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Abstract

This is the second in a series of papers on standard monomial theory
and invariant theory of arc spaces. For any algebraically closed field K,
we construct a standard monomial basis for the arc space of the Pfaffian
variety over K. As an application, we prove the arc space analogue of
the first and second fundamental theorems of invariant theory for the
symplectic group.

1. Introduction

1.1. Invariant theory. Given an algebraically closed field K, an alge-
braic group G over K, and a finite-dimensional G-module W, a fundamen-
tal problem in invariant theory is to describe the ring of invariant polyno-
mial functions K[W]®. It is natural to also consider K[V]%, where V =
WP @W*®? is the direct sum of p copies of W and ¢ copies of the dual
G-module W*. In Weyl’s terminology [18], a first fundamental theorem of
invariant theory (FFT) for the pair (G, W) is a generating set for K[V]%, and
a second fundamental theorem (SFT) for (G,W) is a generating set for the
ideal of relations among the generators of K[V]%. When char K = 0, if G
is one of the classical groups and W is the standard module, the FFTs and
SFTs are due to Weyl [18]. The analogous results in arbitrary characteristic
were proven much later by de Concini and Procesi using standard monomial
theory [4].
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In this paper, we consider the case where GG is the symplectic group. For
an even integer h, let W = K®" be equipped with a non-degenerate, skew-
symmetric bilinear form given by w = Zfﬁ dzo;—1 N\ dzo;. Then

Spp(K) ={A € SLy(K)| A preserves w}

is the symplectic group over K. For p > 1, let V = W®? be the direct sum of
p copies of W. The affine coordinate ring of V is

K[V]=K[a"|1<i<p 1<1<h]

Theorem 1.1 (FFT and SFT for Sp,(K) and W = K®").
(1) The ring of invariants K[V]5P»(5) is generated by

h/2
X0 =3y 10l —al) 1)), 1<uv<p.
=1

(2) The ideal of relations among the generators in (1) is generated by the

Pfaffians
0 0 0
o
Xuou Xuou T Xuou
(1.1 P o o ) R I 1<u; <wuipr <p.
0 0 0
Xl(th,)+2u1 Xl(th,)+2u2 e X'l(lh,)+2uh,+2

1.2. Standard monomials and Pfaffian varieties. Standard mono-
mial theory was initiated by Seshadri, Musili and Lakshmibai [8-10,17], gen-
eralizing earlier work of Hodge [6]. It involves combinatorial bases for the
coordinate rings of Schubert varieties inside quotients of classical groups by
parabolic subgroups. In this paper, we only need the case of Pfaffian varieties.
For a positive integer p, let

(1.2) R=R"=Zx3| 1 <uw <pl/ (@) + o), 2(f)

be the ring of polynomial functions with integer coefficients on the space of
p X p skew-symmetric matrices. Consider the Pfaffian P(B) of the skew-
symmetric matrix

(0) (0) (0)

Tuyuy Tuiusg T Tusup

(0) (0) (0)

(13) B | ]
© O O

LTupur  Lupuz Tupup
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with 1 < u; < w41 < p and h € 2Z5>¢. Throughout this paper, we will
represent P(B) by the ordered h-tuple |up,...,us,u1|. There is a partial
ordering on the set of these Pfaffians given by

/! !/ / : / /
[uny -y ug,ur| < Jup, ... ug,uy| iR < hju <l

R has a standard monomial basis (cf. [11]) with respect to this partially or-
dered set; the ordered products AjAs --- Ay of Pfaffians A; with A; < A;44
form a basis of R.

Similarly, let R[h] be the ideal of R generated by the Pfaffians of the di-
agonal h x h-minors, which are precisely the elements of the form (1.1) with
h + 2 replaced by h. Let

(1.4) Ry = R/RIh +2).

Then Ry, has a basis consisting of ordered products Ay As - - - Ay, of the Pfaffians
Ai with ‘h, ey 2, 1| S Az S Ai+1-

For an arbitrary algebraically closed field K, let SM, = SM,(K) be
the affine space of p x p skew-symmetric matrices with entries in K. The
affine coordinate ring K[SM,] is obtained from R by base change, that is,
K[SM,] = R ®z K. Let K[SM,|[h] be the ideal generated by the Pfaffi-
ans of the diagonal A x h minors. The Pfaffian variety Pf, = Pf,(K) is
a closed subvariety of SM, with K[SM,][h] as the defining ideal. Then for
an even integer h, the affine coordinate ring K[Pf,] = K[SM,]/K[SM,][h]
has a standard monomial basis: the ordered products of A;As--- A with
|h—2,...,2,1] < A; < A;41 form a basis of K[Pfp,]. For G = Sp,(K) and
V as in Theorem 1.1, we have V J/ Spi(K) = Spec K[V]3Pn(K) = Pf, .o The
proof of Theorem 1.1 in [4] makes use of this standard monomial basis. The
key is to consider an integral form of K[V], namely, Z[az(?)] for 1 <i <pand
1 <1 < h, and show that the natural map R, — Z[az(?)] is injective. After
tensoring with K, this yields an injective map K[P f4+2] — K[V] whose im-
age is precisely K[V]5P»(K),
classical results using standard monomial theory can be found in the book
[11] of Lakshmibai and Raghavan.

1.3. Arc spaces. Given an irreducible scheme X of finite type over K,
the arc space Joo(X) is defined as the inverse limit of the finite jet schemes
Jn(X) [5]. By Corollary 1.2 of [2], it is determined by its functor of points:
for every K-algebra A, we have a bijection

A uniform treatment of these results for all the

Hom(Spec 4, Joo (X)) = Hom(Spec A[[t]], X).

If G is an algebraic group over K, Jo(G) is again an algebraic group over K.
If V is a finite-dimensional G-module, there is an induced action of J(G) on
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Jo (V). The quotient morphism V' — V // G induces a morphism Jo (V) —
Jo(V | G), so we have a morphism

(1.5) Joo(V) [ Joo(G) = T (V ] G)
and the corresponding ring homomorphism
(1.6) K[Jo(V [ G)] = K[Joo (V)]

In the case K = C, if G is connected and V' // G is smooth, it was shown in
[12] that (1.6) is an isomorphism, and under some additional hypotheses this
also holds when V' J G is a complete intersection. In general, (1.6) is neither
injective nor surjective.

1.4. Standard monomials for arc spaces. Let

(17 R=w =2ZP)|1<uv<p, k>0]/FE + 2, 2f),

with a derivation 0 characterized by 8:1055,) = (k+ l)quZH). It can be regarded

as the ring of polynomial functions with integer coefficients on the arc space
of p x p skew-symmetric matrices; in particular, K[J.(SM,)] = Rz K.

Let R[h] be the ideal of R generated by the Pfaffians of the diagonal h x h
minors in the form of (1.3) and their normalized derivatives 9" P(B). Let
R, = R/R[h + 2]. Let J,. be the set of Pfaffians of the matrices of the form
of (1.3) with & <7 and their normalized derivatives ;0" P(B). Note that R
and Ry, are naturally subrings of R and R}, respectively. In Section 2, we will
define a notion of standard monomial on J;, that extends the above notion
on Ry, and in Section 3 we will prove the following result.

Theorem 1.2. For an even integer h, Ry, has a Z-basis given by the stan-
dard monomials of Jy,.

The proof is based on a technical result (Lemma 2.8) whose proof is quite
long and is deferred to Section 6.

Let Joo(Pfry2) be the arc space of the Pfaffian variety P fr12. Then the
affine coordinate ring K[J (P fri2)] is Ry @z K, so we immediately have the
following corollary.

Corollary 1.3. K[Joo(Pfri2)] has a K-basis given by the standard mono-
mials of Jy,.

1.5. Application in invariant theory. Our main application of Theo-
rem 1.2 is to prove the arc space analogue of Theorem 1.1. As above, for an
even integer h > 2, let Spy,(K) be the symplectic group over K, W = K"
its standard representation, and V = W®? the sum of p copies of W. Then

K[Jow(W)] = K[| 1<i<p, 1<1<h, k€Zs),

which has an induced action of Joo(Spr(K)). Theorem 1.4 is the arc space
analogue of Theorem 1.1 and is proved in Section 4.
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Theorem 1.4. Let Xq(jf,) oF Zh/Q( 1(?2)2 1(15)02)2 afoz 1%2 ) for1 <wu,v <
p, where 0% = %5‘.

(1) The ring of invariants K[Js(V)]7>=EPrK)) js generated by xW.
(2) The ideal of relations among the generators in (1) is generated by

0 0 0
= Xuou Xuou e Xuou
(1.8) 0P :2 ' :2 ’ : 2: S I <wi <wujpr <p.
0 0 0
X7th,)+2ul Xl(bh)-muz e X'l(zbh)_*_ZUh_*_Q

(3) K[Joo(V)]7SPnlE)) has a K -basis given by standard monomials of
Ih-

Corollary 1.5. For allh > 1 and p > 1, the map K[J(V J/ Spn(K))] —
K[Joo (V)] Pn ) given by (1.6) is an isomorphism. In particular,

JOO(V) / JOO(Sph(K)) = JOO(V // Sph(K))-

Corollary 1.5 generalizes Theorem 4.5 of [12], which is the case K = C and
p < h+ 2. A similar result was proven in [13] for the general linear group
GL(K). The approach in this paper is similar to [13] but more involved since
we need a result of Bardsley and Richardson [1] which provides a version of
the Luna slice theorem in arbitrary characteristic.

Theorem 1.4 has significant applications to vertex algebras which are devel-
oped in [3,14,15]. First, it provides a complete description of certain cosets of
affine vertex algebras inside free field algebras that are related to the classical
Howe pairs. This implies the classical freeness of the simple affine vertex (su-
per)algebras Ly (05p,,|2,,) for integers k,m,n > 0 satisfying — 5 +n+k-+1 > 0.
Next, for any smooth manifold X in either the algebraic, complex analytic
or smooth settings, the chiral de Rham complex Qg? is a sheaf of vertex al-
gebras on X that was introduced by Malikov, Schechtman and Vaintrob in
[16]. Theorem 1.4 is essential in the description of the vertex algebra of global
sections I'(X, Q) for a d-dimensional compact Kéhler manifold X with ho-
lonomy group Sp(%). This algebra is isomorphic to the simple small N' = 4
superconformal algebra with central charge 3d, and is an important building
block in the structure of T'(X, Q) for an arbitrary compact Ricci-flat Kéihler
manifold X [14].
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2. Standard monomials
Fix an integer p > 1 and recall the ring
R =21 <uo<p, k>0)/(af) +2),28),

with derivation 9 given on generators by ozl = = (k+ Dz B As above,
this is an integral version of the coordinate ring of the arc space of the space
SM, of p x p skew-symmetric matrices, i.e., K[Jo(SMp)] = R ®z K for any
field K.

For 1 > 0, we have the Ith normalized derivation 9! = %81 on fR. It satisfies

51;5 C;le+la:(k+l) € R, where for k,n € Zx,
ok _ e 0<k<n
! 0, otherwise.

The following propositions are easy to verify.
Proposition 2.1. For any a,b € ‘R,

l
b)=> 9ad b,
i=0

and d'a € R.
Proposition 2.2. For a skew-symmetric matriz B of the form in equation
(1.3) with h = 2,

n - sign(o) - ny) (n2) (n1)
(2.1) 9"P(B) = Z Z 112! “crl(l)“cr(?)x“aim“am) ' 'xualwfl)"a(h)'
ni+--4+n;=n o
n;€ZL>o
The second summation is over all permutations o of 1,2,...,h and sign(o) is

the sign of the permutation.

2.1. Generators. Recall that the Pfaffian P(B) of the matrix B in (1.3)
is represented by the ordered h-tuple |up,...,us,us| with 1 < w; < wjp1 <p
and h € 2Z>¢. Similarly, let

(2.2) J=0"un, ... ug,ul

represent 9" P(B) € R, the nth normalized derivative of P(B). For conve-
nience, we use the notation 0°|up, ..., us,u;| instead of |up, ..., us,u;| when
n = 0, and we shall call such expressions 0-lists throughout this paper. We
call wt(J) = n the weight of J and call sz(J) = h the size of J. Let J be the
set of these O-lists and

T ={J € J|sz(J) < h}
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be the set of elements in J with size less than or equal to h. Let £ be the set
of ordered h-tuples of ordered pairs of the form

(2.3) FE = |(uh,k‘h),...,(u2,l<;2),(u1,k:1)|
with 1 <wu; <p, u; #Zuj if i # j and k; € Z>g. Let
1E|| = 0"tg(n): - - Uo(2)s Uo(ny| € T-

Here n = ) k;, and o is the permutation of 1,2,...,h such that u,) <
uo’(i-‘rl)' Let
wt(E) =wt([[E]),  sz(E) = sz(| E)).

Let

En={E € €| sz(E) < h}.
For J € J, let

W) ={E €l |El=J}
Note that the Pfaffians represented by J form a set of generators of R, and
each J € J can be represented by an element of the set £(.J).

2.2. Ordering. For any set S, let M(S) be the set of ordered products of
elements of S. If § is an ordered set, we order the set M(S) lexicographically,
that is,

S189 -+ 8y, < 8185 S!
if S; = S},i <o, with S;, < Sj, orig=m+1,n>m.
We order M(Z), the set of ordered products of integers, lexicographically.

There is an ordering on the set J:

5k|uha cee ,’ILQ,’LL1| =< 5k/|u;ﬂ,' . .,’U/Q,’U/l‘
if
o I/ < h;
e W/ =hand k <k'; or

o W =h, k=Fk and up---u1 < uj,---uj. Here we order the words of
natural numbers lexicographically.

We order the pairs (u, k) € Z>o X Zx>o by
(u k) < (W', k") ifk <k ork=Fk and u<u'
There is a partial ordering on the set &:

|(uh7kh)="'7(u17k1)| < |(u/h’7k;z’)7"'7(u/17k/1)|
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if B < hand (us, k;) < (uj, k) for 1 <4 < h’. Finally, there is an ordering on
E:
|(uha kh)a ) (ulv k1)| = |(u;1/, k;z/)v RE) (ull’ k/1)|
if
e h>h;
e h=~"h and > k; <> kj; or
e h="n, >k => kK and
(uh7 kh) T (u1> kl) = (u;zh k;z’) e (u/lv k/l)
Here we order the words of Z>( x Z>( lexicographically.
Lemma 2.3. If E < E’', then |E| < ||E].
Proof. If sz(E') < sz(E) or sz(E) = sz(F’') and wt(F) < wt(E’), then
1E] < 1B
If s2(F) = sz(E') and wt(E) = wt(E"), we must have k; =k . So u; < u},
we have ||E| < ||E']||. O
2.3. Relations. In the previous notation of the 0-list 9%|uy, ..., ui|, we
require u; < u;4+1. To describe their relations, we extend this notation
OFlup, ... ,u1| to any 1 < u; < p. OF|up,...,u1| still represents 9% P(B)
with B in equation (1.3) without the requirement u; < u;. Thus we have two
obvious relations:
OFlup, ... ,u1| =0

if there is 1 <7 < j < h such that u; = u; and

gy, - - -, Up(2), Up(r)] = sign(o)J

for a O-list J € J of (2.2) and a permutation o of 1,2, ..., h.
Lemma 2.4. For 0 <k < s, and h’ > s+ 1, we have

1 . =
Z sl s1gn(0)60|ug(h+s), oy Ug (s gy

X 5k|u%,,. . .,u;_,rl,ug(g),. . .,ug(1)| € R[h + 2.
Here the summation is over all permutations o of 1,2,... , h+ s.

Proof. Tt is easy to see that

h
(2.4) Plun, ..., u1| = Z(—l)ixfi)gowh, e Wi 1, Wi, -, U,

i=2
(2.5) ' |un,...,uil

_ E : it+j+1,.(1) 50
= (—1) :cmﬁ |uh7...,uj+17uj,1,...7ui+1,ui,1,...,u1.
1<i<j<h
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Let ' =h'/2. For 0 < k < s,

(26) 5k|u;ﬂ, ;+1,ua<s),.. ua(l)\

- l/lQl’ ’(ugu))v/(ua@)) o

ki+-+ky=k o

j=s+11i=1 1<i<j<s

<kl/)
(ug,_y e’ (u )

' s
o > >
Z Z g (1)U fizo + x“ﬂ(t)“vmg”’” + xuo( o (g Mg

1<i<j<s

Here fij o, Gij,00 Nij,o € R, and if o1 is a permutation of 1,2,...,s and o7 is

a permutation of s+ 1,...,h + s, then

Uo (i Uo () Jor M (D)o (4),0o1 027

Y@)oy (g),o0102°

(0 (0)
l’ua(l)ufl’u. - = mgn(al)xua(i)ufgl_l(i)u’wlm,
0 . 0
J"’ELU)( )ua(])gw, Slgn(al)x( )
(1) L (1)
ua(i)“ou)h”v“ Slgn(al)x%(i)uam oy

We can also require that if o3 is a permutation of 7,5+ 1,..., A+ 5, fiuo =

fiu,ocos and if o4 is a permutation of 7,j5,s +1,...,

2.6),

hij.o = hij.ooy- SO by equations (2.4), (2.5) and (

1 . - _
Z sl 51gn(0)80|u0(h+5), o U (st )| 8k\uﬁl,, e

:ZSliI'ls' Z Zh+13 |Ua(h+s)

j=s+1i=1

sign(o) 1 4
+Z hls! Z (h—Fl)a |ua(h+s)7~-~u

o 1<i<j<s
sign(o) 1
+ —
; hls! lggjgs (h+1)(h+2)

At
x 0 |u0(h+s), PN

%
Z Z - Sign(o—)go‘ua(h—&-s)a ceey

j=s+lo(h+s)>-->0(s)
o(s—1)>-->0(1)

h+ 5, gijo = Gijooss

/
Ugy1,Us(s)s -+ ,u0(1)|

Ug(s4+1)) Uo (i) ]| fz] o

Ug(s41)r Uo(5)) Uo (i) | Yij,o

Ug(s+1)> U () Yo (i) | Pij,o

!/
Us(s+1)) Ua(s)s Uj ‘ fsj,cr

+ Z go|ua(h+s)a s Ug(s41)s Uo(s)s uo’(sfl)| Gij,o

o(h+s)>-->0(s)
o(s=2)>->0(1)

+ > —sign(a) 3 [ug (i ays - s

o(h+s)>--->0(s—1)
o(s—2)>-->0(1)

Rih + 2.

Ug(s+1)) Uo(s)) Uo(s—1) | hij,o‘
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Lemma 2.5. For i,j,h,h ko,m € Z>o with h > k', i < h, j < k' and
ko <m, letly =147 — h—1. Given any integers ay for kg < k < ko + lo,
there are integers ay, in the range 0 < k < kg, and ko +lop < k < m, such that

Zak 51gn( YO R lup, i, o (wg), . o (ur)]

X 5k|u/h/,...,u;+1,o(u;),...,o(ull)| € R[h + 2.

Here the second summation is over all permutations o of u;, ..., uq, u;-, T
and sign(o) is the sign of the permutation.

For simplicity, we write equation (2.7) in the following way:

(2.8) Zeakémfﬂuh,...,ui“,ui, o un|0F [y, g1, Uy, ..Ut € R 42).

Remark 2.6. Since the second summation in equation (2.7) is over all
permutations, each monomial in the equation will appear ¢!j! times, and the

coefficient of each monomial will be +ay.
Proof of Lemma 2.5. Let

sign
Fz(uh-‘-,ui+1;u’h/,---7u}+1):Z gl (o )80| ByeeosWit1,0(Us)s -y 0(ur)l
o

X O'uhsy ..y, o (uh), . o (ud)].
We have
]-"l(uh,...,ui;u%,,...,u;+1):]-'l(uh,...,ui_kl;u;l,,...,u;_,_l)
iﬂ(uh,...,ui+1;uﬁl,,...,u;Jrl,ui).
If i = hand 0 <1 <ly, by Lemma 2.4, Fi( ;uj,...,u5 ) € R[h +2]. By

induction on h — i, we can see that Fj(upn, ..., wiy1; Uy, ..., uj ) € R[h+2].
Thus

m s 1’1
chz g )am k‘ ,“”,7ui+1,g(ui),...,a(u1)|

X 5k|u’h,,...,u9+1,0(u;»),...,0(u’1)

= 0" Fiun, .. tisrs gy, . ul ) € R+ 2.

Now the (lo+1) x (Ip+1) integer matrix with entries ¢;; = koJrJ’ 0<14,5 <l
is invertible since the determinant of this matrix is +1. Let b;; € Z be the
entries of the inverse matrix. Let a; = Z;OZO é-ozo C,lcbl,jakoﬂ. So the left-
hand side of equation (2.7) equals

0 0
ZZbUakoﬂ R un, s U, ) € RIA+2). O
1=0 j=0
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2.4. Standard monomials. Now we give the definition of standard
monomials of 7.

Definition 2.7. An ordered product F1FEs - -- E,, of elements of £ is said
to be standard if

(1) Ea < Ea+17 1<a< m;
(2) Ej is the largest in E(||E4]|) under the order <; and
(3) Euq1 is the largest in E(||Eqy1||) such that E, < Fqyq.

An ordered product JiJs:--J,, of elements of 7 is said to be standard if
there is a standard ordered product EyFEs - - - Ey, such that E; € £(J;).

Let SM(J) C M(J) be the set of standard monomials of 7. Let SM(E) C
M(E) be the set of standard monomials of €. Let SM(Jn) = M(Txn) N
SM(J) be the set of standard monomials of J,. Let SM(E,) = M(E) N
SM(E) be the set of standard monomials of &,.

By Definition 2.7, if J1Js - - - J,,, is standard, the standard monomial Ej - - -
E,, € SM(E) corresponding to J; - - - J,, is unique and E; has the form

[(up, wt(EL)), (up—1,0),...,(u,0)] € €
with u; < u;41. Therefore the map
7 s SM(ER) — SM(Th), E\Ey - Ep = [[EL||[[ B2 [[Emll

is a bijection.

We order M(7), the set of ordered products of elements of 7, lexicograph-
ically. Lemma 2.8 will be proved later in Section 6.

Lemma 2.8. If J =J, - J, € M(TJ) is not standard, J can be written as
a linear combination of elements of M(J) preceding Jy - - - Jp—1, with integer
coefficients.

Recall that M[h] denotes the ideal generated by J € J with sz(J) = h,
and Ry = R/R[h+2]. If h > p, then Jp, = J and R, = R. By Lemma 2.8,
we immediately have the following lemma.

Lemma 2.9. Any element of Ry can be written as a linear combination
of standard monomials of Jn with integer coefficients.

Proof. We only need to show that any element of fR can be written as a
linear combination of standard monomials of 7 with integer coefficients. If
the lemma is not true, there must be a smallest element J € M(J), which
cannot be written as a linear combination of elements of SM(J) with integer
coefficients. So J is not standard. By Lemma 2.8, J = > +J, with J, €
M(J) and J, < J. Since J, can be written as a linear combination of
elements of SM(J) with integer coeflicients, J can also be written as such a
linear combination, which is a contradiction. O
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3. A canonical basis

3.1. A ring homomorphism. Let
Sp={aV|1<i<p 1<I<h, keZs},
and let
(3.1) B = Z[Sh],

the polynomial ring generated by S,. Note that for a field K, if W = K®"
and V = WP, the affine coordinate ring K[J (V)] is obtained from B by
base change, i.e., K[J (V)] = B @z K.

Let O be the derivation on B given by 8a§;€) = (k+ 1)a§f+1), and let 0 = %5‘
as before. We have a ring homomorphism

h/2
Qnr:R—B, chf,) — 0" Z(agi—lagg)i - ai%)i—lag%)i>'
i=1

For any J € J with sz(J) > h, we have Qh(J) =0, so Qy, induces a ring
homomorphism

(32) Qh : %h — 9B,
3.2. Tableaux. Let S,=S), U {*}. We define an ordering on the set Sh:
for az(-;-c),az(-,kj,) € Sy, az(-;-c) < % and az(-;-c) < az(-,kj,) if kij < k'i'y’.

We use tableaux to represent the monomials of 8. Let 7 be the set of the
following tableaux:

Yi,hy 5 Y1,2, 91,1
(3.3) :

Ym,hs " 3y Ym,25 Ym, 1

Here y,; are some aglk) or *, every row of the tableau has elements in Sy, and

Ys,j < Yst+1,5- We use tableau (3.3) to represent a monomial in B, which is

i
the product of agf) s in the tableau. It is easy to see that the representation
is a one-to-one correspondence between 7 and the set of monomials of B. We
associate to tableau (3.3) the word

Yi,h - Y1,1Y2,h Y21 Ymuh o Ym,1

and order these words lexicographically. For a polynomial f € 9B, let Ld(f)
be its leading monomial in f under the order we defined on 7.
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For E; = |(uj,, K}, ), - - -, (uh, k5), (uf, k)| € €, 1 < i <m, we use a tableau
to represent Ey --- E,, € SM(E):
(u}lzl’ kilLl)v T (uév k%)’ (u%, k})
2 1.2 2 1.2\ (22 1.2
(34) (uh2akh2)a"' a(u27k2)v(u1ak1)
(uhmm’k}r{:”)v R (ugna k72n)’ (urlna k71n)
Let T : SM(Jn) — T with
(ki) k!
*7 s Ty u}lhlh 9 aai%ll)
N N a<kfg> (k)
T(E1 . Em) —_ b ) b uh2h ) ) ull
(k) k)
*7...,*7au;§”h7”,...’auﬁ1

Obviously, T is an injective map and T(E) < T(E') if E < F'.

Lemma 3.1. Let Jy---J,, € SM(J) and Ey--- E,, € SM(&) be its
associated standard monomial. Assume the tableau representing Fy--- E,,
is (3.4). Then the leading monomial of Qn(Jy---Jy) is represented by the
tableau T(EVEs - - Ep,). Thus

LdoQp=Tom, ' :SM(T) =T

is injective. The coefficient of the leading monomial of Qp(Jy - -+ Jm) s £1.
Proof. Let W, be the monomial corresponding to the tableau T'(E; - -

E,,). Let

(kR>,) (k™)

M, = Qg B, G
be the monomial corresponding to the tableau T(E,,). Then W,, =

W1 My, Let 1, = hé". By a direct calculation,

_ E (k1) (k2) (k3) (ka)
Qh(Jm) - iau:’/(l)Qsl—laum QSlau;”(S)232—1aum(4)232

o (2) P
(Khpp—1) (Khm )
u;"’(hm_l)Zslm—lau;"(hm)%lm'
The summation is over all k; > 0 with Y k; = wt(E,,), all s; with 1 < 51 <
S < -+ < s, < h/2and all permutations o of 1,2,..., hp,.

We prove the lemma by induction on m. If m = 1, the lemma is obviously
true. Assume it is true for Jy -+ Jy—1. Then Ld(Qp(J1 -+ Im—1)) = Win—1,
the monomial corresponding to T'(E} - - - Ey,—1), and the coefficient of W,,,_1 in
Qn(Jy -+ Jm—1)is £1. M, is one of the monomials in Qy(J,,) with coefficient
+1. All of the monomials in Qp(Jy - - Jym—1) except W,,_; are less than W,,_1,
so any monomial in Qpn(Jy - Jm_1) except W, _1 times any monomial in
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Qn(J, ) is less than W,,_1. Since W,,_1 < W,,, the coefficient of W,, in
Qn(Jy -+ Jm) is not zero. Now

Wm—l =< Wm =< Ld(Qh(Jl s Jm))
The leading monomial Ld(Qp(Jy - - - Jp,)) must have the form

_ (k1) (k2) (k3) a'k4)
W_Wmfla’um( 2s1— 1Qym 281a’u. 2s9—1 Aym 2s9

1 s(2) (3) (4)
ki, k

<gh(zl 1))25%—1“1:: y
If some s; is greater than hy,,—1/2, then W < W,_1. So 8; < hpo1/2.
m—1
G = alts,)
hm—1/2 > $; > lp, then W7/< W,.. So we can assume s; = 4. Such mono-
mials in Qp(Jp,) are in one-to-one correspondence with E; € &(J,,) such
that E,,—1 < E!.. E,, is the largest in £(J,,) with F,,_1 < E,,, since F is
standard, so Wy, is the leading term of Qp(Jy - - - J;n). The coefficient of W,
in Qp(Jy -+ Jm) is £1 since the coefficients of W,,—1 in Qp(Jy -+ Jim—1) and
M, in Qn(J,,) are £1. O
Proof of Theorem 1.2. By Lemma 3.1, Ld(Qn(SM(Jr))) are linearly in-
dependent, so SM(J,) are linearly independent. By Lemma 2.9, SM(7)
generates Ry,. So SM(Jy) is a Z-basis of Ry,. O
Theorem 3.2. @} : Ry — B is injective. So we may identify Ry, with its
image Im(Qy,), which is the subring of B generated by 9" Zh/z(agi_lai%)i —

afoz 1(1202)1) In particular, Qp(SM(Jh)) is a Z-basis of Im(Qp).
Proof. By Lemma 3.1, Ld(Qr(SM(J1))) are linearly independent. Since
SM(Ty) is a Z-basis of Ry, Qp : Ry, — B is injective. O
Since @y, is injective and B is an integral domain, we obtain the following

corollary.

QSlm :

We must have a ; otherwise, W < Wy,_;. If there is some

i

Corollary 3.3. Ry, is an integral domain.

4. Application

In this section, we give the main application of our standard monomial
basis, which is the arc space analogue of Theorem 1.1.

4.1. Arc spaces. Suppose that X is a scheme of finite type over K. Its
arc space (cf. [5]) Joo(X) is determined by its functor of points. For every
K-algebra A, we have the bijection

Hom(Spec 4, Joo (X)) = Hom(Spec A[[t]], X).
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If i : X = Y is a morphism of schemes, we get a morphism of schemes i, :
Joo(X) = Joo(Y). If i is a closed immersion, then iy is a closed immersion.
If i : X — Y is an étale morphism, then we have the Cartesian diagram

Joo(X) = Ju(Y)

{ I
X — Y

If X = Spec K[x1,...,2,], then Jo(Y) = SpecK[a:Ek)|1 <i<n,k€Z>g
The identification is made as follows: for a K-algebra A, a morphism ¢ :
Klzy,...,x,] — A[[t] determined by ¢(z;) = > 2, agk)tk corresponds to a
morphism K[xz(»k)] — A determined by xgk) — az(k). Note that Klz1,...,z,]
can be identified with the subalgebra K[zgo), e ,x%o)] C K[zgk)], and from

(0)

now on we use x, ~ instead of x;.

(k)

The polynomial ring K[z, ’] has a derivation 0 defined on generators by

(4.1) 9™ = (k+ 1)z,

It is more convenient to work with the normalized k-derivation 0% = %8" ,
but this is a priori not well-defined on K [:cgk)] if char K is positive. But 9 is
well-defined on Z[J;Z(.k)], and 0* maps Z[a:l(»k)] to itself, so for any K, there is
an induced K-linear map

(4.2) o : K[z = K2,

obtained by tensoring with K.
If X is the affine scheme Spec K[xgo), .. ,x%o)]/(fl, ooy fr), then Jo(X) is
the affine scheme

Spec K[z i=1,..., k€ Z=o]/(D'f;| j=1,...,r, 1 >0).

Indeed, for every f € K[xgo), e ,xslo)], we have

$(f) = i(ékfxa&‘)% Ry ek,
k=0

It follows that ¢ induces a morphism K[xgo), .. ,:E%O)]/(fl, ooy fr) = Al if
and only if

(5‘kfi)(a§0),...,a%k)) =0 foralli=1,...,r, k>0.

If Y is the affine scheme SpecK[ygo), .. .,yfvg)]/(gl, ..., gs), a morphism P :
X — Y gives a ring homomorphism P* : K[Y] — K[X]. Then the induced
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homomorphism of arc spaces Py : Joo(X) = Joo(Y) is given by
L) = 0P (5,).

In particular, P}, commutes with OF for all k > 0.
4.2. Arc space of the Pfaffian variety. Recall that the space SM, of
skew-symmetric p X p matrices over K has affine coordinate ring

K[SM,) = K[z\)| 1 <i, j <p]/(@) +2'P,2{) = Ry K,

Ji L

where R is given by (1.2). The Pfaffian variety Pfj, is the subvariety of SM,
determined by the ideal K [SM,]|[h] generated by the Pfaffians of all diagonal
h-minors, so

K[Pfn] = K[SMy]/K[SMpl[h] = Rh—> ®z K,
where Rp,_o is given by (1.4). Similarly, recall that
K[Joo(SMy)] = K[| 1 <4, j <p)/ @l + 2, 2l))) = Ren K

Ji L

Then
KlJo(P )] = K Joo(SMy))/K [Joc (SMy][h — 2) = B3 @5 K.

Proof of Corollary 1.3. By Theorem 1.2, SM(J,—2) is a Z-basis of Ry _s.
So it is a K-basis of K[Joo (P fr)]- O
Recall the map Qy, : Ry — B given by (3.2), which extends to a map

(4.3) QK K[Joo(Pfhio)] = K[Js(V)],

where K[Joo (P fr+2)] and K[Js (V)] are identified with Ry, ®z K and Bz K,
respectively, and QhK = Q@ ®Id.

Theorem 4.1. QF is injective, so we may identify K[Joo(P fr+2)] with
the subring Im(QX) of K[Joo(V)]. In particular, K|[Je (P fri2)] is integral.

Proof. By Lemma 3.1, Ld(Qp(SM(Jr))) are linearly independent. By
Corollary 1.3, SM(Jy) is a K-basis of Ry, so QX is injective. Since K[Joo (V)]
is integral, so is K[Joo (P fry2)]- O

In general, if char K = 0, the arc space of an integral scheme is irreducible
[7] but it may not be reduced. Pf,(K) is an example whose arc space is
integral.

4.3. Principal G-bundles. Let G be an algebraic group over K. If G
acts morphically on an algebraic variety X, then we say that X is a G-variety.
An affine G-variety X is a principal G-bundle in the étale topology if, for
every x € X // G, there is an étale neighborhood V' — X of x such that
V xx/q X 2V x G as G-varieties. The following proposition is from [1] by
P. Bardsley and R. W. Richardson.
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Proposition 4.2. Let X be an affine G-variety. Then X is a principal
G-bundle in the étale topology if and only if for every x in X, the orbit G -
1s separable and the stabilizer G, is trivial.

The group structure G x G — G induces the group structure on its arc
space

Joo(G) X Joo(G) = Joo (G).
So Joo (@) is an algebraic group. For a G-variety X, the action G x X — X
induces the action of J(G) on Joo(X):

Joo(G) X Joo(X) = Joo(X).
The quotient map X — X / G induces morphisms Jo(X) = Joo(X / G) and
Tx  Joo(X) [ Joo(G) = Joo (X ] G).

Proposition 4.3. If X is a principal G-bundle in the €étale topology and
X /) G is smooth, then wx is an isomorphism.

Proof. For any étale morphism V' — X / G with V xx o X =2V x G as
G-varieties, we have Cartesian diagrams

Joo(V) X Jo(G) = Jao(X)

Jo(V) = Jo(X ) G) i 4

1 ! and VxG - X

1% — X )G 4 N
14 - X/G

S0 Joo(V) = Joo(X J/ G) is an étale morphism and
Joo(V) X (xG) Joo(X) [ Joo(G) = (Joo (V) Xy (x)G) Joo (X)) [/ Joo(G)
= (V xxje Jo(X)) [ Jo(G)
= Joo(V) X Juo(G) [/ Joo(G)
= Joo(V).
If mx is not an isomorphism, there is an étale morphism V' — X // G such
that V xx g X =2V x G as G-varieties and 7y : Joo(V) X1 (x ) Joo(X) [/
Joo(G) = Joo (V) is not an isomorphism. But V X x jq Joo(X J G) = Jo(V),
which is a contradiction. O
4.4. Invariants for the arc space of the symplectic group action.
Let G = Spin(K) be the symplectic group over K, W = K®" its standard
representation, and V = WP, Recall that V has affine coordinate ring
K[V]=K[a]0<i,j<p1<I<h]
The action of G on V induces an action of J(G) on the affine coordinate
ring
KlJow(V)] = Klag"| 0<i,j <p, 1< U< hy k€ Zao),
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which is identified with 8 ®z K, where B is given by (3.1).

Ifp>h,let A=QF(|h,...,1]), and let K[Joo(V)]a and Im(Qf ) be the
localization of K[Jo (V)] and Im(QF) at A.

Lemma 4.4. Ifp > h,

K[Joo (V)] 5= P = Im(QF) a.

Proof. Let K[V]a be the localization of K[V] at A and Va = Spec K[V]a.
By Theorem 1.1, the ring of invariants K[V]%Pr is generated by QhK(azgﬁ,)), SO
the affine coordinate ring of Jo. (Va // G) is isomorphic to Im(QX)a. To prove
the lemma, we only need to show that 7y, : Joo(VA) [ Joo(G) = Joo (VA /| G).
By Proposition 4.2, VA is a principal bundle in the étale topology, and by
Proposition 4.3, 7y, is an isomorphism. (I

Theorem 4.5. K[J(V)]7=5PnK) = Im(QF).

Proof. If p > h, we regard K[Joo(V)] and Im(QF)a as subrings of
K[J(V)]a. By Lemma 4.4, we have

K[Joo (V)] 5P ) = K[ (V)] N Im(QF ) a.

Now for any f € K[Joo(V)]NIm(QF)a, [ = 2%, with A" f = g € Im(Qf).
The leading monomial of g is
Ld(g) = (a3 - a))" Ld( )
with coefficient Cy # 0. Since g € Im(Q¥), there is a standard monomial
J € SM(TJy), with Ld(Qr(J)) = Ld(g). Since J has the factor |h,..., 1|7,
K

Qr(J) has the factor A™. Thus f — COQ’A—T(;]) € K[Joo(V)] NIm(QF) A with
a lower leading monomial and M € Im(QhK ). By induction on the lead-
ing monomial of f, f € Im(QF), so K[J(V)] NIm(QF)a = Im(QF), and
K[Joo (V)] /= (5P (K) = Tm(QK).

More generally, let V! = W®PTh where W = K®" as before. Its arc space
has affine coordinate ring

K[Jo(V)] = K[a{)] 0<i,j < p+h, 1<I<h, k€ ZLs,

which contains K[J.. (V)] as a subalgebra, and has an action of J(G). By
the above argument, K[J,.(V')]’~(%) is generated by

h/2
X5 =3 (ali_ialy — el _ialy).
i=1

Let Z be the ideal of K[J(V’)] generated by al(lk) with ¢ > p. Then
K[Joo(vl)] = K[/ (V)]®T.
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Note that K[J (V)] and Z are J(G)-invariant subspaces of K[J(V’)], and
K[Joo (V)7 () = K[Jo(V)]/= (@) @ 77=(S),
If i > por j > p, then Xz'(f) € I7=(G) 50
Koo (V)= & K[ (V)= /77(©)

is generated by Xl-(j’-c)7 1 <i,7 < p. Therefore K[Joo(V)]7>(@) = Im(QK), as
claimed. 0

Proof of Theorem 1.4. By Theorems 4.1 and 4.5,

K[Joo (V)7 5P ) = Im(Qf) 2 K[Joo (P frs2)].

O
Proof of Corollary 1.5. This is immediate from Theorem 1.4 because V'
Spp(K) is isomorphic to the Pfaffian variety P fj, 0. O

5. Some properties of standard monomials

By the definition of standard monomials, if F1FEy---E, € SM(E), then
E; 41 is the largest element in ||E(E;41)]|| such that F; < F; ;. In this section,
we study the properties of ||E(E;+1)| and F;y; that need to be satisfied to
make FqFs--- E, a standard monomial.

Let

E = |(uh7kh)a- '-a(ulak1)| € 57
J =0 u,,, ... u e .
5.1. L(E,J). For b’ < h, let o be the permutation of {1,2,...,h'} such

that u,(;) < Ug(it1)- Let L(E,J') be the smallest non-negative integer i such
that u; 2 Ug(i—ig)> 10 <1< h'. Let

E(h/) = |(uh/,kh/), ey (ul, k1)|

Then L(E,J") = L(E(W),J").
Lemma 5.1 is obvious.

Lemma 5.1. For J" = 0*|u}l,,...,u}| € J, if there are at least s elements
in{uy,,...,u{} from the set {u},,...,uy}, then L(E,J") > L(E,J")—h' +s.



620 ANDREW R. LINSHAW AND BAILIN SONG

5.2. A criterion for J’' to be greater than E. We say J' is greater
than E if there is an element E' € £(J') with E < E’. Then J’ is greater
than E if and only if J’ is greater than E(h’). Lemma 5.2 is a criterion for J’
to be greater than F.

Lemma 5.2. J' is greater than E if and only if wt(J') — wt(E(R')) >
L(B,.J").

Proof. Let ig = L(E,J’) and ¢ be the permutation of {1,2,...,h’'} such
that Ug (i) < Ug(i+1) -

It wt(J') — wt(E(R')) > L(E, J'), let

) {U;HO, o (i) +1io < B

ﬂf’(i) = / C / )
Witjo—p,, Ut+i0> h
k/ - ko’(i)a Z+20Sh/a7’?£h/
O N ko +1, itio > Wi £
h -1

=1
Then
k;(h’) = ’LUt(J/) — wt(E(h’)) — 19+ ko(h’) +1-— (5?0 > ka(h’) +1-— 5?0,
(W iys Kl(iy) = (o (iys Ko (i)
So
E = ‘(7];1,, k;z’)a ) (ﬂ/Qa ké)a (71/17 k/1)|

is an element in £(.J') with £/ > E.
On the other hand, suppose E’ € £(J’) with E/ > E. Assume

E/ = |(a;z/’k;1’)’ R (a/Qa k/2)a (ﬂ‘/lv kll)‘
We have (’L~L/ k/) > (uz,kz) ie., k; > k; or k; = ki,ﬂ’. > u;. So

Y
STk — ki) + 8 > il < i< WY >R
i=1
Let iy = b/ — #{a} > u;,i|1 <i < h'}. Then
Y
i <Y (k) — ki) = wt(J) — wt(E(R)).
i=1
Here @}, ..., 4}, is a permutation of u},...,u},. By the definition of i, it is

easy to see that u} > ug;_iy, ip <i < h'. So iy > L(E,J’). Thus
? ( 0) 0 0
wt(J') —wt(E(h')) >iq > L(E,J).
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Corollary 5.3. J' is greater than E if and only if ||E(R))||J’ is standard.
Proof. By Lemma 5.2, J' is greater than FE if and only if wt(J') —
wt(E(R)) > L(E,J') and ||E(R)||J’ is standard if and only if wt(J") —
wt(E(h')) > L(E(R),J') = L(E, J'). O
5.3. The property “largest”. Let

We(E,J) ={J ="} ...ul,|| 1 <i <K, Jis greater than E}.

Lemma 5.4. If E' is the largest element in E(J') such that E < E', then
for s <N, ||E'(s)| is the smallest element in W,(E, J').

Proof. Assume

E = |(u/h/’k;1’)’a(uéaké)a(ullakll)‘
For s < I/, let Js be the smallest element in W,(E, J'). Let

Es = |(u; 7];35)7--- ( 127k2) ( zlvkl)‘

be the largest element in £(J) such that E(s) < E,.

Assume [ is the largest number such that (u}, k) = (u],, kj) for j <1<
s+1. If I < s, thend; > [ and (ugl,lzzl) # (uy, k7). If i = 1, by the maximality of
E’ and the minimality of Js, we must have (uj,, ki) = (u}, k}), a contradiction.
So i; > 1.

If (uf, ki) < (u),k]), then (uj,k] +K; — k) > (u},k] ). Let E” be the
element in £(J') obtained by replacing (ug, ky) and (ug,kj) in E' by (u“,kzl)
and (uj, k; + ki, — k), respectively. We have E’ < E" and E(h') < E”. But
E’ # E” is the largest element in £(||E’||) such that E < E’, which is a
contradiction.

Assume (u “,kzl) (up, kp). I 1 ¢ {i1,...,1s}, replacing (u;l,ffl) in Es by
(up, kj), we get B, with E(s) < E. and ||E|| < J;. This is impossible since
Js # ||Eg| is the smallest element in W, (E, |[E'|)). 1f I =i; € {i1,...,is},
(u ”,kl + ki — k) > (u a3 ,k;). Let E/ be the element in £(J,) obtained by
replacing (uil,kl) and (ulj,k ) in E by (uy, k) and (ugl,fcl + kj — k), respec-
tively. We have F; < E! and E < E/. But E’, # E; is the largest element in
E(Js) such that E < E., a contradiction. Therefore E; = E’(s), and || E’'(s)]|
is the smallest element in Ws(E, J’).

Corollary 5.5. If E' is the largest element in E(||E'||) such that E < E’,

then for s < I/,
L(E,||E'(s)]) = wt(E'(s)) — wt(E(s)).

Proof. Since E < E', E < E’(s). By Lemma 5.4, ||E’(s)|| is the small-
est element in Wy(E,J'). By Lemma 5.2, L(E,|E'(s)||]) = wt(E'(s)) —
wt(E(s)). O
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Corollary 5.6. If E’ is the largest element in E(||E’||) such that E < F’,
then for s < h' and any J € Ws(E, ||E’||),

L(E, ||[E"(s)]) < L(E, J).

Proof. Assume J = O0F|ug,...,ui| and ||[E'(s)|| = d'ul,...,uq]. If m =
L(E,J)— L(E,||E'(s)||) <0, let J' = 0"™|ug,...,u1|. By Lemma 5.2, J" €
Ws(E,J'). By Lemma 5.4, |[E’(s)|| is the smallest element in W, (E, ||[E’||).
But wt(||E'(s)]|) > wt(J"), a contradiction. O

Lemma 5.7. Let E; = |(uj,,k}, ), ..., (ul,k})|, © = a,b. Suppose that
Ey < E,, and that E, is the largest element in E(||Eyl||) such that Ey < E,.
Let 1 < h < hy and o; be permutations of {1,...,h} such that u;i(l) <
Uy ) < o0 < Uy Let u, ..., up, be a permutation of uf,... up such
that uy <wuh <--- <wy . Assume ug, =ug,  with iy > i1. Then for any

Nk / l
K =0%up, ..., usy1,up ... uy |

with t1 <ty < -+ < ts < ia, we have L(Ey, K) > L(Ey, || Eq(h)|) + s — 1.
Proof. Let n = wt(E,(h)). Let ig = L(Ey, K), then uj, > ugb(i*io) for
s > i >1g. Let ig = L(Ey, [|Ea(h)]), then ug ) > ugb(i—ig) for h >4 > iy.

We have i > if. Otherwise, iy < ;. Replacing ug ;) in [[E*(h)]| by some
uf <wug ;) with i > h (such uf exists since iy > 1), we get

J= 5"|ugé(h), Ce s Ugr (1) Ui Ugr (3~ 1) -+ Ugr (1)
with L(Ey, J) < ij. By Lemma 5.2, J is greater than Ej. It is impossible by

Lemma 5.4 since J < ||[E,(h)| and E, is the largest element in E(||E,||) such
that By < E,.

If s Z il, let
P = gy oot
If L(Ey, K) < L(Ey, | Ea(h)||) + 5 — i1, then
b b :
U;L 2 uO'b(i—io) Z uo'b(i—i()—s-‘ril) for ¢ S S.

We have L(Ey, J') < ij. By Lemma 5.2, J' is greater than Ej. By Lemma 5.4,
it is impossible since J' < ||E,(h)|| and E, is the largest element in (|| E,||)
such that E, < E,. So when s > i1, L(Ey, K) > L(Ey, | E.|]) + s — i1.

If s <y, let 1) <ty <--- <t; <igwith {t1,..., ¢t} C{t},... 1] }. Let

K = 5k|u2/1, . ,ué;l,uilﬂ, U
By Lemma 5.1, we have
L(Ey,K) > L(Ey, K') + s — i1 > L(Ey, | Eo(h)|]) + s — i1.
So for any s > 0, we have L(Ep, K) > L(Ey, ||[Eo(R)|]) + s — i1. O



STANDARD MONOMIALS & INVARIANT THEORY OF ARC SPACES 623

Lemmas 5.8 and 5.9 are obvious.
Lemma 5.8. If J; < Jy < -+ < J,, 0 is a permutation of {1,...,n}, then

J1J2 v Jn = Ja‘(l) v 'Ja'(n)-
Lemma 5.9. If K1Ks--- Ky < J1---Jj, then

KKy - Kg 1 JKs- Ky, <Jy--Js_1JJs- -+ J).

6. Proof of Lemma 2.8

In this section, we prove Lemma 2.8. By Lemma 5.8, we can assume the
monomials are expressed as ordered products JiJs - - - J, with J, < J,41. For
a € M(TJ), let

R(a) = {Zczﬂi ERl G €L, Bie M(T), Bi <, Bi #a},

the space of linear combinations of elements preceding o in M(J) with integer
coefficients.

Lemma 6.1. If J1Jy is not standard, then JyJo € R(J1).

Proof. Assume J; = 9™ wj, ... ub,ul| for i = 1,2, Let By = |(u},,,n1),
ooy (uh,0)|. Let ig = L(Ey,J2). If ig # 0, there is igp < i; < hy such that
u?l < “zll—io+1' If ip =0, let iy = 0. Let m = ny +ng and ap,—; = 5?,

0<1<lp—1. By Lemma 2.5, there are integers a; such that

(6.1) Zeakém_ﬂu;l“, U o U i U |

x OFluz, ... uf o ul . ul] € Ry + 2.

(1) If hy = hg, then ny < my. Since JyJo is not standard, J; is not greater
than F7. By Lemma 5.2, ig > ny —n; > 0. J1Jo € R(J1) since in
equation (6.1):

e all the terms with & = no precede J; except JiJo itself;

e all the terms with k£ = no — 1,...,ny vanish since a; = 0;

e all the terms with k = ns +1,...,m precede J; since the weight
of the upper 0-list is m — k < ny;

e all the terms with £ =0,...,n; — 1 precede J; after exchanging

the upper O-list and the lower 9-list since the weight of the lower
O-list is k < ny; and
e the terms in R[hy + 2] precede J; since they have bigger sizes.
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(2) Suppose hi > hs. Since JpJ2 is not standard, by Lemma 5.2, ig > no.
J1J2 € R(J1) since in equation (6.1):
e all the terms with k£ = ng precede J; in the lexicographic order
except JpJy itself;
e all the terms with k =ny — 1,...,0 vanish since a; = 0;
e all the terms with &k = no, ..., m precede J; since the weight of
the upper O-list is m — k < ny; and
e the terms in M[hy + 2] precede J; since they have bigger sizes.
O

Proof of Lemma 2.8. We prove the lemma by induction on b. If b = 1, then
Jy is standard. If b = 2, by Lemma 6.1, the lemma is true. For b > 3, assume
the lemma is true for b—1. We can assume J; - - - J,_1 is standard by induction
and Lemma 5.9. Let Ey --- Ey_1 € SM(E) be the standard ordered product
of elements of £ corresponding to Jy---Jy_1. If Jy---J, is not standard,
then J is not greater than E,_;. By Lemma 6.2, J,_1J, = > K;f; with
K; € J, fi € R such that K; is either smaller than J,_1 or K; is not greater
than Ep_o. If K; is smaller than J,_1, then Jy -+ Jp_1K; f; € R(J1 - Jp—1).
If K; is not greater than Ej_o, then Jy ---Jy_sK; is not standard, so it is
in R(Jy -+ Jp—2) by induction. Then Jy - Jp_oK;f; € R(J1---Jp—1). So
Jrdy =31 Sy o Kifi € R(Jy- - Jpoa). O

Lemma 6.2. Let E € &, let J, and Jy in J with J, < Jp, and suppose
that E, is the largest element in E(J,) such that E < E,. If Jy is not greater
than E,, then JoJy = > K;f; with K; € J, fi € R such that K; is either
smaller than J, or K; is not greater than E.

Proof. Assume J, = 0™ |uj, ,...,uj| and Jy = 0™ |uf, ... ub|. Jo < Ji,
80 hg > hp. Assume ||Eq(hy)|| = 0™[uf, ..., uf|. Let m = ny + n,. Let
io = L(Eq, Jy). If ig # 0, there is ig < iy < hy such that w? <wuf _, . If
i9 = 0, let i3 = 0. Since J, is not greater than E,, by Lemma 5.2,

(62) 19 > Np — Mg

By definition, {uf, ,...,u{} is a subset of {uj, ,...,u3} with u < u;,, and
u < ufy . If we assume uj, =uf ; ., we have iy > iy —ig + 1.

Now we prove the lemma. The proof is quite long and it is divided into
three cases.

Case 1. hy = hy. Let ap,—; = 510 for 0 <[ <ip—1. By Lemma 2.5, there
are integers ay such that

(6.3) Zeakém_ﬂu%a, U o U s U

x OFlub oo ul gl ul] € Rlhg + 2.
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JoJy € R(J,) since in equation (6.3),

e all the terms with k£ = n;y precede J, in the lexicographic order except
JoJp itself;

e all the terms with k =n, — 1,...,n, vanish since n, = my,, a = 0;

e all the terms with £k = n, + 1,...,m precede J, since the weight of the
upper O-list is m — k < ng;

e all the terms with £ = 0,...,n, — 1 precede J, after exchanging the
upper O-list and the lower O-list since the weight of the lower O-list is
k < ng; and

e the terms in R[h, + 2] precede J, since they have bigger sizes.
Case 2. hy < h, and n, < m,. By Lemma 2.5,

)i sign(o
Ga) >0 > e
b—1)
0<i<hp o
i am—ky, / / b b b
Zea‘ka |uhaa"'7ui+17ua(i)7"'7uo'(2)auo'(1)|
X 5k\u’;(hb),‘..,ug(i_,_l),u;,...,uﬂ S m[ha —|—2]

Here a?c are integers and aﬁlrl = §p; for 0 < I < hy —i. The second
summation is over all permutations o of {1,...,hy}. In equation (6.4), the
following hold.

e The terms in R[h, + 2] precede J, since they have bigger sizes.

e All the terms with k = ny, ..., m precede J, since the weight of the upper

O-list is m — k < ng.
e The terms with k = n; are J,Jp, and the terms with lower O-lists
Ko 8”b\ulh,...,u;2,u’il\ej.
All of the other terms cancel. By Corollaries 5.5 and 5.6,
L(E, Ko) > L(E, Ea(hb)) = Mg — wt(E(hb)) > ny — ’LUt(E(hb))

By Lemma 5.2, K is not greater than F.
e The terms with k < n; vanish unless hy, — 7 < ny, — k. In this case, these
terms have lower 0-lists

Ky, = 5k|uz(hb), e ,uz(i+1),u;i, R AE
By Lemma 5.1,
L(E, K1) 2 L(E, Ko) — (hy —i).
So
L(E, K1) > np —wt(E(hy)) — (hy — 1) > k — wt(E(hy)).
By Lemma 5.2, K; is not greater than F.
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Case 3. h, > hy and ny > mg,. If ig = 0, then J, is greater than F, and
Jy -+ Jp is standard. So ig > 0. By Lemma 2.5, we have

6 ¥ oyl

min{iy, 12}>s o

sgm—k / / / ’ b b
€ay |uha7 sy Uigy Ug(ig—1)s -+ ) Uo(s41)s Usy - - - 7u1|

k| b b b b / /
X O [ Upy s ey Uiy 415 Uiy s - oo Ug g 1 Ugr(s)s - -+ Uor (1) € R[Pa + 2].

Here aj are integers, a,, _; = 0o, for 0 <1 <i; — s, and o are permutations
of {1,...,is — 1}. Similarly, by Lemma 2.5, we have

1+s+t

00) 3 3 G s 1 oy

1>11>8 0,01
19>8

m

1,8 an— b b b b b / /
eay |ug(hb) U (5) o Vg (ig 1) Wiy - - UL, Uy - - Uy 41
k=0

ok
X 8 |U‘;‘Lb+1a .. 'u§27u;1(1271)7' . 'U;1(3+1)au:71(s)5 .. 'u;1(1)| S %[ha + 2}

Here ak are integers, a _, =00, for 0 <1 < (i+41 —s) o are permutations
of {hp,...,i1 + 1}, and 01 are permutations of {1,... iy — 1}.
e We use equation (6.5) when iy > i3 —ip + 1;
e We use equation (6.6) when iy =43 —ip + 1.
In the above relations, we have the following.
(1) The terms in R[h, + 2] precede J, since they have bigger sizes.
(2) All of the terms with k = np+1,...,n precede J, since the weight of the
upper O-list is n — k < n,.
(3) The terms with k = n; are J,.Jp, the terms with upper O-list preceding
J, (the upper O-lists are the O-lists given by replacing some ul, i > 9 in
J, by some u?), and the terms with lower J-list

— Anb|,,b /
K0—8 |uhb7'” 7/1+17 0’1(11)""u0'1(1)"

All of the other terms cancel. By Lemma 5.7,
L(E,Ky) > L(E, |[Es(h)]|) + 41 — (41 — 0 + 1).
By the above inequality,
L(E, Ko) > L(E, || Eqa(hs)]) + o
(by Corollary 5.5) = wt(E,(hy)) — wt(E) + o
(by equation (6.2)) > wit(Ep) — wt(E(hy)).

By Lemma 5.2, Kj is not greater than F.
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(4) When iy > i1 —io + 1, the terms with k < ny; in equation (6.5) vanish
unless i1 — s < ny — k. In this case, the lower O-lists of the terms are
5k b b b b
Ky =0%up,, .. ug g5, ,us+1,u;(s), . ,u;(l)\.

The underlined w in K7 can be any underlined u in equation (6.5). By
Lemma 5.7,

L(E, K1) > L(E, Eq(hy)) + 5 — (i1 —io + 1),
L(E, K1) > L(E, Eqo(hy)) + k — np + o
(by Corollary 5.5) = wt(E,(hy)) — wt(E(hs)) + k — np + io
(by equation (6.2)) > k — wt(E(hy)).
By Lemma 5.2, K; is not greater than F.
(5) When i3 =3 — ig + 1, the terms with k& < n; are the terms in equation

(6.6) such that i — s < ny — k. In this case, the lower 0-lists of the terms
are

_ Ak, / ! 1 / I !
K1 =0 |th+1,...,uiz,ual(i271),...,Ua.l(s+1),ua,1(s)7...,’U,O,l(l)‘.

The underlined » in K; can be any underlined u in equation (6.6). Let

! __ Aaky,,/ / / /
Kl —a |ukhb,...,ukiz,ug(i27l),...,UU(1)|.

Here iy < k;, < kiy41 < -+ < kp, < hy. By Lemma 5.1, there is some
K1 such that

(6.7) L(E, K1) > L(E,K}) — (s — 1 — ) — (i — 1),
since in K3 the number of u with u} > u;, is at most —i;. By Corollary
5.6,

(6.8) L(E,K}) > L(E, | Ea(hy)]])-

nd (6.8),

L(E, K1) = L(E, | Ea(ho)|]) + s = (i — i0)

(by Corollary 5.5) > wt(E,(hy)) — wt(E(hy)) + k — np + 4o

(by equation (6.2)) > k — wt(E(hsy)).

By equations (6.7) a

By Lemma 5.2, K; is not greater than F. (]
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