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Abstract

This is the second in a series of papers on standard monomial theory
and invariant theory of arc spaces. For any algebraically closed field K,
we construct a standard monomial basis for the arc space of the Pfaffian
variety over K. As an application, we prove the arc space analogue of
the first and second fundamental theorems of invariant theory for the
symplectic group.

1. Introduction

1.1. Invariant theory. Given an algebraically closed field K, an alge-

braic group G over K, and a finite-dimensional G-module W , a fundamen-

tal problem in invariant theory is to describe the ring of invariant polyno-

mial functions K[W ]G. It is natural to also consider K[V ]G, where V =

W⊕p
⊕

W ∗⊕q is the direct sum of p copies of W and q copies of the dual

G-module W ∗. In Weyl’s terminology [18], a first fundamental theorem of

invariant theory (FFT) for the pair (G,W ) is a generating set for K[V ]G, and

a second fundamental theorem (SFT) for (G,W ) is a generating set for the

ideal of relations among the generators of K[V ]G. When charK = 0, if G

is one of the classical groups and W is the standard module, the FFTs and

SFTs are due to Weyl [18]. The analogous results in arbitrary characteristic

were proven much later by de Concini and Procesi using standard monomial

theory [4].
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In this paper, we consider the case where G is the symplectic group. For

an even integer h, let W = K⊕h be equipped with a non-degenerate, skew-

symmetric bilinear form given by w =
∑h/2

i=1 dz2i−1 ∧ dz2i. Then

Sph(K) = {A ∈ SLh(K)| A preserves w}

is the symplectic group over K. For p ≥ 1, let V = W⊕p be the direct sum of

p copies of W . The affine coordinate ring of V is

K[V ] = K[a
(0)
il | 1 ≤ i ≤ p, 1 ≤ l ≤ h].

Theorem 1.1 (FFT and SFT for Sph(K) and W = K⊕h).

(1) The ring of invariants K[V ]Sph(K) is generated by

X(0)
uv =

h/2∑
i=1

(a
(0)
u2i−1a

(0)
v2i − a

(0)
v2i−1a

(0)
u2i), 1 ≤ u, v ≤ p.

(2) The ideal of relations among the generators in (1) is generated by the

Pfaffians

(1.1) P

⎛
⎜⎜⎜⎜⎝

X
(0)
u1u1 X

(0)
u1u2 · · · X

(0)
u1uh+2

X
(0)
u2u1 X

(0)
u2u2 · · · X

(0)
u2uh+2

...
...

...
...

X
(0)
uh+2u1 X

(0)
uh+2u2 · · · X

(0)
uh+2uh+2

⎞
⎟⎟⎟⎟⎠ , 1 ≤ ui < ui+1 ≤ p.

1.2. Standard monomials and Pfaffian varieties. Standard mono-

mial theory was initiated by Seshadri, Musili and Lakshmibai [8–10,17], gen-

eralizing earlier work of Hodge [6]. It involves combinatorial bases for the

coordinate rings of Schubert varieties inside quotients of classical groups by

parabolic subgroups. In this paper, we only need the case of Pfaffian varieties.

For a positive integer p, let

(1.2) R = Rp = Z[x(0)
uv | 1 ≤ u, v ≤ p]/(x(0)

uv + x(0)
vu , x

(0)
uu )

be the ring of polynomial functions with integer coefficients on the space of

p × p skew-symmetric matrices. Consider the Pfaffian P (B) of the skew-

symmetric matrix

(1.3) B =

⎛
⎜⎜⎜⎜⎝
x
(0)
u1u1 x

(0)
u1u2 · · · x

(0)
u1uh

x
(0)
u2u1 x

(0)
u2u2 · · · x

(0)
u2uh

...
...

...
...

x
(0)
uhu1 x

(0)
uhu2 · · · x

(0)
uhuh

⎞
⎟⎟⎟⎟⎠ ,
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with 1 ≤ ui < ui+1 ≤ p and h ∈ 2Z≥0. Throughout this paper, we will

represent P (B) by the ordered h-tuple |uh, . . . , u2, u1|. There is a partial

ordering on the set of these Pfaffians given by

|uh, . . . , u2, u1| ≤ |u′
h′ , . . . , u′

2, u
′
1| if h′ ≤ h, ui ≤ u′

i.

R has a standard monomial basis (cf. [11]) with respect to this partially or-

dered set; the ordered products A1A2 · · ·Ak of Pfaffians Ai with Ai ≤ Ai+1

form a basis of R.

Similarly, let R[h] be the ideal of R generated by the Pfaffians of the di-

agonal h× h-minors, which are precisely the elements of the form (1.1) with

h+ 2 replaced by h. Let

(1.4) Rh = R/R[h+ 2].

ThenRh has a basis consisting of ordered productsA1A2 · · ·Ak of the Pfaffians

Ai with |h, . . . , 2, 1| ≤ Ai ≤ Ai+1.

For an arbitrary algebraically closed field K, let SMp = SMp(K) be

the affine space of p × p skew-symmetric matrices with entries in K. The

affine coordinate ring K[SMp] is obtained from R by base change, that is,

K[SMp] = R ⊗Z K. Let K[SMp][h] be the ideal generated by the Pfaffi-

ans of the diagonal h × h minors. The Pfaffian variety Pfh = Pfh(K) is

a closed subvariety of SMp with K[SMp][h] as the defining ideal. Then for

an even integer h, the affine coordinate ring K[Pfh] = K[SMp]/K[SMp][h]

has a standard monomial basis: the ordered products of A1A2 · · ·Ak with

|h − 2, . . . , 2, 1| ≤ Ai ≤ Ai+1 form a basis of K[Pfh]. For G = Sph(K) and

V as in Theorem 1.1, we have V �Spk(K) = SpecK[V ]Sph(K) ∼= Pfh+2. The

proof of Theorem 1.1 in [4] makes use of this standard monomial basis. The

key is to consider an integral form of K[V ], namely, Z[a
(0)
il ] for 1 ≤ i ≤ p and

1 ≤ l ≤ h, and show that the natural map Rh → Z[a
(0)
il ] is injective. After

tensoring with K, this yields an injective map K[Pfh+2] → K[V ] whose im-

age is precisely K[V ]Sph(K). A uniform treatment of these results for all the

classical results using standard monomial theory can be found in the book

[11] of Lakshmibai and Raghavan.

1.3. Arc spaces. Given an irreducible scheme X of finite type over K,

the arc space J∞(X) is defined as the inverse limit of the finite jet schemes

Jn(X) [5]. By Corollary 1.2 of [2], it is determined by its functor of points:

for every K-algebra A, we have a bijection

Hom(SpecA, J∞(X)) ∼= Hom(SpecA[[t]], X).

If G is an algebraic group over K, J∞(G) is again an algebraic group over K.

If V is a finite-dimensional G-module, there is an induced action of J∞(G) on



604 ANDREW R. LINSHAW AND BAILIN SONG

J∞(V ). The quotient morphism V → V � G induces a morphism J∞(V ) →
J∞(V � G), so we have a morphism

(1.5) J∞(V ) � J∞(G) → J∞(V � G)

and the corresponding ring homomorphism

(1.6) K[J∞(V � G)] → K[J∞(V )]J∞(G).

In the case K = C, if G is connected and V � G is smooth, it was shown in

[12] that (1.6) is an isomorphism, and under some additional hypotheses this

also holds when V � G is a complete intersection. In general, (1.6) is neither

injective nor surjective.

1.4. Standard monomials for arc spaces. Let

(1.7) R = Rp = Z[x(k)
uv | 1 ≤ u, v ≤ p, k ≥ 0]/(x(k)

uv + x(k)
vu , x

(k)
uu ),

with a derivation ∂ characterized by ∂x
(k)
uv = (k+1)x

(k+1)
uv . It can be regarded

as the ring of polynomial functions with integer coefficients on the arc space

of p× p skew-symmetric matrices; in particular, K[J∞(SMp)] ∼= R⊗Z K.

Let R[h] be the ideal of R generated by the Pfaffians of the diagonal h×h

minors in the form of (1.3) and their normalized derivatives 1
n!∂

nP (B). Let

Rh = R/R[h + 2]. Let Jr be the set of Pfaffians of the matrices of the form

of (1.3) with h ≤ r and their normalized derivatives 1
n!∂

nP (B). Note that R

and Rh are naturally subrings of R and Rh, respectively. In Section 2, we will

define a notion of standard monomial on Jh that extends the above notion

on Rh, and in Section 3 we will prove the following result.

Theorem 1.2. For an even integer h, Rh has a Z-basis given by the stan-

dard monomials of Jh.

The proof is based on a technical result (Lemma 2.8) whose proof is quite

long and is deferred to Section 6.

Let J∞(Pfh+2) be the arc space of the Pfaffian variety Pfh+2. Then the

affine coordinate ring K[J∞(Pfh+2)] is Rh⊗ZK, so we immediately have the

following corollary.

Corollary 1.3. K[J∞(Pfh+2)] has a K-basis given by the standard mono-

mials of Jh.

1.5. Application in invariant theory. Our main application of Theo-

rem 1.2 is to prove the arc space analogue of Theorem 1.1. As above, for an

even integer h ≥ 2, let Sph(K) be the symplectic group over K, W = K⊕h

its standard representation, and V = W⊕p the sum of p copies of W . Then

K[J∞(V )] = K[a
(k)
il | 1 ≤ i ≤ p, 1 ≤ l ≤ h, k ∈ Z≥0],

which has an induced action of J∞(Sph(K)). Theorem 1.4 is the arc space

analogue of Theorem 1.1 and is proved in Section 4.
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Theorem 1.4. Let X
(k)
uv = ∂̄k

∑h/2
i=1(a

(0)
u2i−1a

(0)
v2i−a

(0)
v2i−1a

(0)
u2i) for 1 ≤ u, v ≤

p, where ∂̄k = 1
k!∂.

(1) The ring of invariants K[J∞(V )]J∞(Sph(K)) is generated by X
(k)
uv .

(2) The ideal of relations among the generators in (1) is generated by

(1.8) ∂̄kP

⎛
⎜⎜⎜⎜⎝

X
(0)
u1u1 X

(0)
u1u2 · · · X

(0)
u1uh+2

X
(0)
u2u1 X

(0)
u2u2 · · · X

(0)
u2uh+2

...
...

...
...

X
(0)
uh+2u1 X

(0)
uh+2u2 · · · X

(0)
uh+2uh+2

⎞
⎟⎟⎟⎟⎠ , 1 ≤ ui < ui+1 ≤ p.

(3) K[J∞(V )]J∞(Sph(K)) has a K-basis given by standard monomials of

Jh.

Corollary 1.5. For all h ≥ 1 and p ≥ 1, the map K[J∞(V � Sph(K))] →
K[J∞(V )]J∞(Sph(K)) given by (1.6) is an isomorphism. In particular,

J∞(V ) � J∞(Sph(K)) ∼= J∞(V � Sph(K)).

Corollary 1.5 generalizes Theorem 4.5 of [12], which is the case K = C and

p ≤ h + 2. A similar result was proven in [13] for the general linear group

GLk(K). The approach in this paper is similar to [13] but more involved since

we need a result of Bardsley and Richardson [1] which provides a version of

the Luna slice theorem in arbitrary characteristic.

Theorem 1.4 has significant applications to vertex algebras which are devel-

oped in [3,14,15]. First, it provides a complete description of certain cosets of

affine vertex algebras inside free field algebras that are related to the classical

Howe pairs. This implies the classical freeness of the simple affine vertex (su-

per)algebras Lk(ospm|2n) for integers k,m, n ≥ 0 satisfying −m
2 +n+k+1 > 0.

Next, for any smooth manifold X in either the algebraic, complex analytic

or smooth settings, the chiral de Rham complex Ωch
X is a sheaf of vertex al-

gebras on X that was introduced by Malikov, Schechtman and Vaintrob in

[16]. Theorem 1.4 is essential in the description of the vertex algebra of global

sections Γ(X,Ωch
X ) for a d-dimensional compact Kähler manifold X with ho-

lonomy group Sp(d2 ). This algebra is isomorphic to the simple small N = 4

superconformal algebra with central charge 3d, and is an important building

block in the structure of Γ(X,Ωch
X ) for an arbitrary compact Ricci-flat Kähler

manifold X [14].
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2. Standard monomials

Fix an integer p ≥ 1 and recall the ring

R = Z[x(k)
uv | 1 ≤ u, v ≤ p, k ≥ 0]/(x(k)

uv + x(k)
vu , x

(k)
uu ),

with derivation ∂ given on generators by ∂x
(k)
uv = (k + 1)x

(k+1)
uv . As above,

this is an integral version of the coordinate ring of the arc space of the space

SMp of p× p skew-symmetric matrices, i.e., K[J∞(SMp)] = R⊗Z K for any

field K.

For l ≥ 0, we have the lth normalized derivation ∂̄l = 1
l!∂

l on R. It satisfies

∂̄lx
(k)
ij = Cl

k+lx
(k+l)
ij ∈ R, where for k, n ∈ Z≥0,

Ck
n =

{
n!

k!(n−k)! , 0 ≤ k ≤ n;

0, otherwise.

The following propositions are easy to verify.

Proposition 2.1. For any a, b ∈ R,

∂̄l(ab) =
l∑

i=0

∂̄ia ∂̄l−ib,

and ∂̄la ∈ R.

Proposition 2.2. For a skew-symmetric matrix B of the form in equation

(1.3) with h = 2l,

(2.1) ∂̄nP (B) =
∑

n1+···+nl=n
ni∈Z≥0

∑
σ

sign(σ)

l!2l
x(n1)
uσ(1)uσ(2)

x(n2)
uσ(3)uσ(4)

· · ·x(nl)
uσ(h−1)uσ(h)

.

The second summation is over all permutations σ of 1, 2, . . . , h and sign(σ) is

the sign of the permutation.

2.1. Generators. Recall that the Pfaffian P (B) of the matrix B in (1.3)

is represented by the ordered h-tuple |uh, . . . , u2, u1| with 1 ≤ ui < ui+1 ≤ p

and h ∈ 2Z≥0. Similarly, let

(2.2) J = ∂̄n|uh, . . . , u2, u1|

represent ∂̄nP (B) ∈ R, the nth normalized derivative of P (B). For conve-

nience, we use the notation ∂̄0|uh, . . . , u2, u1| instead of |uh, . . . , u2, u1| when
n = 0, and we shall call such expressions ∂̄-lists throughout this paper. We

call wt(J) = n the weight of J and call sz(J) = h the size of J . Let J be the

set of these ∂̄-lists and

Jh = {J ∈ J |sz(J) ≤ h}
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be the set of elements in J with size less than or equal to h. Let E be the set

of ordered h-tuples of ordered pairs of the form

(2.3) E = |(uh, kh), . . . , (u2, k2), (u1, k1)|

with 1 ≤ ui ≤ p, ui 	= uj if i 	= j and ki ∈ Z≥0. Let

‖E‖ = ∂̄n|uσ(h), . . . , uσ(2), uσ(1)| ∈ J .

Here n =
∑

ki, and σ is the permutation of 1, 2, . . . , h such that uσ(i) <

uσ(i+1). Let

wt(E) = wt(‖E‖), sz(E) = sz(‖E‖).
Let

Eh = {E ∈ E| sz(E) ≤ h}.
For J ∈ J , let

E(J) = {E ∈ E| ‖E‖ = J}.
Note that the Pfaffians represented by J form a set of generators of R, and

each J ∈ J can be represented by an element of the set E(J).
2.2. Ordering. For any set S, let M(S) be the set of ordered products of

elements of S. If S is an ordered set, we order the set M(S) lexicographically,
that is,

S1S2 · · ·Sm ≺ S′
1S

′
2 · · ·S′

n

if Si = S′
i, i < i0, with Si0 ≺ S′

i0 or i0 = m+ 1, n > m.

We order M(Z), the set of ordered products of integers, lexicographically.

There is an ordering on the set J :

∂̄k|uh, . . . , u2, u1| ≺ ∂̄k′ |u′
h′ , . . . , u′

2, u
′
1|

if

• h′ < h;

• h′ = h and k < k′; or

• h′ = h, k = k′ and uh · · ·u1 ≺ u′
h · · ·u′

1. Here we order the words of

natural numbers lexicographically.

We order the pairs (u, k) ∈ Z≥0 × Z≥0 by

(u, k) ≤ (u′, k′) if k < k′ or k = k′ and u ≤ u′.

There is a partial ordering on the set E :

|(uh, kh), . . . , (u1, k1)| ≤ |(u′
h′ , k′h′), . . . , (u′

1, k
′
1)|
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if h′ ≤ h and (ui, ki) ≤ (u′
i, k

′
i) for 1 ≤ i ≤ h′. Finally, there is an ordering on

E :
|(uh, kh), . . . , (u1, k1)| ≺ |(u′

h′ , k′h′), . . . , (u′
1, k

′
1)|

if

• h > h′;

• h = h′ and
∑

ki <
∑

k′i; or

• h = h′,
∑

ki =
∑

k′i and

(uh, kh) · · · (u1, k1) ≺ (u′
h′ , k′h′) · · · (u′

1, k
′
1).

Here we order the words of Z≥0 × Z≥0 lexicographically.

Lemma 2.3. If E ≤ E′, then ‖E‖ ≺ ‖E′‖.
Proof. If sz(E′) < sz(E) or sz(E) = sz(E′) and wt(E) < wt(E′), then

‖E‖ ≺ ‖E′‖.
If sz(E) = sz(E′) and wt(E) = wt(E′), we must have ki = k′i . So ui ≤ u′

i,

we have ‖E‖ ≺ ‖E′‖. �
2.3. Relations. In the previous notation of the ∂̄-list ∂̄k|uh, . . . , u1|, we

require ui < ui+1. To describe their relations, we extend this notation

∂̄k|uh, . . . , u1| to any 1 ≤ ui ≤ p. ∂̄k|uh, . . . , u1| still represents ∂̄kP (B)

with B in equation (1.3) without the requirement ui < uj . Thus we have two

obvious relations:

∂̄k|uh, . . . , u1| = 0

if there is 1 ≤ i < j ≤ h such that ui = uj and

∂̄k|uσ(h), . . . , uσ(2), uσ(1)| = sign(σ)J

for a ∂̄-list J ∈ J of (2.2) and a permutation σ of 1, 2, . . . , h.

Lemma 2.4. For 0 ≤ k < s, and h′ ≥ s+ 1, we have

∑
σ

1

h!s!
sign(σ)∂̄0|uσ(h+s), . . . , uσ(s+1)|

× ∂̄k|u′
h′ , . . . , u′

s+1, uσ(s), . . . , uσ(1)| ∈ R[h+ 2].

Here the summation is over all permutations σ of 1, 2, . . . , h+ s.

Proof. It is easy to see that

∂̄0|uh, . . . , u1| =
h∑

i=2

(−1)ix
(0)
1,i ∂̄

0|uh, . . . , ui+1, ui−1, . . . , u2|,(2.4)

∂̄1|uh, . . . , u1|(2.5)

=
∑

1≤i<j≤h

(−1)i+j+1x
(1)
i,j ∂̄

0|uh, . . . , uj+1, uj−1, . . . , ui+1, ui−1, . . . , u1|.
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Let l′ = h′/2. For 0 ≤ k < s,

∂̄k|u′
h′ , . . . , u′

s+1, uσ(s), . . . , uσ(1)|(2.6)

=
∑

k1+···+kl′=k

∑

σ′

sign(σ′)

l′!2l′
x
(k1)
σ′(uσ(1))σ

′(uσ(2))
· · ·x(kl′ )

σ′(u′
h′−1

)σ′(u′
h′ )

=

h′∑

j=s+1

s∑

i=1

x
(0)

uσ(i)u
′
j
fij,σ +

∑

1≤i<j≤s

x(0)
uσ(i)uσ(j)

gij,σ +
∑

1≤i<j≤s

x(1)
uσ(i)uσ(j)

hij,σ .

Here fij,σ, gij,σ, hij,σ ∈ R, and if σ1 is a permutation of 1, 2, . . . , s and σ2 is

a permutation of s+ 1, . . . , h+ s, then

x(0)
uσ(i)u

fiu,σ = sign(σ1)x
(0)
uσ(i)u

fσ−1
1 (i)u,σσ1σ2

,

x(0)
uσ(i)uσ(j)

gij,σ = sign(σ1)x
(0)
uσ(i)uσ(j)

gσ−1
1 (i)σ−1

1 (j),σσ1σ2
,

x(1)
uσ(i)uσ(j)

hij,σ = sign(σ1)x
(1)
uσ(i)uσ(j)

hσ−1
1 (i)σ−1

1 (j),σσ1σ2
.

We can also require that if σ3 is a permutation of i, s + 1, . . . , h + s, fiu,σ =

fiu,σσ3
and if σ4 is a permutation of i, j, s + 1, . . . , h + s, gij,σ = gij,σσ4

,

hij,σ = hij,σσ4
. So by equations (2.4), (2.5) and (2.6),

∑
σ

1

h!s!
sign(σ)∂̄0|uσ(h+s), . . . , uσ(s+1)| ∂̄k|u′

h′ , . . . , u′
s+1, uσ(s), . . . , uσ(1)|

=
∑
σ

sign(σ)

h!s!

h′∑
j=s+1

s∑
i=1

−1

h+ 1
∂̄0|uσ(h+s), . . . , uσ(s+1), uσ(i), u

′
j | fij,σ

+
∑
σ

sign(σ)

h!s!

∑
1≤i<j≤s

1

(h+ 1)
∂̄0|uσ(h+s), . . . , uσ(s+1), uσ(j), uσ(i)| gij,σ

+
∑
σ

sign(σ)

h!s!

∑
1≤i<j≤s

1

(h+ 1)(h+ 2)

× ∂̄1|uσ(h+s), . . . , uσ(s+1), uσ(j), uσ(i)|hij,σ

=
h′∑

j=s+1

∑
σ(h+s)>···>σ(s)
σ(s−1)>···>σ(1)

− sign(σ)∂̄0|uσ(h+s), . . . , uσ(s+1), uσ(s), u
′
j | fsj,σ

+
∑

σ(h+s)>···>σ(s)
σ(s−2)>···>σ(1)

∂̄0|uσ(h+s), . . . , uσ(s+1), uσ(s), uσ(s−1)| gij,σ

+
∑

σ(h+s)>···>σ(s−1)
σ(s−2)>···>σ(1)

− sign(σ)∂̄0|uσ(h+s), . . . , uσ(s+1), uσ(s), uσ(s−1)|hij,σ

∈ R[h+ 2]. �
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Lemma 2.5. For i, j, h, h′, k0,m ∈ Z≥0 with h ≥ h′, i ≤ h, j ≤ h′ and

k0 ≤ m, let l0 = i + j − h − 1. Given any integers ak for k0 ≤ k ≤ k0 + l0,

there are integers ak in the range 0 ≤ k < k0, and k0 + l0 < k ≤ m, such that

(2.7)
m∑

k=0

ak
∑
σ

1

i!j!
sign(σ)∂̄m−k|uh, . . . , ui+1, σ(ui), . . . , σ(u1)|

× ∂̄k|u′
h′ , . . . , u′

j+1, σ(u
′
j), . . . , σ(u

′
1)| ∈ R[h+ 2].

Here the second summation is over all permutations σ of ui, . . . , u1, u
′
j , . . . , u

′
1

and sign(σ) is the sign of the permutation.
For simplicity, we write equation (2.7) in the following way:

(2.8)
∑

εak∂̄
m−k|uh, . . . , ui+1, ui, . . . , u1|∂̄k|u′

h′ , . . . , u′
j+1, u

′
j , . . . , u

′
1| ∈ R[h+ 2].

Remark 2.6. Since the second summation in equation (2.7) is over all

permutations, each monomial in the equation will appear i!j! times, and the

coefficient of each monomial will be ±ak.
Proof of Lemma 2.5. Let

Fl(uh, . . . , ui+1;u
′
h′ , . . . , u′

j+1) =
∑

σ

sign(σ)

i!j!
∂̄0|uh, . . . , ui+1, σ(ui), . . . , σ(u1)|

× ∂̄l|u′
h′ , . . . , u′

j+1, σ(u
′
j), . . . , σ(u

′
1)|.

We have

Fl(uh, . . . , ui;u
′
h′ , . . . , u′

j+1) = Fl(uh, . . . , ui+1;u
′
h′ , . . . , u′

j+1)

±Fl(uh, . . . , ui+1;u
′
h′ , . . . , u′

j+1, ui).

If i = h and 0 ≤ l ≤ l0, by Lemma 2.4, Fl( ;u
′
h′ , . . . , u′

j+1) ∈ R[h + 2]. By

induction on h− i, we can see that Fl(uh, . . . , ui+1;u
′
h′ , . . . , u′

j+1) ∈ R[h+2].

Thus
m∑

k=0

Cl
k

∑
σ

sign(σ)

i!j!
∂̄m−k|uh, . . . , ui+1, σ(ui), . . . , σ(u1)|

× ∂̄k|u′
h′ , . . . , u′

j+1, σ(u
′
j), . . . , σ(u

′
1)

= ∂̄m−lFl(uh, . . . , ui+1;u
′
h′ , . . . , u′

j+1) ∈ R[h+ 2].

Now the (l0+1)×(l0+1) integer matrix with entries cji = Ci
k0+j , 0 ≤ i, j ≤ l0

is invertible since the determinant of this matrix is ±1. Let bij ∈ Z be the

entries of the inverse matrix. Let ak =
∑l0

l=0

∑l0
j=0C

l
kbl,jak0+j . So the left-

hand side of equation (2.7) equals

l0∑
l=0

l0∑
j=0

bl,jak0+j ∂̄
m−lFl(uh, . . . , ui+1;u

′
h′ , . . . , u′

j+1) ∈ R[h+ 2]. �
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2.4. Standard monomials. Now we give the definition of standard

monomials of J .

Definition 2.7. An ordered product E1E2 · · ·Em of elements of E is said

to be standard if

(1) Ea ≤ Ea+1, 1 ≤ a < m;

(2) E1 is the largest in E(‖E1‖) under the order ≺; and

(3) Ea+1 is the largest in E(‖Ea+1‖) such that Ea ≤ Ea+1.

An ordered product J1J2 · · ·Jm of elements of J is said to be standard if

there is a standard ordered product E1E2 · · ·Em such that Ei ∈ E(Ji).
Let SM(J ) ⊂ M(J ) be the set of standard monomials of J . Let SM(E) ⊂

M(E) be the set of standard monomials of E . Let SM(Jh) = M(Jh) ∩
SM(J ) be the set of standard monomials of Jh. Let SM(Eh) = M(Eh) ∩
SM(E) be the set of standard monomials of Eh.

By Definition 2.7, if J1J2 · · · Jm is standard, the standard monomial E1 · · ·
Em ∈ SM(E) corresponding to J1 · · · Jm is unique and E1 has the form

|(uh, wt(E1)), (uh−1, 0), . . . , (u1, 0)| ∈ E

with ui < ui+1. Therefore the map

πh : SM(Eh) → SM(Jh), E1E2 · · ·Em �→ ‖E1‖‖E2‖ · · · ‖Em‖

is a bijection.

We order M(J ), the set of ordered products of elements of J , lexicograph-

ically. Lemma 2.8 will be proved later in Section 6.

Lemma 2.8. If J = J1 · · · Jb ∈ M(J ) is not standard, J can be written as

a linear combination of elements of M(J ) preceding J1 · · ·Jb−1, with integer

coefficients.

Recall that R[h] denotes the ideal generated by J ∈ J with sz(J) = h,

and Rh = R/R[h + 2]. If h ≥ p, then Jh = J and Rh = R. By Lemma 2.8,

we immediately have the following lemma.

Lemma 2.9. Any element of Rh can be written as a linear combination

of standard monomials of Jh with integer coefficients.

Proof. We only need to show that any element of R can be written as a

linear combination of standard monomials of J with integer coefficients. If

the lemma is not true, there must be a smallest element J ∈ M(J ), which

cannot be written as a linear combination of elements of SM(J ) with integer

coefficients. So J is not standard. By Lemma 2.8, J =
∑

α ±Jα with Jα ∈
M(J ) and Jα ≺ J . Since Jα can be written as a linear combination of

elements of SM(J ) with integer coefficients, J can also be written as such a

linear combination, which is a contradiction. �
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3. A canonical basis

3.1. A ring homomorphism. Let

Sh = {a(k)il | 1 ≤ i ≤ p, 1 ≤ l ≤ h, k ∈ Z≥0},

and let

(3.1) B = Z[Sh],

the polynomial ring generated by Sh. Note that for a field K, if W = K⊕h

and V = W⊕p, the affine coordinate ring K[J∞(V )] is obtained from B by

base change, i.e., K[J∞(V )] ∼= B⊗Z K.

Let ∂ be the derivation onB given by ∂a
(k)
ij = (k+1)a

(k+1)
ij , and let ∂̄ = 1

k!∂

as before. We have a ring homomorphism

Q̃h : R → B, x(k)
uv �→ ∂̄k

h/2∑
i=1

(a
(0)
u2i−1a

(0)
v2i − a

(0)
v2i−1a

(0)
u2i).

For any J ∈ J with sz(J) > h, we have Q̃h(J) = 0, so Q̃h induces a ring

homomorphism

(3.2) Qh : Rh → B.

3.2. Tableaux. Let S̃h=Sh ∪ {∗}. We define an ordering on the set S̃h:

for a
(k)
ij , a

(k′)
i′j′ ∈ Sh, a

(k)
ij < ∗ and a

(k)
ij ≤ a

(k′)
i′j′ if kij ≺ k′i′j′.

We use tableaux to represent the monomials of B. Let T be the set of the

following tableaux:

(3.3)

∣∣∣∣∣∣∣
y1,h, · · · , y1,2, y1,1

...

ym,h, · · · , ym,2, ym,1

∣∣∣∣∣∣∣ .

Here ys,l are some a
(k)
il or ∗, every row of the tableau has elements in Sh and

ys,j ≤ ys+1,j . We use tableau (3.3) to represent a monomial in B, which is

the product of a
(k)
ij

′
s in the tableau. It is easy to see that the representation

is a one-to-one correspondence between T and the set of monomials of B. We

associate to tableau (3.3) the word

y1,h · · · y1,1y2,h · · · y2,1 · · · ym,h · · · ym,1

and order these words lexicographically. For a polynomial f ∈ B, let Ld(f)

be its leading monomial in f under the order we defined on T .
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For Ei = |(ui
h1
, kih1

), . . . , (ui
2, k

i
2), (u

i
1, k

i
1)| ∈ E , 1 ≤ i ≤ m, we use a tableau

to represent E1 · · ·Em ∈ SM(E):

(3.4)

∣∣∣∣∣∣∣∣∣

(u1
h1
, k1h1

), · · · , (u1
2, k

1
2), (u

1
1, k

1
1)

(u2
h2
, k2h2

), · · · , (u2
2, k

2
2), (u

2
1, k

2
1)

...

(um
hm

, kmhm
), · · · , (um

2 , km2 ), (um
1 , km1 )

∣∣∣∣∣∣∣∣∣
.

Let T : SM(Jh) → T with

T (E1 · · ·Em) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∗, · · · , ∗, a(k
1
h1

)

u1
h1

h1
, · · · , a(k

1
1)

u1
11

∗, · · · , ∗, a(k
2
h2

)

u2
h2

h2
, · · · , a(k

2
1)

u2
11

...

∗, · · · , ∗, a(k
m
hm

)

um
hm

hm
, · · · , a(k

m
1 )

um
1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Obviously, T is an injective map and T (E) ≺ T (E′) if E ≺ E′.

Lemma 3.1. Let J1 · · ·Jm ∈ SM(Jh) and E1 · · ·Em ∈ SM(Eh) be its

associated standard monomial. Assume the tableau representing E1 · · ·Em

is (3.4). Then the leading monomial of Qh(J1 · · ·Jm) is represented by the

tableau T (E1E2 · · ·Em). Thus

Ld ◦Qh = T ◦ π−1
h : SM(Jh) → T

is injective. The coefficient of the leading monomial of Qh(J1 · · · Jm) is ±1.

Proof. Let Wm be the monomial corresponding to the tableau T (E1 · · ·
Em). Let

Mm = a
(km

hm
)

um
hm

hm
· · · a(k

m
1 )

um
1 1

be the monomial corresponding to the tableau T (Em). Then Wm =

Wm−1Mm. Let lm = hm

2 . By a direct calculation,

Qh(Jm) =
∑

±a
(k1)
um
σ(1)

2s1−1a
(k2)
um
σ(2)

2s1
a
(k3)
um
σ(3)

2s2−1a
(k4)
um
σ(4)

2s2

· · · a(khm−1)
um
σ(hm−1)

2slm−1a
(khm )
um
σ(hm)

2slm
.

The summation is over all ki ≥ 0 with
∑

ki = wt(Em), all si with 1 ≤ s1 <

s2 < · · · < slm ≤ h/2 and all permutations σ of 1, 2, . . . , hm.

We prove the lemma by induction on m. If m = 1, the lemma is obviously

true. Assume it is true for J1 · · ·Jm−1. Then Ld(Qh(J1 · · · Jm−1)) = Wm−1,

the monomial corresponding to T (E1 · · ·Em−1), and the coefficient ofWm−1 in

Qh(J1 · · ·Jm−1) is ±1. Mm is one of the monomials in Qh(Jm) with coefficient

±1. All of the monomials in Qh(J1 · · · Jm−1) exceptWn−1 are less than Wn−1,

so any monomial in Qh(J1 · · · Jm−1) except Wn−1 times any monomial in
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Qh(Jm) is less than Wm−1. Since Wm−1 ≺ Wm, the coefficient of Wm in

Qh(J1 · · ·Jm) is not zero. Now

Wm−1 ≺ Wm ≺ Ld(Qh(J1 · · · Jm)).

The leading monomial Ld(Qh(J1 · · ·Jm)) must have the form

W = Wm−1a
(k1)
um
σ(1)

2s1−1a
(k2)
um
σ(2)

2s1
a
(k3)
um
σ(3)

2s2−1a
(k4)
um
σ(4)

2s2

· · · a(khm−1)

um
σ(hm−1)

2slm−1a
(khm )

um
σ(hm)

2slm
.

If some si is greater than hm−1/2, then W ≺ Wn−1. So si ≤ hm−1/2.

We must have a
(ki)
um
i si

≥ a
(km−1

si
)

um−1
si

si
; otherwise, W ≺ Wm−1. If there is some

hm−1/2 ≥ si > lm, then W ≺ Wm. So we can assume si = i. Such mono-

mials in Qh(Jm) are in one-to-one correspondence with E′
m ∈ E(Jm) such

that Em−1 ≤ E′
m. Em is the largest in E(Jm) with Em−1 ≤ Em since E is

standard, so Wm is the leading term of Qh(J1 · · · Jm). The coefficient of Wm

in Qh(J1 · · · Jm) is ±1 since the coefficients of Wm−1 in Qh(J1 · · · Jm−1) and

Mm in Qh(Jm) are ±1. �
Proof of Theorem 1.2. By Lemma 3.1, Ld(Qh(SM(Jh))) are linearly in-

dependent, so SM(Jh) are linearly independent. By Lemma 2.9, SM(Jh)

generates Rh. So SM(Jh) is a Z-basis of Rh. �
Theorem 3.2. Qh : Rh → B is injective. So we may identify Rh with its

image Im(Qh), which is the subring of B generated by ∂̄k
∑h/2

i (a
(0)
u2i−1a

(0)
v2i −

a
(0)
v2i−1a

(0)
u2i). In particular, Qh(SM(Jh)) is a Z-basis of Im(Qh).

Proof. By Lemma 3.1, Ld(Qh(SM(Jh))) are linearly independent. Since

SM(Jh) is a Z-basis of Rh, Qh : Rh → B is injective. �
Since Qh is injective and B is an integral domain, we obtain the following

corollary.

Corollary 3.3. Rh is an integral domain.

4. Application

In this section, we give the main application of our standard monomial

basis, which is the arc space analogue of Theorem 1.1.

4.1. Arc spaces. Suppose that X is a scheme of finite type over K. Its

arc space (cf. [5]) J∞(X) is determined by its functor of points. For every

K-algebra A, we have the bijection

Hom(SpecA, J∞(X)) ∼= Hom(SpecA[[t]], X).
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If i : X → Y is a morphism of schemes, we get a morphism of schemes i∞ :

J∞(X) → J∞(Y ). If i is a closed immersion, then i∞ is a closed immersion.

If i : X → Y is an étale morphism, then we have the Cartesian diagram

J∞(X) → J∞(Y )

↓ ↓
X → Y

.

If X = SpecK[x1, . . . , xn], then J∞(Y ) = SpecK[x
(k)
i |1 ≤ i ≤ n, k ∈ Z≥0].

The identification is made as follows: for a K-algebra A, a morphism φ :

K[x1, . . . , xn] → A[[t]] determined by φ(xi) =
∑∞

k=0 a
(k)
i tk corresponds to a

morphism K[x
(k)
i ] → A determined by x

(k)
i → a

(k)
i . Note that K[x1, . . . , xn]

can be identified with the subalgebra K[x
(0)
1 , . . . , x

(0)
n ] ⊂ K[x

(k)
i ], and from

now on we use x
(0)
i instead of xi.

The polynomial ring K[x
(k)
i ] has a derivation ∂ defined on generators by

(4.1) ∂x
(k)
i = (k + 1)x

(k+1)
i .

It is more convenient to work with the normalized k-derivation ∂̄k = 1
k!∂

k,

but this is a priori not well-defined on K[x
(k)
i ] if charK is positive. But ∂ is

well-defined on Z[x
(k)
i ], and ∂̄k maps Z[x

(k)
i ] to itself, so for any K, there is

an induced K-linear map

(4.2) ∂̄k : K[x
(k)
i ] → K[x

(k)
i ],

obtained by tensoring with K.

If X is the affine scheme SpecK[x
(0)
1 , . . . , x

(0)
n ]/(f1, . . . , fr), then J∞(X) is

the affine scheme

SpecK[x
(k)
i | i = 1, . . . , k ∈ Z≥0]/(∂̄

lfj | j = 1, . . . , r, l ≥ 0).

Indeed, for every f ∈ K[x
(0)
1 , . . . , x

(0)
n ], we have

φ(f) =

∞∑
k=0

(∂̄kf)(a
(0)
1 , . . . , a(k)n ) tk.

It follows that φ induces a morphism K[x
(0)
1 , . . . , x

(0)
n ]/(f1, . . . , fr) → A[[t]] if

and only if

(∂̄kfi)(a
(0)
1 , . . . , a(k)n ) = 0 for all i = 1, . . . , r, k ≥ 0.

If Y is the affine scheme SpecK[y
(0)
1 , . . . , y

(0)
m ]/(g1, . . . , gs), a morphism P :

X → Y gives a ring homomorphism P ∗ : K[Y ] → K[X]. Then the induced
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homomorphism of arc spaces P∞ : J∞(X) → J∞(Y ) is given by

P ∗
∞(y

(k)
i ) = ∂̄kP ∗(y

(0)
i ).

In particular, P ∗
∞ commutes with ∂̄k for all k ≥ 0.

4.2. Arc space of the Pfaffian variety. Recall that the space SMp of

skew-symmetric p× p matrices over K has affine coordinate ring

K[SMp] = K[x
(0)
ij | 1 ≤ i, j ≤ p]/(x

(0)
ij + x

(0)
ji , x

(0)
ii ) = R⊗Z K,

where R is given by (1.2). The Pfaffian variety Pfh is the subvariety of SMp

determined by the ideal K[SMp][h] generated by the Pfaffians of all diagonal

h-minors, so

K[Pfh] = K[SMp]/K[SMp][h] = Rh−2 ⊗Z K,

where Rh−2 is given by (1.4). Similarly, recall that

K[J∞(SMp)] = K[x
(k)
ij | 1 ≤ i, j ≤ p]/(x

(k)
ij + x

(k)
ji , x

(0)
ii ) = R⊗Z K.

Then

K[J∞(Pfh)] = K[J∞(SMp)]/K[J∞(SMp][h− 2] ∼= Rh−2 ⊗Z K.

Proof of Corollary 1.3. By Theorem 1.2, SM(Jh−2) is a Z-basis of Rh−2.

So it is a K-basis of K[J∞(Pfh)]. �
Recall the map Qh : Rh → B given by (3.2), which extends to a map

(4.3) QK
h : K[J∞(Pfh+2)] → K[J∞(V )],

where K[J∞(Pfh+2)] and K[J∞(V )] are identified with Rh⊗ZK and B⊗ZK,

respectively, and QK
h = Qh ⊗ Id.

Theorem 4.1. QK
h is injective, so we may identify K[J∞(Pfh+2)] with

the subring Im(QK
h ) of K[J∞(V )]. In particular, K[J∞(Pfh+2)] is integral.

Proof. By Lemma 3.1, Ld(Qh(SM(Jh))) are linearly independent. By

Corollary 1.3, SM(Jh) is aK-basis ofRh, so Q
K
h is injective. SinceK[J∞(V )]

is integral, so is K[J∞(Pfh+2)]. �
In general, if charK = 0, the arc space of an integral scheme is irreducible

[7] but it may not be reduced. Pfh(K) is an example whose arc space is

integral.

4.3. Principal G-bundles. Let G be an algebraic group over K. If G

acts morphically on an algebraic variety X, then we say that X is a G-variety.

An affine G-variety X is a principal G-bundle in the étale topology if, for

every x ∈ X � G, there is an étale neighborhood V → X of x such that

V ×X/G X ∼= V × G as G-varieties. The following proposition is from [1] by

P. Bardsley and R. W. Richardson.
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Proposition 4.2. Let X be an affine G-variety. Then X is a principal

G-bundle in the étale topology if and only if for every x in X, the orbit G · x
is separable and the stabilizer Gx is trivial.

The group structure G × G → G induces the group structure on its arc

space

J∞(G)× J∞(G) → J∞(G).

So J∞(G) is an algebraic group. For a G-variety X, the action G ×X → X

induces the action of J∞(G) on J∞(X):

J∞(G)× J∞(X) → J∞(X).

The quotient map X → X �G induces morphisms J∞(X) → J∞(X �G) and

πX : J∞(X) � J∞(G) → J∞(X � G).

Proposition 4.3. If X is a principal G-bundle in the étale topology and

X � G is smooth, then πX is an isomorphism.

Proof. For any étale morphism V → X � G with V ×X�G X ∼= V × G as

G-varieties, we have Cartesian diagrams

J∞(V ) → J∞(X � G)

↓ ↓
V → X � G

and

J∞(V )× J∞(G) → J∞(X)

↓ ↓
V ×G → X

↓ ↓
V → X � G

.

So J∞(V ) → J∞(X � G) is an étale morphism and

J∞(V )×J∞(X�G) J∞(X) � J∞(G) ∼= (J∞(V )×J∞(X�G) J∞(X)) � J∞(G)

∼= (V ×X�G J∞(X)) � J∞(G)

∼= J∞(V )× J∞(G) � J∞(G)

∼= J∞(V ).

If πX is not an isomorphism, there is an étale morphism V → X � G such

that V ×X�G X ∼= V ×G as G-varieties and πV : J∞(V )×J∞(X�G) J∞(X) �

J∞(G) → J∞(V ) is not an isomorphism. But V ×X�G J∞(X �G) ∼= J∞(V ),

which is a contradiction. �
4.4. Invariants for the arc space of the symplectic group action.

Let G = Sph(K) be the symplectic group over K, W = K⊕h its standard

representation, and V = W⊕p. Recall that V has affine coordinate ring

K[V ] = K[a
(0)
il | 0 ≤ i, j ≤ p, 1 ≤ l ≤ h].

The action of G on V induces an action of J∞(G) on the affine coordinate

ring

K[J∞(V )] = K[a
(k)
il | 0 ≤ i, j ≤ p, 1 ≤ l ≤ h, k ∈ Z≥0],
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which is identified with B⊗Z K, where B is given by (3.1).

If p ≥ h, let Δ = QK
h (|h, . . . , 1|), and let K[J∞(V )]Δ and Im(QK

h )Δ be the

localization of K[J∞(V )] and Im(QK
h ) at Δ.

Lemma 4.4. If p ≥ h,

K[J∞(V )]
J∞(Sph(K))
Δ = Im(QK

h )Δ.

Proof. Let K[V ]Δ be the localization of K[V ] at Δ and VΔ = SpecK[V ]Δ.

By Theorem 1.1, the ring of invariants K[V ]Sph is generated by QK
h (x

(0)
uv ), so

the affine coordinate ring of J∞(VΔ�G) is isomorphic to Im(QK
h )Δ. To prove

the lemma, we only need to show that πVΔ
: J∞(VΔ)�J∞(G) ∼= J∞(VΔ �G).

By Proposition 4.2, VΔ is a principal bundle in the étale topology, and by

Proposition 4.3, πVΔ
is an isomorphism. �

Theorem 4.5. K[J∞(V )]J∞(Sph(K)) = Im(QK
h ).

Proof. If p ≥ h, we regard K[J∞(V )] and Im(QK
h )Δ as subrings of

K[J∞(V )]Δ. By Lemma 4.4, we have

K[J∞(V )]J∞(Sph(K)) = K[J∞(V )] ∩ Im(QK
h )Δ.

Now for any f ∈ K[J∞(V )] ∩ Im(QK
h )Δ, f = g

Δn , with Δnf = g ∈ Im(QK
h ).

The leading monomial of g is

Ld(g) = (a
(0)
11 · · · a(0)hh )

nLd(f)

with coefficient C0 	= 0. Since g ∈ Im(QK
h ), there is a standard monomial

J ∈ SM(Jh), with Ld(Qh(J)) = Ld(g). Since J has the factor |h, . . . , 1|n,
Qh(J) has the factor Δn. Thus f − C0

QK
h (J)
Δn ∈ K[J∞(V )] ∩ Im(QK

h )Δ with

a lower leading monomial and
QK

h (J)
Δn ∈ Im(QK

h ). By induction on the lead-

ing monomial of f , f ∈ Im(QK
h ), so K[J∞(V )] ∩ Im(QK

h )Δ = Im(QK
h ), and

K[J∞(V )]J∞(Sph(K)) = Im(QK
h ).

More generally, let V ′ = W⊕p+h where W = K⊕h as before. Its arc space

has affine coordinate ring

K[J∞(V ′)] = K[a
(k)
il | 0 ≤ i, j ≤ p+ h, 1 ≤ l ≤ h, k ∈ Z≥0],

which contains K[J∞(V )] as a subalgebra, and has an action of J∞(G). By

the above argument, K[J∞(V ′)]J∞(G) is generated by

X(k)
uv = ∂̄k

h/2∑
i=1

(a
(0)
u2i−1a

(0)
v2i − a

(0)
v2i−1a

(0)
u2i).

Let I be the ideal of K[J∞(V ′)] generated by a
(k)
il with i > p. Then

K[J∞(V ′)] = K[J∞(V )]⊕ I.
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Note that K[J∞(V )] and I are J∞(G)-invariant subspaces of K[J∞(V ′)], and

K[J∞(V ′)]J∞(G) = K[J∞(V )]J∞(G) ⊕ IJ∞(G).

If i > p or j > p, then X
(k)
ij ∈ IJ∞(G), so

K[J∞(V )]J∞(G) ∼= K[J∞(V ′)]J∞(G)/IJ∞(G)

is generated by X
(k)
ij , 1 ≤ i, j ≤ p. Therefore K[J∞(V )]J∞(G) = Im(QK

h ), as

claimed. �
Proof of Theorem 1.4. By Theorems 4.1 and 4.5,

K[J∞(V )J∞(Sph(K)) = Im(QK
h ) ∼= K[J∞(Pfh+2)].

�
Proof of Corollary 1.5. This is immediate from Theorem 1.4 because V �

Sph(K) is isomorphic to the Pfaffian variety Pfh+2. �

5. Some properties of standard monomials

By the definition of standard monomials, if E1E2 · · ·En ∈ SM(E), then
Ei+1 is the largest element in ‖E(Ei+1)‖ such that Ei ≤ Ei+1. In this section,

we study the properties of ‖E(Ei+1)‖ and Ei+1 that need to be satisfied to

make E1E2 · · ·En a standard monomial.

Let

E = |(uh, kh), . . . , (u1, k1)| ∈ E ,

J ′ = ∂̄n′ |u′
h′ , . . . , u′

1| ∈ J .

5.1. L(E, J ′). For h′ ≤ h, let σ be the permutation of {1, 2, . . . , h′} such

that uσ(i) < uσ(i+1). Let L(E, J ′) be the smallest non-negative integer i0 such

that u′
i ≥ uσ(i−i0), i0 < i ≤ h′. Let

E(h′) = |(uh′ , kh′), . . . , (u1, k1)|.

Then L(E, J ′) = L(E(h′), J ′).

Lemma 5.1 is obvious.

Lemma 5.1. For J ′′ = ∂̄k|u′′
h′ , . . . , u′′

1 | ∈ J , if there are at least s elements

in {u′′
h′ , . . . , u′′

1} from the set {u′
h′ , . . . , u′

1}, then L(E, J ′′) ≥ L(E, J ′)−h′+s.
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5.2. A criterion for J ′ to be greater than E. We say J ′ is greater

than E if there is an element E′ ∈ E(J ′) with E ≤ E′. Then J ′ is greater

than E if and only if J ′ is greater than E(h′). Lemma 5.2 is a criterion for J ′

to be greater than E.

Lemma 5.2. J ′ is greater than E if and only if wt(J ′) − wt(E(h′)) ≥
L(E, J ′).

Proof. Let i0 = L(E, J ′) and σ be the permutation of {1, 2, . . . , h′} such

that uσ(i) < uσ(i+1) .

If wt(J ′)− wt(E(h′)) ≥ L(E, J ′), let

ũ′
σ(i) =

{
u′
i+i0

, σ(i) + i0 ≤ h′

u′
i+i0−hb

, i+ i0 > h′ ,

k′σ(i) =

{
kσ(i), i+ i0 ≤ h′, i 	= h′

kσ(i) + 1, i+ i0 > h′, i 	= h′ ,

k′σ(h′) = wt(J ′)−
h′−1∑
i=1

k′σ(i).

Then

k′σ(h′) = wt(J ′)− wt(E(h′))− i0 + kσ(h′) + 1− δ0i0 ≥ kσ(h′) + 1− δ0i0 ,

(ũ′
σ(i), k

′
σ(i)) ≥ (uσ(i), kσ(i)).

So

Ẽ′ = |(ũ′
h′ , k′h′), . . . , (ũ′

2, k
′
2), (ũ

′
1, k

′
1)|

is an element in E(J ′) with Ẽ′ ≥ E.

On the other hand, suppose Ẽ′ ∈ E(J ′) with Ẽ′ ≥ E. Assume

Ẽ′ = |(ũ′
h′ , k′h′), . . . , (ũ′

2, k
′
2), (ũ

′
1, k

′
1)|.

We have (ũ′
i, k

′
i) ≥ (ui, ki) i.e., k

′
i > ki or k

′
i = ki, ũ

′
i ≥ ui. So

h′∑
i=1

(k′i − ki) + �{ũ′
i ≥ ui, i|1 ≤ i ≤ h′} ≥ h′.

Let i′0 = h′ − �{ũ′
i ≥ ui, i|1 ≤ i ≤ h′}. Then

i′0 ≤
h′∑
i=1

(k′i − ki) = wt(J ′)− wt(E(h′)).

Here ũ′
1, . . . , ũ

′
h′ is a permutation of u′

1, . . . , u
′
h′ . By the definition of i′0, it is

easy to see that u′
i ≥ uσ(i−i′0)

, i′0 < i ≤ h′. So i′0 ≥ L(E, J ′). Thus

wt(J ′)− wt(E(h′)) ≥ i′0 ≥ L(E, J ′).

�
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Corollary 5.3. J ′ is greater than E if and only if ‖E(h′)‖J ′ is standard.

Proof. By Lemma 5.2, J ′ is greater than E if and only if wt(J ′) −
wt(E(h′)) ≥ L(E, J ′) and ‖E(h′)‖J ′ is standard if and only if wt(J ′) −
wt(E(h′)) ≥ L(E(h′), J ′) = L(E, J ′). �

5.3. The property “largest”. Let

Ws(E, J ′) = {J = ∂̄k|u′
is . . . u

′
i1 | | 1 ≤ il ≤ h′, J is greater than E}.

Lemma 5.4. If E′ is the largest element in E(J ′) such that E ≤ E′, then

for s < h′, ‖E′(s)‖ is the smallest element in Ws(E, J ′).

Proof. Assume

E′ = |(u′
h′ , k′h′), . . . , (u′

2, k
′
2), (u

′
1, k

′
1)|.

For s < h′, let Js be the smallest element in Ws(E, J ′). Let

Es = |(u′
is
, k̃s), . . . , (u

′
i2
, k̃2), (u

′
i1
, k̃1)|

be the largest element in E(Js) such that E(s) ≤ Es.

Assume l is the largest number such that (u′
j , k

′
j) = (u′

ij
, k̃j) for j < l ≤

s+1. If l ≤ s, then il ≥ l and (u′
il
, k̃l) 	= (u′

l, k
′
l). If il = l, by the maximality of

E′ and the minimality of Js, we must have (u′
il
, k̃l) = (u′

l, k
′
l), a contradiction.

So il > l.

If (u′
il
, k̃l) < (u′

l, k
′
l), then (u′

l, k
′
l + k′il − k̃l) > (u′

il
, k′il). Let E′′ be the

element in E(J ′) obtained by replacing (u′
l, k

′
l) and (u′

il
, k′il) in E′ by (u′

il
, k̃l)

and (u′
l, k

′
l + k′il − k̃l), respectively. We have E′ ≺ E′′ and E(h′) ≤ E′′. But

E′ 	= E′′ is the largest element in E(‖E′‖) such that E ≤ E′, which is a

contradiction.

Assume (u′
il
, k̃l) > (u′

l, k
′
l). If l /∈ {i1, . . . , is}, replacing (u′

il
, k̃l) in Es by

(u′
l, k

′
l), we get E′

s with E(s) ≤ E′
s and ‖E′

s‖ ≺ Js. This is impossible since

Js 	= ‖E′
s‖ is the smallest element in Ws(E, ‖E′‖). If l = ij ∈ {i1, . . . , is},

(u′
il
, k̃l + k̃j − k′l) > (u′

ij
, k̃j). Let E′

s be the element in E(Js) obtained by

replacing (u′
il
, k̃l) and (u′

ij
, k̃j) in Es by (u′

l, k
′
l) and (u′

il
, k̃l + k̃j − k′l), respec-

tively. We have Es ≺ E′
s and E ≤ E′

s. But E
′
s 	= Es is the largest element in

E(Js) such that E ≤ E′
s, a contradiction. Therefore Es = E′(s), and ‖E′(s)‖

is the smallest element in Ws(E, J ′). �
Corollary 5.5. If E′ is the largest element in E(‖E′‖) such that E ≤ E′,

then for s < h′,

L(E, ‖E′(s)‖) = wt(E′(s))− wt(E(s)).

Proof. Since E ≤ E′, E ≤ E′(s). By Lemma 5.4, ‖E′(s)‖ is the small-

est element in Ws(E, J ′). By Lemma 5.2, L(E, ‖E′(s)‖) = wt(E′(s)) −
wt(E(s)). �
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Corollary 5.6. If E′ is the largest element in E(‖E′‖) such that E ≤ E′,

then for s < h′ and any J ∈ Ws(E, ‖E′‖),

L(E, ‖E′(s)‖) ≤ L(E, J).

Proof. Assume J = ∂̄k|us, . . . , u1| and ‖E′(s)‖ = ∂̄l|u′
s, . . . , u

′
1|. If m =

L(E, J)−L(E, ‖E′(s)‖) < 0, let J ′′ = ∂̄l+m|us, . . . , u1|. By Lemma 5.2, J ′′ ∈
Ws(E, J ′). By Lemma 5.4, ‖E′(s)‖ is the smallest element in Ws(E, ‖E′‖).
But wt(‖E′(s)‖) > wt(J ′′), a contradiction. �

Lemma 5.7. Let Ei = |(ui
hi
, kihi

), . . . , (ui
1, k

i
1)|, i = a, b. Suppose that

Eb ≤ Ea, and that Ea is the largest element in E(‖Ea‖) such that Eb ≤ Ea.

Let 1 ≤ h < ha and σi be permutations of {1, . . . , h} such that ui
σi(1)

<

ui
σi(2)

< · · · < ui
σi(h)

. Let u′
1, . . . , u

′
ha

be a permutation of ua
1 , . . . , u

a
ha

such

that u′
1 < u′

2 < · · · < u′
ha
. Assume u′

i2
= ua

σ(i1)
with i2 > i1. Then for any

K = ∂̄k|uh, . . . , us+1, u
′
ts , . . . u

′
t1 |

with t1 < t2 < · · · < ts < i2, we have L(Eb,K) > L(Eb, ‖Ea(h)‖) + s− i1.

Proof. Let n = wt(Ea(h)). Let i0 = L(Eb,K), then u′
ti ≥ ub

σb(i−i0)
for

s ≥ i > i0. Let i
′
0 = L(Eb, ‖Ea(h)‖), then ua

σa(i)
≥ ub

σb(i−i′0)
for h ≥ i > i′0.

We have i1 > i′0. Otherwise, i1 ≤ i′0. Replacing ua
σa(i1)

in ‖Ea(h)‖ by some

ua
i < ua

σa(i1)
with i > h (such ua

i exists since i2 > i1), we get

J = ∂̄n|ua
σ′
a(h)

, . . . , ua
σ′
a(i1+1) u

a
i , u

a
σ′
a(i1−1), . . . , u

a
σ′
a(1)

|

with L(Eb, J) ≤ i′0. By Lemma 5.2, J is greater than Eb. It is impossible by

Lemma 5.4 since J ≺ ‖Ea(h)‖ and Ea is the largest element in E(‖Ea‖) such
that Eb ≤ Ea.

If s ≥ i1, let

J ′ = ∂̄n|ua
σa(h)

, . . . , ua
σa(i1+1), u

′
ts , . . . , u

′
ts−i1+1

|.

If L(Eb,K) ≤ L(Eb, ‖Ea(h)‖) + s− i1, then

u′
ti ≥ ub

σb(i−i0)
≥ ub

σb(i−i′0−s+i1)
for i ≤ s.

We have L(Eb, J
′) ≤ i′0. By Lemma 5.2, J ′ is greater than Eb. By Lemma 5.4,

it is impossible since J ′ ≺ ‖Ea(h)‖ and Ea is the largest element in E(‖Ea‖)
such that Eb ≤ Ea. So when s ≥ i1, L(Eb,K) ≥ L(Eb, ‖Ea‖) + s− i1.

If s < i1, let t
′
1 < t′2 < · · · < t′i1 < i2 with {t1, . . . , ts} ⊂ {t′1, . . . , t′i1}. Let

K ′ = ∂̄k|u′
t′1
, . . . , u′

t′i1
, ui1+1, . . . , uh|.

By Lemma 5.1, we have

L(Eb,K) ≥ L(Eb,K
′) + s− i1 ≥ L(Eb, ‖Ea(h)‖) + s− i1.

So for any s > 0, we have L(Eb,K) > L(Eb, ‖Ea(h)‖) + s− i1. �
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Lemmas 5.8 and 5.9 are obvious.

Lemma 5.8. If J1 ≺ J2 ≺ · · · ≺ Jn, σ is a permutation of {1, . . . , n}, then

J1J2 · · · Jn ≺ Jσ(1) · · ·Jσ(n).

Lemma 5.9. If K1K2 · · ·Kk ≺ J1 · · ·Jl, then

K1K2 · · ·Ks−1JKs · · ·Kk ≺ J1 · · · Js−1JJs · · · Jl.

6. Proof of Lemma 2.8

In this section, we prove Lemma 2.8. By Lemma 5.8, we can assume the

monomials are expressed as ordered products J1J2 · · · Jb with Ja ≺ Ja+1. For

α ∈ M(J ), let

R(α) = {
∑

ciβi ∈ R| ci ∈ Z, βi ∈ M(J ), βi ≺ α, βi 	= α},

the space of linear combinations of elements preceding α inM(J ) with integer

coefficients.

Lemma 6.1. If J1J2 is not standard, then J1J2 ∈ R(J1).

Proof. Assume Ji = ∂̄ni |ui
hi
, . . . , ui

2, u
i
1| for i = 1, 2. Let E1 = |(u1

h1
, n1),

. . . , (u1
1, 0)|. Let i0 = L(E1, J2). If i0 	= 0, there is i0 ≤ i1 ≤ h2 such that

u2
i1

< u1
i1−i0+1. If i0 = 0, let i1 = 0. Let m = n1 + n2 and an2−l = δ0l ,

0 ≤ l ≤ l0 − 1. By Lemma 2.5, there are integers ak such that

(6.1)
∑

εak∂̄
m−k|u1

h1
, . . . , u1

i1−i0+1, u
1
i1−i0 , . . . , u

1
1|

× ∂̄k|u2
h2
, . . . , u2

i1+1, u
2
i1 , . . . , u

2
1| ∈ R[h1 + 2].

(1) If h1 = h2, then n1 ≤ n2. Since J1J2 is not standard, J2 is not greater

than E1. By Lemma 5.2, i0 > n2 − n1 ≥ 0. J1J2 ∈ R(J1) since in

equation (6.1):

• all the terms with k = n2 precede J1 except J1J2 itself;

• all the terms with k = n2 − 1, . . . , n1 vanish since ak = 0;

• all the terms with k = n2 + 1, . . . ,m precede J1 since the weight

of the upper ∂̄-list is m− k < n1;

• all the terms with k = 0, . . . , n1 − 1 precede J1 after exchanging

the upper ∂̄-list and the lower ∂̄-list since the weight of the lower

∂̄-list is k < n1; and

• the terms in R[h1 + 2] precede J1 since they have bigger sizes.
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(2) Suppose h1 > h2. Since J1J2 is not standard, by Lemma 5.2, i0 > n2.

J1J2 ∈ R(J1) since in equation (6.1):

• all the terms with k = n2 precede J1 in the lexicographic order

except J1J2 itself;

• all the terms with k = n2 − 1, . . . , 0 vanish since ak = 0;

• all the terms with k = n2, . . . ,m precede J1 since the weight of

the upper ∂̄-list is m− k < n1; and

• the terms in R[h1 + 2] precede J1 since they have bigger sizes.

�
Proof of Lemma 2.8. We prove the lemma by induction on b. If b = 1, then

J1 is standard. If b = 2, by Lemma 6.1, the lemma is true. For b ≥ 3, assume

the lemma is true for b−1. We can assume J1 · · ·Jb−1 is standard by induction

and Lemma 5.9. Let E1 · · ·Eb−1 ∈ SM(E) be the standard ordered product

of elements of E corresponding to J1 · · ·Jb−1. If J1 · · ·Jb is not standard,

then Jb is not greater than Eb−1. By Lemma 6.2, Jb−1Jb =
∑

Kifi with

Ki ∈ J , fi ∈ R such that Ki is either smaller than Jb−1 or Ki is not greater

than Eb−2. If Ki is smaller than Jb−1, then J1 · · ·Jb−1Kifi ∈ R(J1 · · ·Jb−1).

If Ki is not greater than Eb−2, then J1 · · ·Jb−2Ki is not standard, so it is

in R(J1 · · ·Jb−2) by induction. Then J1 · · · Jb−2Kifi ∈ R(J1 · · · Jb−1). So

J1 · · ·Jb =
∑

J1 · · ·Jb−2Kifi ∈ R(J1 · · ·Jb−1). �
Lemma 6.2. Let E ∈ E , let Ja and Jb in J with Ja ≺ Jb, and suppose

that Ea is the largest element in E(Ja) such that E ≤ Ea. If Jb is not greater

than Ea, then JaJb =
∑

Kifi with Ki ∈ J , fi ∈ R such that Ki is either

smaller than Ja or Ki is not greater than E.

Proof. Assume Ja = ∂̄na |u′
ha
, . . . , u′

1| and Jb = ∂̄nb |ub
hb
, . . . , ub

1|. Ja ≺ Jb,

so ha ≥ hb. Assume ‖Ea(hb)‖ = ∂̄ma |ua
hb
, . . . , ua

1 |. Let m = nb + na. Let

i0 = L(Ea, Jb). If i0 	= 0, there is i0 ≤ i1 ≤ hb such that ub
i1

< ua
i1−i0+1. If

i0 = 0, let i1 = 0. Since Jb is not greater than Ea, by Lemma 5.2,

(6.2) i0 > nb −ma.

By definition, {ua
hb
, . . . , ua

1} is a subset of {u′
ha
, . . . , u′

1} with u′
i < u′

i+1 and

ua
i < ua

i+1. If we assume u′
i2

= ua
i1−i0+1, we have i2 ≥ i1 − i0 + 1.

Now we prove the lemma. The proof is quite long and it is divided into

three cases.

Case 1. ha = hb. Let anb−l = δ0l for 0 ≤ l ≤ i0 − 1. By Lemma 2.5, there

are integers ak such that

(6.3)
∑

εak∂̄
m−k|u′

ha
, . . . , u′

i1−i0+1, u
′
i1−i0 , . . . , u

′
1|

× ∂̄k|ub
hb
, . . . , ub

i1+1, u
b
i1 , . . . , u

b
1| ∈ R[ha + 2].
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JaJb ∈ R(Ja) since in equation (6.3),

• all the terms with k = nb precede Ja in the lexicographic order except

JaJb itself;

• all the terms with k = nb − 1, . . . , na vanish since na = ma, ak = 0;

• all the terms with k = nb + 1, . . . ,m precede Ja since the weight of the

upper ∂̄-list is m− k < na;

• all the terms with k = 0, . . . , na − 1 precede Ja after exchanging the

upper ∂̄-list and the lower ∂̄-list since the weight of the lower ∂̄-list is

k < na; and

• the terms in R[ha + 2] precede Ja since they have bigger sizes.
Case 2. hb < ha and nb < ma. By Lemma 2.5,

(6.4)
∑

0≤i<hb

∑

σ

(−1)i sign(σ)

i!(hb − i)

∑
εai

k∂̄
m−k|u′

ha
, . . . , u′

i+1, u
b
σ(i), . . . , u

b
σ(2), u

b
σ(1)|

× ∂̄k|ub
σ(hb)

, . . . , ub
σ(i+1), u

′
i, . . . , u

′
1| ∈ R[ha + 2].

Here aik are integers and ainb−l = δ0,l for 0 ≤ l < hb − i. The second

summation is over all permutations σ of {1, . . . , hb}. In equation (6.4), the

following hold.

• The terms in R[ha + 2] precede Ja since they have bigger sizes.

• All the terms with k = nb, . . . ,m precede Ja since the weight of the upper

∂̄-list is m− k < na.

• The terms with k = nb are JaJb, and the terms with lower ∂̄-lists

K0 = ∂̄nb |u′
ihb

, . . . , u′
i2 , u

′
i1 | ∈ J .

All of the other terms cancel. By Corollaries 5.5 and 5.6,

L(E,K0) ≥ L(E,Ea(hb)) = ma − wt(E(hb)) > nb − wt(E(hb)).

By Lemma 5.2, K0 is not greater than E.

• The terms with k < nb vanish unless hb − i ≤ nb − k. In this case, these

terms have lower ∂̄-lists

K1 = ∂̄k|ub
σ(hb)

, . . . , ub
σ(i+1), u

′
si , . . . , u

′
s1 |.

By Lemma 5.1,

L(E,K1) ≥ L(E,K0)− (hb − i).

So

L(E,K1) > nb − wt(E(hb))− (hb − i) ≥ k − wt(E(hb)).

By Lemma 5.2, K1 is not greater than E.
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Case 3. ha > hb and nb ≥ ma. If i0 = 0, then Jb is greater than Ea and
J1 · · ·Jb is standard. So i0 > 0. By Lemma 2.5, we have

(6.5)
∑

min{i1,i2}>s

∑

σ

(−1)s sign(σ)

s!(i2 − 1− s)!

m∑

k=0

εas
k∂̄

m−k|u′
ha

, . . . , u′
i2 , u

′
σ(i2−1), . . . , u

′
σ(s+1), u

b
s, . . . , u

b
1|

× ∂̄k|ub
hb
, . . . , ub

i1+1, u
b
i1 , . . . , u

b
s+1, u

′
σ(s), . . . , u

′
σ(1)| ∈ R[ha + 2].

Here ask are integers, asnb−l = δ0,l for 0 ≤ l < i1 − s, and σ are permutations
of {1, . . . , i2 − 1}. Similarly, by Lemma 2.5, we have

∑

i≥i1>s
i2>s

∑

σ,σ1

(−1)i+s+t sign(σ) sign(σ1)

(i− i1)!(hb − i)!s!(i2 − 1− s)!
(6.6)

m∑

k=0

εai,s
k ∂̄n−k|ub

σ(hb)
. . . ub

σ(i) . . . u
b
σ(i1+1), u

b
i1 . . . u

b
1, u

′
ha

. . . u′
hb+1|

× ∂̄k|u′
hb+1, . . . u

′
i2 , u

′
σ1(i2−1), . . . u

′
σ1(s+1), u

′
σ1(s), . . . u

′
σ1(1)| ∈ R[ha + 2].

Here ai,sk are integers, ai,snb−l = δ0,l for 0 ≤ l < (i+ j1−s), σ are permutations

of {hb, . . . , i1 + 1}, and σ1 are permutations of {1, . . . , i2 − 1}.
• We use equation (6.5) when i2 > i1 − i0 + 1;

• We use equation (6.6) when i2 = i1 − i0 + 1.

In the above relations, we have the following.

(1) The terms in R[ha + 2] precede Ja since they have bigger sizes.

(2) All of the terms with k = nb+1, . . . , n precede Ja since the weight of the

upper ∂̄-list is n− k < na.

(3) The terms with k = nb are JaJb, the terms with upper ∂̄-list preceding

Ja (the upper ∂̄-lists are the ∂̄-lists given by replacing some u′
i, i ≥ i2 in

Ja by some ub
k), and the terms with lower ∂̄-list

K0 = ∂̄nb |ub
hb
, . . . , ub

i1+1, u
′
σ1(i1)

, . . . u′
σ1(1)

|.

All of the other terms cancel. By Lemma 5.7,

L(E,K0) > L(E, ‖Ea(h)‖) + i1 − (i1 − i0 + 1).

By the above inequality,

L(E,K0) ≥ L(E, ‖Ea(hb)‖) + i0

(by Corollary 5.5) = wt(Ea(hb))− wt(E) + i0

(by equation (6.2)) > wt(Eb)− wt(E(hb)).

By Lemma 5.2, K0 is not greater than E.
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(4) When i2 > i1 − i0 + 1, the terms with k < nb in equation (6.5) vanish

unless i1 − s ≤ nb − k. In this case, the lower ∂̄-lists of the terms are

K1 = ∂̄k|ub
hb
, . . . , ub

i1+1, u
b
i1 , . . . , u

b
s+1, u

′
σ(s), . . . , u

′
σ(1)|.

The underlined u in K1 can be any underlined u in equation (6.5). By

Lemma 5.7,

L(E,K1) > L(E,Ea(hb)) + s− (i1 − i0 + 1),

L(E,K1) ≥ L(E,Ea(hb)) + k − nb + i0

(by Corollary 5.5) = wt(Ea(hb))− wt(E(hb)) + k − nb + i0

(by equation (6.2)) > k − wt(E(hb)).

By Lemma 5.2, K1 is not greater than E.

(5) When i2 = i1 − i0 + 1, the terms with k < nb are the terms in equation

(6.6) such that i− s ≤ nb − k. In this case, the lower ∂̄-lists of the terms

are

K1 = ∂̄k|u′
hb+1, . . . , u

′
i2 , u

′
σ1(i2−1), . . . , u

′
σ1(s+1), u

′
σ1(s)

, . . . , u′
σ1(1)

|.

The underlined u in K1 can be any underlined u in equation (6.6). Let

K ′
1 = ∂̄k|u′

khb
, . . . , u′

ki2
, u′

σ(i2−1), . . . , u
′
σ(1)|.

Here i2 ≤ ki2 < ki2+1 < · · · < khb
≤ ha. By Lemma 5.1, there is some

K ′
1 such that

(6.7) L(E,K1) ≥ L(E,K ′
1)− (i2 − 1− s)− (i− i1),

since in K1 the number of ub
l with ub

l > u′
i2
is at most i−i1. By Corollary

5.6,

(6.8) L(E,K ′
1) ≥ L(E, ‖Ea(hb)‖).

By equations (6.7) and (6.8),

L(E,K1) ≥ L(E, ‖Ea(hb)‖) + s− (i− i0)

(by Corollary 5.5) ≥ wt(Ea(hb))− wt(E(hb)) + k − nb + i0

(by equation (6.2)) > k − wt(E(hb)).

By Lemma 5.2, K1 is not greater than E. �
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