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Abstract
There are many numerical methods for solving partial different equations (PDEs) on man-
ifolds such as classical implicit, finite difference, finite element, and isogeometric analysis
methods which aim at improving the interoperability between finite element method and
computer aided design (CAD) software. However, these approaches have difficulty when the
domain has singularities since the solution at the singularity may be multivalued. This paper
develops a novel numerical approach to solve elliptic PDEs on real, closed, connected, ori-
entable, and almost smooth algebraic curves and surfaces. Our method integrates numerical
algebraic geometry, differential geometry, and a finite difference scheme which is demon-
strated on several examples.
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1 Introduction

Advances in fluid dynamics, biology, material science, and other disciplines have promoted
the study of partial differential equations (PDEs) defined on various manifolds. Numerous
numerical methods have been developed to solve these PDEs, such as classical implicit [5, 6,
17], finite difference [16, 20, 22], finite element [11, 12, 18], and parameterization methods
[21]. In this paper, we specifically consider linear elliptic PDEs defined on closed algebraic
curves and surfaces, which are described implicitly as the solution to a system of polynomial
equations. We consider the well-posedness of the problem when the domain has singularities
corresponding to problems in which variational methods can not be applied. In particular,
when the domain is a real closed algebraic curve, we can always reduce the problem to solving
an ordinary differential equation (ODE) described in terms of the arc length. Numerically, we
can construct a meshing of the curve which is uniform in arc length via numerical algebraic
geometry [2, 8]. Such an approach is not limited to smooth curves nor when an a priori global
parameterization of the curve is known. From the meshing, we introduce a local tangential
parameterization and embed it in a finite difference scheme to numerically solve the problem.
A similar approach is extended to real closed algebraic surfaces which are almost smooth,
i.e., have at most finitely many singularities.

The linear elliptic PDEs under consideration have the form

− Δu + c · u = f on Ω (1)

where the operator Δ is the Laplace–Beltrami operator on a closed domain Ω while c and f
are functions independent of u. In particular, we are particularly focused on domainsΩ which
are a closed, connected, and orientable d-dimensional algebraic set in Rn where 0 < d < n.
Thus, Ω is described by the solution set of a system of polynomial equations F = 0 on Rn .
Curves have d = 1 while surfaces have d = 2. For example, the unit circle in R

2 as shown
in Fig. 1a is a curve defined by the solution set of the polynomial equation x2 + y2 − 1 = 0
while the unit sphere inR3 is a surface defined by the solution set of the polynomial equation
x2 + y2 + z2 − 1 = 0. Moreover, the dimension of the tangent space at each point in Ω is
at least d . The smooth points of Ω are the points where the dimension of the tangent space
is equal to d while the singular points are those where the dimension of the tangent space
is larger than d . For curves (d = 1), the number of singular points is always finite, e.g., the
lemniscate of Gerono showed in Fig. 1b has one singular point. We only consider surfaces
(d = 2) where the number of singular points is finite, called almost smooth surfaces. The
horn torus shown in Fig. 1c is an almost smooth surface with one singular point while the
Whitney umbrella shown in Fig. 1d is not an almost smooth surface since it has a line of
singularities, i.e., the “handle” of the Whitney umbrella.

For any d , if there are no singular points, thenΩ is said to be smooth, i.e., a manifold, and
there are many existing numerical methods, e.g., [4–6, 10–12, 16–18, 20–22], for solving (1).
For example, [11] considered finite element methods for solving on triangulated surfaces and
implicit surface methods using a level set description of the surface. Variational techniques
for solving on smooth surfaces based on splines and non-uniform B-splines (NURBS) are
reviewed in [4]. Recently, [10] established the theoretical framework to analyze cut finite
element methods for the Laplace–Beltrami operator defined on a manifold. These methods
focus on smooth surfaces which either can be parameterized or implicitly represented by
level sets. In the case of the implicit surface methods, a discretization of the space where the
manifold is embedded in is required, which can be inefficient when the codimension, i.e.,
n − d , is high.
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Fig. 1 a Circle, b lemniscate of Gerono, c horn torus, and d Whitney umbrella

Fig. 2 Solutions corresponding to (2) on the lemniscate of Gerono where the dashed line corresponds with
(x1, x2) = (0, 0) showing the first is univalued while the second is multivalued

To the best of our knowledge, little to no studies have been done to investigate the existence
of a theoretical or numerical solution on curves with singularities. One possible reason for
this is that the solution u to (1) need not take a single value at a singularity of Ω due to
the presence of multiple local irreducible components at a singularity, e.g., the lemniscate of
Gerono shown in Fig. 1b has two local irreducible components at the singular point. As an
illustration, Fig. 2 shows the solutions to the following two problems

(a) − Δu +
(

π − 4x21+4x22−3

8x21 x
2
2+16x42−3x21−17x22+4

)
· u = π · x1 on Ω (2)

(b) − Δu + u = x21 + x1x2 − 1 on Ω (3)

where the domain is the lemniscate of Gerono shown in Fig. 1b and defined by

Ω = {(x1, x2) ∈ R
2 | x41 − x21 + x22 = 0}.

The solution of the former is u = x1 which is univalued at the singularity (0, 0) while the
solution of the latter takes two different values at (0, 0), one along each of the two local
irreducible components at (0, 0). These problems will be further considered in Exs. 6 and 12,
respectively. Numerical algebraic geometry will also be used to compute the local irreducible
components [9] to ensure the proper structure of the solution u at the singularities.

The structure of the rest of the paper is as follows. Section2 shows the existence and
uniqueness of the solution to the elliptic problem (1) under certain conditions along with
analysis when a global parameterization is known. Sections3 and 4 describe a local tangential
parameterization at smooth points along with considering local irreducible components at
singularities.
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2 Global Parameterization

2.1 Formulation

For k ∈ N ∪ {∞} and a connected set D ⊂ R, let Ck(D,Rn) consist of the functions
α : D → R

n which are k-times continuously differentiable on D. For 0 ≤ r ≤ k, let α(r)(t)
denote the r th derivative ofα at t . A real algebraic curveΩ ⊂ R

n is called a closed parametric
Ckcurve if there exists a closed interval [a, b] ∈ R and a surjective map X : [a, b] → Ω such
that X ∈ Ck([a, b],Rn) with X (r)(a) = X (r)(b) for all 0 ≤ r ≤ k. If X is also a bijection
between [a, b) and Ω , then Ω is simple. A function h : Ω → R is k-times continuously
differentiable on Ω if h ◦ X ∈ Ck([a, b],R).

Example 1 The unit circle Ω = {x21 + x22 = 1} ⊂ R
2 shown in Fig. 1a is a sim-

ple closed parametric C∞ curve. The surjective function X : [0, 2π] 	→ Ω defined by
X(θ) = (cos(θ), sin(θ)) is infinitely differentiable and bijects [0, 2π) onto Ω .

The lemniscate of Gerono Λ = {x41 − x21 + x22 = 0} ⊂ R
2 shown in Fig. 1b is a

closed parametric C∞ curve since the surjection Y : [0, 2π] 	→ Λ defined by Y (θ) =
(cos(θ), sin(2θ)/2) is infinitely differentiable. The map Y is not a bijection since Y (π/2) =
Y (3π/2) = (0, 0) which is the self-intersection point. Hence, Λ is not a simple curve.

A real algebraic surface Ω ⊂ R
n is called a closed parametric Cksurface if, for every

x∗ ∈ Ω , there exists a nonempty open connected set V ⊂ R
2, an open set U ⊂ R

n

containing x∗, and a bijective map X : V → U ∩ Ω such that X ∈ Ck(V ,Rn) and the rank
of the Jacobian matrix of X , denoted J X , at every point in V is 2. A function h : Ω → R is
k-times continuously differentiable on Ω if h ◦ X ∈ Ck(V ,R).

Example 2 The unit sphere Ω = {x21 + x22 + x23 = 1} ⊂ R
3 is a closed parameteric C∞

surface. Due to rotational symmetry of the sphere, we only need to consider one point,
say x∗ = (0, 0,−1). As shown in Fig. 3, one can take V = {a21 + a22 < 1/4} ⊂ R

2,
U = {x21 + x22 < 1/4} ⊂ R

3 which clearly contains x∗, and bijective map X : V → U ∩ Ω

defined by

X(a1, a2) =
(
a1, a2,−

√
1 − a21 − a22

)

which is infinitely differentiable with full rank Jacobian matrix on V .
The Whitney umbrella Λ = {x21 = x22 x3} ⊂ R

3 shown in Fig. 1c is not a closed para-
metric Ck surface for any k ∈ N ∪ {∞} since, for example, the surface Λ near the point
(0, 0,−1) is one-dimensional (called the “handle” of the Whitney umbrella).

We now turn to consider (1) on Ω ⊂ R
n . Suppose that G is a given metric tensor defined

on the smooth points of Ω with inverse G−1. Then, in local coordinates (t1, . . . , td) where
d = dimΩ ,

Δu = 1√|g|
d∑

i=1

∂

∂ti

⎛
⎝√|g| ·

d∑
j=1

gi j
∂u

∂t j

⎞
⎠ (4)

where g = detG and gi j is the (i, j) entry of G−1.
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Fig. 3 Illustrating a closed
parametric map at
x∗ = (0, 0, −1) on the sphere
from Ex. 2

Example 3 For Ω = R
n with the standard metric tensor G = In , the n × n identity matrix,

the local coordinates are simply the standard coordinates (x1, . . . , xn), g = detG = 1, and
gi j = δi j (Kronecker delta). Hence,

Δu =
n∑

i=1

∂2u

∂x2i

which is simply the Laplacian of u on Rn .

Example 4 Reconsider the unit circle Ω = {x21 + x22 = 1} ⊂ R
2 with parameterization

X(θ) = (x1(θ), x2(θ)) = (cos(θ), sin(θ)) for θ ∈ [0, 2π]
from Ex. 1. Since

g = ‖X ′(θ))‖2 = sin2(θ) + cos2(θ) = 1,

we know that G = G−1 = [1]. Hence,

Δu = d2u

dθ2
.

For example, if u(x) = x1 + x2, then u(θ) = cos(θ) + sin(θ) with

Δu = d2

dθ2
(cos(θ) + sin(θ)) = −(cos(θ) + sin(θ)) = −u.

If, instead, we utilize the rational parameterization

X(t) = (x1(t), x2(t)) =
(
1 − t2

1 + t2
,

2t

1 + t2

)
for t ∈ R,

then

g = ‖X ′(t)‖2 =
( −4t

(1 + t2)2

)2

+
(
2(1 − t2)

(1 + t2)2

)2

= 4

(1 + t2)2

with G = [g] and G−1 = [g−1]. Hence,
Δu = 1+t2

2
d
dt

(
1+t2
2

du
dt

)
= 1+t2

4

(
(1 + t2) d

2u
dt2

+ 2t dudt

)
= (1+t2)2

4
d2u
dt2

+ t(1+t2)
2

du
dt .
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Similar as above, if u(x) = x1 + x2, then u(t) = (1 + 2t − t2)/(1 + t2) and one can verify
that

Δu = −1 + 2t − t2

1 + t2
= −u.

Example 5 For the unit sphereΩ = {x21 +x22 +x23 = 1} ⊂ R
3, consider the parameterization

X(θ1, θ2) = (sin(θ1) cos(θ2), sin(θ1) sin(θ2), cos(θ1)) for θ1 ∈ [0, π] and θ2 ∈ [0, 2π].
The metric tensor is

G =
[

∂x

∂θi
· ∂x

∂θ j

]
i, j

=
[
1 0
0 sin2(θ1)

]
with G−1 =

[
1 0
0 csc2(θ1)

]

yielding g = detG = sin2(θ1). Note that since θ1 ∈ [0, π], √|g| = sin(θ1) ≥ 0. Therefore,

Δu = 1

sin(θ1)

(
∂

∂θ1

(
sin(θ1)

∂u

∂θ1

)
+ ∂

∂θ2

(
sin(θ1) csc

2(θ1)
∂u

∂θ2

))

= ∂2u

∂θ21
+ csc2(θ1)

∂2u

∂θ22
+ cot(θ1)

∂u

∂θ1
.

For example, if u(x) = x1 + x2 + x3, then u(θ) = sin(θ1)(sin(θ2)+ cos(θ2))+ cos(θ1) with

Δu = −u − sin(θ2) + cos(θ2)

sin(θ1)
+

(
cos2(θ1)

sin(θ2) + cos(θ2)

sin θ1
− cos(θ1)

)
= −2u.

2.2 Well-Posedness for Curves

Let H1(Ω) denote the Sobolev space with k = p = 1 and vanishing boundary set Ω , and
H−1(Ω) denote the dual space to H1(Ω). When Ω is understood, we simply write H1 and
H−1, respectively.

The following provides our main theoretical result about well-posedness of (1) for curves.

Theorem 1 If Ω is a closed parametric C1 curve and f , c ∈ H−1 with c ≥ 0 and
∫
Ω
c > 0,

then there exists a unique weak solution u ∈ H1 to (1).

Proof We first define a weak solution to (1) by multiplying v ∈ H1 to both sides of (1) and
applying Green’s first identity. Hence, for the standard inner product 〈·, ·〉, we have∫

Ω

(−Δu + cu)vdx =
∫

Ω

〈∇u,∇v〉dx +
∫

Ω

cuvdx =
∫

Ω

f vdx . (5)

In particular, a function u ∈ H1 is called a weak solution to (1) if (5) is satisfied for all
v ∈ H1. Consider writing (5) in the following bilinear form:

a(u, v) = l(v) (6)

where

a(u, v) :=
∫

Ω

〈∇u,∇v〉dx +
∫

Ω

cuvdxandl(v) :=
∫

Ω

f vdx . (7)

Then, we can prove (1) has a unique weak solution in H1 using Lax-Milgram Theorem.
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Define

〈α, β〉L2 :=
∫

Ω

〈α, β〉dx and 〈u, v〉Ω := 〈∇u,∇v〉L2 + 〈√c · u,
√
c · v〉L2 .

The assumptions on c imply that 〈·, ·〉Ω is an inner product. In fact, when c ≡ 1, 〈·, ·〉Ω is
the default inner product on H1. Let ‖ · ‖Ω on H1 be the norm induced by 〈·, ·〉Ω . Next, we
show the coercivity of the bilinear function a(·, ·). To that end, for any v ∈ H1,

a(v, v) = ‖∇v‖2L2 + ‖√cv‖2L2 = ‖v‖2Ω.

Given u, v ∈ H1, we square both sides of (7) and apply the Cauchy-Schwarz inequality to
obtain

a(u, v)2 = 〈∇u,∇v〉2L2 +
(∫

Ω

cuvdx

)2

+ 2〈∇u,∇v〉L2

∫
Ω

cuvdx

≤ ‖∇u‖2L2‖∇v‖2L2 + ‖√c · u‖2L2‖
√
c · v‖2L2

+2‖∇u‖L2‖∇v‖L2‖√c · u‖L2‖√c · v‖L2

≤ (‖∇u‖2L2 + ‖√c · u‖2L2)(‖∇v‖2L2 + ‖√c · v‖2L2)

≤ ‖u‖2Ω‖v‖2Ω
which shows the boundedness of a(·, ·). Since f ∈ H−1, it follows immediately from the
Lax-Milgram Theorem that there exists a unique u ∈ H1 satisfying (6). ��

Theorem 1 extends well-posedness of (1) to some curves which have singularities such as
the lemniscate of Gerono shown in Fig. 1b for appropriate choices of f and c. In particular,
Theorem 1 assumes minimum regularity requirement on f and c. In the following examples
in Sects. 2.2 and 3, f and c have much nicer properties so that a classical solution exists,
which must be the unique solution by Theorem 1. By combining these properties together
with Theorem 1 and applying the Sobolev embedding theorem, the solutions to (1) satisfy
more regularity conditions leading to the results in Theorem 2 below.

Example 6 Let Λ be the lemniscate of Gerono as in Ex. 1. Consider the linear elliptic PDE

−Δu + c(x) · u = π · x1 on Λ where c(x) = π − 4x21+4x22−3

8x21 x
2
2+16x42−3x21−17x22+4

.

One can observe that c ≥ 0 and
∫
Λ
c > 0 by considering Fig. 4 which plots c(X(θ)) for

θ ∈ [0, 2π] where X(θ) = (cos(θ), sin(2θ)/2) is the global parameterization of Λ as in
Ex. 1. Hence, Theorem 1 shows that there exists a unique solution to (8). In fact, using (4),
it is easy to verify that u(x) = x1 solves (8). This problem will be reconsidered numerically
in Ex. 12.

Building on the existence and uniqueness result provided by Theorem 1, the following
develops approaches for numerically computing the solution to (1) when a global parame-
terization is known.

2.3 Solving with a Global Parameterization

When the real algebraic curve Ω ⊂ R
n is a closed parametric C1 curve with a given param-

eterization X : [a, b] 	→ Ω such that X ′(t) �= 0 for all t ∈ [a, b], solving (1) reduces to
solving an ordinary differential equation on [a, b] with periodic boundary as follows. By
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Fig. 4 Plot of c(X(θ)) with respect to θ ∈ [0, 2π ] from Ex. 6

definition, g(t) = ‖X ′(t)‖2 > 0, G(t) = [g(t)], and G−1(t) = [g−1(t)] for t ∈ [a, b]. With
(4), the linear elliptic PDE (1) simplifies to

− 1

g

d2u

dt2
+ 1

2g2
dg

dt

du

dt
+ c · u = f on [a, b] (8)

with periodic boundary where, by abuse of notation, c and f are the corresponding restric-
tions. Therefore, one can, for example, simply use a finite difference approach with a
three-point stencil to discretize (8) as follows. Given N , consider Δt = (b − a)/N with
ti = a + i · Δt for i = 0, . . . , N . Since u is periodic on [a, b] with t0 = a and tN = b, we
aim to compute ui for i = 0, . . . , N − 1 such that ui ≈ u(ti ) which amounts to computing
UN = (u0, . . . , uN−1)

T that solves the linear system

AN ·UN = FN (9)

where FN = ( f (t0), . . . , f (tN−1))
T and

AN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C0 R0 0 · · · 0 L0

L1 C1 R1 0 · · · 0
0 L2 C1 R2 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 LN−2 CN−2 RN−2

RN−1 0 · · · 0 LN−1 CN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(10)

such that

Li = − 1
g(ti )Δt2

(
1 + g′(ti )Δt

4g(ti )

)
, Ci = c(ti ) + 2

g(ti )Δt2
, and Ri = − 1

g(ti )Δt2

(
1 − g′(ti )Δt

4g(ti )

)
.

By imposing a stronger condition on the regularity of the solution u to (1), namely u ∈
C4(Ω) ⊂ H1, we obtain the following.

Theorem 2 If u ∈ C4(Ω) and there exists δ > 0 such that c > δ, then the numerical scheme
(9) is convergent, stable, and has second order accuracy.
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Proof Using Taylor series expansion, we have

u(x(ti+1)) = u(x(ti )) + Δtu′(x(ti )) + Δt2
2 u′′(x(ti )) + Δt3

3! u
′′′(x(ti )) + Δt4

4! u
′′′′(x(ηi )),

u(x(ti−1)) = u(x(ti )) − Δtu′(x(ti )) + Δt2
2 u′′(x(ti )) − Δt3

3! u
′′′(x(ti )) + Δt4

4! u
′′′′(x(ξi )),

(11)

where ηi ∈ [ti , ti+1] and ξi ∈ [ti−1, ti ]. Therefore,
u(x(ti+1)) − 2u(x(ti )) + u(x(ti−1))

Δt2
= u′′(x(ti )) − Δt2

4! (u′′′′(x(ηi )) + u′′′′(x(ξi ))).

This expression combined with (9) yields

AN

⎛
⎜⎝

u(x(t0))
...

u(x(tN−1))

⎞
⎟⎠ + Δt2

4!

⎛
⎜⎝

u′′′′(x(η0))+u′′′′(x(ξ0))
...

u′′′′(x(ηN−1))+u′′′′(x(ξN−1))

⎞
⎟⎠ = FN . (12)

Denoting

uN =
⎛
⎜⎝

u(x(t0))
...

u(x(tN−1))

⎞
⎟⎠ and u′′′′

N =
⎛
⎜⎝

u′′′′(x(η0))+u′′′′(x(ξ0))
...

u′′′′(x(ηN−1))+u′′′′(x(ξN−1))

⎞
⎟⎠ ,

subtracting (9) from (12) yields

AN (uN −UN ) = −Δt2

4! u′′′′
N .

Thus, the error satisfies

‖uN −UN‖∞ = Δt2

4! ‖A−1
N u′′′′

N ‖∞ ≤ Δt2

4! ‖A−1
N ‖∞‖u′′′′

N ‖∞. (13)

For sufficiently small Δt , one can assume that Ci > δ + 2
g(ti )Δt2

> 0 while both |Li | and
|Ri | are bounded above by, say, δ

4 + 1
g(ti )Δt2

. Thus, we have

Ci − (|Li | + |Ri |) >
δ

2
> 0.

Hence, AN is a strictly diagonally dominant matrix so that AN is invertible where the real
parts of the eigenvalues are positive so the stability of the scheme follows immediately.
Moreover, the Ahlberg-Nilson-Varah bound [13, 14] yields ‖A−1

N ‖∞ ≤ 2
δ

< ∞ showing
that

‖uN −UN‖∞ ≤ 2 · Δt2

δ · 4! ‖u′′′′
N ‖∞.

Since u ∈ C4(Ω), the global error defined above for scheme (9) is bounded and converges
to 0 as the mesh size goes to zero. In particular, the scheme is convergent with second order
accuracy. ��

Of course, one can repeat this construction using a larger stencil and imposing a stronger
condition on the regularity of the solution to obtain higher order accuracy. The following
illustrates the convergence rate for the three-point stencil using a five-point stencil with
many points to estimate the error.
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Table 1 Comparison of error for
solving (14) using the global
parameterization (15)

N L∞ error Order

160 2.043 × 10−4 –

320 5.099 × 10−5 2.002

640 1.274 × 10−5 2.000

1280 3.185 × 10−6 2.000

Example 7 Consider solving

− Δu + u = x on x2 + 50y2 = 1. (14)

Using the global parameterization

X(θ) =
(
sin θ,

cos θ√
50

)
, θ ∈ [0, 2π], (15)

one aims to solve

− 50

50 − 49 sin2 θ
uθθ − 2450 sin θ cos θ

(50 − 49 sin2 θ)2
uθ + u = sin θ on [0, 2π]

such that u is periodic on [0, 2π ]. Table 1 lists the error and convergence order which
computationally verifies second order convergence as expected by Theorem 2. Here, the
error is computed by comparing against the solution obtained using a five-point stencil with
N = 20,480.

3 Local Parameterization for Curves

When there is no readily available global parameterization, one can solve (1) via a finite differ-
ence method based on local parameterization at each sample point. The following proceeds
by first considering a numerical cell decomposition using numerical algebraic geometry,
then analyzing a local tangential parameterization at smooth points, and finally considering
singular points.

3.1 Curve Decomposition Using Numerical Algebraic Geometry

One approach for decomposing a curve is to utilize a numerical cellular decomposition [8,
15] computed using numerical algebraic geometry [3, 19]. A cellular decomposition of a
curve is a disjoint union of finitely many vertices V , which are simply points on the curve,
and edges E , which are portions of the curve diffeomorphic to an interval inR. The endpoints
of each edge are vertices. In particular, V must contain the set of singular points of the curve.

Example 8 Reconsider the lemniscate of Gerono Λ ⊂ R
2 defined in Ex. 1 and shown in

Fig. 2b. Figure5 illustrates a cellular decomposition ofΛ consisting of 3 vertices and 4 edges.

A numerical cellular decomposition simply represents each edge of a cellular decompo-
sition by an interior point along with a homotopy that permits the tracking along the edge
starting from the interior point. From this numerical representation, one can perform com-
putations on each edge. For example, one can sample points along each edge and construct
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Fig. 5 Cellular decomposition for
lemniscate of Gerono with
vertices vi and edges e j

a Chebyshev interpolant as described in [1]. From the Chebyshev interpolant, one can easily
approximate the arc length of each edge and approximatemesh points in the desired structure,
for example, uniform in arc length.

At each point on the curve, there is a local irreducible decomposition of the curve at the
point which can be computed using numerical algebraic geometry [9]. A curve is locally
irreducible at every smooth point on the curve and is locally diffeomorphic to the tangent
line. This is utilized next to construct a tangential parameterization at smooth points. The only
points on a curve where the curve could be locally reducible is at a singular point. Hence,
at each singular point on the curve, the approach in [9] uses the local monodromy group
structure computed using a homotopy to determine the locally irreducible components of the
curve at a singular point. Moreover, each locally irreducible component has a well-defined
local degree [9]. If a component has local degree equal to 1, then it is locally diffeomorphic
to a tangent line.

Example 9 Continuing from Ex. 8, all points are smooth points of Λ except v2 = (0, 0).
At v2, Λ decomposes into two locally irreducible components each of local degree 1 corre-
sponding to each of the two local tangent directions at v2.

Local irreducible decomposition is important for solving (1) since Theorem 1 enforces
that the solution is continuous along each locally irreducible component. Hence, a numerical
solving scheme needs to allow for a singular point to take a different value along each locally
irreducible component passing through the singular point as illustrated in Fig. 2b.

3.2 Tangential Parameterization at Smooth Points

The following uses an approach based on a local tangential parameterization for a smooth
curve to compute x ′(s) and obtain g which greatly simplifies the calculation of coefficients
for the numerical scheme. Let πN = {p0, p1, . . . , pN−1} consist of N mesh points uni-
formly distributed in arc length using a cyclic ordering with pi = pN+i as needed. Define
[pi−1, pi+1] to be the segment of the curve passing through points pi−1, pi , and pi+1. Let vi
be a unit tangent vector to the curve at pi and consider 
i (t) = pi + tvi which parameterizes
the tangent line to the curve at pi . Consider the map αi : [pi−1, pi+1] → R defined by
αi (p) = (p − pi ) · vi . By replacing vi by −vi as needed and taking N large enough, αi is a
diffeomorphism from [pi−1, pi+1] to [αi (pi−1), αi (pi+1)] where

αi (pi−1) < 0 = αi (pi ) < αi (pi+1).

Note that smoothness and a fine enough discretization, i.e., taking N large enough, are
essential for constructing such local diffeomorphisms. Figure6 provides an illustration of
this local tangential parameterization construction.

123



56 Page 12 of 22 Journal of Scientific Computing (2024) 99 :56

Fig. 6 Illustration of tangential parameterization

Let Xi : [αi (pi−1), αi (pi+1)] → [pi−1, pi+1] be the inverse of αi . Locally, (8) using
Xi (t) is simplified at t = 0 based on the following.

Theorem 3 With the setup described above, X ′
i (0) = vi . Moreover, for corresponding metric

tensor G(t), (4) becomes Δu(0) = ∂2u(0)
∂t2

.

Proof For t ∈ [αi (pi−1), αi (pi+1)], one knows that Xi (t) satisfies[
(Xi (t) − pi ) · vi − t

F(Xi (t))

]
= 0.

By the implicit function theorem,

X ′
i (t) = −

[
vTi

J F(Xi (t))

]−1 [−1
0

]
. (16)

Since vi · vi = 1 and J F(Xi (0))vi = 0, it immediately follows from (16) that X ′
i (0) = vi .

With g(t) = G(t) = ‖X ′
i (t)‖2, gi (0) = 1. Additionally, from the first row of (16), we know

vi · X ′
i (t) = 1 so that vi · X ′′

i (t) = 0. Hence, at t = 0, X ′
i (0) · X ′′

i (0) = vi · X ′′
i (0) = 0 which

immediately yields that dgi (0)
dt = 0 and the result follows. ��

Example 10 To illustrate, consider the ellipse x2 + 10y2 = 1 at

p =
[
1
0

]
with v =

[
0
1

]
so that X(t) =

[√
1 − 10t2

t

]
.

it is clear that X ′(0) = v. Moreover, for t near 0, (4) becomes

Δu(t) =
√
1 − 10t2

1 + 90t2
· d

dt

⎛
⎝

√
1 − 10t2

1 + 90t2
du(t)

dt

⎞
⎠ = 1 − 10t2

1 + 90t2
d2u(t)

dt
− 100t

(1 + 90t2)2
du(t)

dt

which yields Δu(0) = d2u(0)
dt2

in accordance with Theorem 3.

Combining with (8), one can develop a local discretization to approximate u(pi ) for each
i which is simplified due to Theorem 3. For example, with ui ≈ u(pi ), a three-point stencil
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Table 2 Comparison of global and local parameterization methods for solving (18) when a = 50

Global parameterization Local tangential parameteization
N L∞ error Order L∞ error Order

160 2.043 × 10−4 – 2.459 × 10−3 –

320 5.099 × 10−5 2.002 6.401 × 10−4 1.942

640 1.274 × 10−5 2.000 1.630 × 10−4 1.975

1280 3.185 × 10−6 2.000 4.094 × 10−5 1.992

yields the following discretization:

Li · ui−1 + Ci · ui + Ri · ui+1 = f (pi ) (17)

where

Li = −2

αi (pi−1)(αi (pi−1) − αi (pi+1))
, Ci = c(pi ) + −2

αi (pi+1)αi (pi−1)
,

Ri = −2

αi (pi+1)(αi (pi+1) − αi (pi−1))
.

Writing UN = (u0, . . . , uN−1)
T , and FN = ( f (p0), . . . , f (pN−1))

T , (17) yields the linear
system

BN ·UN = FN

where BN is the same as AN in (10) with the localized versions of Li , Ci , and Ri above. In
particular, note that this does not require computing gi .

Theorem 4 If u ∈ C3(Ω) and there exists δ > 0 such that c > δ, the finite difference scheme
arising from (17) is convergent and at least first order accurate in arc length mesh size.

Proof The proof is similar to that of Theorem 2 except that (17) uses an unstructured three-
point stencil to approximate Δu(pi ), which becomes the second-order central difference
scheme when αi (pi+1) = −αi (pi ). ��
Remark 1 By imposing a stronger condition on the regularity of the solution u as well as
increasing the size of the domain αi for which each remains a diffeomorphism, one can
naturally replace the three-point stencil used in (17) with larger stencils and obtain similar
results to Theorem 4 with higher-order convergence.

Example 11 For a > 0, consider solving

− Δu + u = x on x2 + ay2 = 1. (18)

Using the global parameterization

(
cos t,

sin t√
a

)
of the ellipse, we first compare the global

method in Sect. 2.3with the local tangential parameterization. Table 2 compares using a three-
point stencil for both when a = 50 where the errors are computed by comparing against an
approximate solution computed using a five-point stencil with the global parameterization
using 20,480 points.

Wenext compare using a three-point stencil and afive-point stencilwith the local tangential
parameterization for a = 1, a = 10, and a = 50. The results are summarized in Table 3
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Table 3 Comparison of using the local tangential parameterization method for different stencil sizes and
varying values of a when solving (18)

3-point stencil 5-point stencil
N L∞ error Order L∞ error Order

a = 1 160 9.639 × 10−5 – 2.979 × 10−7 –

320 2.410 × 10−5 2.000 1.859 × 10−8 4.002

640 6.024 × 10−6 2.000 1.162 × 10−9 4.000

1280 1.506 × 10−6 2.000 7.322 × 10−11 3.988

a = 10 160 5.744 × 10−4 – 5.191 × 10−5 –

320 1.442 × 10−4 1.995 3.265 × 10−6 3.991

640 3.607 × 10−5 1.999 2.046 × 10−7 3.997

1280 9.020 × 10−6 2.000 1.281 × 10−8 3.998

a = 50 160 2.459 × 10−3 – 7.394 × 10−3 –

320 6.401 × 10−4 1.942 3.119 × 10−4 4.567

640 1.630 × 10−4 1.975 1.968 × 10−5 3.986

1280 4.094 × 10−5 1.992 1.245 × 10−6 3.983

Fig. 7 Solution (red) for −Δu + u = x on x2 + ay2 = 1 (blue) with N = 160 mesh points for a a = 1, b
a = 10, and c a = 50 (Color figure online)

with the error computed as above. This shows that the error decreases when curvature is
more uniform throughout the curve so that the unstructured stencil approaches a uniformly-
spaced stencil. Figure7 shows the numerical solutions of (18) for these three instances using
N = 160 points.

Remark 2 UsingTheorem3, this local tangential approximationdoes not encounter the cost of
approximating metric tensor coefficients. Moreover, by using numerical algebraic geometry
to perform computations on the curve Ω ⊂ R

n , we note that we are solving in the space of
H1(Ω) instead of the higher-dimensional space H1(Rn). This becomes especially useful for
large n.

3.3 Local Parameterization Near Singularities

For a smooth curve, every point has a well-defined tangent direction and the curve has a local
tangential parameterization as illustrated in Fig. 6. For a singular point, one needs to look
at each local irreducible component and allow the value of u at the singular point to take a
different value along each such component as described in Sect. 3.1. If a local irreducible
component has local degree 1, it is locally diffeomorphic to a well-defined tangent line so
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Table 4 Error analysis when
using the local parameterization
with a three-point stencil when
solving (8)

N L∞ error Order

160 3.815 × 10−4 –

320 9.391 × 10−5 2.022

640 2.330 × 10−5 2.011

1280 6.116 × 10−6 1.930

Fig. 8 Solution (red) for −Δu + u = x2 + xy − 1 on x4 − x2 + y2 = 0 (blue) with N = 160 points using a
three-point stencil, where (a) and (b) are different views of the same solution (Color figure online)

that the singular point is a smooth point with respect to the local irreducible component.
Hence, one can simply apply the local tangential parameterization from Sect. 3.2 along the
local irreducible component.

Example 12 Consider the following problem

− Δu + u = f (x, y) on x4 − x2 + y2 = 0 (19)

where f (x, y) = x2 + xy − 1 whose solution was shown in Fig. 2b. The origin is the
only singular point on the lemniscate of Gerono which arises as the intersection of two
locally irreducible components of local degree 1 so that one can employ a local tangential
parameterization along each locally irreducible component. Table 4 summarizes the results
when using a local tangential parameterization with a three-point stencil where the errors
are computed using a three-point stencil with the global parameterization from Ex. 1 with
N = 20,480 points. Figure8 shows two views of the solution computed using N = 160
points.

When the local degree of a local irreducible component is more than 1, one can, for
example, use a truncated Puiseux series expansion where the coefficients can be computed
using numerical algebraic geometry. Moreover, by reparameterizing (e.g., see [19, § 10.2.2]),
the Puiseux series expansion is transformed into a power series expansion and thus one can
use a truncated power series expansion. Such a truncated expansion yields an approximation
of a local parameterization of the local irreducible component near the singularity. Then,
one can use a discretization of (8) with this approximate local parameterization near the
singularity and use a local tangential parameterization away from the singularity.
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Fig. 9 Cardioid (blue) along with
approximation (red) near the
singularity at the origin (Color
figure online)

Table 5 Error analysis for
solving (20)

N L∞ error Order

60 2.826 × 10−5 –

80 2.348 × 10−6 8.648

100 3.656 × 10−7 8.334

120 8.196 × 10−8 8.202

140 2.339 × 10−8 8.134

Example 13 Consider the following problem

− Δu + u = f (x, y) on (x2 + y2)2 + 4x(x2 + y2) − 4y2 = 0, (20)

where f (x, y) = (3607x2−224xy2+7662x−53y2−973)/(196x2+616x+196y2+1112).
The curve is called a cardioid (shown in blue in Figs. 9 and 10) which has a locally irreducible
cusp at the origin of local degree 2. The choice of f was selected so that (20) has an exact
solution of u(x, y) = x+x2 which is used for error analysis provided in Table 5. In particular,
to demonstrate higher-order methods, we used an eighth-order method with a local tangential
approximation away from the singularity. Near the singularity, we approximated x(y) so that
F(x(y), y) = 0. Since x(y) is a Puiseux series where the denominator is 3, reparameterizing
y = s3 yields that x(s) is power series in s with the first few terms being

x(s) = s2 − 5

12
s4 − 1

16
s6 − 91

5184
s8 + · · · .

To ensure more than enough accuracy, we used a degree 58 expansion which is pictorially
shown in Fig. 9 coupled with a tenth-order discretization at the singularity. Figure10 shows
the numerical solution of (20) computed using N = 60 points. Since this computation
was performed using double precision, the value of N needs to be large enough to show
convergence of the method but small enough to avoid numerical ill-conditioning.

4 Local Parameterization for Surfaces

For smooth surfaces with a known global parameterization, there exist well-studied methods
to solve (1) as highlighted in the Introduction. As in Sect. 3 when considering curves, we
focus on the case when there is no readily available global parameterization.
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Fig. 10 Solution (red) for (20) of a cardioid (blue) using N = 60 points (Color figure online)

Fig. 11 Surface decomposition
for a sphere with vertices vi ,
edges e j , and faces fk

4.1 Surface Decomposition Using Numerical Algebraic Geometry

The extension of Sect. 3.1 to a surface is a cellular decomposition consisting of finitely many
faces F , which are portions of the surface diffeomorphic to a rectangle in R

2, along with
edges E and vertices V . In particular, the boundary of each face consists of finitely many
edges, each of which has a vertex at each end.

Example 14 A cellular decomposition of a sphere consisting of 2 vertices, 2 edges, and 2
faces is illustrated in Fig. 11.

A numerical cellular decomposition, as first described in [7], represents each face by an
interior point along with a homotopy that permits the tracking along the face starting from
the interior point. The same holds for edges as summarized in Sect. 3.1.

123



56 Page 18 of 22 Journal of Scientific Computing (2024) 99 :56

4.2 Tangential Parameterization at Smooth Points

By simply adapting the approach in Sect. 3.2 from a local parameterization based on the
tangent line for a curve to a local parameterization based on the tangent plane for a surface,
the following obtains an analog of Theorem 3 for the surface case.

Suppose that p is a smooth point on the surface Ω ⊂ R
n such that w1, w2 ∈ R

n span
the tangent space with wi · w j = δi j . Hence, the tangent space is parameterized by 
(t) =
p + t1w1 + t2w2. Let α : Ω → R

2 where α(q) = ((q − p) · w1, (q − p) · w2). On Ω

locally nearly p, α has an inverse, say, X(t) = X(t1, t2) where X(0) = p. As with curves,
smoothness with a local viewpoint, e.g., mesh points with a sufficiently fine discretization,
are essential for constructing such local diffeomorphisms.

Theorem 5 With the setup described above, ∂X(0)
∂ti

= wi . Moreover, for correspondingmetric
tensor G(t), (4) becomes

Δu(0) = ∂2u(0)

∂t21
+ ∂2u(0)

∂t22
.

Proof The corresponding system that X(t) satisfies is⎡
⎣ (X(t) − p) · w1 − t1

(X(t) − p) · w2 − t2
F(X(t))

⎤
⎦ = 0.

By the implicit function theorem,

[
∂X(t)
∂t1

∂X(t)
∂t2

]
= −

⎡
⎣ wT

1
wT
2

J F(X(t))

⎤
⎦

−1 ⎡
⎣−1 0

0 −1
0 0

⎤
⎦ .

Since J F(X(0))wi = 0 and wi ·w j = δi j , one has
∂X(0)

∂ti
= wi and wi · ∂X(t)

∂t j
= δi j . Hence,

wi · ∂2X(t)

∂t j∂tk
= 0. (21)

By definition, the metric tensor and its inverse are

G(t) =
⎡
⎣

∂X(t)
∂t1

· ∂X(t)
∂t1

∂X(t)
∂t1

· ∂X(t)
∂t2

∂X(t)
∂t2

· ∂X(t)
∂t1

∂X(t)
∂t2

· ∂X(t)
∂t2

⎤
⎦ and G−1(t) = 1

g(t)

⎡
⎣

∂X(t)
∂t2

· ∂X(t)
∂t2

− ∂X(t)
∂t2

· ∂X(t)
∂t1

− ∂X(t)
∂t1

· ∂X(t)
∂t2

∂X(t)
∂t1

· ∂X(t)
∂t1

⎤
⎦

where g(t) = detG(t). Hence, G(0) = G−1(0) = I2 and g(0) = 1. Moreover, it follows

from (21) that ∂g(0)
∂ti

= 0 and ∂gi j (0)
∂ti

= 0 where gi j (t) is the (i, j)-entry of G−1(t) so the
result follows. ��
Remark 3 With appropriate changes to the setup and following a similar proof, Theorem 5
extends to smooth points on d-folds inRn . We do not consider d > 2 here since it remains an
open problem to compute a numerical cell decomposition using numerical algebraic geometry
for d > 2.

Example 15 To illustrate, consider the ellipsoid x2 + 10(y2 + z2) = 1 at

p =
⎡
⎣ 1
0
0

⎤
⎦ with w1 =

⎡
⎣ 0
1
0

⎤
⎦ and w2 =

⎡
⎣ 0
0
1

⎤
⎦ so that X(t1, t2) =

⎡
⎢⎣

√
1 − 10(t21 + t22 )

t1
t2

⎤
⎥⎦ .
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Table 6 Comparison of using the
local tangential parameterization
on a nine-point stencil with
varying values of a when solving
(18)

N L∞ error Order

a = 1 20 3.462 × 10−2 –

40 8.655 × 10−4 2.000

80 2.164 × 10−4 2.000

160 5.410 × 10−5 2.000

a = 10 20 2.337 × 10−2 –

40 5.756 × 10−3 2.022

80 1.435 × 10−3 2.004

160 4.056 × 10−4 1.823

a = 50 20 3.219 × 10−2 –

40 1.326 × 10−2 1.279

80 3.606 × 10−3 1.879

160 9.129 × 10−4 1.982

Clearly, X(0, 0) = p. Since ∂X1(t1,t2)
∂ti

= −10ti
X1(t1,t2)

, it is clear that ∂X(0,0)
∂ti

= wi . Moreover, for
(t1, t2) near the origin, (4) becomes

Δu(t1, t2) =
√

1−10(t21+t22 )

1+90(t21+t22 )
·
[

∂
∂t1

(√
1+90(t21+t22 )

1−10(t21+t22 )

(
1−10t21+90t22
1+90(t21+t22 )

∂u
∂t1

− 100t1t2
1+90(t21+t22 )

∂u
∂t2

))

+ ∂
∂t2

(√
1+90(t21+t22 )

1−10(t21+t22 )

(
1+90t21−10t22
1+90(t21+t22 )

∂u
∂t2

− 100t1t2
1+90(t21+t22 )

∂u
∂t1

))]

which yields Δu(0, 0) = ∂2u(0,0)
∂t21

+ ∂2u(0,0)
∂t22

in accordance with Theorem 5.

From an unstructured mesh of points on the surface, one can easily construct a local
discretization of Δu at each grid point with respect to the local tangential parameterization
yielding a linear system to solve as in the curve case.

Example 16 Consider the following problem

− Δu + u = f (x, y, z; a) on x2 + a(y2 + z2) = 1 (22)

where a ∈ R>0 and f (x, y, z; a) = 1
3(a+x2(1−a))2

[
ax(2a + 1) + x3(1 − a)(3a + x2

(1 − a))]. The surface is an ellipsoid (shown in Fig. 12) and the choice of f was selected
so that (22) has an exact solution of u(x, y, z) = x/3 which is used for error analysis. In
particular, using a roughly uniform grid of size N 2 on the ellipsoid with the local tangential
parameterization, the results are summarized in Table 6 using a nine-point stencil for various
choice of a. Figure12 shows the solution of (22) computed when N = 40.

4.3 Local Parameterization Near Singularities

For almost smooth surfaces, there are only finitely many singular points and thus each are
isolated. As with the curve case, one first computes a local irreducible component at each
singular point since the value of u at a singular point could be different along different local
irreducible components. If a local irreducible component has local degree 1, it is locally
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Fig. 12 Solution of (22) with N = 40 for a a = 1, b a = 10, and c a = 50

Table 7 Error analysis for
solving (23)

N L∞ error

20 2.235·10−2

40 1.464·10−3

80 3.075·10−4

160 –

diffeomorphic to a well-defined tangent plane for which a local tangential parameterization
from Sect. 4.2 can be used. For local irreducible components of higher local degree, one can
use a local parameterization (or an approximation of one) to discretize near the singularity
for each each local irreducible component.

Example 17 Consider the following problem

− Δu + u = x on (x2 + y2 + z2)2 − 4(x2 + y2) = 0 (23)

where the surface is a called a horn torus (shown in Fig. 13). The horn torus is almost smooth
with a singularity at the origin. Using an approximately uniform grid of N 2 points, the local
tangential parameterization was used away from the origin. The surface is locally irreducible
at the origin and the following local parameterization was utilized:

x(t1, t2) = t21 cos(t2), y(t1, t2) = t21 sin(t2), z(t1, t2) = t1

√
2 − t21 .

A nine-point stencil was used at all points with the results summarized in Table 7 where
the error is computed by comparing with the solution computed when N = 160. Figure13
shows the solution of (23) when N = 40.

5 Conclusion

Traditional approaches for solving elliptic PDEs on manifolds may have difficulty when
the domain has singularities since the solution can be multivalued at a singularity. After
establishing a theoretical result about well-posedness for curves in Theorem 1, compu-
tational approaches for solving elliptic PDEs on real closed algebraic curves and almost
smooth surfaces were considered. When a global parameterization is not readily available, a
local approach that combines numerical algebraic geometry, differential geometry, and finite
differences was described and analyzed. Several examples were used to demonstrate the
convergence properties of the numerical scheme. Although the approach could be naturally

123



Journal of Scientific Computing (2024) 99 :56 Page 21 of 22 56

Fig. 13 Solution for −Δu + u = x on (x2 + y2 + z2)2 − 4(x2 + y2) = 0 when N = 40

extended to domains that are almost smooth real closed algebraic sets of dimension larger
than 2, the current challenge for such domains is with computing a cellular decomposition.
Additionally, further analysis of elliptic PDEs defined on a surface containing a curve of
singularities is warranted.
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