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Summary: We develop a uniform test for detecting and dating the integrated or mildly explo- 
sive behaviour of a strictly stationary generalized autoregressive conditional heteroskedasticity 
(GARCH) process. Namely, we test the null hypothesis of a globally stable GARCH process 
with constant parameters against the alternative that there is an ‘abnormal’ period with changed 
parameter values. During this period, the parameter-value change may lead to an integrated or 
mildly e xplosiv e beha viour of the v olatility process. It is assumed that both the magnitude and 
the timing of the breaks are unkno wn. We de velop a double-supreme test for the existence of 
breaks, and then provide an algorithm to identify the periods of changes. Our theoretical results 
hold under mild moment assumptions on the innovations of the GARCH process. Technically, 
the existing properties for the quasi-maximum likelihood estimation in the GARCH model 
need to be reinvestigated to hold uniformly o v er all possible periods of change. The key results 
involve a uniform weak Bahadur representation for the estimated parameters, which leads to 
weak convergence of the test statistic to the supreme of a Gaussian process. Simulations in 
the Appendix show that the test has good size and power for reasonably long time series. We 
apply the test to the conventional early-warning indicators of both the financial market and a 
representative of the emerging Fintech market, i.e., the Bitcoin returns. 

Keywords: GARCH , IGARCH , change-point analysis , concentration inequalities , uniform 

test . 
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1. INTRODUCTION 

olatility is an important indicator for economic and financial stability. There is growing evidence
f the unstable behaviour of the historical volatility of numerous micro- and macro-level data,
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such as individual asset returns, VIX (the Chicago Board Options Exchange volatility index),
inflation, and unemployment. Bloom ( 2007 ) documents the unstable behaviour of the higher
moments of many economic variables, such as research and development (R&D) rates related
to the uncertainty about future productivity. It is understood that the nature of uncertainty is
the unpredictability of any model to the future path of a time series. Therefore, it may be
connected with a change of the parameter values in the underlying data-generating process.
Ignoring parameter change may thus lead to biased analysis in policymaking and forecasting.
This moti v ates us to consider a general method of testing parameter constancy for models of
volatility. 

For modeling the volatility processes, the highly celebrated autore gressiv e conditional hetero-
skedasticity (ARCH) model proposed by Engle ( 1982 ) is important for describing the perv asi ve
phenomena of heteroskedasticity presented in many time series. One key generalization of ARCH
is the GARCH model, i.e., 

X 

2 
i = ζ 2 

i σ
2 
i , 

σ 2 
i = α0 + 

r ∑ 

j= 1 

αj X 

2 
i−j + 

s ∑ 

k= 1 

βk σ
2 
i−k , (1.1) 

where the conditional variance σ 2 
i depends on the past observations X 

2 
i−j , but also on the historical

conditional variance σ 2 
i−k . ζi assumed to be i.i.d. inno vations; see P aolella ( 2019 ) for more details

of the model. 
Hillebrand ( 2005 ) points out that neglecting parameter changes in GARCH models leads to

biased parameter fitting. Thus a change-point analysis should be conducted before reporting
a parameter fit of a GARCH model. Among various possible changes of parameters of the
underlying process, moving from the covariance stationarity to the infinite variance has come
to the centre of our focus for its potential use of detecting periods of economic uncertainty.
In addition to the case of integrated GARCH, we refer to the volatility process behaving more
e xplosiv e after the change as a ‘mildly e xplosiv e’ one, which can be considered as an analogue of
a mildly e xplosiv e unit-root return process. The name ‘mildly e xplosiv e’ follows Lee and Hansen
( 1994 ), who refer to a GARCH(1,1) model with α1 + β1 > 1 as a ‘mildly e xplosiv e’ one. 

Is there empirical evidence of the existence of mildly e xplosiv e re gion of a GARCH model
with fitted parameters? One often sees sudden, integrated, or mildly explosive behaviour in the
second moment of the process which bounces back after a while. Figure 1 shows a rolling window
fit of parameter values of a GARCH(1,1) model using Bitcoin data. We can see clear signs of
time-varying parameters. In particular, there are regions of the estimated parameters falling out
of the covariance stationary regime ( ̂  α1 + 

ˆ β1 ≥ 1 ). Such kind of data phenomena suggest that the
underlying processes have time-varying parameters, calling for a rigorous quantitative treatment
for detection of change periods and making corresponding inference. 

The aim of our paper is to develop a generalized uniform test for GARCH models that is able to
detect exuberant behaviour periods (periods with integrated or mildly e xplosiv e parameter values)
associated with the empirical phenomena of mild e xplosiv eness in the second moment. The test
is constructed by looking at the supreme of Wald-type test statistics o v er all possible intervals
with changing parameters. Numerous estimation methods for the parameters of GARCH models
have been proposed, and their consistency and asymptotic normality have been carefully studied
in the literature. A conventional estimation approach is the quasi-maximum likelihood estimation
(QMLE), e.g., Bollerslev and Wooldridge ( 1992 ). Also Fan et al. ( 2014 ) study QMLE of GARCH
© The Author(s) 2023. 
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Figure 1. A plot of estimated GARCH(1,1) parameters using the Bitcoin data o v er a rolling window of 
size 200. ˆ α1 + 

ˆ β1 estimate persistence parameter (dash line), ˆ α1 (solid line), ˆ β1 (dotted line), threshold of 
mild e xplosiv eness ( α1 + β1 = 1 ). 
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odels with heavy-tailed likelihoods. Peng and Yao ( 2003 ) propose a least absolute deviation
stimator. Jensen and Rahbek ( 2004 ) establish consistency and asymptotic normality of the QMLE
n the linear ARCH model. It is well known that under the assumption of the strict stationarity
f a GARCH model, there is still a region of parameter values allowing for realizations with
nstable volatility behaviour. The leading case is the ‘IGARCH’ process. Nelson ( 1990 ) looks at
he behaviour of an integrated GARCH (IGARCH) process, and it is known that the unconditional
ean of the IGARCH’s conditional variance is not finite, which implies infinite second or higher
oments (i.e., eruptive behaviour). Lee and Hansen ( 1994 ) provide an asymptotic theory for a

trictly stationary GARCH(1,1) Quasi maximum likelihood estimator (QMLE) estimator allowing
or the case of IGARCH, and mildly e xplosiv e conditional variance and even nonstationarity.
ensen and Rahbek ( 2004 ) consider asymptotic inference for a nonstationary GARCH model. 

Despite the rich empirical literature which suggests the existence of an unstable moment
eriod of a GARCH process, there is only sparse literature on determining and testing the pe-
iod of integrated/mild explosiveness in an uniform manner. Francq and Zako ̈ıan ( 2012 ) provide
mportant estimation results on nonstationary GARCH models, and they also provide a test for
arameter constancy of a GARCH(1,1) process without assuming strict stationarity. Complemen-
ary to their study, our focus is on the inte grated/mildly e xplosiv e parameter region and we extend
he test to a uniform context. There is also a large and e xtensiv e literature on testing for mild
 xplosiv eness, and dating the period of instability in the price or dividend processes of a financial
sset using a supreme unit-root test for bubbles. See, for example, Phillips et al. ( 2011 ) for a
eft-tailed, augmented Dickey–Fuller test (ADF) for the mildly e xplosiv e behaviour in the 1990s
asdaq. Hafner ( 2020 ) considers such bubble tests for cryptocurrencies. Harv e y et al. ( 2019 )

nvestigate a bubble test with a smooth time-varying volatility function. The underlying models
ocus usually on unit-root or mildly e xplosiv e autore gressiv e (AR) processes to test the change
f the AR(1) coef ficient. Often, the v ariance of the errors stays the same or varies smoothly
fter the explosion, which means that the volatility increase is mostly driven by the increase of
he AR parameter. In our model, we choose a different approach to model a mild explosion of
The Author(s) 2023. 
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volatility: we describe the evolution of the data-generating process by a GARCH process, and
therefore link the source of a change in the volatility to a change of the parameters in the volatility
recursion. 

In addition, there is literature on break detection for multiple break points for nonlinear time
series, cf. Berkes et al. ( 2004 ), Davis et al. ( 2008 ), Bardet et al. ( 2012 ), Fryzlewicz and Subba Rao
( 2014 ), and Chen and Hong ( 2016 ). In particular, Bardet et al. ( 2012 ) derive a breakpoint detection
procedure for general recursively defined time series via a penalized maximum likelihood method
and pro v e its consistenc y. Their formulation is rather general, leading to the restriction that the
considered time series have to be covariance stationary. Davis et al. ( 2008 ) propose a model with
piece-wise stationary time series with independent segments. Fryzlewicz and Subba Rao ( 2014 )
inv ent a no v el method to find break points, and test for covariance stationary ARCH processes
using CUSUM (cumulative sum) statistics. Chen and Hong ( 2016 ) impose smoothly varying
GARCH parameters and estimate them locally o v er some window. The y pro vide a likelihood
ratio approach to test if the global GARCH estimates significantly deviate from the local parameter
estimates. This allows them to detect if there is a change, but it does not allow us to find specific
breakpoints. Ho we ver, their approach is more appropriate than ours if the parameter values vary
smoothly o v er time. The work most connected to ours is Berkes et al. ( 2004 ), where a sequential
change-point testing in GARCH( p, q) models is discussed. They consider testing for a change of
the whole parameter vector θ based on a CUSUM-type statistic by plugging in estimates of θ into
the likelihood of future steps. It is not straightforward to adapt their approach to testing for linear
hypotheses in θ , in particular testing for mild e xplosiv eness. Comparativ ely, our test allows for
se veral multi v ariate extensions which may be interesting in change-point analysis. In sum, our
test is different, but complementary, to the abo v e study, as we propose breakpoint detectors for
GARCH models in the noncovariance stationary regime, and provide a solid theoretical backup
via a uniform testing procedure for the presence of breakpoints. 

It is worth noting that, unlike a bubble test for an AR process, it is quite debatable to link a
direct cause of the bursting behaviour to the volatility process; see Jurado et al. ( 2015 ). On the
contrary, v olatility b ursting can also be related to time-varying risk a version, sentiment, bubbles,
or uncertainty. Nevertheless, we are trying to establish a rigorous theoretical framework of testing
for the mildly e xplosiv e interval using a GARCH model for the volatility process. It should be
stressed that we focus on one aspect of the parameter; namely, changes in the parameters driving
the volatility o v er time. We do not claim that our method can directly identify the cause of this
behaviour. In sum, we develop a change-point test for detecting possible unstable behaviour of a
strictly stationary GARCH ( r, s) process. The null hypothesis is a GARCH process with globally
constant parameters, while the alternative is the existence of a period in which the parameter
values change to another (higher) values. This increase potentially leads to a period of mildly
e xplosiv e volatility. 

Assuming that no information on the period and the change itself is available, we develop a
test statistic based on supremes which searches o v er all possible sub-windows of the data. We
pro v e asymptotic consistenc y and pro vide a limit distribution of our test statistic. It is important
that the test is not of unit-root type, since hypothesis and the alternative are still in the regime
where the GARCH process is strictly stationary. The theoretical contributions are extending
the existing theoretical results on GARCH QML estimators to uniform consistency statements
o v er an arbitrary observation period. Besides, a uniform weak Bahadur representation and the
corresponding uniform distributional limit results are shown. For the proofs, we carve out the
essential analytical properties of the likelihood functions and use new concentration inequalities
from Zhang and Wu ( 2017 ), leading to mild moment assumptions. Empirically, we find that our
© The Author(s) 2023. 
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est is useful for the early identification of the critical periods of financial crisis for two important
arly-warning indicator of the economic condition. 

We introduce some notations we use throughout the paper. For q > 0 and vector v =
 v 1 , . . . , v d ) � ∈ R 

d , let | v| 1 : = 

∑ d 
i= 1 | v i | . For matrices A ∈ R 

d×d , we similarly use | A | 1 : =
 d 
i,j= 1 | A i,j | . We denote by | A | 2 = max | v|= 1 | Av| 2 the spectral norm of A . We use Z n 

d → Z

nd Z n 

p → Z to denote convergence in distribution and convergence in probability for random
ariables Z n , Z. For some sequences ( a n ) and ( b n ) of positive numbers, we write a n = O( b n ) or
 n = o( b n ) if there exists a positive constant C such that a n /b n ≤ C or a n /b n → 0 , respectively.
or two sequences of random variables ( X n ) and ( Y n ) , we write X n = o p ( Y n ) (resp. X n = O p ( Y n ) )

f X n /Y n → 0 in probability ( X n /Y n is bounded in probability). For some nonnegative real
umber x, let � x� denote the flooring operator, i.e., the largest integer smaller than or equal to x.

Our text is organized as follows. Section 2 provides the results of the important GARCH(1,1)
odel and the corresponding test procedure. Section 3 concerns the estimation and theoretical

esults in a general GARCH( r, s) model. In particular, Section 3.1 introduces the framework of
he QMLE and its consistency; Section 3.2 presents the theoretical foundations of our uniform
est; Section 3.3 discusses the estimation of the covariance matrix of the QMLE appearing in
he test statistic; Section 3.4 extends the results to a general parameter constancy test. Section 4
iscusses the behaviour of the test in examples from practice. Section 5 concludes. The technical
roofs and simulations are delegated to the Online Appendix. 

2. A UNIFORM MILD EXPLOSIVENESS TEST FOR GARCH(1,1) 

n this section, we introduce our model by starting with a simple testing framework for the
ARCH(1,1) model. Then we will provide a rigorous theoretical treatment by starting with a
ore general GARCH( r, s) model in the following section. We consider first of all the baseline
ARCH(1,1) model o v er the whole sample period with possible time-varying parameters, 

X i = ζi σi , 

σ 2 
i = α0 ( i) + α1 ( i) X 

2 
i−1 + β1 ( i) σ

2 
i−1 , i ∈ Z , (2.1)

here ζi is an i.i.d. sequence of random variables with E ζ1 = 0 , E ζ 2 
1 = 1 , and α0 ( i) , α1 ( i) , β1 ( i) >

 are the underlying parameters at each time point. We collect data of this model at time points
 , . . . , n . 

We summarize the parameters into θ ( i) = ( α0 ( i) , α1 ( i) , β1 ( i)) ′ . In the case that the parameters
re constant, i.e., θ ( i) ≡ θ = ( α′ 

0 , α
′ 
1 , β

′ 
1 ) 

′ , the top Lyapunov exponent associated with this model,
ccording to Bougerol and Picard ( 1992b ), is 

γ ( θ ) = E log ( α1 ζ
2 
1 + β1 ) . 

n particular, it is shown that, for example in Francq and Zako ̈ıan ( 2012 ), if γ ( θ ) < 0 ,
hen the conditional volatility σi converges almost surely to σi, ∞ 

as i → ∞ , with σi, ∞ 

=
im n →∞ 

α∗
0 { 1 + 

∑ n −1 
k= 1 log ( α∗

1 ζ
2 
t−1 + β∗

1 ) · · · log ( α∗
1 ζ

2 
t−k + β∗

1 ) } . It is worth noting that γ ( θ ) < 0
llows (for instance) the IGARCH case, i.e., α1 + β1 = 1 . We illustrate in Figure 2 the region of
arameters corresponding to the case that the volatility process is noncovariance stationary, but
till strictly stationary (integrated or mildly explosive). 

The aim of this paper is to construct a test that is able to detect if there exists a period where
he parameters of the GARCH model have changed. The theory developed in this paper is theo-
The Author(s) 2023. 
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Figure 2. The plot of the feasible parameter region with a standard normally distributed ζ1 , where the 
down region corresponds to covariance stationarity and the blue region corresponds to the strictly 

stationary mildly e xplosiv e re gion; X axis, α1 , Y axis, β1 . 
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retically supported for null hypotheses in the regime of strict stationarity (see the definition of �
below). However, the alternative hypotheses of our test includes GARCH processes which are not
strictly stationary. Moreo v er, due to the monotonicity of the test statistics developed in this paper,
we conjecture that the test also works if the null hypothesis lies in the nonstationary re gime. F or-
mally, we w ould lik e to test whether there exists a period { n 1 , . . . , n 2 } (with 1 < n 1 < n 2 < n ),
in which the parameter values in ( 2.1 ) change their values compared with { 1 , . . . , n } . The task
breaks into two parts: First, one has to check for the existence of a change, for which a uni-
form test is needed. Second, one has to identify the period of the change and to estimate the
corresponding parameters. Furthermore, we certainly would like to make inference on our esti-
mated parameters. 

2.1. Hypotheses and the likelihood function 

In this subsection, we provide our test hypotheses, and parameter estimators. For our studies, let

� = { θ = ( α0 , α1 , β1 ) ∈ R 

3 : γ ( θ ) < 0 , α0 , α1 , β1 > 0 } 

be the parameter space which contains all possible configurations of θ = ( α0 , α1 , β1 ) . 
Let θ ( i) = ( α0 ( i) , α1 ( i) , β1 ( i)) ′ denote the true parameter in the baseline model, which equals

θ∗ = ( α∗
0 , α

∗
1 , β

∗
1 ) ∈ � at the beginning, and possibly has a period of significant change in

{� nτ ∗� + 1 , . . . , � nτ ∗�} (where τ ∗, τ ∗ ∈ [0 , 1] , τ ∗ < τ ∗) with magnitude 
 

∗ > 0 and direction
1 2 1 2 1 2 

© The Author(s) 2023. 
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 ∈ R 

3 . Namely, 

θ ( i) = 

⎧ ⎨ 

⎩ 

θ∗, i ≤ � nτ ∗
1 � , 

θ∗ + H 
 

∗, � nτ ∗
1 � + 1 ≤ i ≤ � nτ ∗

2 � , 
< θ∗ + H 
 

∗, i > � nτ ∗
2 � . 

(2.2)

It is worth noting that we do not expect that the parameter values after the e xplosiv e period
eturn to the original ones. We only assume that they drop back to a lower value after this period,
.e., θ ( i) < θ∗ + H 
 

∗ for i > � nτ ∗
2 � . We will give a formal proof of the consistency of our test

f θ∗ + H 
 

∗ ∈ � . Recall that � is the parameter region of strict stationary. It should be noted
hat the space of allowed parameter configurations can be relaxed even further by sacrificing the
stimation accuracy of the constant term α∗

0 ( i) (cf. Francq and Zako ̈ıan ( 2012 )). 
An interesting question is to test whether the process is stable, i.e., α1 ( i) + β1 ( i) < 1 for all

ime points i = 1 , . . . , n versus the hypothesis that there exists a period of begin integrated
r mild e xplosiv e, in which α1 ( i) + β1 ( i) ≥ 1 for some i. α1 ( i) + β1 ( i) is referred to as the
ersistence parameter in our setting. Graphically, this corresponds to the question of whether or
ot there exists regions where the process leaves the variance-stationary regime (i.e., the variance
xplodes). 

It is therefore natural to formulate the hypotheses in the following way: Let H = (0 , 1 , 1) ′ . We
ant to test if θ ( i) changes in direction of α∗

1 + β∗
1 , that is, with some fixed value of c : = H θ∗,

 : = α∗
1 + β∗

1 < 1 , we want to test 

H 

pre 

0 : 
 

∗ < 0 v.s. H 

pre 

1 : 
 

∗ ≥ 0 . (2.3)

o transfer the setting to the one of change-point tests, we modify ( 2.3 ) as follows: 

H 0 : 
 

∗ = 0 v.s. H 1 : 
 

∗ > 0 . (2.4)

ince the statistical behaviour of X i is continuous with respect to 
 

∗, a test procedure for ( 2.4 )
ill automatically yield a reasonable test for ( 2.3 ). We will discuss the connection between ( 2.3 )

nd ( 2.4 ) in Remark 3.5. 
Our method is a way to test the parameter constancy for GARCH processes. For example, in

ractice, a useful choice for c may be obtained from c = ˆ α1 + 

ˆ β1 , where ˆ α1 , ˆ β1 are obtained from
tting a global model with all observations. We illustrate this with VIX in our empirical study
cf. Section 4 ). To construct a test, we first derive estimators for the parameters. For a fixed period
 nτ1 � + 1 , . . . , � nτ2 � , we can use a standard QMLE approach. It is not hard to see from ( 2.1 )
hat, in the case of the constant parameters θ ( i) ≡ θ , 

σ 2 
i = α0 / (1 − β1 ) + α1 

∞ ∑ 

k= 1 

βk 
1 X 

2 
i−1 −k a.s. 

he truncated version that can be calculated from a sample is 

σ 2 c 
i = α0 / (1 − β1 ) + α1 

i−2 ∑ 

k= 1 

βk 
1 X 

2 
i−1 −k . 

he quasi-likelihood approach is to use the ne gativ e log likelihood function 

L 

c 
n,τ1 ,τ2 

( θ ) : = 

1 

n 

� nτ2 � ∑ 

i=� nτ1 �+ 1 

� ( X 

2 
i , Y 

c 
i , θ ) , 
The Author(s) 2023. 
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where Y 

c 
i : = ( X 

2 
i−1 , . . . , X 

2 
1 , 0 , 0 , ... ) and 

� ( X 

2 
i , Y 

c 
i , θ ) : = 

1 

2 

( X 

2 
i 

σ 2 c 
i 

+ log σ 2 c 
i 

)
. (2.5) 

The estimated parameter with observations during any given period � nτ1 � + 1 , . . . , � nτ2 � is
defined as 

ˆ θn,τ1 ,τ2 = argmin θ∈ � 

L 

c 
n,τ1 ,τ2 

( θ ) . (2.6) 

REMARK 2.1. It is worth noting that L 

c 
n,τ1 ,τ2 

( θ ) also includes observations X i from earlier time
points i ≤ � nτ1 � through σ 2 c 

i . One might wonder if the accuracy of the likelihood is affected by
using observations before the change point � nτ1 � . The impact of the terms X i with i ≤ � nτ1 �
decays geometrically, and we see in Proposition 3.1 that it is theoretically negligible even under
the alternativ e. Moreo v er, it should be noted that any other initialization of σ 2 c 

i (for instance with
X i = 1 for i ≤ � nτ1 � ) may be even more inaccurate in a finite sample perspective. 

2.2. Test statistics and an algorithm 

In this subsection the descriptions of the test statistics and the algorithm is provided. Under the
null H 0 and further regularity conditions (cf. Section 3 ), ˆ θn,τ1 ,τ2 is asymptotically normal with
covariance matrix 

� = V ( θ∗) −1 I ( θ∗) V ( θ∗) −1 , (2.7) 

where Y i = ( X j : −∞ < j ≤ i − 1) contains the whole past and 

V ( θ ) : = E [ ∇ 

2 
θ � ( X 

2 
i , Y i , θ )] , I ( θ ) : = E [ ∇ θ � ( X 

2 
i , Y i , θ ) · ∇ θ � ( X 

2 
i , Y i , θ ) ′ ] . 

Estimation of � is done based on the observations 1 , . . . , � nτ1 � as follows: ˆ θn, 0 ,τ1 is the estimator
of θ∗ in the stationary regime (using the notation ( 2.6 )), and 

�̄ n,τ1 : = V̄ n,τ1 ( ̂  θn, 0 ,τ1 ) 
−1 Ī n,τ1 ( ̂  θn, 0 ,τ1 ) ̄V n,τ1 ( ̂  θn, 0 ,τ1 ) 

−1 , (2.8) 

where 

V̄ n,τ1 ( θ ) : = 

1 

τ1 
∇ 

2 
θ L 

c 
n, 0 ,τ1 

( θ ) , Ī n,τ1 ( θ ) : = 

1 

nτ1 

� nτ1 � ∑ 

i= 1 

∇ θ � ( X 

2 
i , Y 

c 
i , θ ) ∇ θ � ( X 

2 
i , Y 

c 
i , θ ) ′ . 

F or giv en τ1 < τ2 , the test statistic associated with our hypothesis H 0 of interest is 

ˆ B n ( τ1 , τ2 ) : = 

√ 

n ( τ2 − τ1 ) ( H 

′ �̄ n,τ1 H ) −1 / 2 { H 

′ ˆ θn,τ1 ,τ2 − H 

′ θ∗} , (2.9) 

where ˆ α1 ,n,τ1 ,τ2 , ˆ β1 ,n,τ1 ,τ2 are the second and third components of ̂  θn,τ1 ,τ2 , and �̄ n,τ1 ,τ2 is an estimator
of � using observations outside of {� nτ1 � , . . . , � nτ2 �} . For instance, we can set �̄ n,τ1 ,τ2 to be the
standard covariance matrix estimator obtained by replacing V , I with their empirical counterparts
with observations outside {� nτ1 � , . . . , � nτ2 �} . 

The feasible search set for e xplosiv e periods is defined to be 

R κ,κ ′ : = { ( τ1 , τ2 ) ∈ [0 , 1] 2 : κ ′ ≤ τ1 < τ2 , τ2 − τ1 ≥ κ} (2.10) 

(with some κ, κ ′ > 0 , for instance κ = κ ′ = 0 . 1 ), ensuring proper estimation of the variance-
covariance matrix of the estimated parameters � due to τ1 ≥ κ ′ and a change detection based
on enough samples due to τ2 − τ1 ≥ κ. The uniformity test is thus taken on the set R κ,κ ′ to be
© The Author(s) 2023. 
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Figure 3. The plot of the windows where the supreme is calculated. 
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ny combination of τ1 , τ2 with κ < | τ1 − τ2 | ≤ 1 − κ ′ . The supreme of ˆ B n ( τ1 , τ2 ) with respect to
 κ,κ ′ converges asymptotically to the supreme of a Gaussian process, namely 

{
B ( τ2 ) −B ( τ1 ) 
( τ2 −τ1 ) 1 −1 / 2 

}
, where

( ·) is a 1-dimensional Brownian motion. We show this formally in Theorem 3.3 in Section 3.2 .
Empirically, we cannot exhaust all the values ( τ1 , τ2 ) ∈ R κ,κ ′ . For the ease of implementation

nd deri v ation, we define our feasible search set to be κ, κ ′ : = { ( τ1 , τ2 ) ∈ [0 , 1] 2 : τ1 < τ2 , 1 −
′ ≥ τ2 − τ1 ≥ κ} , where κ, κ ′ are the bound on the distance between (0,1). We therefore need to
estrict the calculation of the supreme to a set of grid points as an approximation of our supreme
est statistics. We summarize the test procedure for a given acceptance rate δ ∈ (0 , 1) (typically,
= 0 . 9 or δ = 0 . 95 ) in the following context. 

Algorithm 1 

Step 0 Choose some L > 0 (the number of grid points associated with detection accuracy).
The corresponding grid points are G = 

{
j 

L 

: j = 0 , . . . , L 

}
on the time line. 

Step 1 Let H denote the direction in which a change of parameters should be checked, cf.
( 2.2 ). Fix some baseline value H 

′ θ∗. 
Step 2 Choose values for κ, κ ′ ∈ (0 , 1) . We suggest setting κ = 0 . 1 , κ ′ = 0 . 1 . 
Step 3 F or each giv en interval ( τ1 , τ2 ) ∈ R κ,κ ′ ∩ G 

2 , determine the associated QLME 

ˆ θn,τ1 ,τ2 

defined in ( 2.6 ) and calculate �̄ n,τ1 ,τ2 as in ( 2.8 ). Then determine ˆ B n ( τ1 , τ2 ) via ( 2.9 ).
Figure 3 shows how one calculates the supreme test statistic o v er dif ferent windo ws
associated with the grid points. 

Step 4 For the critical value of this test, we can approximate the quantile of the test statistic via
simulation of the limiting Gaussian process under the null hypothesis H 0 : for large N
(e.g. N = 10 , 000 ), generate for each k ∈ { 1 , . . . , N} i.i.d. ε [ k] 

i ∼ N (0 , 1) , i = 1 , . . . , n

and calculate 

ˆ μn,k : = sup 

( τ1 ,τ2 ) ∈ R κ,κ′ ∩ G 2 
1 √ 

n ( τ2 − τ1 ) 

� nτ2 � ∑ 

i=� nτ1 �+ 1 

ε 
[ k] 
i . 
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We define ˆ q W,δ : = ˆ μn, [ � N ·δ� ] , where ˆ μn, [1] , . . . , ˆ μn, [ N] are the order statistics of
ˆ μn, 1 , . . . , ˆ μn,N 

. 
Step 5 We can now make a test decision based on the critical values from the previous steps.

If 

ˆ B n : = sup 

( τ1 ,τ2 ) ∈ R κ,κ′ ∩ G 2 
ˆ B n ( τ1 , τ2 ) > ˆ q W,δ, (2.11) 

there is a significant shock in the parameter values. In this case, one can estimate the
true shock period as [ τ ∗

1 , τ
∗
2 ] by 

( ̂  τ1 ,n , ̂  τ2 ,n ) ∈ argmax ( τ1 ,τ2 ) ∈ R κ,κ′ ∩ R κ,κ′ 
ˆ B n ( τ1 , τ2 ) . 

If instead ( 2.11 ) does not hold, we conclude that there is no evidence for a period of
parameter change. 

Step 6 In case of the significance of our uniform test in Step 5, we re-estimate the parameter
ˆ θn, ̂ τ1 , ̂ τ2 , and produce the confidence interval based on Theorem 3.3. 

We name this the GARCH Supreme Richter-Wang-Wu (GSRWW) test. The procedure depends
on some tuning parameters. We have experimented with various choices and make our suggestions
as follows. 

REMARK 2.2 (CHOICES OF TUNING PARAMETERS L, κ, κ ′ ). 

( i ) We suggest making L as large as possible so that the calculation on the machine is
still done within an acceptable time. In principle, L = n is optimal, but may lead to an
infeasible duration of computation in practice. Lower choices of L will decrease detection
accuracy of the break points τ ∗

1 , τ
∗
2 , and may decrease the power of the test since short

change periods (with small τ ∗
2 − τ ∗

1 ) with small impacts 
 

∗ may naturally be o v erseen. 
( ii ) The theoretical results hold for all fixed choices of κ, κ ′ . The consistency results we

derive rely on the fact that τ2 − τ1 ≥ κ is bounded from below so that L 

c 
n,τ1 ,τ2 

( θ ) contains
a number of observations, which is formally proportional to n . Similarly, τ1 ≥ κ ′ is needed
to ensure that the estimate �̄ n,τ1 of the true covariance matrix � is uniformly consistent.
We conjecture that the restriction τ2 − τ1 ≥ κ may be discarded when using a much more
sophisticated theoretical discussion. The main difficulty might be of technical nature;
namely, one has to derive the result under minimal moment assumptions on the GARCH
process. Therefore, in practice, κ should not be regarded as a tuning parameter, but can
be chosen as small as possible 

(
i.e., κ = 

1 
L 

)
. 

( iii ) In practice, the choice of κ ′ is a trade-off between a good estimation of � in the test
statistics and finding a break point near the boundary. One cannot expect from a test
to detect a change if it had not seen enough ‘normal’ data before. Therefore, choosing
κ ′ = 0 . 1 seems quite reasonable to us, but in principle, smaller values may be chosen. 

As it follows from our discussion, the grid accuracy L should be investigated in more detail. We
will consider this empirically in the simulation section, i.e., Appendix A in the Online Appendix.
© The Author(s) 2023. 
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2.3. Generalizations 

n this section, we discuss several directions of generalizations of our test statistics. 

(a) Testing for other directions of parameter changes. It shall be noted that H does not have
to be fixed as H = (0 , 1 , 1) ′ . Instead one can choose any direction of parameter change by
choosing the corresponding H ∈ R 

3 . For instance, it is possible to check separately for a
change of α∗

0 or α∗
1 by choosing H = (1 , 0 , 0) ′ or H = (0 , 1 , 0) ′ , respectively. 

(b) Testing for more than one direction. Based on our weak convergence result Theorem 3.3
below, it is easily possible to elaborate tests which simultaneously check for more than one
parameter change. To this end, we simply choose a full rank matrix H ∈ R 

3 ×p , where p ∈ N
corresponds to the number of different directions one wants to test, e.g., a simultaneous

change in α0 and α1 would lead to H = 

⎛ 

⎝ 

1 0 

0 1 

0 0 

⎞ 

⎠ . In this case, one simply has to modify the

definition of ˆ B n in ( 2.11 ) to 

ˆ B 

s i mult 
n : = sup 

( τ1 ,τ2 ) ∈ R κ,κ′ ∩ G 2 
max 

{
ˆ B n ( τ1 , τ2 ) j : j = 1 , . . . , p 

}
. 

Correspondingly, the critical value ˆ q s i mult 
W, 1 −δ is defined based on i.i.d. ε [ k] 

i ∼ N (0 , I p×p ) ,
i = 1 , . . . , n and 

ˆ μn,k : = sup 

( τ1 ,τ2 ) ∈ R κ,κ′ ∩ G 2 
max 

{ 1 √ 

n ( τ2 − τ1 ) 

� nτ2 � ∑ 

i=� nτ1 �+ 1 

ε 
[ k] 
i,j : j = 1 , . . . , p 

} 

. 

We can also adopt other types of test statistics. For example, for a two-sided test, one may
consider the Euclidean norm | · | 2 instead of taking max {· : j = 1 , . . . , p} . 

(c) Detection of multiple change inter v als. Our method can be directly modified to detect
multiple change points. The basic idea is taken from Jeng et al. ( 2013 ). Let T : = { 1 , . . . , n }
denote the active training set. Let m = 0 denote the counter of changes, and τ

(0) 
1 ,n = τ

(0) 
2 ,n = 0 .

We shall repeat the following steps until T is empty: 
(1) Perform Step 0–Step 6 from Algorithm 1 as Subsection 2.2 based on the training set

X i , i ∈ T (in particular, with n = | T | ). 
(2) If no change was detected, stop. Otherwise, increase m by 1 and put ( ̂  τ ( m ) 

1 ,n , ̂  τ
( m ) 
2 ,n ) ⊂

(0 , 1) as the interval of change (with respect to the original observation interval (0,1)
corresponding to (0,1)). 

(3) Delete the region with explosive behaviour from the training set; that is, update 

T = T \{� n ̂  τ
( m ) 
1 ,n � + 1 , � n ̂  τ

( m ) 
2 ,n �} . 

If T is not empty, go back to Step 1. If T is empty, return the 
{(

ˆ τ ( k) 
1 ,n , ̂  τ

( k) 
2 ,n 

)
: k =

1 , . . . , m 

}
. 

The collection of multiple selected intervals is then given by 

{(
ˆ τ ( k) 
1 ,n , ̂  τ

( k) 
2 ,n 

)
: k =

1 , . . . , m 

}
. 
The Author(s) 2023. 
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(d) Generalization to GARCH( r, s) models. The theoretical results are developed for
general GARCH( r, s) models. The test procedure can be used for GARCH( r, s) models
presented in ( 1.1 ) and according parameter vector θ∗ = ( α∗

0 , . . . , α
∗
r , β

∗
1 , . . . , β

∗
s ) 

′ . The
only change in the testing procedure is the adaptation of the likelihood function in
( 2.5 ) to the one for GARCH( r, s) models given in ( 3.2 ) below. 

(e) A general parameter constancy test. When one would just like to test for the con-
stancy of H 

′ θ∗ without setting a specific baseline value c = H 

′ θ∗, we can modify our
test statistics ˆ B n as follows: 
We define 

ˆ B 

cp 
n ( τ1 , τ2 ) : = 

√ 

n ( τ2 − τ1 ) 
τ1 

τ2 
( H 

′ �̄ n,τ1 H ) −1 / 2 
{
H 

′ ˆ θn,τ1 ,τ2 − H 

′ ˆ θn, 0 ,τ1 

}
, 

and 

ˆ B 

cp 
n : = sup 

( τ1 ,τ2 ) ∈ R κ,κ′ ∩ G 2 
ˆ B 

cp 
n ( τ1 , τ2 ) . 

Based on Theorem 3.4, the critical value ˆ q cp W,δ needs to be redefined based on the
distribution of ˆ μ

cp 

n,k as follows: 

Let ε [ k] 
i ∼ N (0 , 1) , i = 1 , . . . , n and 

ˆ μ
cp 

n,k : = sup 

( τ1 ,τ2 ) ∈ R κ,κ′ ∩ G 2 
1 √ 

nτ2 

{ 

√ 

τ1 

τ2 − τ1 

� nτ2 � ∑ 

i=� nτ1 �+ 1 

ε 
[ k] 
i −

√ 

τ2 − τ1 

τ1 

� nτ1 � ∑ 

i= 1 

ε 
[ k] 
i 

} 

. 

The theoretical properties of the statistics are briefly discussed in Subsection 3.4 . 

3. THEORETICAL RESULTS FOR GENERAL GARCH( r, s) MODEL 

In this section we derive the theoretical properties of the GSRWW test and provide the necessary
definition of the estimators in the general GARCH( r, s) model. We also formulate the GSRWW
test and provide the necessary theoretical results in a general GARCH( r, s) model. For r, s ∈ N ,
θ ( i) = ( α0 ( i) , α1 ( i) , . . . , αr ( i) , β1 ( i) , . . . , βs ( i)) ′ , we consider the GARCH( r, s) model ( 1.1 ) 

X 

2 
i = ζ 2 

i σ
2 
i , 

σ 2 
i = α0 ( i) + 

r ∑ 

j= 1 

αj ( i) X 

2 
i−j + 

s ∑ 

k= 1 

βk ( i) σ
2 
i−k . 

Here, ζi are i.i.d. innovations with E ζ1 = 0 and E ζ 2 
1 = 1 . 

Recall our change point setting in ( 2.2 ), which is now defined with some fixed direction
H ∈ R 

r+ s+ 1 (instead of H ∈ R 

3 for GARCH(1,1)). Recall the hypotheses as in ( 2.4 ). We
first analyse the model under the null hypothesis of constant parameters, i.e., θ ( i) ≡ θ∗ =
( α∗

0 , α
∗
1 , . . . , α

∗
r , β

∗
1 , . . . , β

∗
s ) 

′ . Following Francq and Zako ̈ıan ( 2004 ), we now present the set
of assumptions to ensure the existence of a unique stationary solution to our model in ( 1.1 ).
Define f ( θ ) = ( α1 , . . . , αr , β1 , . . . , βs ) ′ and let e j = (0 , . . . , 0 , 1 , 0 , . . . , 0) ′ ∈ R 

r+ s be the unit
column vector with the j th element being 1, 1 ≤ j ≤ r + s. Define the ( r + s) × ( r + s) -matrix
as 

A i ( θ ) = ( f ( θ ) ζ 2 , e 1 , . . . , e r−1 , f ( θ ) , e r+ 1 , . . . , e r+ s−1 ) 
′ . 
i 

© The Author(s) 2023. 
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ecall that | A | 2 is the spectral norm of a quadratic matrix A . Define the top Lyapunov exponent
f A i ( θ ) as 

γ ( θ ) : = lim 

i→∞ 

1 

i 
log | A i ( θ ) A i−1 ( θ ) . . . A 1 ( θ ) | 2 . 

his exists if E | ζ0 | a < ∞ for some a > 0 (cf. Francq and Zako ̈ıan, 2004 ). 

SSUMPTION 3.1. Suppose that 

(A1) ζ 2 
0 has a nondegenerate distribution with E ζ 2 

0 = 1 . 
(A2) Let αmin > 0 , and 

˜ � = 

{
θ ∈ R 

r+ s+ 1 
≥0 : α0 ≥ αmin , γ ( θ ) < 0 a.s. , 

s ∑ 

j= 1 

βj < 1 

}
. (3.1)

Let � ⊂ ˜ � be compact. Assume that θ∗ ∈ int( � ) . 
(A3) Let A θ ( z) : = 

∑ r 
i= 1 αi z 

i , B θ ( z) : = 1 − ∑ s 
j= 1 βj z 

j . If s > 0 , A θ∗ ( z) and B θ∗ ( z) have no
common root, A θ∗ (1) �= 0 and α∗

r + β∗
s �= 0 . 

Condition (A2), i.e., γ ( θ∗) < 0 , guarantees the strict stationarity of the GARCH process. Note
hat this includes parameter values corresponding to IGARCH or mildly e xplosiv e GARCH
ith 

∑ 

j α
∗
j + 

∑ 

k β
∗
k > 1 . From Francq and Zako ̈ıan ( 2004 ) and Proposition B.1 in the online

ppendix B, we see that Assumption 3.1 implies existence of a solution of ( 1.1 ) which has
eometric decay of dependence. 

3.1. QMLE in GARC H ( r, s ) and its consistency under null and alternative 

n this subsection, we describe the QMLE, and formulate a theorem that yields its uniform
onsistency under the null and the alternative. Since we are providing the theory for GARCH( r, s)
odels, we now have to define the corresponding more general likelihood function involved in

he estimation procedure. For estimation of θ∗ ∈ � , we consider the following QML approach.
e denote by Y 

c 
i : = ( X 

2 
i−1 , X 

2 
i−2 , . . . , X 

2 
1 , 0 , 0 , ... ) the observed data until time i − 1 . For 0 ≤

1 < τ2 ≤ 1 , 

L 

c 
n,τ1 ,τ2 

( θ ) : = 

1 

n 

� nτ2 � ∑ 

i=� nτ1 �+ 1 

� ( X 

2 
i , Y 

c 
i , θ ) , 

here 

� ( x , y , θ ) : = 

1 

2 

( x 

σ 2 ( y , θ ) 
+ log σ 2 ( y , θ ) 

)
(3.2)

nd σ 2 ( y, θ ) follows the recursion 

σ 2 ( y, θ ) = α0 + 

r ∑ 

j= 1 

αj y j + 

s ∑ 

k= 1 

βk σ
2 (( y k+ 1 , y k+ 2 , ... ) , θ ) . (3.3)

The analytic definition of the recursion of σ 2 ( y, θ ) is formulated in a forw ard w ay (using
 1 , y 2 , ... instead of y −1 , y −2 ,...) because we plug in y = Y 

c , which is formulated in a backward
i 
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way, leading to the usual quasi-likelihood approach for GARCH models. Note that σ 2 ( Y 

c 
i , θ )

in ( 3.3 ) terminates after a finite number of steps due to zeros in Y 

c 
i . Morevoer, instead of using

the truncated version Y 

c 
i = ( X 

2 
i−1 , X 

2 
i−2 , . . . , X 

2 
1 , 0 , . . . , 0) which corresponds to assuming that

all initial values X 

2 
0 = X 

2 
−1 = ... = 0 , one can also use different initial values like X 

2 
0 = X 

2 
−1 =

... = α0 or X 

2 
0 = X 

2 
−1 = ... = X 

2 
1 as inv estigated in Francq and Zako ̈ıan ( 2004 ). F or a discussion

of different initial values, consider Bougerol and Picard ( 1992a ) (in the case of strict stationarity).
Let σ 2 

t = α0 / 
(
1 − ∑ s 

k= 1 βk 

) + 

∑ r 
j= 1 αj X 

2 
t−j + 

∑ r 
j= 1 αj 

∑ ∞ 

k= 1 

∑ s 
j 1 = 1 

∑ s 
j 2 = 1 · · ·

∑ s 
j k = 1 βj 1 βj 2

· · · βj k X 

2 
t−i−j 1 −···−j k 

. With the defined likelihood function, for 0 ≤ τ1 < τ2 ≤ 1 , an estimator
ˆ θn,τ1 ,τ2 of θ in the observation interval i = � nτ1 � + 1 , . . . , � nτ2 � is obtained as in ( 2.6 ) via 

ˆ θn,τ1 ,τ2 : = argmin θ∈ � 

L 

c 
n,τ1 ,τ2 

( θ ) . (3.4) 

With these definitions, we obtain the following uniform consistency under the null hypothesis
of no parameter change. 

THEOREM 3.1 (UNIFORM CONSISTENCY OF 

ˆ θn,τ1 ,τ2 under the null H 0 ) . Let Assumption 3.1
and H 0 hold. Then for each κ > 0 , 

sup 

0 ≤τ1 <τ2 ≤1 , | τ1 −τ2 |≥κ

| ̂  θn,τ1 ,τ2 − θ∗| 1 p → 0 . 

Additionally, we have the following result under the alternative. 

PROPOSITION 3.1 (CONVERGENCE OF THE STATISTICS UNDER THE ALTERNATIVE H1) Let
Assumption 3.1 and H 1 hold, where θ∗ + H 
 

∗ ∈ int ( � ) . Then, 

| ̂  θn,τ ∗
1 ,τ

∗
2 

− ( θ∗ + H 
 

∗) | 1 p → 0 . 

Note that this result is important and remarkable in the following sense: Even though the
whole past of the process is used in the calculation of L 

c 
n,τ1 ,τ2 

( θ ) (in particular realizations with
i ≤ � nτ ∗

1 � , which follow a model with parameters θ∗ instead of θ∗ + H 
 

∗), ˆ θn,τ ∗
1 ,τ

∗
2 

converges to
the value θ∗ + H 
 

∗ in the alternative. The reason is that the past values only have a small impact
on the whole likelihood due to the geometric decay of the coefficients in �, cf. Lemma B.3 in
Online Appendix B. 

3.2. Limiting distribution of the test statistics 

Given the consistency of our QMLE in a GARCH( r, s) model, we provide a distribution theorem
for ˆ θn,τ1 ,τ2 that allows us to obtain critical values for the uniform test defined in Section 2 and
more general tests. Recall the change point setting ( 2.2 ) with H ∈ R 

r+ s+ 1 . We analyse the limiting
distribution of the test statistics given in ( 2.11 ) and ( 2.9 ) under the null @ H 0 of no parameter
change. Recall 

ˆ B n = sup 

( τ1 ,τ2 ) ∈ R κ,κ′ 

ˆ B n ( τ1 , τ2 ) , 

where 

ˆ B n ( τ1 , τ2 ) = 

√ 

n ( τ2 − τ1 ) ( H 

′ �̄ n,τ1 H ) −1 / 2 { H 

′ ˆ θn,τ1 ,τ2 − H 

′ θ∗} . 
First, we approximate the difference ˆ θn,τ1 ,τ2 − θ∗ by a simple linear form uniformly in τ1 , τ2 . The
following type of theoretical result is also known as a weak Bahadur representation of ˆ θn,τ1 ,τ2 .
© The Author(s) 2023. 
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or κ ∈ (0 , 1) , we define 

R κ : = { ( τ1 , τ2 ) ∈ [0 , 1] 2 : τ1 < τ2 , | τ1 − τ2 | ≥ κ} . 
HEOREM 3.2 (WEAK BAHADUR REPRESENTATION). Let Assumption 3.1 and H 0 hold.
ssume that for some a > 0 , E | ζ0 | 4 + a < ∞ . Then for each κ > 0 , 

sup 

( τ1 ,τ2 ) ∈ R κ

∣∣{ ̂  θn,τ1 ,τ2 − θ∗} + (( τ2 − τ1 ) V ( θ∗)) −1 · ∇ θL n,τ1 ,τ2 ( θ
∗) 

∣∣ = O p ( log ( n ) 3 n 

−1 ) , 

here L n,τ1 ,τ2 ( θ ) : = 

1 
n 

∑ � nτ2 � 
i=� nτ1 �+ 1 � ( X 

2 
i , Y i , θ ) . 

This linearization result allows to transfer the properties of the sum ∇ θL n,τ1 ,τ2 to the difference
ˆ 
n,τ1 ,τ2 − θ∗; especially we obtain a limit distribution of ˆ θn,τ1 ,τ2 uniformly in ( τ1 , τ2 ) ∈ R κ under
 0 by using Gaussian approximation results from Wu and Zhou ( 2011 ). The functional limit

istribution then naturally implies the pointwise convergence results from Francq and Zako ̈ıan
 2004 ) and it is much stronger, as it can be used as a starting point to apply theorems from
mpirical process theory (such as the continuous mapping theorem). Let � ∞ ( T ) denote the space
f bounded functions f : T → R , (cf. V an der V aart, 1998 , Section 18, Example 18.5). As a
irect consequence of the uniform Bahadur representation, we can derive the distribution of the
ifference of the estimator and the true value θ∗ under the null. 

HEOREM 3.3 (ASYMPTOTIC DISTRIBUTION OF THE TEST STATISTICS) Suppose that As-
umption 3.1 and H 0 holds. Suppose that there exists a ′ > 0 such that E | ζ0 | 4 + a ′ < ∞ . Fix κ > 0
nd suppose that H 0 is true. Then on � ∞ ( R κ ) r+ s+ 1 , 

√ 

n ( τ2 − τ1 ) 
{

ˆ θn,τ1 ,τ2 − θ∗} d → � 

1 / 2 

{
B( τ2 ) − B( τ1 ) √ 

τ2 − τ1 

}
, 

here B( ·) is a standard ( r + s + 1) -dimensional Brownian motion, and 

� = V ( θ∗) −1 I ( θ∗) V ( θ∗) −1 

s from ( 2.7 ). where μ4 : = E ζ 4 
0 . 

As a direct corollary, we obtain with the continuous mapping theorem the limit distribution of
ˆ 
 n with a known covariance matrix �. To obtain the critical values of our test, we need to derive
uantiles for the test statistics ˆ B n , which can be inferred by its limit distribution. 

OROLLARY 3.1. Suppose that Assumption 3.1 and H 0 holds. Suppose that there exists a ′ > 0
uch that E | ζ0 | 4 + a ′ < ∞ . Fix κ > 0 . Let H ∈ R 

r+ s+ 1 . Let � H 

: = H 

′ �H . Then, 

sup 

( τ1 ,τ2 ) ∈ R κ

√ 

n ( τ2 − τ1 ) � 

−1 / 2 
H 

{
H 

′ ˆ θn,τ1 ,τ2 − H 

′ θ∗}

d → sup 

( τ1 ,τ2 ) ∈ R κ

{
B( τ2 ) − B( τ1 ) √ 

τ2 − τ1 

}
, 

here B( ·) is a standard 1-dimensional Brownian motion. 

EMARK 3.1. Note that this result could easily be generalized to H ∈ R 

( r+ s+ 1) ×d , which allows
s to detect more than one deviation from a ‘stable’ state, as remarked in Section 2.3 . 

If a process behaves mildly explosive in the second moment and has constant parameters in all
ime periods, our theoretical results are still valid. The reason is that this case belongs to the null
ypothesis, as we only restrict θ∗ to lie in the parameter region of strict stationarity. 
The Author(s) 2023. 
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REMARK 3.2. It is worth noting that, different from Francq and Zako ̈ıan ( 2004 ), we have a
slightly stronger moment assumption, i.e., E | ζ0 | 4 + a ′ < ∞ . The reason is that proving a uniform
convergence as in (3.1) typically needs a high-level Bahadur-type approximation result which
incorporates uniform approximation of the lik elihood tow ards its expectation. To do so, we use
concentration inequalities from Zhang and Wu ( 2017 ), and Gaussian approximation results from
Wu and Zhou ( 2011 ), which need the summands to have a little more than two moments. Here, the
likelihood of having more than two moments corresponds to ζ0 having more than four moments.

Since � H 

is unknown in practice, we next discuss an analogue of Corollary 3.1 where � H 

is
replaced by a consistent estimator. 

3.3. Estimation of � and statistical properties with the estimated �. 

In this subsection we show that the proposed estimator �̄ n,τ1 of � in ( 2.8 ) is a uniformly consistent
estimator for �. In addition, we show that the limit distribution of the test statistics remains
the same with the plugged v ariance-cov ariance estimator. It is well known that the following
alternative representation holds (cf. Proposition B.2 in online Appendix B): 

� = V ( θ∗) −1 I ( θ∗) V ( θ∗) −1 (3.5) 

= 

μ4 − 1 

2 

· V ( θ∗) −1 . 

Ho we ver, here we restrict ourselves to the estimation of � via the representation of ( 3.5 ) to a v oid
estimating μ4 separately. To coincide with a typical change-point test and to obtain a high power,
�̄ n,τ1 in ( 2.8 ) was defined only with observations from the null hypothesis i = 1 , . . . , � nτ1 � . We
have the following result. 

PROPOSITION 3.2 (UNIFORM CONSISTENCY OF THE COVARIANCE ESTIMATOR) 
Suppose that Assumption 3.1 and H 0 holds. Suppose that there exists a ′ > 0 such that

E | ζ0 | 4 + a ′ < ∞ . Fix κ ′ > 0 . Then: 

(i) sup τ1 ≥κ ′ | ̄V n,τ1 ( ̂  θn, 0 ,τ1 ) − V ( θ∗) | 1 p → 0 . 

(ii) If additionally E | ζ0 | 8 + a ′ < ∞ , sup τ1 ≥κ ′ | ̄I n ( ̂  θn, 0 ,τ1 ) − I ( θ∗) | p → 0 , and 

sup 

τ1 ≥κ ′ 

∣∣�̄ n,τ1 − � 

∣∣
2 

p → 0 . 

As a corollary of Theorem 3.3 and Proposition 3.2, we now obtain the limit distribution of ˆ B n 

with Slutsky’s lemma. Recall R κ,κ ′ from ( 2.10 ). 

COROLLARY 3.2. Suppose that Assumption 3.1 and H 0 holds. Suppose that there exists a ′ > 0
such that E | ζ0 | 8 + a ′ < ∞ . Let H ∈ R 

r+ s+ 1 . Then, 

ˆ B n = sup 

( τ1 ,τ2 ) ∈ R κ,κ′ 

√ 

n ( τ2 − τ1 ) ( H 

′ �̄ n,τ1 H ) −1 / 2 
{
H 

′ ˆ θn,τ1 ,τ2 − H 

′ θ∗}

d → sup 

( τ1 ,τ2 ) ∈ R κ,κ′ 

{
B( τ2 ) − B( τ1 ) √ 

τ2 − τ1 

}
= : W, 

where B( ·) is a standard 1-dimensional Brownian motion. 
© The Author(s) 2023. 
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EMARK 3.3 (MODIFICATION OF THE TEST AND THE HYPOTHESES). 

(i) Let q W,δ denote the (1 − δ) quantile of W . Then 1 { ̂ B n >q W,δ} is also a level δ test for the
extended hypotheses 

H 0 : 
 

∗ ≤ 0 vs. H 1 : 
 

∗ > 0 . (3.6)

The reason being that 
 

∗ < 0 in connection with the uniform consistency of Theorem 3.1
only produces smaller values of the test statistics ˆ B n . 

(ii) F or an y fix ed θ∗ ∈ int ( � ) , the power function β( 
 

∗) : = P 
 

∗( ̂  B n > q W,δ) is continuous
around 
 

∗ = 0 since the process X i from ( 1.1 ) depends continuously on 
 

∗ through θ∗( i) .
Therefore, 1 { ̂ B n >q W,δ} is also a level δ test for 

H 0 : 
 

∗ < 0 vs. H 1 : 
 

∗ ≥ 0 . (3.7)

Intuitively, one can argue that ( 3.7 ) is nearly the same as testing 

H 0 : 
 

∗ ≤ ε

with some arbitrarily small ε > 0 , which again is nearly the same as testing ( 3.6 ). 

If the significance of ˆ B n is detected, τ ∗
1 , τ

∗
2 can be estimated by the choice 

( ̂  τ1 ,n , ̂  τ2 ,n ) ∈ argmax ( τ1 ,τ2 ) ∈ R κ,κ′ 
ˆ B n ( τ1 , τ2 ) . 

This result shows that the test provided in Algorithm 1 in Section 2 is a test with asymptotic
ize δ. Based on the consistency result from Proposition 3.1, we obtain that the test based on
lgorithm 1 also has asymptotic power 1, which is shown in the following corollary. 

OROLLARY 3.3. Let Assumption 3.1 and H 1 hold, where θ∗ + H 
 

∗ ∈ int ( � ) and ( τ ∗
1 , τ

∗
2 ) ∈

 κ,κ ′ . Then, 

ˆ B n 

p → ∞ . 

EMARK 3.4. We conjecture that this result can be extended even to nonstationary alternatives
here θ∗ + H 
 

∗ �∈ � as long as H 

′ (1 , 0 , . . . , 0) = 0 . The reason for this restriction is that
rancq and Zako ̈ıan ( 2012 ) disco v ered that one cannot expect ˆ α0 to be consistently estimated in

he nonstationary regime. 

3.4. Theor etical r esults for a gener al par ameter constancy test 

inally, we provide theoretical results for the generalization case of (d) from Section 2.3 . Namely,
ecall that 

ˆ B 

cp 
n = sup 

( τ1 ,τ2 ) ∈ R κ,κ′ 

ˆ B 

cp 
n ( τ1 , τ2 ) , 

here 

ˆ B 

cp 
n ( τ1 , τ2 ) = 

√ 

n ( τ2 − τ1 ) 
τ1 

τ2 
( H 

′ �̄ n,τ1 H ) −1 / 2 
{
H 

′ ˆ θn,τ1 ,τ2 − H 

′ ˆ θn, 0 ,τ1 

}
. 
The Author(s) 2023. 
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In opposite to 

ˆ B n , we do not focus on testing a particular c. The normalization with τ1 , τ2 in
ˆ B 

cp 
n ( τ1 , τ2 ) is chosen such that its limit distribution for fixed τ1 , τ2 has an N (0 , 1) distribution. In

the following, the theorem ensures the asymptotic performance of the generalized test statistics
under the null and alternative hypotheses. 

THEOREM 3.4. Suppose that Assumption 3.1 holds. Suppose that there exists a ′ > 0 such that
E | ζ0 | 8 + a ′ < ∞ . Let H ∈ R 

r+ s+ 1 . Then under H 0 , 

ˆ B 

cp 
n 

d → sup 

( τ1 ,τ2 ) ∈ R κ,κ′ 

1 √ 

τ2 

{ 

√ 

τ1 

τ2 − τ1 

{
B( τ2 ) − B( τ1 ) 

} −
√ 

τ2 − τ1 

τ1 
B( τ1 ) 

} 

, 

where B( ·) is a standard 1-dimensional Brownian motion. If instead H 1 holds with θ∗ + H 
 

∗ ∈
int ( � ) and ( τ ∗

1 , τ
∗
2 ) ∈ R κ,κ ′ , then 

ˆ B 

cp 
n 

p → ∞ . 

4. REAL DATA APPLICATION 

In this section, we apply our test to real data. We first consider two commonly used financial risk
indicators. One is the VIX, and the other is the Treasury-EuroDollar (TED) rate spread. The VIX
is a weighted combination of prices for a range of options on the S&P 500 index, which reflects
the market expectation of the volatility level. The TED spread is the difference between the 3-
Month London Interbank Offered Rate (LIBOR) based on US dollars and the 3-Month Treasury
Bill, which typically measures the liquidity among the inter-bank money market. The VIX is
available from Yahoo Finance ( 2019 ), and the TED spread (Federal Reserve Economic Data,
2019 ) is downloaded from the following address: https://fr ed.stlouisfed.or g/series/TEDRATE .
We adopt a daily frequency for the TED (the VIX) for the time span 01/07/2004–09/05/2018
(05/01/2004–05/09/2018). 

The VIX is often regarded as a measure of the market fear of stock investors, which is related
to the cost of purchasing insurance against market downturns. We usually see that the VIX will
be high in a bearish market and low in a bullish market. The TED spread represents the credit risk
in the general economy. It signals how banks are willing to lend to each other, which is related to
the liquidity of the markets. A high level of TED spread is a sign of low liquidity and high risk
of default on inter-bank loans. 

Both the VIX and the TED spread are often considered early-warning indicators of market
stress. Namely, when market uncertainty is high, a temporary shock to the financial system leads
to increased default or otherwise adverse effect to the global financial market; see, for example,
as described in Gonz ́alez-Hermosillo and Hesse ( 2011 ). Abrupt changes of the parameter values
of the underlying processes are likely to be associated with this type of sudden changes of market
conditions. The goal of our analysis is to disco v er the existence of periods of unstable behaviour
of the underlying volatility process. This can be helpful to decide if a go v ernment should perform
an intervention based on the estimated underlying parameter values. Figure 4 shows a plot of
the following adjusted series: the TED spread Y i , the log returns L i : = log 

(
Y i 

Y i−1 

)
, and absolute

log returns of the TED spread. From the plot, we observe that the returns fluctuate around the
zero. During the years 2008–2009, there is a period of high volatility. We divide the data into a
sequence of consecutive windows of 1,000 days each. The log returns L i are stationary in all the
windows (suggested by the ADF test) and serial correlation is taken out by fitting an ARMA( p, q)
© The Author(s) 2023. 
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Figure 4. The plot of TED spread in percentage (upper panel), the log difference of TED spread (middle 
panel) and the absolute value of TED spread (lower panel). The dates of change are marked with grey 

lines. (Starting line: dark grey, ending line: light grey.). 

Table 1. The detected significant break periods for the TED spread, the corresponding persistence 
parameter ( ̂  α1 + 

ˆ β1 ) and the test statistics; ( *** ) means significant at both 0.95,0.90. Parameter estimation 
for ˆ α1 , ˆ β1 in brackets. The null hypothesis is α1 + β1 = 0 . 95 . 

ˆ τ1 ˆ τ2 In Out Test statistics 

1 2007-05-09 2008-02-29 1.02 (0.14, 0.88) 0.95 (0.08, 0.87) 4 .22( *** ) 
2 2008-07-25 2009-05-20 1.08 (0.44, 0.64) 0.95 (0.05, 0.90) 19 .74( *** ) 
3 2013-01-24 2013-11-14 1.05 (0.28, 0.77) 0.95 (0.04, 0.91) 7 .41( *** ) 
4 2017-02-16 2017-12-07 1.00 (0.05, 0.95) 0.95 (0.04, 0.91) 3 .32( *** ) 
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rocess of the form 

L i = 

p ∑ 

j= 1 

αj L i−j + 

q ∑ 

k= 1 

βk ε i−k + ε i 

n advance and the following analysis is done on the estimated residuals after the QMLE fitting, 

ˆ X i : = ˆ ε i . 

From the histogram and Q-Q plot of the time series in Figure 5 , we observe a strong evidence
f leptokurtic behaviour. We follow the suggestions as in Section 2 for the choices of tuning
arameters, and grid size L is chosen to be L = 100 throughout this section. Figure 6 shows the
oving window fitting results. In Table 1 we present the detected periods of the mildly explosive

eha viour. We ha ve adopted our tested with extension to a multiple change-point algorithm as
iscussed in Section 2.3 (c). Therefore, multiple significant periods of change can be detected.
he GSRWW test identifies the major financial crises such as the US subprime mortgage crisis
The Author(s) 2023. 
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Figure 5. Q-Q plot and the histogram for the daily TED spread. 

Figure 6. A plot of estimated GARCH(1,1) parameters using the TED data o v er a rolling window of size 
200. ˆ α1 + 

ˆ β1 estimate persistence parameter (blue dash line), ˆ α1 (solid line), ˆ β1 (dotted line), threshold 
( α1 + β1 = 0 . 95 ). 
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as early as May 2007, and lasts until February 2008. Furthermore, the test can detect some short-
lived instability early; such as, in October 2013 the TED spread dropped due to the worries of a
potential default on the US debt. 

The corresponding time series of the VIX is plotted in Figure 7 . We observe that the index
value increases sharply during the subprime crisis. A similar leptokurtic behaviour of the series
can be found in Figure 8 . Figure 9 presents the moving window parameter fitting results. We
cannot detect any significant intervals against the null hypothesis of H 0 : α1 + β1 = 1 . Instead
we fit a global model first using the whole sample and test against the fitted value of the global
© The Author(s) 2023. 
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Figure 7. The plot of VIX (upper panel), the log difference of VIX (middle panel), and the absolute value 
of VIX (lower panel). The dates of change are marked with grey lines. (Starting line: dark grey, ending 

line: light grey.). 

Figure 8. Q-Q plot and the histogram for the daily VIX index. 
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odel, i.e., α1 + β1 = c : = 0 . 95 . We have detected five intervals of change points, as listed in
able 2 . In particular, the period end in October 2006 signifies the early warning of the subprime
ortgage crisis. The period starting on 2011 − 05 − 24 corresponds to the Euro debt crisis. In

um, our test can pick up the critical periods of financial crises early for both the VIX and the
The Author(s) 2023. 
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Figure 9. A plot of estimated GARCH(1,1) parameters using the VIX data o v er a rolling window of size 
200. ˆ α1 + 

ˆ β1 estimate persistence parameter (dash line), ˆ α1 (solid line), ˆ β1 (dotted line), threshold 
( α1 + β1 = 0 . 95 ). 

Table 2. The detected significant break periods for the VIX. The corresponding persistence parameter 
( ̂  α1 + 

ˆ β1 ) and the test statistics. The null hypothesis is α1 + β1 = 0 . 95 ; ( *** ) means significant at both 
0.95,0.90. Parameter estimation for ˆ α1 , ˆ β1 are in brackets. 

ˆ τ1 ˆ τ2 In Out Test statistics 

1 2004-01-05 2006-10-13 1.01 (0.11, 0.89) 0.95 (0.05, 0.90) 10 .94( *** ) 
2 2010-10-05 2011-03-28 1.33 (0.82, 0.52) 0.95 (0.11, 0.84 ) 14 .11( *** ) 
3 2008-08-13 2010-08-09 1.00 (0.12, 0.88) 0.95 (0.05, 0.90) 7 .72( *** ) 
4 2011-05-24 2011-11-11 1.04 (0.23, 0.81) 0.95 (0.08, 0.87) 4 .20( *** ) 
5 2011-12-12 2015-01-21 1.01 (0.15, 0.86) 0.95 (0.05,0.90) 10 .37( *** ) 
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TED spread. Besides, it can also successfully signify small periods of turbulence in the volatility
processes of the the early-warning indicators. 

Next, we test our methodology on the recent emerging Fintech markets. We gather the
Bitcoin price series from 19 July 2010 to 05 No v ember 2018 at a daily frequency. The data
(CoinMarketCap, 2019 ) source is ht tps://coinmarket cap.com/currencies/bit coin/historical-data/.
We show the returns and the absolute returns for the Bitcoin price series in Figure 10 . We can see
that there are several high-volatility periods. The volatility level is higher before 2013 followed
by a stable period. Recently, the market volatility increased. The Q-Q plots and histograms in
Figure 11 indicate the heavy-tailedness of the underlying distribution. We present the test results
with consecuti ve windo ws of 1,000 days in Table 3 . Again the log returns are stationary in all
the windows (by results of ADF tests) and serial correlation is taken out by fitting an ARMA
process in advance. We apply our test to the obtained residuals, which indicates the presence of
multiple market ‘euphoria’ episodes in the series. The GSSWW identifies the most significant
high-volatility period, including the period co v ering the June 2016 crash, the crashes during
summer 2017, and the fear of market regulation in October 2017. We have chosen Bitcoin as
© The Author(s) 2023. 
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Figure 10. The plot of Bitcoin price (upper panel), the log difference of Bitcoin (middle panel) and the 
absolute returns (lower panel). The dates of change are marked with grey lines. (Starting line: dark grey, 

ending line: light grey.). 

Figure 11. Q-Q plot and the histogram for the Bitcoin returns. 
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n important additional study, as the Fintech markets are known to behave independently with
espect to the conventional financial market. Bitcoin is not controlled by an y go v ernment, and
peculators can use our test results for abnormal regimes of Bitcoin as indicators of the market
entiment. 
The Author(s) 2023. 
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Table 3. The detected significant break periods for the Bitcoin log returns, the corresponding persistence 
parameter ( ̂  α1 + 

ˆ β1 ), and the test statistics. ( *** ) means significant at both 0.95,0.90. Parameter estimation 
for ˆ α1 , ˆ β1 in brackets. Testing the corresponding persistence parameter ( α1 + β1 = 1 ). 

ˆ τ1 ˆ τ2 In Out Test statistics 

1 2010-08-28 2010-12-07 1.33 (0.84, 0.49) 1.00 (0.37, 0.63) 3 .92( *** ) 
2 2011-04-17 2012-10-13 1.49 (1.02, 0.47) 1.00 (0.28, 0.72) 18 .44( *** ) 
3 2013-07-13 2013-12-02 1.71 (1.46, 0.25) 0.97 (0.19, 0.78) 16 .11( *** ) 
4 2016-04-01 2017-09-24 1.42 (1.01, 0.41) 0.96 (0.10, 0.86) 23 .45( *** ) 
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5. CONCLUSION 

In this paper, we propose a uniform test for a mildly e xplosiv e GARCH process with double-
supreme statistics. Theoretical results about the uniform parameter consistency and asymptotic
distribution of the test statistics are provided. Our test is easy to implement, and can help to
ef fecti vely identify mildly explosive periods with good sizes and power. The quality of the test
is discussed via a simulation study in the Online Appendix. We applied our procedure to real
data time series as the TED spread, the VIX, and the Bitcoin price series, and tracked their
corresponding volatile periods. Further work may extend the algorithm to online procedures,
allowing for real time detection of breaks. 
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