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SUMMARY

Modern statistical methods for multivariate time series rely on the eigendecomposition
of matrix-valued functions such as time-varying covariance and spectral density matrices.
The curse of indeterminacy or misidentification of smooth eigenvector functions has not
received much attention. We resolve this important problem and recover smooth trajecto-
ries by examining the distance between the eigenvectors of the same matrix-valued function
evaluated at two consecutive points.We change the sign of the next eigenvector if its distance
with the current one is larger than the square root of 2. In the case of distinct eigenvalues,
this simple method delivers smooth eigenvectors. For coalescing eigenvalues, we match the
corresponding eigenvectors and apply an additional signing around the coalescing points.
We establish consistency and rates of convergence for the proposed smooth eigenvector esti-
mators. Simulation results and applications to real data confirm that our approach is needed
to obtain smooth eigenvectors.

Some key words: Local stationarity; Matrix-valued function; Spectral decomposition; Spectral density matrix.

1. Introduction

It is well known that unit-norm eigenvectors of a time-invariant matrix are unique up to
a ± sign; see Wicklin (2017). Albeit different software packages, such as SAS, MATLAB®,
R and Mathematica®, might produce different eigenvectors for the same input matrix,
this indeterminacy can be resolved by fixing the first row of the eigenvector matrix to be
positive; see Lawley & Maxwell (1971, p. 18). Unfortunately, when dealing with matrix-
valued functions, following this simple convention leads to unsmooth eigenvector functions.

©c The Author(s) 2023. Published by Oxford University Press on behalf of the Biometrika Trust.
All rights reserved. For permissions, please email: journals.permissions@oup.com
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1078 G. Motta, W. B. Wu and M. Pourahmadi

Amatrix-valued function is a path of matrices A(x) whose entries depend on a real variable
x ∈ R; see, e.g., Bunse-Gerstner et al. (1991). The second source of misidentification is the
phenomenon of eigenvalue functions, eigencurves from here on, intersecting or coalescing
at a point xc say, in which case the corresponding eigenvector functions, eigenfunctions from
here on, cannot be identified uniquely due to the lack of unique ordering of the eigencurves
at the coalescing point xc.

For a symmetric matrix-valued function A(x), we denote by λ1(x), . . . , λN(x) its pos-
sibly unordered eigencurves and by �1(x) � · · · � �N(x) the ordered eigenvalues. The
eigenfunctions corresponding to the eigencurves are denoted by �(x), whereas eigenvec-
tors corresponding to the ordered eigenvalues are denoted by P(x). Then A(x) admits two
possibly different spectral decompositions:

A(x) = �(x)�(x)�(x)T =
N∑

j=1

λj(x)�j(x)�j(x)
T

= P(x)L(x)P(x)T =
N∑

j=1

�j(x)Pj(x)Pj(x)
T.

Here �(x) = diag{λ1(x), . . . , λN(x)}, L(x) = diag{�1(x), . . . , �N(x)},P(x) = [P1(x)|
· · · |PN(x)] and �(x) = [�1(x)| · · · |�N(x)] are orthonormal matrices for each x, λj(x)

and �j(x) are smooth functions of x and �1(x) � · · · � �N(x) are ordered values of the
eigencurves λ1(x), . . . , λN(x). Note that �j(x) and Pj(x) can be obtained from conventional
eigendecomposition of A(x) and they are generally not differentiable in x. Moreover, unless
�j(x) ≡ λj(x), the unordered eigencurves λj(x) and the corresponding eigenfunctions �j(x)

cannot be obtained from conventional eigendecomposition of A(x).
The two sources of misidentification, discontinuity and mismatch, that we deal with in

this paper, are the choices of signing and swapping the eigenfunctions of {A(x), x ∈ R}. Let
�1j(x) be the first entry of �j(x) and assume that the sign of �1j(x) changes around x0.
Forcing �1j(x) to be positive, as in the case of a single matrix A, would reduce its degree
of smoothness around x0. The second source of misidentification is due to the lack of a
unique ordering/ranking of the eigenvalues in the presence of coalescing/crossing points,
that is, in the case of local multiplicity. The eigencurves λ1(x), . . . , λN of A(x) can be ranked
at each x in decreasing order. However, due to changing order at the coalescing points,
the ensuing trajectories of �(x) and �(x) may not inherit the degree of smoothness of
A(x). Consequently, one needs to consider all possible combinations, or swappings, of the
eigenvectors corresponding to different rankings of the eigenvalues.

In fact, the interactive effects of both sources, signing and swapping, translates into a
high-dimensional combinatorial problem that renders estimation infeasible even for small-
dimensional time series. If c denotes the number of coalescing points (c � 0), the total
number of possible combinations of signed eigenvectors is 2N(c+1), whereas the total number
of possible combinations of swapped eigenvectors isN!(c+1). In the SupplementaryMaterial
we provide more details and numerical examples about the combinatorial nature of signing
and swapping. To properly introduce the problem we solve in this paper, we also need to
clarify its mathematical root. To this end, we distinguish between distinct and coalescing
eigencurves.

Let A(x) ∈ Ck(R,CN×N
H ), where Ck(R,CN×N

H ) denotes the set of Hermitian N × N

matrices that are k times differentiable functions of the real variable x. Dieci & Eirola (1999,
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Proposition 2.4) proved that if the eigencurves are distinct, there exist P,L ∈ Ck unitary and
diagonal, respectively, such thatP(x)∗A(x)P(x) = L(x) for all x, whereM∗ denotes the con-
jugate transpose of matrixM. However, although mathematically such a smooth P(x) does
exist, the identification up to sign renders the eigenvectors computationally unsmooth, even
in the case of distinct eigenvalues. In this paper, our key idea for solving this problem is to
change the sign of the jth eigenvector Pj(xt+1) if ‖Pj(xt+1) − Pj(xt)‖ >

√
2, where the xt

are grid points of a partitioning of the unit interval. In the case of distinct eigenvalues, this
simple method delivers smooth eigenvectors; see § 2.2. In the case of coalescing eigenvalues,
elaborating on the condition in (1) below, we use a similar distance inequality that delivers
smooth eigenvectors.

Suppose now that the eigencurves λ1(x), . . . , λN(x) of A(x) intersect at some x, and let
�1(x), . . . ,�N(x) be the corresponding eigenfunctions. The eigencurves can be ordered,
but, due to changing the order at each x, the ensuing trajectories �1(x) � · · · � �N(x) may
not inherit the degree of smoothness of matrix A(x). In spite of this, it turns out that the
degree of smoothness of components of the spectral decomposition is influenced by the
so-called eigengap or degree of separation of the eigencurves. In fact, Dieci & Eirola (1999)
showed that the condition

lim inf
δ→0

|λi(x+ δ) − λj(x+ δ)|
|δd |

> 0 for some d � k and for all x and i |= j (1)

guarantees that �(x) is in Ck−d , where d is the order of contact of the eigencurves. The
inequality in (1) suggests that, when two eigencurves approach a coalescing point with dif-
ferent slopes, there exists an orthonormal matrix �(x) that satisfies �(x)∗A(x)�(x) =
diag{λ1(x), . . . , λN(x)} and is continuous in x. In order to estimate the continuous time-
varying loadings, Motta et al. (2011) used the condition in (1) with k = d = 1. In this
paper we go beyond continuity and estimate smooth eigenfunctions by matching them
with the corresponding eigencurves around the estimated coelescing points; see § 2.3. We
change the sign of the jth eigenvector {Pj(x), x > xc} after a coalescing point xc if
‖Pj(xc + δ) − Pj(xc − δ)‖ >

√
2.

Prominent examples of dealing with eigendecompositions of matrix-valued functions in
the context of dynamic factor models are the lag-zero covariance matrix, a function on
rescaled time [0, 1], of a locally stationary multivariate time series as in Motta et al. (2011),
and the spectral density matrix, a function on frequency [−π ,π ], of a multivariate station-
ary time series as in Forni et al. (2017). The phenomenon of coalescing eigencurves and
the ensuing identification problem of the eigenfunctions have been overlooked in the sta-
tistics literature and has not received the attention it deserves, with the exception of Motta
et al. (2011). Not surprisingly, the identification problem has a long history dating back to
the work of von Neumann & Wigner (1929) in quantum mechanics, and is receiving grow-
ing interest in various areas of applied mathematics (Dieci & Eirola, 1999; Uhlig, 2020),
where the focus is on coalescing eigencurves, but not on the corresponding eigenfunctions.
In contrast to the recent work in mathematics, our focus is on estimating smooth eigenfunc-
tions when the eigencurves are either well separated or intersect/coalesce. In the latter and
more complicated case we investigate, depending on the number of coalescing points of the
eigencurves, the smoothness or lack thereof of the corresponding eigenfunctions.

In this paper we deal with the smooth estimation of eigenvectors of two matrix-valued
functions that are often employed in multivariate time series: the spectral density matrix and
the time-varying covariance matrix.
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1080 G. Motta, W. B. Wu and M. Pourahmadi

In the first and stationary case, the matrix-valued function of interest is the spectral den-
sity A(ω) = 	(ω) defined in ω ∈ [−π ,π ]. The importance of eigenvectors of the spectral
density matrix has been emphasized by several authors; see, among others, Tiao & Box
(1985, p. 815). N. R. Goodman, in his 1967 Air Force Technical Applications Center tech-
nical report, was the first to interpret and use eigenvalues and eigenvectors of spectral and
sample-spectral density matrices of a multivariate stationary time series. R. R. Kneiper,
E. S. Eby and H. S. Newman, in their 1970 Navy Underwater Sound Laboratory technical
report, used eigenvalues and eigenvectors of the spectral density matrix to understand the
beam patterns generated by the adaptive search and track array processor. Pignon (1981)
estimated eigenvalues and eigenvectors of the spectral density matrix to localize sources
and characterize propagating media with a short array of hydrophones. More recently,
the resolving capability of passive array processing has been greatly improved by so-called
high-resolution methods (Bienvenu, 1983). They are based on the eigenvalue-eigenvector
decomposition of the spectral density matrix of the signals received on the sensors. The
estimation of the dynamic factor model in econometrics relies on the continuity of eigen-
values and eigenvectors of the estimated frequency-varying spectral matrix; see Forni et al.
(2000, p. 545).

In the second and locally stationary case, the matrix-valued function of interest is the
time-varying covariance matrixA(u) = 
(u) defined in rescaled time u ∈ [0, 1] by Dahlhaus
(2000). Rodríguez-Poo & Linton (2001) used the eigenvalues of the estimated 
(u) to test
whether the covariance matrix is of reduced rank. Motta et al. (2011) used the eigenvectors
of the same matrix to estimate the loadings of a locally stationary factor model. Reiss &
Winkelmann (2021) studied the rank of the time-varying instantaneous covariance matrix
of a multi-dimensional continuous semimartingale.

The entries of the local covariance 
(u) are real-valued curves. In the case of the spectral
matrix 	(ω), with spectral decomposition

	(ω) = P(ω)L(ω)P(ω)∗, ω ∈ (0, 1), (2)

the identification problem is even more complicated because the entries of the eigenvectors
Pj(ω) are complex valued. To see this, write P(ω) = PR(ω) + iPI(ω), PR and PI being the
real and imaginary parts of P, respectively, and i = √−1. Thus, 	(ω) = 	R(ω) + i	I(ω),
where

	R(ω) = PR(ω)L(ω)PR(ω)T + PI(ω)L(ω)PI(ω)T

and 	I(ω) = PI(ω)L(ω)PR(ω)T − {PI(ω)L(ω)PR(ω)T}T

withMT denoting the transpose of matrixM. Matrix 	R(ω) is invariant to changes in the
sign of the eigenvectors {Pj(ω), j = 1, . . . ,N}. However, if we change the sign of a column
of PR(ω), then we have to change the sign of the corresponding column of PI(ω) in order
to satisfy the spectral decomposition.

Throughout the paper, we denote by Im the identity matrix of size m, by O the null
matrix, by tr(A) the trace of A, by ‖A‖ the Frobenius norm ‖A‖ = {tr(ATA)}1/2 and by
ρ(A) the spectral norm, that is, the largest singular value of A. We denote by Aj the jth
columns of matrix A = [A1|A2| · · · |Aj| · · · ], where Aj|Ak means that the columns Aj and
Ak are contiguous. For matrix A of size M × N, we denote by Ap×q the p × q matrix col-
lecting the first p rows, from top to bottom, and the first q columns, from left to right,
of matrix A, where p � M and q � N. The R code of our approach is available at
https://github.com/giovanni-motta/.
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2. Nonparametric estimation and
√
2-smoothing

2.1. Two issues in estimating smooth eigenfunctions

Let 
(u) be the N × N contemporaneous time-varying covariance matrix and consider
the spectral decompositions


(u) = �(u)�(u)�(u)T =
N∑

j=1

λj(u)�j(u)�j(u)
T (3)

= P(u)L(u)P(u)T =
N∑

j=1

�j(u)Pj(u)Pj(u)
T, (4)

where �(u) = diag{λ1(u), . . . , λN(u)}, L(u) = diag{�1(u), . . . , �N(u)}, P(u) = [P1(u)| · · · |
PN(u)] and �(u) = [�1(u)| · · · |�N(u)] are orthonormal matrices for each u, λj(·) and �j(·)
are smooth C

2[0, 1] functions and �1(u) � · · · � �N(u) are ordered values of the latent
eigencurves λ1(u), . . . , λN(u). Note that �j(u) and Pj(u) can be obtained from the conven-
tional eigendecomposition of 
(u), but they are possibly not differentiable in u. Thus, one
cannot directly obtain smooth eigenvalue estimates for �(u), respectively λj(u), and Pj(u),
respectively �j(u), from the conventional decomposition of a local estimate 
̃(u) of 
(u).

To estimate 
(u), we consider the locally weighted cross-products


̃(u) =
T∑

t=1

YtY
T
t wt(u), wt(u) = Kh(u− t/T)

/ T∑

i=1

Kh(u− i/T), (5)

where Kh(x) = K(x/h)/h, K is a symmetric kernel function with support [−1, 1] and the
bandwidth sequence h = hT → 0, satisfying Th → ∞ as T → ∞. Zhang & Wu (2021)
discussed convergence properties of (5) for high-dimensional locally stationary processes.
The conventional eigendecomposition of 
̃(u) yields


̃(u) = P̃(u)L̃(u)P̃(u)T with L̃(u) = diag{�̃1(u),…, �̃N(u)}, (6)

where �̃1(u) � · · · � �̃N(u) and P̃(u) = [P̃1(u)| · · · |P̃N(u)] is an orthonormal matrix. In
this paper we modify L̃(u) and P̃(u) in (6) and obtain smooth estimates for λj(·) and �j(·),
respectively. For j = 1, . . . , r, our goal is to obtain estimates λ̃j(·) smooth and close to λj(·),
as well as estimates �̃j(·) that are smooth, close to �j(·) and orthonormal: �̃j(u)

T�̃k(u) =
1{j=k}.

Our estimation approach and asymptotic theory cover both cases of fixedN andN → ∞.
For the latter case, we assume that only r 	 N eigenvalues are diverging with N, whereas
the remaining N − r stay bounded. For the sake of readability and conciseness, we focus
on estimating the r smooth eigenfunctions �1(u), . . . ,�r(u) corresponding to the largest r
eigencurves λ1(u), . . . , λr(u). For this reason, we need to assume that the eigencurves λj(u)

are smooth in u only for j � r; see Condition 1 in § 3. We also assume that the largest r eigen-
curves are well separated from the remainingN− r; see Condition 2(iv) in § 3. The functions
�1(u) � · · · � �r(u) in (4) are ordered versions of the possibly unordered λ1(u), . . . , λr(u)
in (3), and thus the �j(u) may not be differentiable. To establish the relationship between
the λj(u) and the �j(u), we introduce the permutation function ψ(u) = {ψ1(u), . . . ,ψr(u)},
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1082 G. Motta, W. B. Wu and M. Pourahmadi

which takes values as a permutation of {1, . . . , r}, that is,

λψj(u)(u) = �j(u) for all u ∈ (0, 1). (7)

Let 0 < u1 < · · · < uc < 1 be points where the r largest eigencurves coalesce. Namely,

{u1, u2, . . . , uc} = {ordered u : ∃ i < j � r : �i(u) = �j(u)} (8)

or, equivalently, since the �i are ordered,

{u1, u2, . . . , uc} = {ordered u : ∃ i � r− 1: �i(u) = �i+1(u)},

and therefore ψ(u) is piecewise constant with ψ(u) = ψ(u′) when both u, u′ ∈ (uk, uk+1).
Even in the absence of coalescing points, the sign of the eigenfunctions needs to be

properly chosen to guarantee sufficiently smooth trajectories, that is, to preserve local
smoothness. In the presence of a coalescing point, in addition to the sign selection the eigen-
functions need to be properly labelled and matched with the corresponding eigencurves.
Moreover, another change of sign might be required to guarantee sufficiently smooth tra-
jectories, that is, to preserve global smoothness. In § 2.2 below we estimate the eigenvectors
in the case of distinct eigenvalues, whereas in § 2.3 belowwe estimate the eigenfunction when
the eigencurves intersect.

The possibly unmatched eigenvectors corresponding to the ordered eigenvalues �j are
denoted Pj, whereas matched eigenfunctions corresponding to the eigencurves λj are
denoted �j. In the case where the eigenvalues are distinct for all u, L(u) ≡ �(u) and we
obtain smooth eigenfunctions �̃j by simply

√
2-signing the P̃j. In the case of coalescing

eigenvalues, an initial ranking is necessary to obtain eigenfunctions matched with the cor-
responding unordered eigencurves. Then the

√
2-signing plus an additional

√
2-bridging

around the coalescing points are needed to obtain smooth eigenfunctions �̃j.

2.2. Estimating smooth eigenvectors in the case of distinct eigenvalues

Assume that, for all u ∈ [0, 1], λ1(u) > · · · > λr(u) > λ1+r(u). Then we have ψj(u) =
j, 1 � j � r, in view of (7) and λj(u) = �j(u). To overcome the sign indeterminacy of Pj(u),
by the smoothness assumption of �j(u), we can recover the latter setting �j(0) = Pj(0) and

�j(vg+1) = Pj(vg+1) × argmin
ι=±1

‖ιPj(vg+1) − Pj(vg)‖ (g = 0, 1,…,G − 1), (9)

where vg = g/G and G ∈ N is the number of grid points of the unit interval. In practice,
we can choose G = T . For any two unit length vectors x and y, ‖x − y‖2 = 2 − 2xTy, so
‖x − y‖ > ‖x + y‖ if and only if ‖x − y‖ >

√
2 or xTy < 0. Thus, ι = −1, or ‖Pj(vg+1) −

Pj(vg)‖ > ‖ − Pj(vg+1) − Pj(vg)‖ in (9), is equivalent to ‖Pj(vg+1) − Pj(vg)‖ >
√
2. That is,

ι = sign{cos θ} = sign{Pj(vg+1)
TPj(vg)}, where θ is the angle between Pj(vg+1) and Pj(vg).

Consequently, the signing operation in (9) makes �j(u) vary smoothly in u.
Given the multivariate N-dimensional time series X1, . . . ,XT , we estimate the localized

covariance 
(u) in (3) by means of 
̃(u) in (5). Based on (9), we propose the estimate

�̃j(vg+1) = P̃j(vg+1) × argmin
ι=±1

‖ιP̃j(vg+1) − P̃j(vg)‖ (g = 0, 1,…,G − 1). (10)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

m
e
t/a

rtic
le

/1
1
0
/4

/1
0
7
7
/7

0
7
8
1
4
1
 b

y
 U

n
iv

e
rs

ity
 o

f C
h
ic

a
g
o
 u

s
e
r o

n
 0

5
 D

e
c
e
m

b
e
r 2

0
2
4



√
2-estimation for smooth eigenvectors 1083

To illustrate how our novel criterion works, we define, for all u ∈ (0, 1), the r× r diagonal
matrix �(u) = {λj(u)}rj=1 as

λj(u) = 0.2(2 − j) + (3 − j)(u2 − u3) ( j = 1, . . . , r). (11)

Then we simulate the N-dimensional vectors of frequencies ωN = [ω1, . . . ,ωN]T and
phases ϕN = [ϕ1, . . . ,ϕN]T according to two independent uniform distributions ωn ∼
U(0.6, 0.9), ϕn ∼ U(0.1, 0.3), and we define the N × r matrix Q(u) whose (n, j) entry is

Qnj(u) =
{√

2 sin( jπωnu− φn)/N, n odd,√
2 cos( jπωnu− φn)/N, n even,

for all n � N, all j � r and all u ∈ (0, 1). Then we define, for all u, the N × r matrix

�N×r(u) = Q(u)
N×r

{Q(u)TQ(u)}
r×r

−1/2, (12)

such that �N×r(u)T�N×r(u) = Ir for all u. Next, we define the N × 1 vector Xt =
�N×r(t/T)ft, where ft is a zero-mean random vector of size r defined as ft = �r×r(t/T)1/2εt,
where εt ∼ N (0, Ir) and E(εtε

T
s ) = 1{s=t}Ir, with covariance matrix 
f (t/T) = E(ftf

T
t ) =

�r×r(t/T), so that covariance matrix of Xt is


X
N

(
t

T

)
= E(XtX

T
t ) = �N×r

(
t

T

)
�r×r

(
t

T

)
�N×r

(
t

T

)T

. (13)

For all u ∈ (0, 1), the estimator 
̃(u) of 
X
N (u) in (13) is computed according to (5), and the

matrices P̃(u) and L̃(u) of its spectral decomposition are defined according to (6). Since the
eigenvalues are not coalescing, in this example we only need to fix the eigenvectors. From
P̃(u) obtained according to (6), we estimate the smooth eigenvectors �̃N×r(u) according to
(10). We show an example with N = 10 and r = 2 in Fig. 1. The matrices L̃r×r(u), 
̃X

N (u),
P̃N×r(u) and �̃N×r(u) are shown in Figs. 1(a), 1(b), 1(c) and 1(d), respectively. The curves
of �N×r(u) simulated according to (12) are smooth by construction, whereas the curves of
matrix P̃N×r(u) computed according to (6) and obtained from 
̃X

N (u) are identifiable only
up to sign. Figure 1(c) shows that the indeterminacy Pj(u) = ±�j(u) at each u ∈ (0, 1)
makes the estimated loadings unsmooth. To remove this indeterminacy, we implement (10);
see Fig. 1(d).

2.3. Estimating smooth eigenfunctions when eigenvalues coalesce

Compared to the case of distinct eigenvalues, when eigenvalues coalesce, we need to
(i) estimate the coalescing points u1, u2, . . . , uc in (8) and (ii) match the eigenvectors with
suitable eigencurves. In § 2.4 below we deal with the problem of estimating the coalescing
points. Let I(δ) =

⋃c
k=1[uk−δ, uk+δ], where u1 < u2 < · · · < uc, and I◦(δ) = [0, 1]−I(δ).

For all r � N, we define the registration functionsψ◦(u) = {ψ◦
1 (u),…,ψ◦

r (u)} of {1, 2,…, r}
for u ∈ I◦(δ) as the stepwise functions whose values do not change on [uk + δ, uk+1 − δ]
(k = 1,…, c). Here we use the convention that u1+c = 1 + δ so that the right end point
u1+c − δ = 1. Assume that 1/G 	 δ and δ → 0. We first state our algorithm in the pop-
ulation setting with known 
(·) to obtain λ(·) and �(·), and then we compute the sample

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

m
e
t/a

rtic
le

/1
1
0
/4

/1
0
7
7
/7

0
7
8
1
4
1
 b

y
 U

n
iv

e
rs

ity
 o

f C
h
ic

a
g
o
 u

s
e
r o

n
 0

5
 D

e
c
e
m

b
e
r 2

0
2
4



1084 G. Motta, W. B. Wu and M. Pourahmadi

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

1

1

2

2

−0.05

0.00

0.05

0.10

�1,1 �1,1 �1,2 �1,2 �1,3 �1,3

−0.05

0.00

0.05

0.10

�2,1 �2,1 �2,2 �2,2 �2,3 �2,3

−0.05

0.00

0.05

0.10

�3,1 �3,1 �3,2 �3,2

0.0 0.2 0.4 0.6 0.8 1.0
0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00

�3,3 �3,3

−0.4

−0.2

0.0

0.2

0.4
�1,1 P1,1 �2,1 P2,1 �3,1 P3,1 �4,1 P4,1 �5,1 P5,1

−0.4

−0.2

0.0

0.2

0.4

0.00 0.25 0.50 0.75 1.00
0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00
0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00
0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00
0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00

�1,2 P1,2 �2,2 P2,2 �3,2 P3,2 �4,2 P4,2 �5,2 P5,2

−0.4

−0.2

0.0

0.2

0.4
�1,1 �1,1 �2,1 �2,1 �3,1 �3,1 �4,1 �4,1 �5,1 �5,1

−0.4

−0.2

0.0

0.2

0.4
�1,2 �1,2 �2,2 �2,2 �3,2 �3,2 �4,2 �4,2 �5,2 �5,2

(a)

(c)

(d)

(b)

Fig. 1. Simulation scenario of § 2.2 with M = 100 Monte Carlo replications, N = 10, r = 2 and T = 400.
(a),(b) Eigenvalues and covariances. (c),(d) First five columns of the r×N matrices of eigenvectors; we only plot
the first five among N = 10 columns. In (a) solid lines denote �1(u) and �2(u) defined in (11) and dashed lines
denote averages, over theM replications, of �̃1(u) and �̃2(u) in (6). (b) Upper left 3× 3 submatrix of the 10× 10
time-varying covariance matrix. The dashed line denotes entries of 
(u) simulated according to (13). Solid lines
denote averages, over theM replications, of the covariances estimated according to (5). Dotted lines denote 95%
confidence bands obtained over the M replications. In (c) the dashed line denotes the entries of matrix �(u),
simulated according to (12), and the solid line denotes one realization of matrix P̃(u) in (6), obtained with the
statistical software R. In (d) the dashed line denotes the entries of matrix �(u), simulated according to (12), the
solid line denotes the average, over theM replications, of estimator �̃(u) obtained according to (10) frommatrix

P̃(u) in (6) and the dotted lines denote 95% quantiles, obtained from theM replications, of �̃(u).
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counterparts λ̃(·) and �̃(·). The theoretical optimal choice of δ is given in Theorems 1 and 2.
To compute the registration function, we proceed progressively in the following way.

Step 1. For all u ∈ [0, u1 − δ] and all j = 1, . . . , r, let ψ◦
j (u) = j, λj(u) = �j(u), and apply

(9) to obtain �j(vg) for 0 � g � (u1 − δ)G.

Step 2. For j � r and k = 1, . . . , c − 1, define the registration function for the jth
eigencurve

ψ◦
j (uk + δ) = argmin

i�r
min
ι=±1

‖ιPj(uk + δ) − Pψ◦
i (uk−δ)(uk − δ)‖ (14)

and, for all u ∈ [uk + δ, uk+1 − δ], define

ψ◦
j (u) = ψ◦

j (uk + δ), (15)

λψ◦
j (u)(u) = �j(u), (16)

�ψ◦
j (u)(uk + δ) = Pj(uk + δ) × argmin

ι=±1
‖ιPj(uk + δ) − �ψ◦

j (u)(uk − δ)‖, (17)

and, for g with uk + δ � g/G � uk+1 − δ,

�ψ◦
j (u)(vg+1) = Pj(vg+1) × argmin

ι=±1
‖ιPj(vg+1) − �ψ◦

j (u)(vg)‖. (18)

Step 3. For k = c, we obtain ψj(uk + δ) according to (14) and, for all u ∈ [uk + δ, 1], we
define ψ◦

j (u), λψ◦
j (u)(u) and �ψ◦

j (u)(u) according to (15), (16) and (18), respectively.

It is important to note that the permutation function in (7), which establishes the rela-
tionship between the eigencurves λψj(u)(·) and the eigenvalues �j(·), depends neither on the
eigenvectors nor the eigenfunctions. However, we are using the smoothness of the eigen-
functions �j(u) to determine the registration function in (16), and establish the relationship
between the eigencurves λψ◦

j (u)(·) and the eigenvalues �j(·) via the eigenvectors Pj(·) by (14).
In (9) we set initialization �j(0) = Pj(0). Equation (17) determines the starting eigen-
function �ψ◦

j (u)(uk + δ) over the interval [uk + δ, uk+1 − δ] by aligning with the ending
eigenfunction �ψ◦

j (u)(uk − δ) in the previous interval [uk−1 + δ, uk − δ], thus ensuring the

closeness between them. Equation (17) is the
√
2-bridging, whereas (18) is the

√
2-signing.

In Fig. 2 we present an example of N = 3 eigenvalues that intersect at c = 2 coa-
lescing points, and illustrate how eigencurves can be recovered according to (14) and (16).
The eigenfunctions obtained according to (17) are correctly matched with the correspond-
ing coalescing eigencurves, but not smooth. Therefore we apply the

√
2-signing in (18)

to obtain smooth eigenfunctions �ψ◦
j
(u). Then, for all j � r and all u ∈ (0, 1), define

�◦
j (u) = �ψ◦

j (u)−1(u), and let

�◦(u) = [�1(u)| · · · |�r(u)], u ∈ (0, 1). (19)

In Fig. 3 we use the same example as in Fig. 2, and illustrate how eigenfunctions can be
recovered according to (17), (18) and (19).

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

m
e
t/a

rtic
le

/1
1
0
/4

/1
0
7
7
/7

0
7
8
1
4
1
 b

y
 U

n
iv

e
rs

ity
 o

f C
h
ic

a
g
o
 u

s
e
r o

n
 0

5
 D

e
c
e
m

b
e
r 2

0
2
4



1086 G. Motta, W. B. Wu and M. Pourahmadi
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Fig. 2. Eigencurves defined according to (7) and recovered according to the definitions in (14), (15) and (16).
A numerical example with N = 3 and c = 2. (a) An example of coalescing eigenvalues with c = 2, u1 = 0.21
and u2 = 0.65. (b) The corresponding registration functions defined in (7). (c) Eigencurves recovered according

to (16). (d) Registration functions defined in (14) and (15).

We now compute the sample counterparts of eigencurves and eigenfunctions obtained
according to Steps 1–3 above. Given X1,…,XT , we compute the covariance matrix 
̃(u)

using (5). Recall that ρ(·) is the spectral norm, and write λ̃∗ = max0�u�1 ρ{
̃(u)}. Denote
by aT the upper bound of maxu ρ{
̃(u)−
(u)}/λ̃∗, with aT → 0 as T → ∞; see (23) in § 2.4
below.
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Fig. 3. Eigenfunctions recovered according to the definitions in (17), (18) and (19). A numerical example of
the orthonormal matrix �(u) ∈ C

2[0, 1] in (3) with N = 3 and c = 2. In (a) dashed lines denote entries of
the orthonormal matrix �(u) ∈ C

2[0, 1] in (3) and solid lines denote entries of P(u) in (4) obtained with the
statistical software R. In (b) dashed lines denote entries of the orthonormal matrix �(u) ∈ C

2[0, 1] in (3) and
solid lines denote entries of �ψ◦

j (u)(u) in (17):
√
2-bridging only. In (c) dashed lines denote entries of the ortho-

normal matrix �(u) ∈ C
2[0, 1] in (3) and solid lines denote entries of matrix �◦(u) in (19) obtained according

to (17) and (18):
√
2-bridging and

√
2-signing.
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1088 G. Motta, W. B. Wu and M. Pourahmadi

Let û1 < · · · < ûc be the estimated coalescing points, define Î(δ) =
⋃c

k=1[ûk − δ, ûk + δ]
and choose δ such that

{
u ∈ (0, 1) : min

j�r

�̃j(u) − �̃j+1(u)

λ̃∗ � 2aT

}
⊂ Î(δ). (20)

Then we can carry out Steps 1 and 2 above using the sample version P̃(u) and L̃(u) in (6)
and obtain estimates ψ̃◦

j (u) and �̃j(u) that are defined on Ĩ◦(δ) = [0, 1] − Ĩ(δ). To define

ψ̃◦
j (u) and �̃j(u) on Ĩ(δ), we can use interpolation with

λ̃j(u) =
∑

g : vg∈Io(δ)
wg(u)̃λ

◦
j (vg)

/ ∑

g : vg∈Io(δ)
wg(u), (21)

�̃j(u) =
∑

g : vg∈Io(δ)
wg(u)�̃

◦
j (vg)

/ ∑

g : vg∈Io(δ)
wg(u), (22)

where the weights wg(u) can be chosen according to cubic-regression spline estimation, as in
Claeskens et al. (2009, § 2.3), or can be defined as rescaled kernel functions wg(u) = K{(vg−
u)/h}/h according to local-constant or local polynomial smoothing, as in Fan & Gijbels
(1996). In Fig. 4 we use the same example of Fig. 2, and illustrate how the eigenvectors in
Fig. 3 can be estimated according to (20) and (22).

Note that �̃j(u), j = 1,…, r, are not necessarily orthonormal. We can apply the

Gram–Schmidt orthogonalization by recursively calculating �̃
†
1(u) = �̃1(u), and

�̃
†
k
(u) = �̃k(u) −

k−1∑

j=1

�̃k(u)
T�̃

†
j (u)�̃

†
j (u)/‖�̃

†
j (u)‖2 for k = 2,…, c,

and obtain the orthonormal vectors as �̃k(u) = �̃
†
k
(u)/‖�̃†

k
(u)‖.

2.4. Estimating the coalescing points

Let λ∗ = maxu∈[0,1] �1(u), and let aT → 0 be a sequence such that

pr(A) → 1, where A =
{

max
u∈[0,1]

ρ{
̃(u) − 
(u)}/λ∗
� aT

}
. (23)

In (23), the sequence aT represents the uniform convergence rate of 
̃(u) normalized by λ∗.
For independent and individually distributed sub-Gaussian vectors X1, . . . ,XT , Koltchin-
skii & Lounici (2017) obtained a sharp bound for ρ(
̃ − 
)/λ∗, where 
̃ = T−1 ∑T

i=1XiX
T
i

and
 = E(XiX
T
i ). In such a special case aT can be chosen asCmax{T−1r(
),T−1/2r(
)1/2}

if the effective rank r(
) = tr(
)/ρ(
) → ∞. In the asymptotic theory in § 3 we estab-
lish (23) for dependent and nonstationary processes; see also the Supplementary Material,
where an asymptotic expression for aT is provided. Based on (23), we can estimate coalescing
points. Let

W :=
{
u ∈ (0, 1) : min

j�r

�̃j(u) − �̃j+1(u)

λ∗ � 2aT

}
. (24)
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Fig. 4. Simulation scenario with N = 3, c = 2, T = 1500 andM = 200. In (a) the left panel shows an example
of coalescing eigencurves with c = 2, u1 = 0.21 and u2 = 0.65 and the right panel shows the average, over the
M replications, of the estimates λ̃◦

j (j = 1, . . . , r) obtained according to (16). In (b) the solid line denotes the

average, over the M replications, of the estimates λ̃j (j = 1, . . . , r) obtained according to (21) and the dashed
lines denote 95% confidence intervals, computed over the M replications. (c) Comparing the simulated entries
of matrix �(u) with the entries of the estimated matrix �̃(u). Solid line denotes the average, over theM repli-
cations, of the estimates �̃(u) obtained according to (22) and the dotted lines denote 95% quantiles obtained

overM replications.

At a coalescing point ui, we have �j(ui) = �j+1(ui) for some j � r. By Weyl’s theorem,

0 � �̃j(ui) − �̃1+j(ui) = {�̃j(ui) − �j(ui)} − {�̃1+j(ui) − �1+j(ui)} � 2ρ{
̃(ui) − 
(ui)}.

Then pr(ui ∈ W) → 1. We now consider noncoalescing points. Assume that Condition 2 in
§ 3 holds. Under (28), if u �∈ I(δ) is not a coalescing point with δ > 2aT/κ, we have, for all
j = 1,…, r,

�̃j(u) − �̃j+1(u) � �j(u) − �j+1(u) − 2aTλ∗ > δκ − 2aTλ∗ > 0.

Hence, pr{W ⊂ I◦(δ)} = pr{I(δ) ⊂ [0, 1] − W} → 1. Therefore, under event A, there exist
disjoint intervals [si, ti] ⊂ [0, 1], i = 1,…, c, with m := maxi�c(ti − si) → 0 and W ⊂
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⋃c

i=1[si, ti]. For a data-driven version, we can replace λ∗ in (24) by λ̃∗ = max0�u�1 ρ{
̃(u)},
ûi = (ti + si)/2 and let δ = m/2. A data-driven choice of aT is given in the Supplementary
Material, where we propose a bootstrap method based on (23) and (24).

3. Asymptotic estimation theory

3.1. Spectral density and time-varying covariance

In this section we provide an asymptotic theory for estimators of smooth eigenvector
functions of spectral density matrices and time-varying covariance matrices. The key ingre-
dient involves bounding the spectral norms of the errors of the spectral density matrix
estimate and the time-varying covariance matrix estimate. We deal with them separately,
since the former involves stationary processes while the latter is for locally stationary pro-
cesses. Bai & Silverstein (2010), Tropp (2012), Vershynin (2012) and Koltchinskii & Lounici
(2017) considered properties of sample covariance matrices for independent random vec-
tors, and their results are therefore not directly applicable here. Fan et al. (2022) obtained
a central limit theory for estimated eigenvalues and eigenvectors for random matrices with
diverging spikes and independent noises. Recently, there have been some developments on
dependent random vectors. Bhattacharjee & Bose (2016) and Wang et al. (2017) consid-
ered limiting behaviour of empirical spectral distributions for moving average processes.
Heiny & Mikosch (2021) studied high-dimensional linear time series with infinite fourth
moment, and showed that their spectral properties are very different from those of short-
tailed processes. Bhattacharjee & Bose (2014) and Furmańczyk (2021) investigated spectral
norm convergence of regularized covariance matrix estimates for high-dimensional linear
time series, and Chen et al. (2013) considered high-dimensional nonlinear processes. Our
problem differs from those approached so far because we are dealing with matrix-valued
functions, and we need to establish a uniform convergence rate of maxu ρ{ 
̃Y (u) − 
Y (u)}
or maxω ρ{	̃Y (ω) − 	Y (ω)}, so that we can derive asymptotic properties of our smooth
eigenvector function estimators.

3.2. Spectral density matrix functions

Consider the stationary factor model

Yt
N×1

= �X (B)
N×q

ft
q×1

+ �Z(B)
N×N

ηt
N×1

= Xt + Zt, (25)

where �X (B) =
∑J

j=0 �X
j B

j and �Z(B) =
∑K

k=0 �Z
k
Bk. Model (25) allows for dimension

reduction as long as q is assumed to be smaller than N. Factors ft and errors ηt are both
zero mean and stationary, with spectral density matrices 	f (ω) and 	η(ω), respectively. If
the common components Xt are orthogonal to the idiosyncratic components Zt, that is,
Eftη

T
s = O, s(t = 1, . . . ,T), the spectral density matrix of Yt is

	Y (ω) = 	X (ω) + 	Z(ω) = �X (ω)	f (ω)�X (ω)∗ + �Z(ω)	η(ω)�Z(ω)∗, ω ∈ (0, 1).

In general, the number q of latent factors in the dynamic factor model (25) is different,
and typically smaller, than the number r of latent factors in a static factor model, such as
the nonstationary model (31) we consider in the next section. Nevertheless, for the sake
of readability and conciseness, in this paper we do not distinguish between q and r, and
choose the letter r to denote the number of smooth eigenvectors we aim to estimate. This is
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without loss of generality, since the methodology we propose in this paper works for both
stationary-dynamic and nonstationary-static factor models. We emphasize that our method
becomes useful whenever we are interested in estimating smooth eigenvectors, and it is not
limited to the case where the underlying multivariate dataset follows a factor model. Recall
(3) and (4), and write

	Y (ω) = �(ω)�(ω)�(ω)∗ =
N∑

j=1

λj(ω)�j(ω)�j(ω)∗

= P(ω)L(ω)P(ω)∗ =
N∑

j=1

�j(ω)Pj(ω)Pj(ω)∗,

where �1(ω) � · · · � �N(ω) are ordered values of λ1(ω),…, λN(ω). We are interested
in the estimation of �j(ω) only for j � r, the eigenfunctions corresponding to the r
largest eigencurves; see Conditions 1 and 2 below. Under the latter condition, �1(ω) �

· · · � �r(ω) are ordered values of λ1(ω),…, λr(ω). We estimate the permutation func-
tion ψ(ω) = {ψ1(ω),…,ψr(ω)}, where ψ(ω) is a permutation of {1, 2,…, r} in (7), namely,
{�j(ω) = λψj(ω)(ω), j = 1,…, r}, which implies the eigenvalue registration (Uhlig, 2020).

Assume that (Yt) is a stationary zero-mean Gaussian vector process. Our asymptotic
theory is applicable for boundedN as well as the large-dimensional case withN → ∞ at an
appropriate rate. Given the dataY1,…,YT , we define the sample counterpart of the spectral
density matrix in (2) as the lag-window estimate

	̃Y (ω) =
B∑

k=−B
w(|k|/B)
̃k e

−2πıkω, (26)

where 
̃k = T−1 ∑T
t=1+k Yt−kY

T
t is the sample autocovariance matrix, with 
̃−k = 
̃T

k
and

0 � k � T − 1, w(x) = max(0, 1 − |x|) is the Bartlett kernel, B = BT = 1.1447 (α T)1/3

and α can be estimated according to Andrews (1991). To state our asymptotic results, we
introduce the following technical conditions. They are not mathematically weakest. For the
sake of readability and conciseness, we choose these forms. Condition 1 asserts smoothness
of the eigenvector functions �j(·), while Condition 2 concerns separation of eigenvalue
functions.

Condition 1. Assume that �j(ω) ∈ C
2[0, 1], 1 � j � r.

Condition 2. Let λ∗ = maxj�rmax0�ω�1 λj(ω), and assume that the following conditions
hold.

(i) The eigencurves are such that λj(ω) ∈ C
2[0, 1] (j = 1, . . . , r) and there exists a constant

φ > 0 such that max0�ω�1 |λ′
j(ω)| � λ∗φ for all j = 1,…, r.

(ii) There exists a constant κ > 0 such that

min
0�ω�1

lim inf
ε→0

min
j<j′�r

|λj(ω + ε) − λj′(ω + ε)|
λ∗|ε| � κ. (27)
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1092 G. Motta, W. B. Wu and M. Pourahmadi

(iii) Let I(δ) =
⋃c

k=1[ωk − δ,ωk + δ], where ω1 < ω2 < · · · < ωc are coalescing points
defined in (8), and I◦(δ) = [0, 1] − I(δ). Assume that

lim inf
δ↓0

min
ω∈I◦(δ)

min
j<j′�r

|λj(ω) − λj′(ω)|
λ∗δ

� κ. (28)

(iv) There exists a constant g > 0 such that, for allω ∈ [0, 1], minj�r λj(ω)−maxj>r λj(ω) �

gλ∗. That is, the eigencurves {λj(·)}rj=1 and {λj(·)}Nj=1+r are separated by gλ∗.

We now discuss Condition 2. Note that (27) can be viewed as a normalized version, by
the maximum eigenvalue λ∗, of the condition in (1) with d = 1. It describes the well sepa-
rateness of the eigencurves λj(ω) around the coalescing points. If ω is not a coalescing point
then the value of the lim infδ→0 in (27) is ∞. If ω is a coalescing point of the eigencurves
λj(·) and λj′(·) so that λj(ω) = λj′(ω), then (27) implies that the normalized difference of
derivatives |λ′

j(ω) − λ′
j′(ω)|/λ∗ is bounded below by κ. On the other hand, (28) indicates

the well separateness of the eigencurves on the region outside the coalescing points. Con-
dition 2(iv) asserts that the r largest eigencurve λj(ω) is well separated from the remaining
N − r eigencurves.

Under Condition 2, we define, according to § 2.3, the stepwise permutation functions
ψ(ω) = {ψ1(ω),…,ψr(ω)} of {1, 2,…, r} for ω ∈ I◦(δ), whose values do not change on
[ωk + δ,ωk+1 − δ], k = 1,…, c. Let �1(ω) � · · · � �r(ω) be eigenvalues of 	(ω), with
eigenvectors P1(ω),…,Pr(ω). Since �1(ω) > · · · > �r(ω) are mutually different, the gap is
actually � λ∗κδ; for ω ∈ I◦(δ), the vectors P1(ω),…,Pr(ω) are uniquely determined up to
±1 signs.

Condition 3. For some α > 0,C > 0, the bias of the lag-window estimator satisfies

max
0�ω�1

ρ[E{	̃Y (ω)} − 	Y (ω)]/λ∗
� CB−α.

Condition 3 concerns the bias of the lag-window estimate (26). Note that E{	̃Y (ω)} −
	Y (ω) =

∑B
k=−B rk
k e

−2πıkω −
∑

|k|>B 
k e
−2πıkω, where rk = w(|k|/B)(1 − |k|/B) − 1.

As a sufficient condition, if ρ(
m)/λ∗ = O(m−1−α), since rk = O(|k|/B), Condition 3
holds in view of

∑B
k=−B rkO(k−1−α) = O(B−α) and

∑
|k|>BO(k−1−α) = O(B−α). For

stationary causal vector autoregressive moving average processes, ρ(
m) decays to 0 geo-
metrically quickly. For example, consider the var(1) process Yt = AYt−1 + εt, where the
εt are independent and individually distributed mean 0 vectors with covariance matrix
	ε and A is a coefficient matrix with spectral radius rA < 1, guaranteeing the causal-
ity of Yt with Yt =

∑∞
b=0A

bεt−b. By Gelfand’s formula (Dunford & Schwartz, 1963),
limm→∞ ρ(Am)1/m = rA. Thus, ρ(Am) � rm for all sufficiently large m, where r ∈ (rA, 1).
Consequently,
m =

∑∞
b=0A

b	εA
m+b has the property that ρ(
m) decays to 0 geometrically

quickly.

THEOREM 1. Let (Yt) in (25) be a mean 0 stationary Gaussian process. Assume that Con-
ditions 1, 2 and 3 hold. Define χ = maxj�rmax0�ω�1 ‖�′

j(ω)‖, where �′
j(ω) = d�j(ω)/dω.

Let

θ = {BT−1(N + logT)}1/2 + B−α,
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and assume that δ = δT satisfies δmax(1,χ) → 0 and θ/(κδ) → 0. Then the estimator �̃j(ω)

converges to the orthonormal matrix �j(ω) defined according to (3):

max
j�r

max
0�ω�1

‖�̃j(ω) − �j(ω)‖ = OP{δχ + θ/(κδ)} → 0. (29)

In particular, choosing B � {T/(N + logT)}1/(1+2α) and δ2 � θ/(χκ) → 0, we have

max
j�r

max
0�ω�1

‖�̃j(ω) − �j(ω)‖ = OP[(χ/κ)1/2{T−1(N + logT)}α/(2+4α)].

The Gaussian process assumption in Theorem 1 can be relaxed. In the Supplementary
Material we show that Theorem 1 still holds for linear processes with sub-Gaussian innova-
tions. In the special case that N is fixed and the lower-dimensional case with N = O(logT)

and χ/κ = O(1), Theorem 1 gives the bound

max
j�r

max
0�ω�1

‖�̃j(ω) − �j(ω)‖ = OP{(T−1 logT)α/(2+4α)},

which is also new for eigenvector function estimation for spectral density matrix function
for multivariate (finite)-dimensional time series.

3.3. Locally stationary factor models

Consider the reduced rank model

Xt = �N×r

(
t

T

)

N×r

ft
r×1

= �N×r

(
t

T

)
�r×r

(
t

T

)1/2

εt
r×1

, (30)

where �N×r(u) = [�1(u)| · · · |�r(u)] collects the first r columns of the N ×N orthonormal
matrix �(u) ∈ C

2[0, 1] in (3), �r×r(u) = diag{λ1(u),…, λr(u)} is the upper left r × r sub-
matrix of �(u) in (3) and εt ∼ N (0, Ir). If there exists a matrix-valued function �N×r(u)
that is smooth in rescaled time u ∈ (0, 1) then Xt is a multivariate locally stationary process;
see Dahlhaus (2000). Extending the reduced rank model (30), we now consider the locally
stationary factor model

Yt = Xt + Zt = �N×r

(
t

T

)
ft + Zt, (31)

where (Zt) is a mean 0 Gaussian process. We are interested in estimating time-varying
loadings �(u), u ∈ [0, 1]. Note that


X (u) =
r∑

k=1

λk(u)�k(u)�k(u)
T. (32)

Assume that the factor process (εt) and the error process (Zt) are independent, and note that
we can allow temporal dependencies in (εt) and (Zt). Since (εt) and (Zt) are independent,

Y
N (t/T) = E(YtY

T
t ) = 
X (t/T)+
Z

0 , where 
Z
k

= E(E0E
T
k
). Eigenvalues and eigenvectors

of 
(u) = 
X (u) + 
Z
0 may not be λk(u) and �k(u) given in (32) due to the presence of 
Z

0 .
Nonetheless, we can use the local weighted estimate (33) below and study the distance (34),
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1094 G. Motta, W. B. Wu and M. Pourahmadi

thus obtaining a convergence result for estimates of �k(u) based on the algorithms proposed
in § 2.

Motta et al. (2011) proved that the first r columns of P̃(u) in (6), the sample version of
P(u) in (4), converge to a possibly unsmooth linear tranformation of the loadings �N×r(u)
in (31). In this paper we estimate the smooth time-varying loadings �1(·),…,�r(·) from
the data Y1,…,YT . We exploit the well-known fact that the r largest eigenvalues of the
covariance matrix of N times series grow unboundedly as N increases, while the remaining
N−r eigenvalues remain bounded; see Chamberlain &Rothschild (1983) and Bai (2003). To
determine the number r of factors of the approximate static factor model in (31), we adopt
the estimator of Ahn & Horenstein (2013), which is obtained by maximizing the ratio of
two adjacent eigenvalues.

In our theoretical result, we consider estimator (5) with the rectangle kernel, namely,


̃Y (u) = 1

DT(u)

�T(u+h)�∑

t=�T(u−h)�
YtY

T
t , where DT(u) = �T(u+ h)� − �T(u− h)� + 1, (33)

and h = hT is the bandwidth sequence satisfying hT → 0 and ThT → ∞. The above rec-
tangle kernel setting can simplify the presentation of our asymptotic theory. We estimate

Y
N(u) by 
̃Y(u). Then we can estimate �(u) and �(u), eigencurves and eigenfunctions of


X(u), from those of 
̃Y(u) via swapping and signing according to the methodology pre-
sented in § 2. To develop an asymptotic theory for the estimates, we use a similar argument
as in the proof of Theorem 1. The key step is to establish relations (S26) and (S27) in the
Supplementary Material for

� = max
h�u�1−h

ρ{
̃Y (u) − 
X (u)}. (34)

Because of nonstationarity and the presence of (εt) and (Zt) and the temporal dependencies
in those processes, it is quite technical to obtain a tail probability bound for �. Because of
the noise process (Zt), eigenvectors of 
X (u), namely �(u), are typically different from
those of 
Y

N (u). Additionally, due to the smoothing procedure, eigenvectors of E{
̃Y (u)}
and 
Y

N(u) are also different. An upper bound of this bias is given in the Supplementary
Material.

As in the treatment of the spectral density matrix case in § 3.2, the key issue is to bound

�0 = max
u

ρ[ 
̃Y (u) − E{
̃Y (u)}].

In the case of independent and identically distributed sub-Gaussian random vectors,
Koltchinskii & Lounici (2017) considered the magnitude of the operator norms of the dif-
ference in the sample and the population covariance operators. Our setting here is more
complicated since it involves dependent as well as nonstationary vectors. To account for
dependence, let

λ∗
Z = max

0�ω�2π
ρ{FZ(ω)}, where FZ(ω) =

∞∑

k=−∞

Z
k e

ıkω,
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and

λ∗
ε = max

0�ω�2π
ρ{Fε(ω)}, where Fε(ω) =

∞∑

k=−∞
cov(ε0, εk) e

ıkω.

Define η = λ∗
Z/(λ∗λ∗

ε), υ(m, h) = max[{m/(Th)}1/2,m/(Th)] and

ζ(h) = [η + √
η + min{1, (χ + φ)h}]υ(N + logT , h) + υ(logT , h).

Intuitively, λ∗λ∗
ε and λ∗

Z respectively quantify the magnitudes of the factor and error pro-
cesses, and η quantifies the relative magnitude of the error process. Smaller η implies strong
factors and η = 0 corresponds to the noiseless case with Zt = 0.

THEOREM 2. Assume that the factor process (εt) and the error process (Zt) are independent

Gaussian processes, and that Conditions 1 and 2 hold. Let θ = ρ(
Z
0 )/λ∗+min{1, h(χ +φ)}+

ζ(h)λ∗
ε , and assume that δ = δT satisfies δmax(1,χ) → 0 and θ/(κδ) → 0. Then (29) holds,

namely, as T → ∞,

max
j�r

max
0�u�1

‖�̃j(u) − �j(u)‖ = OP{δχ + θ/(κδ)} → 0 in probability. (35)

In particular, choosing δ � {θ/(χκ)}1/2, then the bound in (35) becomes OP{(θχ/κ)1/2}.

Proposition 1 below concerns the optimal h for minimizing the function

μ(h) = min{1, h(χ + φ)} + ζ(h)λ∗
ε

in Theorem 2 for the lower-dimensional case with N � logT and the larger-dimensional
case with N > logT , respectively. In the noiseless case with η = 0 or the weak noise case
with η = O(N−1 logT), (36) and (37) become (χ + φ)T−1 logT → 0.

PROPOSITION 1. Assume that λ∗
ε � 1.

(i) If N � logT, assume that

b = [{(1 + η)λ∗
ε}2(χ + φ)T−1 logT]1/3 + {(1 + η)λ∗

ε(χ + φ)T−1 logT}1/2

→ 0. (36)

Then h = h0 � b/(χ + φ) minimizes μ(h) and μ(h0) � b.

(ii) If N > logT, assume that

f = T−1(ηN + logT)(χ + φ) → 0. (37)

Then the minimizer h0 � f 1/3/(χ + φ) and μ(h0) � f 1/3 + T−1N(χ + φ).

Similar to Theorem 1, Theorem 2 can be extended to linear processes with sub-Gaussian
innovations; see the Supplementary Material.
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Fig. 5. A real data example with T = 622,N = 132, r = 3 and c = 2. The first and second columns respectively
correspond to the third and fourteenth rows of the estimated 132×3 eigenfunctionsmatrix�(t). (a) Eigenvectors
obtained by forcing the sign of the first row of P̃(t) in (6) to be positive, as suggested byLawley&Maxwell (1971).
(b) Eigenvectors estimated according to (10):

√
2-signing only. (c) Eigenvectors estimated according to (17)

and (18):
√
2-bridging and

√
2-signing. (d) Eigenvectors estimated according to (22).

4. Application to real data

In this sectionwe use real data examples to illustrate the phenomenon of unsmooth eigen-
functions of the time-varying lag-0 covariance matrix 
(t). We use the US macroeconomic
time series in Jurado et al. (2015), withN = 132 monthly times series available from January
1959 to December 2011, for a total of T = 636 observations. In Fig. 5 we plot the estimated
time-varying factor loadings for real personal consumption expenditures (left column) and
the industrial production index of durable goods (right panel) corresponding to the r = 3
common factors.
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In order to fit the locally stationary factor model (31) and estimate the factor loadings
{�ij(t), i = 3, 14, j = 1, 2, 3}, we first compute the conventional matrix of eigenvectors
P̃(t) in (6), the sample version of P(t) in (4). Figure 5(a) is obtained by forcing the sign of
the nonzero entries of the first row of P̃(t) in (6) to be positive. As explained in § 1, this
convention leads to unsmooth eigenvectors. Figure 5(b) is obtained according to our novel
estimator in (10), that is, assuming distinct eigenvalues. However, for j = 2, 3, the trajectories
�̃ij in Fig. 5(b) seem to vary abruptly around 1965 and 1994. Using the approach of § 2.4,
we detect c = 2 coalescing points, λ̃2(ti) = λ̃3(ti), i = 1, 2, with t1 = September 1964 and
t2 = October 1993, and estimate the smooth eigenfunctions according to the methodology
in § 2.3; see Figs. 5(c)–5(d).

Supplementary material

The SupplementaryMaterial contains information clarifying the combinatorial nature of
the curse of indeterminacy, or misidentification, of smooth eigenvector functions, proofs of
our theoretical results, details on estimation of coalescing points and additional simulation
results.
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