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STRATEGY AND EFFORT i

Abstract

People often choose suboptimal attentional control strategies during visual search. This has been
at least partially attributed to the avoidance of the cognitive effort associated with the optimal
strategy, but aspects of the task triggering such avoidance remain unclear. Here, we attempted to
measure effort avoidance of an isolated task component to assess whether this component might
drive suboptimal behavior. We adopted a modified version of the Adaptive Choice Visual
Search (Irons & Leber, 2016), a task designed to measure people’s visual search strategies. To
perform optimally, participants must make a numerosity judgment -- estimating and comparing
two color sets -- before they can advantageously search through the less numerous of the two. If
participants skip the numerosity judgment step, they can still perform accurately, albeit
substantially more slowly. To study whether effort associated with performing the optional
numerosity judgment could be an obstacle to optimal performance, we created a variant of the
Demand Selection Task (Kool et al., 2010) to quantify the avoidance of numerosity judgment
effort. Results revealed a robust avoidance of the numerosity judgment, offering a potential
explanation for why individuals choose suboptimal strategies in the ACVS task. Nevertheless,
we did not find a significant relationship between individual numerosity judgment avoidance and
ACVS optimality, and we discussed potential reasons for this lack of an observed relationship.
Altogether, our results showed that the effort avoidance for specific subcomponents of a visual

search task can be probed and linked to overall strategy choices.
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Introduction

Humans have a powerful and flexible attentional control system to deal with various tasks in our
daily lives. This attentional control system can be conceived of as having two important facets:
the strategy of selecting which control settings to apply and the ability to actually implement the
control settings (Irons & Leber, 2018a; 2020). Though we may have a wide range of abilities,
ability alone does not guarantee optimal performance in a given task. This is because you must
know when — and be willing — to apply the abilities that are most suited to current behavioral
demands. For instance, biasing your attention to a specific color may help you find your orange
car when it is parked among black and white cars, but the same strategy will be inefficient when
you want to find your friend, who is wearing the same colored shirt as most of the crowd (e.g., at
a sporting event). Thus, it is essential to measure the impact of strategy on task performance. We
define strategy as a mental plan or policy that guides individuals on how to prioritize and use
selected sensory information (Leber & Irons, 2019; Liesefeld et al., 2023). We are particularly
interested in the degree to which people optimize their strategy. As illustrated in the previously
mentioned example, the optimality of a strategy depends on the individual’s goal and the current
task environment. In a scenario of a visual search task, we define the optimal strategy as the one
yielding the best performance — specifically that which will result in the fastest search without
sacrificing accuracy. Previous studies have shown evidence that the choice of strategy plays an
important role in determining visual search performance (Boot et al., 2006; Irons & Leber, 2016;

Nowakowska et al., 2017; Kristjansson et al., 2014).

Researchers have long questioned why participants would perform suboptimally (Bacon
& Egeth, 1994). While it has been argued that people tend towards optimal visual search
(Najemnik & Geisler, 2005; 2009), several demonstrations of suboptimality have been reported.
In one such study, Boot and colleagues (2006) found that people often made unnecessary eye
movements while performing a change detection task, which was detrimental to reaction time
(RT). Similarly, Nowakowska and colleagues (2018) reported that participants performing visual
search for an oriented bar target tended to fixate on locations that could have otherwise been

searched covertly. These unnecessary fixations significantly slowed RT.
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To systematically study strategy, Irons and Leber (2016; 2018a) designed the Adaptive
Choice Visual Search (ACVS) task, which can specifically measure the optimality of people’s
visual search strategies on a trial-by-trial basis. In what we call the “standard” version of this
task (Irons & Leber, 2018a, Experiment 2), participants view a search display comprised of red,
blue and green squares, each containing a digit from 2 to 9. On each trial, two target digits are
presented, one in the red color subset and the other in the blue color subset. These targets always
contain the digits 2, 3, 4, or 5, although the two targets never contain the same digit. ,
Participants can choose to search for either target, as only one target needs to be reported..
Critically, on each trial, one color subset is less numerous than the other. Thus, the optimal
strategy is to search through the color subset containing fewer items to find the target within that
set. The target in the smaller subset is considered the optimal target because only about half as
many items need to be searched compared to the large subset. As such, our primary measure of
strategy use is the percentage of trials in which individuals report the target from the smaller
subset (i.e., the optimal target; we refer to this dependent measure as the optimality rate, or
simply optimality). Irons and colleagues have typically found participants to be far from optimal
in their target choices, with mean optimality typically not exceeding 70% (e.g., Irons & Leber,
2018a); additionally, they have observed notable individual variation in this metric, which has
been shown to be stable when assessed with test-retest reliability and internal consistency

measures (see Irons & Leber, 2020).

Why do people frequently adopt suboptimal attentional strategies? There are several
possibilities. Much like in everyday visual searches, the ACVS requires multiple interconnected
steps to achieve optimal performance. For instance, one must appraise the display (Hansen et al.,
2019), and then evaluate and determine the most effective attentional control strategy within the
current environment before commencing a search for the target (Cain et al., 2012; O’Leary &
Sloutsky, 2017; Wolfe, 2013). Moreover, in such a changing environment, optimizing responses
requires sustained proactive control to maintain the task goal and choose the best strategy

(Braver, 2012; Hansen et al., 2019), which further increases cognitive demands (Braver et al.,

!'In this study, our primary focus was on the optimality measure. We also analyzed and provided data on switch
rates, which represent the percentage of trials where individuals chose a different target color than on the previous
trial. This information can be found in Supplemental Material sections 1-2.



STRATEGY AND EFFORT 3

2007; Locke & Braver, 2008). Failing to perform any of these component steps adequately may

result in suboptimal performance.

As for why someone might fail to perform one of these steps, here we consider that
people may be avoiding cognitive effort. Irons and Leber (2018a) provided initial evidence in
support of a general effort avoidance hypothesis. In that study, people who reported the optimal
strategy to be more subjectively effortful were less likely to use it. Note that participants were
only asked to provide subjective ratings of effort at the end of each task block. Such a survey
probe carries limitations. First, only one data point was collected per participant; second, such
ratings are retrospective and may not reflect the effort experienced at the moment the strategy
selections are made. More relevant to the present work, the results of Irons and Leber did not

link effort avoidance with any particular subcomponent of the ACVS task.

In the present work, we sought evidence for effort avoidance within subcomponents of
the ACVS. As mentioned above, multiple potential task components could be involved in
achieving optimal performance. The avoidance of any related effort of these task components
could result in suboptimal behavior (see Kool et al., 2010; Shenhav et al., 2017). Previous studies
have highlighted the essential role of environmental appraisal, especially the numerosity
judgment process when determining which color subset contains fewer items. In one study, we
found that participants became more optimal when extra time was provided to view the display
of colored squares only (Zhang et al., 2024). Furthermore, participants’ optimality decreased
significantly when the numerosity judgment process was interrupted (Hansen et al., 2019).
Others have also reported that enumeration or counting tasks required more effort investment
than search tasks (Porter et al., 2007). In line with all these findings, we theorized that the
suboptimal behaviors in the ACVS are at least partially driven by the avoidance of cognitive
effort related to appraising the display to identify the optimal color subset (the color subset with

a smaller number of squares), which we refer to as numerosity judgment effort.

Previous studies (Ariely, 2001; Chong & Triesman, 2003) have shown that people can
extract statistical information, such as mean set size, from a display rapidly and accurately,
which might suggest that the enumeration process is relatively effortless. However, promptly

utilizing this extracted information to make judgments and guide subsequent actions may indeed
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require cognitive effort. We propose that individuals may indeed harbor a tendency to avoid such
numerosity judgments. This inclination can become particularly pronounced when the
numerosity judgment task is embedded into a set of more complex and dynamic task demands.
To test this hypothesis, we measured whether people would demonstrate some degree of
avoidance of task stages relating to estimating and comparing the color subsets. . Further, we
investigated whether people’s degree of effort avoidance can predict attentional strategy
optimization during the ACVS task. Additionally, we also measured people’s numerosity
judgment ability to test if it could predict attentional strategy optimalization or avoidance of

numerosity judgment demand.

In Experiment 1, we sought to assess avoidance of numerosity judgment. We further
questioned how such avoidance might relate to visual search strategy choice. We adopted the
demand selection task (DST) from Kool and colleagues (2010) to measure people’s effort
avoidance relating to the ACVS task. To specifically isolate the elements of estimating and
comparing color subsets, we designed a new Word-cue Search Task with two types. One
provides a numerosity cue while the other provides a color cue. The stimulus is very similar to
the one used in the ACVS task, but with an additional word cue presented at the center of the
screen. On the one hand, a numerosity cue could be ‘Large’ or ‘Small.” The ‘large’ cue informs
participants that the target will appear in the more numerous color subset; the ‘small’ cue
informs them that it would be in the less numerous color subset. On the other hand, a color cue
could be ‘Red’ or ‘Blue.” This indicates which color subset participants must search to find the
target. The critical difference between these two cue types is the requirement to estimate and
compare the color subsets in the numerosity condition. No such process is required in the color
cue condition, in which participants can immediately begin to search through the cued color

subset.

This additional step required in the numerosity vs. color cue mirrors the key difference in
performing the ACVS optimally or not. That is, it is necessary to optionally take on this
additional step in order to achieve optimal performance. Our logic in this study is that the
additional step may be avoided during the ACVS due to its effort requirements. We seek
evidence in support of this effort hypothesis by placing the numerosity and color cue tasks into a

demand selection procedure.
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The experiment was divided into three parts. In the first part, we use the ACVS task to
measure participants’ visual search strategies. In the second part, we measured numerosity
judgment ability via a task with similar stimulus parameters to the ACVS, in which participants
judged which of two colored sets of squares was less numerous. In the final part, we used the
demand selection task mentioned above to measure individuals’ avoidance of numerosity

judgment effort.

If the avoidance of numerosity judgment effort is a key factor in determining visual
search strategy selection in the ACVS, we can make two predictions. First, at the group level,
participants should prefer the color cue task over the subset cue task during the demand
selection. Second, on an individual level, participants who show greater avoidance of the subset
cue task during demand selection should show lower rates of optimality in the ACVS.
Additionally, we tested whether numerosity judgment ability is a key factor in determining visual
search strategy selection in ACVS. If numerosity judgment ability predicts strategy choice, then
greater performance at the numerosity judgment task will be linked to higher optimality rates in

the ACVS.

Experiment 1

Method

Experiment 1 was preregistered on the Open Science Framework (OSF). Detailed information
regarding the rationale, methods, and planned analyses can be found in the OSF preregistration
file (https://osf.io/6nbhq). Note that we found one oversight in our preregistration plan, in which
we neglected to declare how we would test demand avoiding (or seeking) in the demand
selection task. Following Kool et al. (2010) and Westbrook et al. (2013), we used the Wilcoxon

signed rank test to conduct this analysis.

Participants

50 individuals (24 men, 23 women, 1 non-binary, 2 unreported) aged 18 — 41 years were
included in Experiment 1. All participants were recruited through the Prolific platform and were
paid $9.60 for roughly one-hour of participation. All participants were prescreened by their

locations (USA), their Prolific approval rate (> 96%), submission number (> 50), and all self-
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reported normal or correct-to-normal visual acuity. All participants were provided with the

online informed consent form approved by The Ohio State University institutional review board.

Based on the preregistered exclusion criteria, an additional 74 participants were excluded
from further analysis. This was due to 1) low accuracy on the ACVS task (accuracy lower than
80% or more than three SD below the group average; N = 20) and 2) low accuracy on the
numerosity judgment task trials with the ratio of 1:2 (accuracy lower than 90% or more than

three SD below the group average; N = 54).

Given the high exclusion rate, our pre-determined exclusion criteria appear to have been
too stringent for this online sample, particularly for the numerosity judgment task. Thus, in
addition to the analysis stipulated by our preregistration plan, we also include exploratory
analysis with a relaxed accuracy cutoff, in which data from 25 of these participants are included

(self-reported gender: 10 men, 15 women).

Stimuli and Procedure

This study was conducted online, with participants using their own computers, so the screens on
which the stimuli were presented varied in size and viewing distance. Thus, we cannot report
visual angle degrees. Instead, we report stimulus sizes in a fixed visual angle unit. This unit was
created such that, with a typical 24” display with a viewing distance of 68 cm, 1 unit = 1° visual

angle. The experiment consisted of three types of tasks, as follows.
Adaptive Choice Visual Search

The stimuli were based on previous studies using the ACVS. Since several variants of the ACVS
have been developed, it is useful to declare the specific version we used here, which we describe
as the “Standard ACVS with Preview.” What we describe as the standard version was first
presented by Irons and Leber (2018a, Experiment 2), and the preview is described by Hansen et
al. (2019) and Zhang et al. (2024).

On each search trial, the display contained 54 colored squares (sized 1*1 unit) with 13
red squares, 13 blue squares, 14 green squares, and 14 variably colored squares. The color of the
variable squares alternated between all red and all blue for runs of one to six successive trials.

All colored squares were randomly arranged in three concentric rings around a fixation cross at
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the center of the screen. The radii of the inner, middle, and outer rings were 5.6, 8.5, and 11.3
units, respectively. The number of colored squares in the inner, middle, and outer rings were 12,
18, and 24, respectively, each spaced equidistantly within their respective rings. Each colored
square contained a white digit (0.65 units, font: Arial) placed at the center of the square. Two
digits randomly picked from the set [2,3,4,5] without replacement served as targets on each
search trial, with one in the red set and one in the blue set. For all other red and blue squares,
digits from the set [6,7,8,9] were randomly assigned. Green squares contained digits randomly
chosen from 2 to 9; the inclusion of all digits served to dissuade participants from ignoring color

and adopting a deliberate search for the target digits (see Figure 1A).

For every search trial, the fixation cross was first displayed at the center of the screen for
400 ms, followed by a 1000 ms preview containing colored squares only without any digits. We
have begun to incorporate preview displays in this task to give participants more time to appraise
the displays prior to commencing search, which can boost optimality (Zhang et al., 2024). This is
especially useful for online study samples, who have tended to produce lower optimality rates
(McKinney et al., 2020). After the preview, the digits were added to the squares, at which point
search for the target digits could commence. Participants were instructed that two targets were
present on every trial and that they only needed to find one on each trial. They were always free
to search for either target on each trial. Upon finding a target, participants identified the digit
inside the target by pressing the corresponding key on the keyboard (V, B, N or M corresponding
to 2, 3, 4 or 5 respectively). Once a response was registered, the stimuli were removed from the
screen, and feedback was provided for 1000 ms to indicate whether the response was correct or
not. If the response was incorrect, a 400-Hz auditory tone was also played for 150 ms during the
feedback. Before the new trial began, there was an inter-trial interval of 500 ms. Participants first
completed a 10-trial practice block, followed by 2 blocks of the ACVS task with 84 trials per
block. Between each block, participants could take self-paced breaks.

Numerosity judgement task

The stimuli for this numerosity judgment task were like the ACVS task. However, displays only
contained 54 red and blue squares with different ratios and no green squares, and digits were not

presented (see Figure 1B). In half of the trials, the smaller subset was colored red, while the other
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half of the smaller subset was colored blue. The stimuli were displayed for 500 ms and then
replaced with a blank screen. Participants were asked to compare the number of blue squares
versus red squares and report the color of the smaller subset by pressing the keys V (for red) and
B (for blue). Response was allowed for up to 5 seconds, at which point the trial was declared an
error. The order of trials was randomized in the way that one color would not be the target color
(the color of the smaller subset) for more than 6 consecutive times. In this task, we had five ratio
conditions (1:1.08, 1.25:1, 1.45:1, 1.7:1, 2:1), and each condition had 24 trials with a total of 120

trials. The order of different types of trials was randomized and interleaved.
Word-cue search task

The Word-cue search contained both color and numerosity cue conditions. On each trial,
participants were cued to search for the target in a specific subset of colored squares. The stimuli
were similar to the ACVS, with a few key differences. First, the fixation cross was replaced by
the word cue (text size 1.75 units, font: Arial). Second, the stimuli only contained one target, and
the word cue specified the colored subset containing the target. For the color cue condition,
“RED” or “BLUE” cues were presented at the center to indicate the relevant subset containing
the target (see Figure 1C). Similarly, for the numerosity cue condition, “LARGE” or “SMALL”
cues were presented to indicate the target subset (always red or blue; see Figure 1D). Here, red
and blue subsets are equally likely to be large or small subsets. Thus, overall, the target set in
both cued conditions was matched. In addition, as an extra layer of control, we included a digit
between 2-5 that did not match the target in the uncued subset, which served as an additional
distractor and ensured that participants would use the cue to achieve accurate performance. For
each condition, participants first received five practice trials followed by a block of 40 trials of
each cue type. This allowed participants to be familiar with both cued search conditions before

the demand selection task.
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Optimal Target (in
A smaller color subset)

Non-optimal target (in
larger color subset)

C Cued Target D Cued Target

Figure I A. An example of the ACVS task. Two targets are highlighted. The one in the smaller color
subset (blue in this case) is considered more optimal to search for than the other one in the larger color
subset (red) because there are fewer items to search through. B. An example of the numerosity judgment
task. Participants need to indicate the color of the smaller subset (blue in this case). C. An example of the
color cue condition of the Word-Cue Search task. The blue 5 is the target since the blue subset is cued. D.
An example of the numerosity cue condition of the Word-Cue Search task. The red 2 is the target since
the small subset is red.
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Please choose a task

Remaining rounds: 50

Red/Blue Task Large/Small Task

Press button Z to choose the task on the left

Press button X to choose the task on the right

Figure 2 An example of the Demand Selection Task with the name of two types of Word-cue search task
presented symmetrically on both sides of the screen.

Demand Selection Task

On each trial, the monitor displayed two white squares, presented symmetrically on both sides of
the screen, with the name inside indicating the type of Word-cue search task (see Figure 2). The
original mapping of task type to screen side was counterbalanced across participants. Participants
were asked to use the keyboard to select one of the two tasks, pressing Z to select the task on the
left and X to select the task on the right. After that, one trial of the selected word-cue search task
was presented. The display was centered towards the side that the chosen task was presented on
during the selection (deviated 6.3 units from the center), to reinforce the match between the
selected and performed task. The task-location mapping was switched once, halfway through the
selections, to disentangle preferences for the tasks from preferences for a specific button or side

of the screen.

Note that, given the significant differences between the two search tasks, participants
could easily discern the task type based on the provided word cue. Therefore, unlike classic DST,
which cued each task with abstract drawings (Kool et al., 2010), we provided explicit
information about the task types during the selection procedure to prevent participants from
overthinking the selection task and to ensure clarity (see Figure 2). Consequently, our data

primarily focused more on the choice rate after the detection of the demand difference, as
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discussed by Juvina et al. (2018), reflecting the pure avoidance of this numerosity judgment

demand.

Results and Discussion

Mean accuracy for Standard ACVS was 93.9%. In the analysis of response time (RTs), we
excluded trials in which participants made an incorrect response, as well as trials with RTs less
than 300 or more than three standard deviations of the mean (3.56% of the standard ACVS

trials).

ACVS

First, we calculated the main strategy measure reported by Irons and Leber (2016, 2018a), which
was defined as the percentage of correct trials in which participants chose the target in the small
colored subset. We refer to that target as the optimal target and the corresponding search strategy
as the optimal strategy. Note that even if people are largely using the optimal strategy, they could
occasionally notice and then opportunistically report the non-optimal target (see Irons & Leber,
2016; 2018a). Notwithstanding, previous experiments have repeatedly revealed that searching for
the target in the smaller color subset is the most efficient way of finding the target, as high
optimality has been reliably associated with faster RTs (replicated in this experiment; see RT

results below).

Results from the Standard ACVS revealed vast individual differences in optimality,
ranging from .36 to .98 (Mean = .656, SD = .211). Mean RT was 2781 ms (Range from 1568 to
4218, SD = 695). RT showed a significant relationship with optimality (#(48) =-.72, p <.001),
indicating that the more optimal the overall search strategy, the faster RT in this task (see also

Irons & Leber, 2018a; Li et al., 2022; McKinney et al., 2022; Zhang et al., 2024).

Numerosity Judgment
To assess each participant’s ability to rapidly estimate and compare color subsets, we fitted a
Weibull function to their accuracy rates across all five ratio conditions, plus one theoretical point

(0.5,1) representing the chance level accuracy if the ratio had been set to 1:1. We defined the
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numerosity judgment ability as the threshold at which 75% accuracy was achieved on the fitted
psychometric function. For instance, a score of 1.25 indicates the participant is estimated to
achieve 75% accuracy at a 1.25:1 ratio. Results yielded a mean numerosity judgment ability of

1.28 (Range from 1.07 to 1.69, SD=.14).

Cued search task

For the color cue condition, the mean accuracy was .949 (SD = .045) and the mean RT was 3265
ms (SD = 578). For the subset cue condition, the mean accuracy was .879 (SD = .147) and the
mean RT was 4044 ms (SD = 713). Results revealed a significant difference between these two

conditions in both accuracy (#49) = 3.93, p <.001) and RTs (#(49) = 9.48, p <.001).

Demand selection task

For the Demand Selection task, we assessed participants’ avoidance of the numerosity judgment
task as the percentage choice rate of the low demand alternative (the color cue task) instead of
the high-demand alternative (subset cue task). Across all participants, the average proportion of
trials on which the low-demand alternative was selected was .867 (SD = .231). Forty-six
participants (92%) chose the low-demand alternative more frequently than the high-demand
alternative. The overall choice rates differed significantly from chance level (Wilcoxon signed-
rank test, p <.001, effect size » =.769). The percentage rate of low demand choice over the
course of 50 trials is shown in figure 3A below. A histogram showing the distribution of the
choice rates for each participant was presented in figure 3B. Overall, we observed a strong

avoidance of the numerosity judgment task at the group level.
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Figure 3 A. Group-averaged proportion of the low-demand choice (Red/Blue), plotted by trial number,
during the demand selection task in Experiment 1. B. Histogram of individuals’ low-demand selection
proportion in Experiment 1. R/B = Red/Blue color cue task.

Relationships between measures

We compared how the task measures related to one another. We used traditional null
hypothesis significance testing for all Pearson correlations, and we report Bayes Factors to
characterize relative support for the alternative vs. null hypotheses. Bayes Factors were
computed using the correlationBF function in R package BayesFactor (v0.9.12-4.7; Morey &

Rouder, 2024), using a noninformative prior (prior scale = ultrawide).

We first tested the relationship between numerosity judgment ability (75% threshold) and
ACVS optimality rate, which was not significant (#(48) = -.14, p = .32; BF19 = 0.28). This null
finding is consistent with our previous findings that cognitive abilities are largely independent of

strategy (Irons & Leber, 2018a; Irons & Leber, 2020).

Next, we asked whether individuals’ demand selection rates predicted ACVS optimality.
Specifically, does greater avoidance of the numerosity judgment predict poorer ACVS
optimality? The correlation between these two variables was not significant (#(48) =.03, p

= .81; BF10 = 0.18; see figure 4A).

Furthermore, we examined whether numerosity judgment performance (ratio point at
75% accuracy) predicted demand selection rates; this correlation was non-significant, #(48)

=.01, p=.93; BF10 =0.17; see figure 4B).
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Beyond these three correlational analyses, we performed two exploratory analyses. First,
we assessed the relationship between participants’ numerosity judgment RT and their ACVS
optimality rate. Here, we only consider the RT of the 2:1 ratio condition, for two reasons. First,
all of our included participants performed with high accuracy at this ratio, which avoids potential
impacts of a speed-accuracy tradeoff; second, the numerosity judgment performed with a 2:1
ratio is closely matched to that of the ACVS task. Results showed a nonsignificant negative
correlation between individual’s numerosity judgment RT and their optimality (#(48) =-.17, p

= 23; BF10=0.35).

For the second exploratory analysis, we tested whether the performance difference (in
both RT and accuracy) between the two word-cue search tasks predicted demand selection rates.
Results revealed no significant correlations (RT difference: 7(48) = .15, p = .31; BF10=0.29, see
figure 4C; Accuracy difference: 7(48) =-.19, p = .18; BF19 = 0.41, see figure 4D).

Overall, the most notable findings from these correlational analyses is that we found no
significant relationships between demand selection performance and other variables —
particularly that demand selection behavior did not predict ACVS optimality. This might have
been due to the extreme avoidance of numerosity judgment effort on the individual level. That is,
thirty-six participants (72%) chose the low-demand choice in more than 90% of total trials.
Therefore, this restricted range in preference for such a large group of our participants limits any

potential covariance with other variables. We will revisit this issue in Experiment 2.
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Figure 4. Scatter plots of correlations in Experiment 1 between A. ACVS Optimality and DST
selection proportion to the color cue task; B. Numerosity judgment ability and DST selection
proportion; C. RT differences between two types of word-cue search task and DST selection
proportion; D. Accuracy differences between two types of word-cue search task and DST

selection proportion.

Robustness Check

Since we had to exclude so many participants, we also performed an exploratory analysis to test
the robustness of our main findings. By lowering the accuracy cutoff of the numerosity judgment
task to .8 on the 2:1 ratio condition, data from 25 more participants were included in this
exploratory analysis. All patterns of results were unchanged. In particular, the average proportion
of trials on which the low-demand alternative was selected was .886 (SD = .197), which differed

significantly from chance level (Wilcoxon signed-rank test, p <.001, » =.807). Additionally,
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avoidance of the numerosity judgment task was still not correlated with participants” ACVS

optimality ((73) = .04, p = .75).

Discussion

In Experiment 1, we aimed to test the hypotheses that the sub-optimal strategy in the
ACVS task was related to 1) avoidance of cognitive effort related to the numerosity judgment
process; 2) numerosity judgment ability. Here, we observed a strong preference for the color-
cued search task (low demand choice) in the demand selection task on the group level. This
suggests that the numerosity judgment process might pose a significant obstacle that people aim
to avoid during a visual search task. However, at the individual level, such avoidance did not
correlate with participants’ visual search strategy, which might be due to the ceiling effect of the
extreme avoidance. Additionally, individuals’ numerosity judgment ability, as captured by their
75% accuracy thresholds in a separate task, did not correlate with their optimality either. This
indicates that the observed sub-optimal search behaviors were unlikely to be attributed to the

numerosity judgment ability.

One key limitation of this study was that we observed significant differences in
performance across two types of the cued search task, as the RT was much longer and error rates
higher when performing the subset cue task. Thus, one alternative explanation for such a strong
preference might be due to the avoidance of errors or the preference for a shorter task duration
instead of the avoidance of related numerosity judgment effort (Kool et al., 2010). In this
experiment, for each individual, the difference in the accuracy between the two tasks was not
significantly correlated with the choice rate or RTs. Nevertheless, the large differences in
performance may still explain the avoidance of numerosity judgment task. In Experiment 2, we

aimed to control for this potential confound.

Experiment 2

This experiment was almost identical to Experiment 1, with two main differences: we gave both
types of cued search tasks a 1000-ms preview. Since numerosity judgments might have happened

concurrently with the onset of the display (Hansen et al., 2019), participants may have been
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sensitive to an opportunity cost between the numerosity judgment and search. Specifically, the
participants may not have wanted to be estimating/comparing subsets when they could be
searching instead (had they chosen the color cue task). By introducing the preview, we could
expect that numerosity judgment would be completed before the search onset. This would
produce more comparable RTs across the two types of cues, and it would eliminate the
opportunity cost described above. At the same time, the subjective effort of having to enumerate
the displays — even during the preview period — would still remain in the numerosity cue task and
not the color cue task. As a result, if participants seek to avoid the effort associated with
numerosity judgment, they will favor the color cue task in the demand selection. The second
main difference was that we increased the sample size to obtain greater power to observe

significant correlations among task measures.

Method

Participants
92 individuals (44 men, 46 women, 1 non-binary, 1 unreported) aged 19 — 65 years were
included in experiment 2. All participants were also recruited through the Prolific platform with

the same procedure.

A similar exclusion criterion was applied here with a lowered accuracy cutoff for the
numerosity judgment task to 0.8 at the 2:1 ratio. Additionally, we restricted the accuracy of both
word-cue search tasks to be not lower than 0.8. An additional 73 participants were excluded from
further analysis. This was due to 1) low accuracy on the ACVS task (accuracy lower than 80% or
more than three SD below the group average; N = 28); 2) low accuracy on the numerosity
judgment task trials with the ratio of 1:2 (accuracy lower than 80% or more than three SD below
the group average; N = 36); 3) low accuracy on the word-cue search tasks (accuracy lower than
80% or more than three SD below the group average; N = 9) and unusual reaction time (lower

than three SD below the group average; N = 1).

Stimuli and Procedure
The procedure of this experiment was almost identical to Experiment 1. The main difference was

that we added a 1000 ms preview to both types of word cue search tasks. The preview contained
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the word cue at the center of the stimuli and colored squares without any digits. After 1000 ms,
all digits were presented, and the search commenced. For each condition of the word-cue search

task, participants first received five practice trials followed by a block of 48 trials.

Results

ACVS

Mean accuracy for Standard ACVS was 96.5%. In the analysis of response time (RTs),
we excluded trials in which participants made an incorrect response, as well as trials with RTs
less than 300 or more than three standard deviations of the mean (2.93% of the standard ACVS

trials).

For Standard ACV'S, mean optimality was .643 (Range from .14 to .99, SD = .208) and
mean RT was 2907 ms (Range from 1643 to 4214, SD = 612). RT showed a significant
relationship with optimality (#(90) = -.55, p <.001).

Numerosity judgment
The same Weibull function was fitted measure individuals’ numerosity judgment ability. Results

yielded a mean ratio of 1.27 at a 75% accuracy threshold (Range from 1.08 to 1.56, SD=.11).

Cued search task

While the difference in RT between these two cued search tasks was reduced by the added
preview, there was still a significant difference in RT between the color cue condition (M = 2735
ms, SD = 539) and the subset cue condition (M = 2979ms, SD = 646) (#(91) = 5.45, p <.001).
However, there was no significant difference in accuracy between these two conditions (color

cue M =.958, SD = 0.037; subset cue M =.953, SD = 0.043; 1(91) = 1.22, p = 0.23).

Demand selection task

The percentage choice rate of the low-demand task was .752 (SD = .317). 69 participants
(75%) chose the low-demand choice more frequently. The overall choice rates differed
significantly from the chance level (Wilcoxon signed-rank test, p <.001, » = .584). As in
Experiment 1, we again observed a strong avoidance of the task associated with the high demand

of numerosity judgment effort (see figure 5B).
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Figure 5 A. Group-averaged proportion of the low-demand choice (Red/Blue), plotted by trial number,
during the demand selection task in experiment 2. B. Histogram of individuals’ low-demand selection
proportion in experiment 2. R/B = Red/Blue color cue task.

Relationships between measures

As in Experiment 1, we compared how the task measures related to one another and we
performed the same three correlational analyses. We tested the relationship between numerosity
judgment ability and ACVS optimality first. Results revealed a non-significant relationship
(7(90) = -.04, p = .69; BF1o = 0.14), consistent with our results from Experiment 1. Next, we
asked whether individuals’ demand selection rates predicted ACVS optimality. There was no
significant relationship between participants' optimality and the avoidance of numerosity
judgment effort (#(90) = .09, p = .37; BF10 = 0.19), possibly because many individuals again
showed ceiling-level biases for the low-demand choice (55 participants chose the low-demand
choice in more than 90% of the trials). Furthermore, we examined whether numerosity judgment
performance (ratio point at 75% accuracy) predicted demand selection rates; this correlation was

non-significant, #(90) = .12, p = .69; BFo = 0.26; see figure 6B).

Similarly, we explored the relationship between participants’ RT when doing the numerosity
judgment task ratio of 2:1 and their optimality in ACVS. Results showed a marginally significant
negative correlation between individual’s numerosity judgment RT and their optimality (#(90) =

-.184, p =.079; see figure 7B), although the Bayesian Factor (BF = 0.59) indicated anecdotal
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support of the null hypothesis. We also tested whether the performance difference between the
two word-cue search task predicted demand selection rates. Results revealed no significant
correlations between the RT difference and demand selection rates (#(90) = .07, p = .48; BF0 =
0.16; see figure 6C). However, we did observe a significant correlation between accuracy
difference and individual’s selection rates (#(90) =-.25, p = .01; BF19 = 2.53; see figure 6D),
indicating that participants may have been sensitive to their accuracy differences in the two word

cue search tasks — and that this difference impacted their demand selection.
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Figure 6. Scatter plots of correlations in Experiment 2 between A. ACVS Optimality and DST
selection proportion to the color cue task; B. Numerosity judgment ability and DST selection
proportion; C. RT differences between two types of word-cue search task and DST selection
proportion; D. Accuracy differences between two types of word-cue search task and DST

selection proportion
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Figure 7. The scatter plots of numerosity judgment RT of ratio condition 2:1 and ACVS
optimality for A) Experiment 1 (N =50; »(48) =-.17, p = .23); B) Experiment 2 (N = 92; »(90) =
-.184, p=.079).

Discussion

In Experiment 2, we sought to control for the alternative hypothesis of Experiment 1
results that the decisions made in the demand selection task were influenced by participants’
performance such as RTs (Bogacz et al., 2006) and accuracy (Kool et al., 2010). Here, we gave
both cued search tasks a preview stage to keep participants’ performance at a similar level. The
preview did indeed largely reduce the performance differences between the two tasks, and the
majority of participants still showed a strong preference for the color cue task, albeit to a slightly
lesser extent than Experiment 1. Notably, we still observed a significant RT difference between
the numerosity and color cue search tasks, but this difference did not predict individuals' choice
rate of the low-demand alternative. Conversely, while there was no significant accuracy
difference between the two cued search tasks, individuals' sensitivity to accuracy somewhat
related to their demand selection choices, albeit only explaining 6% of the total variation in
individuals' selection proportion. Overall, these results support the conclusion that demand
selection preference was not solely driven by the performance differences but rather the

avoidance of numerosity judgment effort.
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In this experiment, we also investigated whether individuals’ numerosity judgment ability
influences their choice of visual search strategies. Similar to the findings in Experiment 1, we
found no significant correlations between numerosity judgment ability and ACV'S optimality.
However, with this larger sample size, we observed a small but significant negative correlation
between individuals’ RT when doing the numerosity judgment task, particularly in the condition
of ratio 2:1, and their ACVS optimality. This may suggest that an individual’s choice of search
strategy would be influenced by how quickly they can execute all the necessary processes
involved in that strategy. If it takes too much time, even if their performance is comparable to

others, individuals may still avoid using that strategy as it may confer reduced benefits.

General discussion

Goal-directed attentional control is complex. The range of our attentional control abilities has
been studied comprehensively, but strategy has been the focus of much less research. In this
project, we made modifications to the Adaptive Choice Visual Search task to study people’s
visual search strategies and explore why they are frequently suboptimal (Lee & Anderson, 2023).
We attempted to uncover specific cognitive effort components people avoid when doing the
ACVS task. Here, we focused on one such component that is essential for achieving the optimal
search strategy: the numerosity judgment (Hansen et al., 2019). We used a numerosity judgment
task with a similar display setting to the ACVS task to measure people’s numerosity judgment
ability, and we used the demand selection task (Kool et al., 2010) to capture people’s avoidance
of numerosity judgment effort. We investigated how numerosity judgment avoidance relates to

visual search strategies in the ACVS task.

Our results showed that, at the group level, people did overwhelmingly avoid numerosity
judgment effort. Even in Experiment 2, where participants showed largely similar performance
in both cued-search tasks, most of them stuck with choosing the low-demand task choice (color-
cue search task) and avoided doing the numerosity judgment when given the choice.
Furthermore, such avoidance was not driven by people’s numerosity judgment ability, as
individuals who were good at the numerosity judgment still showed a preference to avoid it. Our

results demonstrated that the numerosity judgment process required some level of effort, leading
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people to tend to avoid it. However, the restricted variation in our data that was due to extreme
avoidance in the DST by many participants may have limited our ability to further explore any
possible relationship between effort avoidance and choice of visual search strategy (reflected in
ACVS optimality) on the individual level; thirty-six participants (72%) chose the low-demand
choice on more than 90% of total trials in Experiment 1 and 55 participants (60%) chose the low-

demand choice on more than 90% of the trials in Experiment 2.

To address the issue of restricted variance and further investigate whether numerosity
judgment avoidance might predict ACVS optimality, we conducted two exploratory analyses.
First, we removed those individuals who predominantly chose the color cue task (more than 90%
of trials) and reexamined the relationship between ACVS optimality and DST choice rate. We
focused on Experiment 2 (which had a larger sample), and we were able to include 37
participants included in this analysis. We found a moderately negative, albeit non-significant
relationship (#(35)=-.32, p =.053). The directionality of this relationship is consistent with the
notion that greater demand avoidance predicts lower ACVS optimality. Second, we compared
the optimality between people with a high preference (>90%) for the color cue task (N=55) and
people with a high preference (>90%) for the numerosity cue task (NV=8). Results revealed a
difference in the predicted direction, although it did not reach significance (preferred color cue M
= .65, preferred numerosity cue M =.79, t(61) = 1.89, p = .063, d = 0.71). Both of these
exploratory analyses suggest a potential negative impact of the avoidance of numerosity
judgment effort on participants’ search strategies in ACVS, although further, higher-powered,

follow-up studies are warranted.

We also did not find a relationship between individual’s numerosity judgment ability, as
derived from performance on a separate psychometric task, and their optimality in visual search.
This suggests that suboptimal behavior is unlikely due to limitations in ability, such as accurately
identifying the smaller color subset in our paradigm. However, in Experiment 2, we observed a
weak correlation between individual’s numerosity judgment RT and their ACVS optimality. This
suggests that individuals' strategy choices may depend on their execution speed. If they are too
slow, even with comparable accuracy, they might avoid the strategy, which may relate to

realizing smaller gains during the ACVS task. Nonetheless, given the exploratory nature of the
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analysis and the inconsistency between Experiment 1 and Experiment 2, we are cautious not to

overinterpret the results.

Beyond its relevance to visual search strategy, this study also offers a new insight into the
process of numerosity judgment. While previous research has shown that it is highly efficient
(Ariely, 2001; Chong & Treisman, 2003; Halberda et al., 2006), it is apparently not effortless.
Further, this work shows that we cannot safely assume an individual will use a cognitive capacity
just because they can. Research on the use of numerosity judgment to solve real world visual
challenges may better quantify how frequently individuals actually make use of their robust

ability to enumerate.

Although our work shows that people avoided numerosity judgment effort, we are
cautious to conclude that only numerosity judgment-related effort determines strategy choice in
the ACVS task. Some work in progress in our lab has found that people were inclined to use the
optimal strategy when they were required to make an explicit decision regarding which color
subset to search for, which potentially indicates that cognitive effort related to decision-making —
not just numerosity judgment, per se — also influences strategy choice (Irons & Leber, 2018b).
Furthermore, we have found that explicit instruction on the optimal strategy also increases
optimality (Irons & Leber, 2018b; Zhang et al., 2024). Thus, the role of explicit knowledge
appears to be important, although it is possible that avoidance of the effort required to discover

more optimal strategies is a key factor.

The failure to definitively link individual differences in numerosity judgment effort with
strategy choice places an important limitation on what we can conclude from this work. Unlike
the individual differences we have previously observed in overall strategy choice, which were
quite stable and showed high test-retest reliability (Irons & Leber, 2018a; Clarke et al., 2020),
cognitive effort may be hard to quantify at the individual level. The demand selection task has
shown great power in detecting effort avoidance at the group level (Kool et al., 2010; Pauszek,
2019) and revealing preference for one form of expected uncertainty over others (Pauszek et al.,
2021). Even more, it has shown potential to investigate individual differences in self-control
costs (Kool et al., 2013). But, as mentioned in the discussion of Experiment 1, such avoidance

was so extreme in our study that we could barely observe any variance across individuals. Some
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argue that the design of the demand selection task creates an intense experimental situation,
which strongly impacts participants' behavior and minimizes individual variations (Strobel et al.,
2020). Others have questioned whether the demand selection task is suitable for capturing
general preference for cognitive effort investment at the individual level (Juvina et al., 2018),
while others have suggested that with a slight modification, the demand selection task can reveal
individual differences in effort discounting (Westbrook et al., 2013; Westbrook et al., 2019;
Strobel et al., 2020). Thus, future work may focus more on how to quantitatively capture
individual variation in effort avoidance and link it back to strategy choice. Further, when
investigating the effort-based account of suboptimal visual search behavior, one should not
overlook the cognitive effort carried by search itself (Anderson & Lee, 2023). Future work may
pay close attention to the tradeoff between different types of effort involved in the optimal search
strategy, such as numerosity judgment effort and search effort. Moreover, pupillary response has
been advocated as a reliable indicator of cognitive effort involved in different control tasks
(Porter et al., 2007; van der Wel, & van Steenbergen, 2018; Pauszek, 2019), which may serve as
a powerful tool for capturing effort factors at the individual level. If reliable differences in
pupillary responses can be observed across multiple strategy conditions, this method may expand

our understanding of people’s choices of the visual search strategy.

While the accuracy difference between the two word-cue search task types had a minor
impact on participants' choice rates in DST during Experiment 2, we did not detect any other
factors influencing the selection choice rate. However, one might speculate that the cue word
itself influenced participants' choices, as the cue word "large" may be associated with a negative
affective appraisal, compared to "small." When choosing this numerosity cue task, participants
had an equal chance of receiving either cue word. Thus, this issue should theoretically be less
significant as the effects of the two cues balance each other out. Nevertheless, we acknowledge
that the cue words used in our experiments may have elicited negative feelings and could have

exaggerated the avoidance of the numerosity cue task.

In conclusion, this study provides novel evidence that strategy use could be driven by
effort avoidance. Effort in a single task is not a unitary construct. Here, we focused on the
numerosity judgment effort and find that it appears to matter. These results fit parsimoniously

with previous work showing that subjective evaluation of effort influences strategy use (Irons &
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Leber, 2018a; Irons & Leber, 2020). Additionally, these findings lay the foundation for
developing an effort-based account of strategy use. Future work will further explore individual

variation in how effort guides attentional control strategy.
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