known
hat Alt’s problem [12] for 𝑁 = 9 generic points is equivalent to solving the nine-dimensional square system 𝜂𝑗 = 0 for 𝑗 = 1,… , 9.
hen 𝑁 > 9 and the design positions are generic, the exact path synthesis problem has no solutions; therefore, one must describe
formulation for an approximate path synthesis.
Our method of approximation minimizes the residuals of the coupler-trace equation previously described based on an 𝑳2-norm
easure. This sum-of-squares measure preserves the system’s polynomial nature and is real-valued. That is, one aims to solve the
nconstrained optimization problem min

∑𝑁
𝑗=1 𝜂

2
𝑗 by computing all solutions to the respective first-order optimality conditions:

𝑁
∑

𝑗=1
𝜂𝑗
𝜕𝜂𝑗
𝜕𝒅

= 𝟎. (6)

This problem can, and has been, solved at face value, by preserving the use of design positions as the system’s parameters [34].
There theoretically is no limit to the specified number 𝑁 of design positions in this formulation. However, using as many as up to
= 20 positions introduces additional parameter terms into already verbose expressions, thus increasing computational costs. Since

hese design positions appear nonlinearly in 𝜂𝑗 , we propose an alternative parameterization that instead works with the essential
nformation of the design positions.
The essential information is captured by the moments of the data. Recall that moments mathematically provide descriptive
easurements of data. For example, the first moment of a probability distribution is the mean which describes the center of
robability mass. By expanding the objective function in (6), and collecting coefficients on the sum of design positions, one observes
that the determinant curve depends linearly upon 47 moments of the monomials of (𝑋𝑗 , 𝑋∗

𝑗 ) for 𝑗 = 1,… , 𝑁 that appear within the
coupler equation. These moments are of the form

1
𝑁

𝑁
∑

𝑋𝑎
𝑗𝑋

∗𝑏
𝑗 (7)
4

𝑗=1
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Table 1
Exponents (𝑎, 𝑏) for the 47 moments in the general case.
1 = (0,1) 7 = (1,0) 13 = (1,6) 19 = (2,5) 25 = (3,4) 31 = (4,3) 37 = (5,2) 43 = (6,1)
2 = (0,2) 8 = (1,1) 14 = (2,0) 20 = (2,6) 26 = (3,5) 32 = (4,4) 38 = (5,3) 44 = (6,2)
3 = (0,3) 9 = (1,2) 15 = (2,1) 21 = (3,0) 27 = (3,6) 33 = (4,5) 39 = (5,4) 45 = (6,3)
4 = (0,4) 10 = (1,3) 16 = (2,2) 22 = (3,1) 28 = (4,0) 34 = (4,6) 40 = (5,5) 46 = (6,4)
5 = (0,5) 11 = (1,4) 17 = (2,3) 23 = (3,2) 29 = (4,1) 35 = (5,0) 41 = (5,6) 47 = (6,5)
6 = (0,6) 12 = (1,5) 18 = (2,4) 24 = (3,3) 30 = (4,2) 36 = (5,1) 42 = (6,0)

Table 2
Exponents (𝑎, 𝑏) for the 41 moments when one or both ground pivots are pre-specified.
1 = (0,1) 7 = (1,2) 13 = (2,2) 19 = (3,1) 25 = (4,0) 31 = (4,6) 37 = (5,6)
2 = (0,2) 8 = (1,3) 14 = (2,3) 20 = (3,2) 26 = (4,1) 32 = (5,1) 38 = (6,2)
3 = (0,3) 9 = (1,4) 15 = (2,4) 21 = (3,3) 27 = (4,2) 33 = (5,2) 39 = (6,3)
4 = (0,4) 10 = (1,5) 16 = (2,5) 22 = (3,4) 28 = (4,3) 34 = (5,3) 40 = (6,4)
5 = (1,0) 11 = (2,0) 17 = (2,6) 23 = (3,5) 29 = (4,4) 35 = (5,4) 41 = (6,5)
6 = (1,1) 12 = (2,1) 18 = (3,0) 24 = (3,6) 30 = (4,5) 36 = (5,5)

where 0 ≤ 𝑎, 𝑏 ≤ 6, because, recall that the coupler curve is tri-circular sextic, 𝑋,𝑋∗ can be at most degree six. In theory, there are
7 ⋅ 7 = 49 moments; however, (𝑎, 𝑏) = (0, 0) is a constant value of 1 and (𝑎, 𝑏) = (6, 6) does not appear in the expansion, so we retain
49 − 2 = 47 moments.

Let 𝐠 = {𝑔1, 𝑔2,… , 𝑔47} be the set of the moment parameters with

𝑔1 =
1
𝑁

𝑁
∑

𝑗=1
𝑋𝑗 , … , 𝑔47 =

1
𝑁

𝑁
∑

𝑗=1
𝑋6
𝑗𝑋

∗5
𝑗 .

ach moment in 𝐠 depends on the exponents (𝑎, 𝑏) as in (7). For the general case with no pre-specified dimensions, the 47 moments
orrespond with the exponents (𝑎, 𝑏) in Table 1. When one or both pivot locations are pre-specified, the 41 moments correspond
ith the exponents (𝑎, 𝑏) in Table 2. Note that the lesser number of moments between the no pre-specified dimensions and one
nd two pre-specified dimensions cases is a consequence of defining a pivot location at the origin, which was assigned to pivot
= 𝐵∗ = (0, 0)𝑇 without loss of generality.
In particular, the pre-specification of the 𝐵 and 𝐵∗ pivot location results in the original monomials corresponding to 𝑔5 =

0, 5), 𝑔6 = (0, 6), 𝑔13 = (1, 6), 𝑔35 = (5, 0), 𝑔42 = (6, 0), and 𝑔43 = (6, 1) vanishing in this new set of 41 moments.
With this new formulation, one have an equivalent representation of the objective function we denote as

𝜓(𝐝; 𝐠) =
𝑁
∑

𝑗=1
𝜂(𝒅;𝒑𝑗 ) (8)

which is linear in 𝐠. The first-order optimality conditions yield ∇𝐝𝜓(𝐝; 𝐠) = 𝟎, which are also linear in 𝐠.
When moving to a different representation, it is a natural question to consider the image of the map between the two spaces.

amely, if the number of solutions is preserved between spaces. This can be addressed using [35, Lemma 3] which yields the
ollowing.

roposition 1. The image of the map from the design positions to the 47-dimensional moment space is full dimensional for sufficiently
arge 𝑁 . In fact, this is guaranteed when 2𝑁 > 47.

The image from design positions to the moment space is dense. Hence, a sufficient condition for the generic number of roots
sing the moment-formulation and the design position-formulation agree when 2𝑁 > 47.
However, it is not a necessary condition. One only needs to ensure 𝑁 > 9 for optimal synthesis, but heuristically a lesser 𝑁 will

till admit an equivalent number of solutions between formulations.
Furthermore, by using a moment formulation, one can consider moments defined by discrete design position points or continuous

amilies of design positions. For example, for a family (𝑋(𝑠), 𝑋∗(𝑠)) with 𝑠0 ≤ 𝑠 ≤ 𝑠1, one can replace (7) with

∫ 𝑠1𝑠0 𝑋(𝑠)𝑎𝑋∗(𝑠)𝑏𝑑𝑠

∫ 𝑠1𝑠0 𝑑𝑠
. (9)

Finally, although the moment parameters bear little physical meaning, their linear appearance improves both the local
onditioning of the system and the solving of the system via random monodromy loops.

.2. Random monodromy loops

A random monodromy loop (RML) is a numerical continuation technique that starts with an initial seed set of solutions given
efined parameters, applies monodromy action, and ends the loop at the original set of parameters. In our RML method, the solution
5
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paths travel to pre-defined intermediary yet generic systems. The solution paths are not guaranteed to return to the original solution
from which their path had started, so consequently the set of solutions the RML ends with can consist of both previously known
solutions and new, valid solutions. Through iterative applications of RML and compilation of unique starting solutions, one efficiently
computes the system solutions.

First, we fixed a randomly selected set of moment parameters 𝒈𝒔 and obtained the respective variable solutions such that
𝜓(𝒅; 𝒈𝒔) = 0. Since we are aiming to solve for the generic solution set of our system, this seed solution does not need to satisfy
the conjugate relationship. Additionally, such a seed solution can be obtained using a local method such as Newton’s method or a
Newton homotopy. With this seed, we employed RML along a triangular ‘‘loop’’ in the parameter space with our starting system
at the vertex defined by the parameter set 𝒈𝒔 and the other two vertices defined by two intermediary generic system parameters,
𝟏, 𝒈𝟐, respectively. Since the parameters are linear, and a triangle is topologically equivalent to a circle, our RML consists of three
pplications of a straight-line homotopy along the three vertices of the triangle.

𝐻1(𝒅; 𝑡) = 𝜓(𝒅; 𝒈𝒔)𝑡 + 𝜓(𝒅; 𝒈𝟏)(1 − 𝑡), 𝑡 ∈ [0, 1],

𝐻2(𝒅; 𝑡) = 𝜓(𝒅; 𝒈𝟏)𝑡 + 𝜓(𝒅; 𝒈𝟐)(1 − 𝑡), 𝑡 ∈ [0, 1],

𝐻3(𝒅; 𝑡) = 𝜓(𝒅; 𝒈𝟐)𝑡 + 𝜓(𝒅; 𝒈𝒔)(1 − 𝑡), 𝑡 ∈ [0, 1].

(10)

Thus we accumulated a solution set to our system as defined by the parameter set 𝒈𝒔. Starting from one seed solution, perfect
racking would leave 2 solutions after completing the first loop, 4 solutions after the second, 8 solutions after the third, and so on.
hile this iterative action increases the number of paths tracked and leads to improved rate of solution set saturation, it comes
t a computational cost as we double the number of paths we track each loop. We note that our formulation, 𝜓(𝒅; 𝒈) and the
orresponding solution paths are invariant under Roberts’ cognates. So we apply a cognate check between loops to ensure we track
nly one member per cognate group as the respective Roberts’ cognate designs can be recovered through known transformations
pplied in post-processing of the solutions. This provides great efficiency in computing solutions to larger systems.

.3. Schnabel estimator

Since the number of isolated solutions is finite, such a doubling process in the collection of solutions cannot continue indefinitely.
hus, by comparing the number of new solutions obtained with the number of repeated solutions per RML, one can obtain statistical
stimates on the total number of solutions using a probabilistic ‘‘catch and release’’ model [6]. One such model is the Schnabel model.
When applied to biological populations, the Schnabel model relies on data from previous marks and captures to yield an estimator

n the total number of a wild specie’s population. In this paper, the population of interest and unknown size is the number of
olutions to the ab initio solve of our experiments. We used a window size of three; the Schnabel estimator of the total solution
ount is dependent on data from the current and two previous RML applications.
The expressions of the Schnabel estimator, 𝛽, and its variance over the moving window size three as well as the 95% confidence

nterval bounds, respectively, are

𝛽 =
∑3
𝑘=1 #𝑆

(𝑘) ⋅ #𝐸(𝑘)

∑3
𝑘=1 #(𝑆(𝑘) ∩ 𝐸(𝑘))

,

var(𝛽−1) =
∑3
𝑘=1 #(𝑆

(𝑘) ∩ 𝐸(𝑘))

(
∑3
𝑘=1 #𝑆(𝑘) ⋅ #𝐸(𝑘))2

,

(

(𝛽−1 − 1.96
√

var(𝛽−1))−1, (𝛽−1 + 1.96
√

var(𝛽−1))−1
)

.

(11)

Where #𝑆 is the number of solutions with which we start one RML application, #𝐸 is the number of solutions with which we end
the RML application, and #(𝑆 ∩ 𝐸) is the number of ‘‘repeat’’ solutions that belong to both sets 𝑆 and 𝐸.

2.4. Trace test

Although the number of compiled solutions and the Schnabel estimate provide confidence on the total number of solutions, one
may wish to verify that all solutions have indeed been found. This can be accomplished via a 2-homogeneous trace test [7]. The
2-homogeneity arises from the design variables 𝒅 and the moment parameters 𝐠. With such a test, one needs to collect two solution
sets. The first set is computed as described previously with the moment parameters fixed. In the second set, one selects a design
variable to be a parameter and selects a moment parameter to be a variable, and repeats the solving process as above. By using
these two solution sets, the 2-homogeneous trace test [7] can determine if the solution sets are complete or not.

For the computations in this paper, we employed the second derivative trace test from [8, § 2.3] to avoid tracking additional
paths. In particular, this local trace test approach simply relies upon computing local Jacobian and Hessian information of 𝜓 to
perform the trace test.

The following three sections utilize the aforementioned techniques on three formulations: the general case with no pre-specified
dimensions, pre-specification of one ground pivot, and pre-specification of both ground pivots, respectively. Each problem was first
solved in an ab initio run using random monodromy loops with the size of the solution set tested using either a statistical probabilistic
model on the RML iterations or a trace test computation, or both. Finally, in each of these three formulations, we present a real-world
example application. All computations were run using Bertini[36] in parallel mode on a four node dual 192 core machine at the
6

University of Notre Dame’s Center for Research Computing.
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Fig. 3. Computational summary of the ab initio solving for the general case formulation.

. The general case (no pre-specification of dimensions)

.1. Ab initio computation

Following Section 2, the general case has design variables 𝒅 = {𝐴,𝐴∗, 𝐵, 𝐵∗, 𝑙1s, 𝑙2s, 𝑙3s, 𝑄, 𝑄∗} and moment parameters
= {𝑔1,… , 𝑔47} as listed in C.5. With Roberts’ cognates and relabeling, the solutions arise in groups of 6 with formulas listed

n Appendix A. With this setup, the RML procedure was used to determine the generic root count. Fig. 3 shows the ratio of repeated
olutions for the iterations and the Schnabel estimates with the 95% confidence interval based on groups of solutions, i.e., one-sixth
f the total number.
We note that to further improve the conditioning of the system when performing the random monodromy loops, we redefined the

rouping of the system’s variables for the homotopy. Additionally, for paths that failed between intermediary systems, we applied
ognate transformations and reran the homotopy on those paths until we achieved a 100% path success rate or we exhausted each
f the cognate transforms. This resulted in improving path success rate of approximately 95-97% per iteration. However, this came
t an increase in the computational cost with the total time taking approximately 174 hours (7.25 days) for the ab initio solve.
Fig. 3 shows 26 iterations of RML for the moment-parameterized system. The final count of distinct solution groups after the

6 RML iterations was 303,387 yielding 6 ⋅ 303,387 = 1,820,322 solutions in total. One can see in Fig. 3(a) that the initial RML
terations find almost exclusively new points while later iterations find almost no new points. For example, iterations 23–26 only
roduced 87 new solutions, hence there is strong confidence we have found ∼ 99.8% of the solution set.

.2. Solution set validation

From Fig. 3(b), one observes that the 95% confidence interval shrinks quickly for the Schnabel estimate with a moving window
f size 3 as the number of iterations increases. In particular, at iteration 26, the 95% confidence interval for the Schnabel estimate
s 6 ⋅ (303,373 ± 635) = 1,820,238 ± 3810 solutions. This is within a rather tight bound when regarding the size of the system,
nd the RML computation count from the previous section lies within this bound. The total isolated solution count is estimated to
e upwards of approximately two million solutions, cognate transformations included [34].
We did not employ a trace test on this system for two reasons. First, the set of known solutions is probably not complete and thus
ore iterations would be needed. Also, solving for the switched variable-parameter systems poses an equally arduous challenge.
herefore, for this problem, we rely upon the statistical estimates to provide that the solution set is nearly complete.

.3. Applied example

As an illustration of using this ab initio computation to solve an applied problem, we consider approximately replicating the
urve in [37, Fig. 6]. This curve is traced by a Stephenson III six-bar mechanism with a torsion spring link. The mechanism is a
ocomotive hopping machine with three main trajectory phases: stance phase without spring activation, stance phase with spring
ctivation, and swing phase.
The mechanism consists of three ground pivots, 𝐴,𝐵,𝑂, where the remaining pivot locations, 𝐶,𝐷,𝐸, 𝐹 , 𝑃 are described by the

eg lengths 𝑂𝐶,𝐴𝐷,𝐶𝐸,𝐷𝐸,𝐸𝐹 ,𝐵𝐹 ,𝐸𝑃 , and 𝐹𝑃 . The torsion spring has an additional link 𝑂𝑆, but, for simplicity, we assumed
he torsion spring leg, described by the parameter 𝑂𝐶, to be a constant length. The triangle formed between the pivots 𝑂𝐶𝐴𝐷
7
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Fig. 4. The six-bar mechanism and coupler curve used for the applied example of the general case.

hat describes the location of pivot 𝐸 has an internal angle of 𝜅1 = −59.46◦ and the triangle formed between the links 𝑂𝐶𝐹𝐵 that
describes the location of the coupler point 𝑃 has an internal angle of 𝜅2 = −18.63◦.

The six-bar mechanism and coupler curve from which we extracted design positions to compute the 47 continuous moment
arameters is shown in Fig. 4.
Using the following parameters for the mechanism, we computed the 6-bar kinematics and obtained the coupler curve from [37,

ig. 6]. Note the pivot 𝑂 is at the origin, so 𝑂 = 𝑂∗ = 0 + 0𝑖.

𝐴 = −3.81 − 2.02𝑖, 𝐴∗ = −3.81 + 2.02𝑖,
𝐵 = −4.67 + 2.91𝑖, 𝐵∗ = −4.67 − 2.91𝑖

|𝑂𝐶| = 2.8, |𝐴𝐷| = 6.25, |𝐶𝐸| = 6.40, |𝐷𝐸| = 4.50
|𝐸𝐹 | = 6.10, |𝐵𝐹 | = 4.46, |𝐸𝑃 | = 12.71, |𝐹𝑃 | = 18.34

We then extracted over a hundred sample points from the computed curve that belonged to the stance phases with and without
pring activation as well as a subset of the swing phase to mimic the lift-off trajectory of the mechanism foot’s from the ground. We
e-parameterized the sample points to be equally spaced, rescaled them to the unit plane, generated an interpolating function, and
sed numerical integration to compute the continuous form of the 47 moment parameters needed for our parameter homotopy, as
efined by Eq. (9). The numerical values of the continuous moments are given in Table C.5 in Appendix C.
The parameter homotopy tracked 303,387 paths from the generic parameters of the ab initio solve to the physically meaningful

ystem. Using only double precision path tracking in about 26 hours of computational time, 108,008 successfully tracked to nonsin-
ular solutions. Of these, 71 corresponded to physically meaningful designs. Due to cognate transformations, listed in Appendix A,
e computed the cognates of the 71 unique solutions and filtered for duplicate designs. As there were no duplicates, this resulted
n a total of 6 ⋅ 71 = 426 potential physically meaningful solutions. Of the 71 distinct solutions, 2 are local minima and 69 are saddle
oints.
Of the physically meaningful coupler curves, many had sections of their coupler curve that traced the design positions extremely

ell. However, these solutions faced either the issue of branch defects in the curve based on which pivot was actuated or impractical
ognate design dimensions. One can see such cognate designs in Figs. 5. The synthesized coupler curve is shown in blue. Note that
ifferent actuation on pivots can result in branch defects on the coupler curve. Therefore, we present visualizations of only the curve
nd a cognate group member solution.
Table 3 gives the dimensions of the solutions presented in Fig. 5 as well as two error metrics — the value of the cost function and

the maximum Euclidean distance, or maximum deviation (Max Dev in solution tables), between target points and their respective
nearest point on the synthesized path. This example and the results suggest that the general case formulation is not computationally
effective and one would benefit from working with a smaller problem, such as the system resulting from the designation of
specifications on one or both ground pivots on the four-bar final design.

4. Pre-specification of one ground pivot

4.1. Ab initio computation

Consider the approximate synthesis problem obtained by specifying the ground pivot 𝐵 = 𝐵∗ = 0 with design variables 𝒅 =
∗ ∗
8

{𝐴,𝐴 , 𝑙1s, 𝑙2s, 𝑙3s, 𝑄,𝑄 }. Due to the designation of the one ground pivot at the origin, some moments have a zero coefficient and thus
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Fig. 5. Example solutions of applied problem for the general case formulation that exhibit branch and circuit defective behavior. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Table of Fig. 5 solutions and their dimensions and error metrics.

Fig. 5(a) Fig. 5(b) Fig. 5(c) Fig. 5(d)

𝐴 −0.04055−0.3039𝑖 −0.2168−0.3701𝑖 0.3065−0.2725𝑖 −0.01113−0.2719𝑖
𝐴∗ −0.04056+0.3039𝑖 −0.2168+0.3701𝑖 0.3065+0.2725𝑖 −0.01113+0.2719𝑖
𝐵 −0.2985−0.1947𝑖 0.08195−0.1943𝑖 −0.08198−0.4600𝑖 −0.3620−0.1379𝑖
𝐵∗ −0.2985+0.1947𝑖 0.08195+0.1943𝑖 −0.08198+0.4600𝑖 −0.3620+0.1379𝑖
𝑙1 0.1897 0.1102 0.5006 0.2054
𝑙2 0.1594 0.1802 0.1981 0.2222
𝑙3 0.06938 0.2866 0.2086 0.05237
𝑄 −0.6140+2.3195𝑖 −1.2155−1.1248𝑖 2.2589+0.4626𝑖 −0.3771+1.8417𝑖
𝑄∗ −0.6142−2.3195𝑖 −1.2155+1.1248𝑖 2.2589−0.4626𝑖 −0.3771−1.8417𝑖
Cost 4.9846⋅10−8 2.008746⋅10−8 2.8040⋅10−7 7.3460⋅10−8
Max Dev 0.1149 0.2075 0.1813 0.09704

disappear within the computation. Thus, with this pre-specification, the system admits 41 moment parameters which are provided
in Table 2. Note that Proposition 1 still holds when 2𝑁 > 41 for this reduced list of moments.

Using the RML procedure as previously described, the system reached convergence in 22 iterations to a final total solution count
of 26,052 solutions as shown in Fig. 6 with a computation time of approximately 8.5 h. The long computation time is attributed to
the lack of stopping criteria on the RML code. The RML terminated after a set number of 30 iterations to ensure the total solution
set was computed. Hence, there are superfluous iterations that were not essential to recovering the solution set. Had a different
termination criteria be utilized, the computation time would be much faster.

Due to the specification of one ground pivot, solutions to this system come in cognate member groups of size 2 for 13,026 distinct
solution groups with formulas listed in Appendix B. When using this cognate reduction to only track one path in each group as a
check on our RML procedure and resulted in the same number of solutions, 2 ⋅ 13,026 = 26,052, that took approximately 100 min
9

to compute.
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Fig. 6. Computational summary of the ab initio solving when one ground pivot is pre-specified.

Fig. 7. A candidate design from the pre-specification of one ground pivot computation. (a) After making contact with the work surface, (b) said surface pushes
the gripper end up, relative to itself, and into a workpiece to be gripped. Contact with the work surface actuates the gripper, and the four-bar linkage guides
its end into the workpiece. (c) Such a gripper might comprise of two pairs of opposing halves.
10
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Fig. 8. The solution design exhibiting preferred design characteristics for the one dimension pre-specified example.

.2. Solution set validation

As observed in Fig. 6(b), the Schnabel estimates with a moving window of size 3 quickly tighten with the estimate after the 23rd

iteration being 26,052±193 solutions. With the tight Schnabel confidence interval and multiple runs that admitted the same number
of solutions, this prompted using a trace test validation.

To utilize the 2-homogeneous trace test as summarized in Section 2.4, one needs to perform another solve where we switched
the variable-parameter pair 𝑙1s and 𝑔1. The resulting system produced 14,792 solutions and the 2-homogeneous trace test was then
successfully applied to a total of 26,052+14,792 = 40,844 solutions. Thus, this trace test confirmation shows that 26,052 is indeed
the precise solution count.

4.3. Applied example

This system was applied to a gripping mechanism inspired by the solution present in [38, Fig. 5]. The original positions were
chosen from [38] and fitted to a polynomial interpolation in order to define additional points for a total of 𝑁 = 20 positions. The
riginal pivot locations of the applied example are

𝐴 = −3.0432 + 4.5214𝑖, 𝐵 = −0.5609 + 3.1702𝑖

he other two joint dimensions are 𝐶 = 0.8155 + 2.008853𝑖 and 𝐷 = 1.09927 + 1.6694𝑖. To align this solution design with our pivot
specification that 𝐵 = 𝐵∗ = 0, the 𝐵 pivot of [38] was translated to the origin, and each real design position, including the additional
nterpolated points, was shifted by a difference of −0.56−3.17𝑖 for 𝐵 and −0.56+3.17𝑖 for 𝐵∗. The shifted points were then divided by
so that their moments were within approximately unit magnitude. The shifted design positions are provided in Appendix C. After
omputing the corresponding moments, a parameter homotopy tracked 26,052 solutions in adaptive precision to the new system.
he total computation time for this parameter homotopy was approximately four hours and resulted in the successful path tracking
o 25,540 nonsingular solutions. Of those nonsingular solutions, 216 obeyed the physically meaningful complex-conjugate condition.
ecall that in addition to these real solutions, their respective cognates are also solutions. Since the 𝐵 and 𝐵∗ pivots are fixed at the
rigin, the valid cognate transformations must obey this pivot specification with formulas presented in Appendix B. We computed
he cognates of these solutions, filtered for repeats, and filtered to retain one member per cognate group. This resulted in a total of
10 distinct coupler curves corresponding to physically meaningful solutions, or 2 ⋅ 110 = 220 total solution designs. Within these
10 distinct solutions, 20 are classified as minima and 90 are saddle points.
One such solution design and its respective synthesized path is presented in Fig. 8, the protoype mechanism based on that design

s presented in Fig. 7(a) and Fig. 7(b). A model of the prototype of the gripping mechanism using legs with the selected four-bar
esign to pick up a small block is shown in Fig. 7(c).
The solution dimensions for this chosen design are given in Table 4. Note that this design is an saddle point, and this solution

as chosen qualitatively through a visual inspection of the solutions. The coupler solution and mechanism dimensions exhibited
otential use that was not seen in solutions pertaining to the lowest objective costs. For reference, the ten solutions with the lowest
osts are provided in Table D.9 in Appendix D.

. Pre-specification of both ground pivots

.1. Ab initio computation

The last problem under consideration is when both ground pivots are pre-specified. Consider fixing 𝐴 = 𝐴∗ = 1 and 𝐵 = 𝐵∗ = 0
o that the resulting variable list is 𝒅 = {𝑙 , 𝑙 , 𝑙 , 𝑄,𝑄∗}. Since we retain 𝐵,𝐵∗ at the origin like the pre-specification of one
11
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Table 4
Numerical values of the final chosen design solution for the one
dimension pre-specified applied example.
𝐴 0.8773 +0.4991𝑖
𝐴∗ 0.8773 −0.4991𝑖
𝐵 0
𝐵∗ 0
𝑙1 0.4931
𝑙2 1.01719
𝑙3 0.3090
𝑄 1.1648 +0.8395𝑖
𝑄∗ 1.1648 −0.8395𝑖
Cost 12.6198
Max Dev 0.1322

Fig. 9. Ratio of repeat solutions per RML iteration when both ground pivots are pre-specified.

round pivot formulation in Section 4, this system also has 41 moment parameters listed in 2. For this simplified system, the RML
rocedure computed all 503 solutions within 13 iterations and the path tracking success rate using double precision was 99%. Using
nly a single processor, the total computation time was approximately three minutes. Fig. 9 shows the ratio of number of repeats
per iteration.

Since this system is small, it can be solved directly using standard homotopy continuation techniques without the use of RML in
Bertini, a method not feasible for the other systems. This direct solve also resulted in 503 solutions from 7362 tracked paths and
took approximately ten minutes on a single processor. These 503 solutions are all distinct as the designs come in cognate groups of
size one due to the pre-specified pivots.

5.2. Solution set validation

With such a small system that can be solved repeatedly and consistently reported 503 solutions, a statistical validation of the RML
iterations was not necessary. Moreover, this solution count can be confirmed using the 2-homogeneous trace test summarized in
Section 2.4. By switching the variable-parameter pair 𝑙1s and 𝑔41, the resulting system produced 129 solutions which can be directly
computed with Bertini. The 2-homogeneous trace test was then successfully applied to a total of 503 + 129 = 632 solutions
confirming that 503 is indeed the precise solution count.

5.3. Applied example

We consider the application of a wing folding mechanism as shown in Fig. 11. The wing is made up of a planar 2R chain 𝑂𝐶𝐷
with a proximal link 𝑂𝐶 and a distal link 𝐶𝐷. The proximal link is connected to the fuselage using a rotary joint at 𝑂. Note that
the 2R chain is by itself a two DoF system. For the folding this wing, three design configurations must be met, namely, a stowed
configuration, an intermediate configuration, and a deployed configuration. The objective of this design challenge is to size a four-bar
linkage (shown in black) with given ground pivot locations 𝐴 and 𝐵, respectively, such that a chosen guide point 𝑋 in the distal
link of the 2R chain is guided approximately along the design positions, indicated in starred points, in a constrained manner.

We used the following specifications:

𝑂 = 0, 𝐴 = 0.01 + 1.051𝑖, 𝐴∗ = 0.01 − 1.051𝑖,
∗

12

𝐵 = 0.137 − 0.211𝑖, 𝐵 = 0.137 + 0.211𝑖, |𝑂𝐶| = 2.563, |𝐶𝐷| = 3.4, |𝐶𝑋| = 0.34.
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Fig. 10. The chosen solution from which the final design was derived.

Fig. 11. Three snapshots, namely, a stowed configuration, an intermediate configuration and a deployed configuration, of deployable aircraft wing mechanism.

he design positions to be met approximately are as listed in Appendix C. Note that the design positions specified are largely
restricted to be within the reachable workspace of the guide-point 𝑋 defined by the annular region as shown in Fig. 11. The desired
curve is expected to intersect the workspace boundary in the stowed configuration and be tangential to it in the intermediate and
deployed configurations.

Starting from 503 start points found during the ab initio run, a parameter homotopy run is carried out to the target system
which represents the design problem of deployable wing mechanism. The successful paths yielded a subset of 27 physical solutions,
of which 7 are local minima and 20 are saddle points. One of the local minima is found to be particularly effective in terms of
packaging the system in the stowed configuration, which is shown in Fig. 11 at the three significant configurations of interest. For
his plot, some minor corrections to the link dimensions of the overall system was made to ensure that the tangency conditions
etween the four-bar coupler curve and the workspace boundary of the wing guide-point 𝑋 are met exactly at the intermediate
nd deployed configurations. The original solution computed from the parameter homotopy, before minor corrections, is presented
n Fig. 10. This solution is the ninth-lowest cost, the dimensions are shown in Table D.11, with a cost value of 146.1838 and a
aximum deviation of 0.7273.

. Discussion

The approach used in this paper forms stationarity conditions for unconstrained kinematic optimization problems and deploys
root-finding algorithm that strives for completeness in finding the zeros (critical points) associated with these conditions. The
oncept of solving optimization problems this way is not new, but the contribution of this paper stems from the scale of the problems
onfronted. Specifically, this paper computes an unconstrained problem of ≈1,820,238 roots, pushing the limits the authors’ available
ompute power.
In this paper, we did not consider optimization constraints. Equality constraints were handled in the past with homotopy-based

ptimization [39], but we foresee the combinatorics associated with active/inactive inequality constraints posing a challenge in
omputational tractability. Solving the fully generic (no pivots specified) approximate four-bar path synthesis problem alongside
13
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several inequality constraints would not be tractable with the computers used in this paper. Today’s current methods already easily
incorporate inequality constraints using local [16,17] or stochastic [25,27] optimization techniques. Our approach is neither local
(sensitive to initial guess) nor stochastic (non-deterministic), laying the groundwork for potentially more complete design space
exploration. Inequality constraints conveniently enforce design requirements, such as ensuring that a pivot stays within a certain
region or that a link stays less than a certain length. To incorporate inequality constraints using the methods of this paper, simplifying
assumptions would need to be made, such as assuming the location of one (Section 4) or two (Section 5) ground pivots. This lack
of inequality constraints does not prevent our solution set from admitting branch or circuit defective solutions. In the meanwhile,
filtering the solutions after the computations adequately satisfies the requirements a designer may enforce on pivot locations and
linkage lengths as well as remove the defective solutions.

This paper did not investigate the incorporation of inequality constraints. However, before such a challenge can be surmounted,
the unconstrained problem needs to be investigated and characterized, which is the contribution of this paper. Our investigation
discovered that the largest problem, the general case, required a large amount of computational resources, diminishing its
practicality. Therefore, we included in our investigation two simplified cases (Sections 4 and 5) which trade-off generality for
tractability, yielding more practical methods. Scaling up the methods of this paper to more complex multi-loop linkages, like a
six-bar linkage, would not be tractable when considering the fully general (all dimensions unknown) synthesis problems. However,
with the right pre-specifications, the unconstrained methods of this paper are extensible, e.g. consider converting the modular RR
chain synthesis methods of [40] from exact to approximate. Furthermore, the coupler curve of any four-bar path generator can be
translated anywhere in the plane by the inclusion of two more links [41–43], converting it into a six-bar. If this concession is made,
the utility of inequality constraints discussed above diminishes.

7. Conclusions

Approximate kinematic synthesis is an appealing technique to find optimal designs of linkages. Previous optimization frameworks
and solvers face the problem of settling on inferior local minima that may or may not depend on the initial solution guess and do
not present a full set of the minima. Essentially, these methods fail to identify the landscape of the optimization problem. This paper
presents a polynomial objective formulation to the approximate synthesis problem that can be solved via the polynomial homotopy
continuation technique of random monodromy loops. The one-time solve for the critical points of this formulation, known as the
ab initio solve, provides a starting solution set for which parameter homotopies can be applied to physically meaningful systems
of interest. To produce a linearly parameterized system, we employed a first-moment formulation of the design parameters. The
resulting system was solved for three cases: no pre-specifications on design dimensions (general case), a pre-specification on one
ground pivot, and a pre-specification on both ground pivots. In each case, the resulting solutions sets were used as the basis from
which we computed parameter homotopies to real design application examples. The resulting total generic solution set count for
the general case, pre-specification of one ground pivot, and pre-specification of both ground pivots formulations are approximately
1,820,238 ± 3810, and exactly 26,052 and 503 points, respectively.
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Table C.5
Numerical values of the 47 continuous moments of the general case applied example.
𝑔1= −0.201259+0.571471𝑖 𝑔17= −0.071325+0.12864𝑖 𝑔33= −0.027377+0.043139𝑖
𝑔2= −0.250705−0.262911𝑖 𝑔18= −0.051786−0.093304𝑖 𝑔34= −0.016288−0.036071𝑖
𝑔3= 0.223860−0.038956𝑖 𝑔19= 0.078593+0.006491𝑖 𝑔35= −0.047476+0.101637𝑖
𝑔4= −0.0713+ 0.136836𝑖 𝑔20= −0.037522+0.045931𝑖 𝑔36= −0.05444−0.078008𝑖
𝑔5= −0.047476−0.101637𝑖 𝑔21= 0.223860+0.038956𝑖 𝑔37= 0.078593−0.006491𝑖
𝑔6= 0.082306+0.016350𝑖 𝑔22= −0.106001+0.154873𝑖 𝑔38= −0.028084+0.057493𝑖
𝑔7= −0.201259−0.571471𝑖 𝑔23= −0.071325−0.12864𝑖 𝑔39= −0.027377−0.043139𝑖
𝑔8= 0.416777+0.000000𝑖 𝑔24= 0.112046+0.000000𝑖 𝑔40= 0.040403+0.000000𝑖
𝑔9= −0.118802+0.25215𝑖 𝑔25= −0.043775+0.07234𝑖 𝑔41= −0.017369+0.026629𝑖
𝑔10= −0.106001−0.154873𝑖 𝑔26= −0.028084−0.057493𝑖 𝑔42= 0.082306−0.016350𝑖
𝑔11= 0.130889−0.001074𝑖 𝑔27= 0.048331+0.006554𝑖 𝑔43= −0.023841+0.066922𝑖
𝑔12= −0.05444+0.078008𝑖 𝑔28= −0.0713−0.136836𝑖 𝑔44= −0.037522−0.045931𝑖
𝑔13= −0.023841−0.066922𝑖 𝑔29= 0.130889+0.001074𝑖 𝑔45= 0.048331−0.006554𝑖
𝑔14= −0.250705+0.262911𝑖 𝑔30= −0.051786+0.093304𝑖 𝑔46= −0.016288+0.036071𝑖
𝑔15= −0.118802−0.25215𝑖 𝑔31= −0.043775−0.07234𝑖 𝑔47= −0.017369−0.026629𝑖
𝑔16= 0.204155+0.000000𝑖 𝑔32= 0.065930+0.000000𝑖

Appendix A. Cognate transformations for the general case formulation

For the four-bar represented in Fig. 2 with design variables 𝒗1 = {𝐴,𝐴∗, 𝐵, 𝐵∗, 𝑙1, 𝑙2, 𝑙3, 𝑄,𝑄∗}, the two other Roberts’ cognates
an be computed with the following cognate transformations:

𝒗2 =
{

𝐵,𝐵∗, 𝐴 +𝑄(𝐵 − 𝐴), 𝐴∗ +𝑄∗(𝐵∗ − 𝐴∗), 𝑙2
√

(1 −𝑄)(1 −𝑄∗),

𝑙3
√

(1 −𝑄)(1 −𝑄∗), 𝑙1
√

(1 −𝑄)(1 −𝑄∗), 1
1 −𝑄

, 1
1 −𝑄∗

}

,

𝒗3 =
{

𝐴 +𝑄(𝐵 − 𝐴), 𝐴∗ +𝑄∗(𝐵∗ − 𝐴∗), 𝐴, 𝐴∗, 𝑙3
√

𝑄𝑄∗, 𝑙1
√

𝑄𝑄∗,

𝑙2
√

𝑄𝑄∗, 𝑄 − 1
𝑄

, 𝑄
∗ − 1
𝑄∗

}

.

dditionally, symmetric representation arising from relabeling of 𝒗1 is

𝒗′1 = {𝐵,𝐵∗, 𝐴, 𝐴∗, 𝑙3, 𝑙2, 𝑙1, 1 −𝑄, 1 −𝑄∗}.

The three Roberts’ cognates and their symmetric representations yield 3 ⋅ 2 = 6 members to a group.

Appendix B. Cognate transformations for the pre-specification of one ground pivot

For the four-bar represented in Fig. 2 design variables 𝒗1 = {𝐴,𝐴∗, 𝐵, 𝐵∗, 𝑙1, 𝑙2, 𝑙3, 𝑄,𝑄∗} such that 𝐵 = 𝐵∗ = 0, the Roberts’
cognate that preserves the location of the fixed pivot can be computed as 𝒗′2 via Appendix A. Thus, there are 2 members to a group.

Appendix C. Design positions and parameters for the applied examples

The applied example for the general case used the continuous form of the moment parameters. The values used for the
computation of the moments were derived from a recreation of the 6-bar kinematics and an interpolated and integration of the
coupler curve. The resulting moments as described in Section 3 are given in Table C.5

Tables C.6 and C.7 list the design positions for the applied examples in Sections 4 and 5 with one ground pivot and both ground
ivots pre-specified, respectively. In these tables, 𝑥 is the real part and 𝑦 is the imaginary part of the design positions. Note the
oints’ respective complex conjugates are similar except for an opposite sign on the imaginary component.

ppendix D. Solution values for the applied examples

The applied example solutions were evaluated by varied metrics. As the most optimal solution in cost may not always give the
ptimal design in terms of feasibility or aesthetics, it is important to consider other solutions, including saddle point solutions. The
ables given in this section display the ten solutions with the lowest cost value. The real-value leg length variables are provided,
ne can employ the transformations given in Section 2.1 to compute the transformed variables. Additionally, maximum deviation
15

etween the design positions and solution path is provided as another metric to assess the solution goodness.
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Table C.6
Design positions of the applied example for the pre-specification of one ground pivot formulation.
# 𝑥 𝑦 # 𝑥 𝑦

1 0.364598 −1.05667 11 0.341038 −0.838013
2 0.365320 −1.03455 12 0.331590 −0.818017
3 0.365531 −1.01242 13 0.319373 −0.799592
4 0.365220 −0.990290 14 0.304292 −0.783430
5 0.364353 −0.968177 15 0.286853 −0.769836
6 0.362873 −0.946096 16 0.267863 −0.758491
7 0.360690 −0.924074 17 0.248001 −0.748736
8 0.357669 −0.902152 18 0.227699 −0.739930
9 0.353605 −0.880400 19 0.207204 −0.731578
10 0.348201 −0.858944 20 0.186667 −0.723333

Table C.7
Design positions of the applied example for the pre-specification of both ground pivots formulation.
# 𝑥 𝑦 # 𝑥 𝑦

1 −0.207019 −2.182090 11 2.063340 −0.938363
2 0.0687999 −2.239100 12 2.153400 −0.674308
3 0.347610 −2.240690 13 2.191820 −0.401537
4 0.624026 −2.193040 14 2.178680 −0.111425
5 0.892661 −2.102330 15 2.187730 0.167889
6 1.147710 −1.975820 16 2.302040 0.424395
7 1.383080 −1.821450 17 2.547380 0.549207
8 1.596310 −1.638030 18 2.771820 0.399482
9 1.783540 −1.427380 19 2.881780 0.093067
10 1.940770 −1.192140 20 2.896430 −0.145470

Table D.8
The dimensions of the top ten solutions as per lowest absolute cost value for the General Case example. Note that Fig. 5(b), Fig. 5(a), and Fig. 5(d) are the
third, fifth, and ninth lowest costs, respectively.

1 2 3 4 5

𝐴 −0.08538−0.04607𝑖 −0.07627−0.06924𝑖 −0.21686−0.3701𝑖 −0.4184 + 0.04442𝑖 −0.0406−0.3039𝑖
𝐴∗ −0.08538 + 0.04607𝑖 −0.07627 + 0.06924𝑖 −0.2168 + 0.3701𝑖 −0.4184−0.04442𝑖 −0.04056 + 0.3039𝑖
𝐵 −0.2767−0.8952𝑖 −0.3427−0.1429𝑖 0.08195−0.1943𝑖 −0.09627−0.8621𝑖 −0.2985−0.1947𝑖
𝐵∗ −0.2767 + 0.8952𝑖 −0.3427 + 0.1429𝑖 0.08195 + 0.1943𝑖 −0.09627 + 0.8621𝑖 −0.2985 + 0.1947𝑖
𝑙1 0.5907 0.1587 0.1102 0.6791 0.1897
𝑙2 0.4982 0.1815 0.1802 0.1415 0.1594
𝑙3 0.2158 0.06298 0.2866 0.4089 0.06938
𝑄 0.1850−0.2617𝑖 1.4693 + 2.7634𝑖 −1.2155−1.1248𝑖 0.3656 + 0.2638𝑖 −0.6141 + 2.3195𝑖
𝑄∗ 0.1850 + 0.2617𝑖 1.4693−2.7634𝑖 −1.2155 + 1.1248𝑖 0.3656−0.2638𝑖 −0.6141−2.3195𝑖
Cost 1.1568⋅10−8 1.7884⋅10−8 2.008746⋅10−8 3.6472⋅10−8 4.9846⋅10−8
Max Dev 0.1676 0.09705 0.2075 0.4101 0.1149

6 7 8 9 10

𝐴 −0.3992 + 0.006783𝑖 −0.1787−0.5307𝑖 −0.1420−0.9623𝑖 −0.01113−0.2719𝑖 −0.3533 + 0.03082𝑖
𝐴∗ −0.3992−0.006783𝑖 −0.1787 + 0.5307𝑖 −0.1420 + 0.9623𝑖 −0.01113 + 0.2719𝑖 −0.3533−0.03082𝑖
𝐵 −0.07725−0.2247𝑖 −0.3854−0.7724𝑖 −0.3883−0.1276𝑖 −0.3620−0.1379𝑖 −0.2093−0.06891𝑖
𝐵∗ −0.07725 + 0.2247𝑖 −0.3854 + 0.7724𝑖 −0.3883 + 0.1276𝑖 −0.3620 + 0.1379𝑖 −0.2093 + 0.06891𝑖
𝑙1 0.05930 0.1953 0.4462 0.2054 0.07326
𝑙2 0.2776 0.1412 0.1023 0.2222 0.1978
𝑙3 0.1761 0.3856 0.5249 0.05237 0.09384
𝑄 1.9027−1.3375𝑖 −1.1002 + 0.5747𝑖 0.7603−0.3845𝑖 −0.3771 + 1.8417𝑖 1.9547−2.6906𝑖
𝑄∗ 1.9027 + 1.3375𝑖 −1.1002−0.5747𝑖 0.7603 + 0.3845𝑖 −0.3771−1.8418𝑖 1.9547 + 2.6906𝑖
Cost 5.1537⋅10−8 6.134⋅10−8 6.7082⋅10−8 7.3460⋅10−8 1.6215⋅10−7
Max Dev 0.1181 0.2304 0.4867 0.09704 0.1153

D.1. The general case (no dimensions pre-specified)

The Table D.8 gives the 10 solution values of the general case applied example based on lowest absolute cost value. Fig. 5(b),
with Fig. 5(a) and Fig. 5(d) are among the lowest costs.

Fig. D.12 shows the computed corresponding to the lowest absolute cost value. This solution is the global minimum, the
other local minimum corresponds to the eighth solution of Table D.8. The other solutions in the table are saddle points. Cognate
transformations for these solutions can be computed using the formulations given in Appendix A.
16
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Fig. D.12. The computed solution, the global minimum, with the absolute smallest cost function for the zero dimensions pre-specified example.

Table D.9
Table showing the dimensions of the ten lowest absolute costs values for the one dimension pre-specified applied example.

1 2 3 4 5

𝐴 0.1368−0.9734𝑖 0.1345−0.9736𝑖 0.1481−0.9355𝑖 0.1696−0.9191𝑖 0.1035−0.9839𝑖
𝐴∗ 0.1368 + 0.9734𝑖 0.1345 + 0.9736𝑖 0.1481 + 0.9355𝑖 0.1696 + 0.9191𝑖 0.1035 + 0.9839𝑖
𝐵 0 0 0 0 0
𝐵∗ 0 0 0 0 0
𝑙1 0.2385 0.2410 0.3127 0.3334 0.2710
𝑙2 0.1303 0.1392 0.6836 0.7303 0.2445
𝑙3 0.9854 0.9774 0.4179 0.3803 0.9945
𝑄 −0.04980 + 0.05351𝑖 −0.04520 + 0.05358𝑖 −0.01631 + 0.1466𝑖 −0.01317 + 0.1997𝑖 0.006638 + 0.05778𝑖
𝑄∗ −0.04980−0.05351𝑖 −0.04520−0.05358𝑖 −0.01631−0.1466𝑖 −0.01317−0.1997𝑖 0.006638−0.05778𝑖
Cost 0.1900 0.2004 0.2739 0.2846 0.4313
Max Dev 0.4474 0.4492 0.2951 0.2718 0.4426

6 7 8 9 10

𝐴 0.3355−0.9478𝑖 0.08979−0.9890𝑖 0.3475−0.9477𝑖 0.5021−1.1832𝑖 0.006582−1.0334𝑖
𝐴∗ 0.3355 + 0.9478𝑖 0.08979 + 0.9890𝑖 0.3475 + 0.9477𝑖 0.5021 + 1.1832𝑖 0.006582 + 1.033𝑖
𝐵 0 0 0 0 0
𝐵∗ 0 0 0 0 0
𝑙1 0.1390 0.2858 0.1154 0.1845 0.2737
𝑙2 0.3832 0.2056 0.3245 2.1177 0.9582
𝑙3 1.2595 0.9595 1.2456 1.0345 0.1889
𝑄 −0.2708−0.03743𝑖 0.02692 + 0.04182𝑖 −0.2573−0.09534𝑖 0.1714 + 0.01781𝑖 0.04203−0.1141𝑖
𝑄∗ −0.2708 + 0.03743𝑖 0.02692−0.04182𝑖 −0.2573 + 0.09534𝑖 0.1714−0.01781𝑖 0.04203 + 0.11419𝑖
Cost 0.4477 0.4732 0.5072 0.5372 0.5447
Max Dev 0.09572 0.5198 0.1414 0.05264 0.2220

D.2. One dimension pre-specified

A challenge to choosing the solution with the lowest cost value in this situation is that the solution cognates are constrained to
hose only satisfying the dimension pre-specification. Usually, as in the general case, one may refer to a cognate solution from the
roup of six. However, in this scenario, we only have one other cognate that satisfies our dimension pre-specification (see Fig. D.13).
Our computations recovered designs similar to the reference, [38], which was the inspiration for this example.
In fact, when sorting the solutions based off different error metrics, such as minimum nearest distance to the curve from a

pecified position, we can find designs such as this. This metric, as well as the max distance between specified points and their
earest point on the solution curve (maximum deviation), is one such way to sort solutions. The design and design dimensions are
resented in Fig. D.14. This solution is a saddle point and, although it bears a strong resemblance to the reference mechanism, it
17

as too high a cost function for it to appear among desirable solutions when sorted by cost.
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Fig. D.13. The computed solution with the absolute smallest cost function for the one dimension pre-specified example.

Fig. D.14. The solution design, dimensions given in D.10, that bears the highest similarity to the reference design.

.3. Two dimensions pre-specified

Since these values exhibit cognate groups of one member, these solution dimensions are the only designs available for the
18

espective coupler curve (see Fig. D.15).
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Table D.10
Numerical values of the one dimension pre-specified solution shown in Fig. D.14
that bears the highest resemblance to the reference path.
𝐴 −0.6836 +0.3376𝑖
𝐴∗ −0.6836 −0.3376𝑖
𝐵 0
𝐵∗ 0
𝑙1 1.3570
𝑙2 0.1448
𝑙3 0.7440
𝑄 0.4299 −3.1614𝑖
𝑄∗ 0.4299 +3.1614𝑖
Cost 2393.3919
Max Dev 0.4487

Table D.11
Table showing the dimensions of the ten lowest absolute costs values for the two dimension pre-specified applied example.

1 2 3 4 5

𝐴 0.01009 + 1.05063𝑖 0.01009 + 1.05063𝑖 0.01009 + 1.05063𝑖 0.01009 + 1.05063𝑖 0.01009 + 1.05063𝑖
𝐴∗ 0.01009−1.05063𝑖 0.01009−1.05063𝑖 0.01009−1.05063𝑖 0.01009−1.05063𝑖 0.01009−1.05063𝑖
𝐵 0.13735−0.21073𝑖 0.13735−0.21073𝑖 0.13735−0.21073𝑖 0.13735−0.21073𝑖 0.13735−0.21073𝑖
𝐵∗ 0.13735 + 0.21073𝑖 0.13735 + 0.21073𝑖 0.13735 + 0.21073𝑖 0.13735 + 0.21073𝑖 0.13735 + 0.21073𝑖
𝑙1 1.1469 1.1399 3.0964 1.2175 1.1043
𝑙2 1.2581 1.072 0.85531 0.90627 1.0913
𝑙3 1.1393 0.99409 2.3969 0.8673 0.97195
𝑄 1.1173 + 1.2952𝑖 0.4915 + 1.9561𝑖 0.75885 + 0.35691𝑖 −0.4148 + 2.2606𝑖 0.8766 + 1.8144𝑖
𝑄∗ 1.1173−1.2952𝑖 0.4915−1.9561𝑖 0.75885−0.35691𝑖 −0.4148−2.2606𝑖 0.8766−1.8144𝑖
Cost 9.2773 16.4608 20.06176 20.19268 20.4224
Max Dev 1.6950 1.3245 2.4358 0.7240 1.6488

6 7 8 9 10

𝐴 0.01009 + 1.05063𝑖 0.01009 + 1.05063𝑖 0.01009 + 1.05063𝑖 0.01009 + 1.05063𝑖 0.01009 + 1.05063𝑖
𝐴∗ 0.01009−1.05063𝑖 0.01009−1.05063𝑖 0.01009−1.05063𝑖 0.01009−1.05063𝑖 0.01009−1.05063𝑖
𝐵 0.13735−0.21073𝑖 0.13735−0.21073𝑖 0.13735−0.21073𝑖 0.13735−0.21073𝑖 0.13735−0.21073𝑖
𝐵∗ 0.13735 + 0.21073𝑖 0.13735 + 0.21073𝑖 0.13735 + 0.21073𝑖 0.13735 + 0.21073𝑖 0.13735 + 0.21073𝑖
𝑙1 1.1821 0.48908 0.67614 1.2972 1.2353
𝑙2 0.96274 1.0861 1.1545 0.48125 0.53218
𝑙3 0.91392 0.5814 0.72753 0.44298 0.49728
𝑄 0.0235 + 2.2007𝑖 2.1401 + 1.5928𝑖 1.6628 + 1.6161𝑖 −2.7666 + 3.0684𝑖 −1.6424 + 3.5032𝑖
𝑄∗ 0.0235−2.2007𝑖 2.1401−1.5928𝑖 1.6628−1.6161𝑖 −2.7666−3.0684𝑖 −1.6424−3.5032𝑖
Cost 28.6785 52.2681 76.2607 146.1838 167.1347
Max Dev 0.9492 0.7084 1.04291 0.7273 0.70473

Fig. D.15. The computed solution with the absolute smallest cost function for the two dimension pre-specified example.
19
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Appendix E. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.mechmachtheory.2024.105628.
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