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ABSTRACT

For multiple change-points detection of high-dimensional time series, we provide asymptotic theory
concerning the consistency and the asymptotic distributionof thebreakpoint statistics andestimatedbreak
sizes. The theory backs up a simple two-step procedure for detecting and estimating multiple change-
points. The proposed two-step procedure involves the maximum of a MOSUM (moving sum) type statistics
in the orst step and a CUSUM (cumulative sum) reonement step on an aggregated time series in the second
step. Thus, for a oxed time-point, we can capture both the biggest break across diferent coordinates
and aggregating simultaneous breaks over multiple coordinates. Extending the existing high-dimensional
Gaussian approximation theorem to dependent data with jumps, the theory allows us to characterize the
size and power of our multiple change-point test asymptotically. Moreover, we can make inferences on
the breakpoints estimates when the break sizes are small. Our theoretical setup incorporates both weak
temporal and strong or weak cross-sectional dependence and is suitable for heavy-tailed innovations.
A robust long-run covariance matrix estimation is proposed, which can be of independent interest. An
application on detecting structural changes of the U.S. unemployment rate is considered to illustrate the
usefulness of our method.
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1. Introduction

Statistical inference of structural breaks inmean is an important
subject to study, and involves estimating the trend functions,
detecting and locating abnormal changes andmaking inferences
on the break estimators. Breaksmay arise in various applications
in diferent oelds, such as in network analysis, biology, engineer-
ing, economics and onance, among others. Specioc examples
are anomaly of network traoc data caused by attacks (Lévy-
Leduc and Rouef 2009), recurrent DNA copy number variants
in multiple samples (Zhang et al. 2010), abrupt changes in
household electrical power consumption (Harlé et al. 2016) and
minimum wage policy changes analysis (Chen, Wang, and Wu
2020), etc. In those data scenarios, temporal and cross-sectional
dependence for large-dimensional data might pose challenges
to statistical analysis.

To formulate our problem, we assume that observation vec-
tors Y1,Y2, . . . ,Yn follow the model,

Yt = μ(t/n) + εt , t = 1, 2, . . . , n, (1)

where (εt)t is a sequence of zero-mean p-dimensional stationary
noise vectors and μ(·) = (μ1(·),μ2(·), . . . ,μp(·))� : [0, 1] →
R
p is a vector of unknown trend functions. In this way, the data-

generating process is trend stationary. We will model breaks
occurring on the vector of trend functions μ(t/n). Notably, we
assume that the trend function satisoes

μ(u) = f (u) +
K0
∑

i=1

γi1u≥ui , (2)
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where K0 is an unknown integer representing the number of
breaks; f (·) (f (·) = (f1(·), f2(·), . . ., fp(·))� : [0, 1] → R

p)
is a vector of smooth trend functions; uks with 0 < u1 <

u2 < · · · < uK0 < 1 are the time stamps of the change-
points with |ui − uj| � b, where b is the bandwidth parameter;
and γk ∈ R

p are the jump vectors with size |γk|∞ (|.|∞ is
the inonity norm) at point uk. Note that the jump sizes are
characterized in terms of the inonity norm; therefore, we do
not require simultaneous jumps for all entities 1 ≤ j ≤
p, and some coordinates of γk can be zero. Namely, we will
focus on the largest jump (i.e., |γk|∞) happening in the cross-
sectional dimension for any oxed time point k (see Theorem 2),
and this is of particular interest when the jumps are sparse.
In case many series jump at the same time, we further pro-
pose a reoned method, which aggregates all the contempo-
raneous jumps (cf. Theorem 4). In most of the change-point
settings, the smooth part of the trend functions is zero (i.e.,
f ≡ 0). This means that the trend functions are piecewise
constant for each coordinate. In contrast, our model is more
nexible and realistic, since we allow the mean functions to
vary smoothly instead of staying at the same level between
break-points.

The goal of this paper is to provide theory for structural
break inference. We orst detect the existence of breaks. We then
deliver theorems to test for the existence of breaks, identify their
change-point uk, calibrate sizes of the breaks, that is, |γk|∞,
1 ≤ k ≤ K0, and construct conodence intervals for the
estimated break points. Our theorem allows us to consider a
multiple change-point test based on a threshold method on
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the maximum of generalized MOSUM statistics. We derive the
asymptotic distribution of the test statistics including estimated
breaks sizes, and the estimated breakpoint locations (see The-
orems 3 and 4 ii) ). The results provide solid foundations for
conducting statistical inferences for multiple change-point esti-
mation in high dimensional time series. Moreover, we consider
a further aggregation step targeting at simultaneous breaks, and
also this step gives us oner consistency rates of the break location
estimation.

Multiple change-point detection can be classioed into two
categories, that is, model selection and testing. The tradi-
tional model selection method, for example BIC, has the draw-
back of computational ineociency, which can be improved
by some modioed penalization procedure; see, for exam-
ple, Killick, Fearnhead, and Eckley (2012), and LASSO (least
absolute shrinkage and selection operator)-type penalization
such as by Tibshirani and Wang (2007), Li, Qian, and Su
(2016) and Lee, Seo, and Shin (2016). Regarding multiple
change-point detection via testing, a classical method uti-
lizes an exhaustive search, which examines all the possible
breakpoints combination. An exhaustive search is very time
consuming and some dynamic technique and improved ver-
sions are invented; see, for instance, Bai and Perron (1998,
2003) and Jackson et al. (2005). A very popular approach
is the binary segmentation introduced in Scott and Knott
(1974). However, its power might sufer for certain alternatives.
This drawback can be handled by the wild binary segmen-
tation algorithm developed in Fryzlewicz (2014) and sparsi-
oed binary segmentation as in Cho and Fryzlewicz (2015).
Moreover, Fryzlewicz (2018) recently introduced a bottom-
up algorithm to overcome the disadvantage of the classical
binary segmentation. Besides, Wu and Zhou (2019) proposed
multiscale abrupt change estimation under complex temporal
dynamics.

Detection using the MOSUM (moving sum) statistics is
another popular way for multiple change-point analysis; see, for
example, Hušková and Slabỳ (2001) for iid data; Wu and Zhao
(2007) and Eichinger and Kirch (2018) for general temporal
dependent data. Preuss, Puchstein, and Dette (2015) dealt with
multivariate time series for structural breaks in covariance. A
MOSUM procedure has the advantage of computation simplic-
ity and can avoid issues due tomultiple testing inmultiple break
inference. A possible drawback is that MOSUM introduces a
new bandwidth parameter. Such an issue can be dealt with
through a multi-scale MOSUM, which uses multiple band-
widths; see, for instanceMeier, Kirch, andCho (2019). Eichinger
and Kirch (2018) provide a comprehensive theoretical analy-
sis of multiple change-point detection using MOSUM analysis
including the distribution theory of the estimated breakpoint.
Our work can be viewed as a generalization of their work on the
high-dimensional case as we adopt a MOSUM type of statistics
in our orst step.

Change-point detection for high-dimensional time series
has recently drawn a lot of attention due to the increasing
number of applications. In particular, we shall consider the
case of p → ∞. Even in the simplest setup of a mean-shiv
model, large p may pose challenge to change-point detection.
It is common to consider aggregation, either over the origi-
nal time series or certain transformed statistics of individual

time series and to convert the problem to a one-dimensional
analysis. For instance, targeting at sparse breaks, Cho and Fry-
zlewicz (2015) proposed a sparse binary segmentation which
concerns an ł1-based aggregation with a hard threshold, and
Wang and Samworth (2018) considered sparse singular value
decomposition based on the CUSUM (cumulative sum) statis-
tics. Moreover, there are a few other work looking at l2-based
aggregation of statistic: Bai (2010) evaluates the performance
of a least-square estimation of a single breakpoint with distri-
bution theory on the break location estimates without assum-
ing cross sectional dependency; Zhang et al. (2010) extended
the method in Olshen et al. (2004), Enikeeva and Harchaoui
(2019), and Liu, Gao, and Samworth (2019) regard the detec-
tion of change-points in a high-dimensional mean vector as
a minimax testing problem. For a single break point in time
and targeting at sparse break coordinates, Jirak (2015) studied
a CUSUM type statistic for each coordinate and then takes
maximum of them, and asymptotic theory is provided to facil-
itate the simultaneous inferences of the breakpoint estima-
tion. Cho (2016) proposed a double-CUSUM algorithm, etc.
For a single change-point in time, distribution theory is still
available in a few works, see, for example, Bai (2010). How-
ever, Bai (2010) is only concerning cross-sectional indepen-
dent data. When it comes to multiple change points detection,
the majority of the aforementioned work focus on developing
novel algorithms, and a complete distribution theory is not
readily available due to the complexity of the problem. An
exception is Jirak (2015). Compared to Jirak (2015), we are
taking a diferent path in terms of an algorithm using the
MOSUM and an aggregation step with reoned rates of estima-
tor achieved. We thus provide a new angle to conduct infer-
ences in multiple change-point analysis for high-dimensional
time series.

It shall be noted that as there are already many novel algo-
rithms developed, we do not claim a total superiority of ours.
The algorithm proposed here is a generalization ormodiocation
of the existingmethods, which facilitates us to obtain a complete
theory and good theoretical rates. Nevertheless, our aggregation
step is diferent and complement to existing algorithms. For
example, one main diference with the aggregation step is that
our project is based on the estimates in the orst step. Cho and
Fryzlewicz (2015) and Wang and Samworth (2018) used other
approaches to ond the best projection direction.

To summarize, we provide theory for a two-step multiple
change-point procedure. We prove consistency results as well
as distribution theorems for breakpoint location estimation,
which is crucial for inference of breakpoints. The aggrega-
tion step can help us to achieve good rates of the break-
point estimation. We deliver general theoretical results that
allow heavy-tailed distribution and general spatial–temporal
dependency assumption on the error term, and we do not
require the mean function to be piece-wise constant (i.e.,
f ≡ 0). The detection procedure is not computationally
expensive, as we only need to evaluate the statistic once for
each point t. Additionally, we consider the estimation of the
long-run covariance matrices. This article is structured as fol-
lows. Section 2 constructs a test and delivers its asymptotic
performance for testing the existence of change-points. Sec-
tion 3 introduces the two-step algorithm for inference on break
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estimation. The associated consistency and asymptotic distri-
bution theorems are also covered in this section. Long-run
covariancematrix estimation is derived in Section 4. Simulation
results are in Section A in supplementary materials and an
application on U.S. unemployment rate is given in Section 5.
Detailed proofs are presented in Section B in the supplementary
materials.

Notations: For a constant k ∈ N and a vector v =
(v1, . . . , vd)

� ∈ R
d, we denote |v|k = (

∑d
i=1 |vi|k)1/k, |v| = |v|2

and |v|∞ = maxi≤d |vi|. For a matrix A = (aij)1≤i≤m,1≤j≤n,
we deone the spectral norm |A|2 = max|v|=1 |Av| and the
max norm |A|max = maxi,j |ai,j|. For a function f , we denote
|f |∞ = supx |f (x)|. We set (an) and (bn) to be positive number
sequences. We write an = O(bn) or an � bn(resp. an 
 bn)
if there exists a positive constant C such that an/bn ≤ C(resp.
1/C ≤ an/bn ≤ C) for all large n, and we denote an = o(bn)
(resp. an ∼ bn), if an/bn → 0 (resp. an/bn → 1). For two
sequences of random variables (Xn) and (Yn), we write Xn =
oP(Yn), if Xn/Yn → 0 in probability.

2. Testing the Existence of Change-points

In this section, we provide a test for the existence of breaks. Con-
sidering our observations generated by the model in Equations
(1) and (2), we would like to test the null hypothesis,

H0 : γ1 = γ2 = . . . = γK0 = 0,

which corresponds to the case of no breaks, against the alterna-
tive of the existence of at least one break, that is, HA : ∃ k ∈
{1, . . . ,K0}, s.t. γk 
= 0. It shall be noted that we do not
need to assume the number of breaks (K0) to be bounded, but
to rather restrict on the separation between breakpoints (see
Assumption 2.4).

In Section 2.1, we derive our test statistic. Its asymptotic
property is given in Section 2.2. In Section 2.3, we derive the per-
formance of the test based on Gaussian approximation, which
provides the theoretical foundation for calculating the size and
power of the test.

2.1. Test Statistic

In this subsection, we introduce the test statistics and some
intuition. Recall that our trend function μ(u) can be disentan-
gled into two parts, namely a smooth transition part f (u) and a
jump part γi1u≥ui . We can deone the jump vector at point u as
a gap between the right-side function μ(r)(u) and the lev-side
function μ(l)(u), which is

J(u) = μ(r)(u) − μ(l)(u), where we deone

μ(r)(u) = lim
t↓u

μ(t) and

μ(l)(u) = lim
t↑u

μ(t).

Due to the smoothness of the constitutes of f (.), the gap function
J(u) = 0 when there is no jump, and J(u) = γk when u = uk.
A natural way to test the existence of change-points is to check
whether the gap is zero (i.e., J(u) = 0). To this end, we need

μ̂(r)(u) and μ̂(l)(u), which are estimates of μ(r)(u) and μ(l)(u).
We propose to adopt the local linear estimation technique, see
Fan and Gijbels (1996).

The local linear estimates of μ̂(l)(u) and μ̂(r)(u) at the point
u = i/n are of the following weighted form:

μ̂
(l)
i := μ̂(l)(i/n) =

i−1
∑

t=i−bn

wi−tYt and (3)

μ̂
(r)
i := μ̂(r)(i/n) =

i+bn
∑

t=i+1

wt−iYt ,

with weights

wi = wi,b = wb(0, i/n), i ≥ 1, w0 = 0. (4)

The weight functions are deoned as

wb(u, v) = K((v − u)/b)[S2(u) − (u − v)S1(u)]
S2(u)S0(u) − S21(u)

,

Sl(u) =
n

∑

i=1

(u − i/n)lK((i/n − u)/b), (5)

whereK(·) is a kernel function and b is a bandwidth with b → 0
and bn → ∞. It is worth noting that the estimator in (3)
is equivalent to adopting a one-sided kernel function, that is,
K(u)1u≥0 to ox the boundary estimation issue for the kernel
estimation method.

If there is no jump around the time point u = i/n, then

the gap estimate Ĵ(i/n) = μ̂
(l)
i − μ̂

(r)
i would be small for all

coordinates. Otherwise if for some entity 1 ≤ j ≤ p, the gap

estimate |Ĵj(i/n)| is large, there might exist a jump around time
i/n at coordinate j. Note that the test statistics is in fact of a
MOSUM type, and we replace the uniform kernel for MOSUM
by a local linear one to adapt for slowly varying trends f (u) in
Equation (2).

To conduct the breakpoint detection with p → ∞, we con-
sider the maximum of the gap statistics. Furthermore, we need
to standardize our test statistics in order to get a regular limit
distribution. To obtain the long-run variance matrix involved
in the standardization, we need to specify the error process, as
in model (1). We would like to make a general temporal and
cross-sectional dependence assumption. This is a crucial issue,
since for time series data, dependence is the rule rather than the
exception. Speciocally, we let

εt =
∑

k≥0

Akηt−k, (6)

where ηt ∈ R
p̃ are independent and identically distributed

(iid) random vectors with zero mean and an identity covariance

matrix. Ak, k ≥ 0, are coeocient matrices in R
p×p̃ such that εt

is a proper random vector, and p ≤ p̃ ≤ cpp, for some constant
cp > 1. If Ai = 0 for all i ≥ 1, then the noise sequences are
temporally independent; if p = p̃ and matrices Ai are diagonal,
then the sequences become the model in Bai (2010), which is
spatially independent. TheVMA(∞) process is very general and
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includes many important time series models such as a vector
autoregressive moving averages (VARMA) model, that is,

(1 −
s

∑

j=1

�jB
j)Xi = Xi −

s
∑

j=1

�jXi−j =
t

∑

k=1

�kηi−k,

where �j and �k are real matrices such that det(1−
∑s

j=1 �jz)
is not zero for all |z| ≤ 1 and B is the backshiv operator.

Correspondingly, we deone the sum of the coeocient matrix
to be S =

∑

k≥0 Ak. The long run covariancematrix for the error
process is

� = SS�. (7)

We denote � = (σi,j), 1 ≤ i, j ≤ p, and

	 = diag(σ
1/2
1,1 , σ

1/2
2,2 , . . . , σ

1/2
p,p ). (8)

Following the previous intuition of the efect of jumps on the

gap statistics Ĵ(.), we consider the test statistic

Tn = max
bn+1≤i≤n−bn

|Vi|∞, where Vi = 	−1(μ̂
(l)
i − μ̂

(r)
i ).

(9)

We adopt a supreme type of statistics as it shares good property
under certain alternatives. However, we do not claim the strict
superiority of our test statistics. When the majority of locations
exhibit simultaneous jumps, an l2 type statistics tends to have
better power.

We exclude Yi in Vi, because that the weights in front of Yi

would be the same for the right side and the lev side estimator,
and will be canceled when taking the diference. Note that
we consider the normalized statistic as multiplying the jump

estimates Ĵ(i/n) = μ̂
(l)
i − μ̂

(r)
i by 	−1 since the long-run

variances σj,j for diferent coordinates 1 ≤ j ≤ p can be very
diferent. We refer to Tn as an infeasible test statistic since 	 is
unknown. The estimation of 	 is deferred to Section 4.

2.2. Properties of the Test Statistics

We shall show the asymptotic properties of our test statistics Tn

in Equation (9) in this subsection. First we analyze the mean
of the normalized jump estimators, that is, EVi. Intuitively, we
can decompose the level of our jump estimator EVi into two
parts, one is the commonly encountered bias term for the non-
parameteric kernel estimators of the smooth trend functions,
and the other is induced by jumps on the deterministic trend,
which is denoted as di. Recall the deonition of wi in Equation
(4) for i = 1, 2, . . . , bn, and wi = 0 for i = 0 and i >

bn. We denote the location of breaks as τk = nuk and �i as
a set of indices indicating the break locations within the bn
neighborhood around time i, namely�i =

{

k
∣

∣|i−τk| ≤ bn, 1 ≤
k ≤ K0

}

. If τi − τj = n(ui − uj) 
 n, for any i, j, then for large
n, the cardinality of�i is at most one, that is, |�i| ≤ 1. Actually,
this condition can be relaxed to min1≤i 
=j≤K0 |τi − τj| � bn. For
a time point i where �i 
= ∅, we deone the weighted break sizes
to be,

di = (1 −
|i−τk|
∑

t=1

wt)	
−1γk, k = argminj∈�i

|i − τj|, (10)

and for the rest of locations i, let di = 0. We further stack di
over all breakpoints that are of interest, which is denoted by d =
(d�

bn+1, d
�
bn+2, . . . , d

�
n−bn)

�. It should be noted that under the
null, d = 0.

We denote the smooth part of the local linear estimate as

f̂
(l)
i =

i−1
∑

t=i−bn

wi−tf (t/n) and f̂
(r)
i =

i+bn
∑

t=i+1

wt−if (t/n).

By Fan and Gijbels (1996), under some smoothness conditions,
the bias part of the estimated smooth functions would be of the
order b2, which goes to zero by assumption, that is,

max
bn+1≤i≤n−bn

|	−1(f̂
(l)
i − f̂

(r)
i )|∞ = O(b2). (11)

Given the deonition of our model Yi = μ(i/T) + εi, di can be
expressed as

di = E
{

	−1
(

(μ̂
(r)
i − μ̂

(l)
i ) − (f̂

(r)
i − f̂

(l)
i )

)}

(12)

= E
{

Vi − 	−1(f̂
(r)
i − f̂

(l)
i )

}

.

Combining Equations (11) and (12), EVi can be approximated
by the part induced by jumps γks, as

|EVi − di|∞ = |	−1(f̂
(r)
i − f̂

(l)
i )|∞ = O(b2). (13)

Let us now consider the Vi − EVi part. We observe that the
centered statistics can be expressed as a weighted sum of the
error term, namely

Vi − EVi =
i−1
∑

l=i−bn

wi−l	
−1εl −

i+bn
∑

l=i+1

wl−i	
−1εl. (14)

To approximate its distribution, we introduce a scaling matrix
for variance of the limit distribution. Recall S =

∑

k≥0 Ak

and deone a block matrix G� = (G�
i,l)bn+1≤i≤n−bn,1≤l≤n ∈

R
(n−2bn)p×np̃ with components as p × p̃ dimension matrices,

G�
i,l =

{

wi−l	
−1S, if i − bn ≤ l ≤ i − 1,

−wl−i	
−1S, if i + 1 ≤ l ≤ i + bn,

(15)

and elsewhere zero. Let z be a Gaussian vector in R
np̃ with

zero mean and identity covariance matrix. We set G�
i,· to be

(G�
i,1,G

�
i,2, . . . ,G

�
i,n). It can be shown that G�

i,·z has a similar
covariance structure as Vi − EVi. We shall use the distribution
of |G�

i,·z|∞ to approximate the distribution of |Vi − EVi|∞.
Combining this approximation with the bias term in Equation
(13), we shall expect that for each time point i, our normalized
break test statistics can be approximated by the maximum of a
Gaussian vector centered at di, that is,

P(|Vi|∞ ≤ u) ≈ P(|di + G�
i,·z|∞ ≤ u).

We now let the statistics go over all the time points, and recall
Tn = maxbn+1≤i≤n−bn |Vi|∞. Then we shall expect

P(Tn ≤ u) ≈ P(|d + G�z|∞ ≤ u), (16)

and equivalently

P(Tn ≤ u) ≈ P(|d + Z|∞ ≤ u), (17)
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where Z = (Z�
bn+1,Z

�
bn+2, . . . ,Z

�
n−bn)

� and (Zi)bn+1≤i≤n−bn is
a sequence of centered Gaussian vectors in R

p with covariance
matrices cov(Zi,Zj) = Qi,j of the following form:

Qi,j = �i,j	
−1�	−1 and (18)

�i,j =
n

∑

l=1

w|i−l|w|j−l|sign(i − l)sign(j − l).

To see the equivalence between (16) and (17), let

Q = (Qi,j)bn+1≤i,j≤n−bn = G�G��.

Then Z is a Gaussian vector with zero mean and covariance
matrix Q. Note that

Zi
d= G�

i,·z and Z
d= G�z. (19)

This transformation from G�z to Z is to show that the involved
Gaussian process only depends on the long-run covariance
matrix � and the weight functions. We note that Z are not
element-wise independent, but with dependency governed by
G�. The above argument will be rigorously formulated in Theo-
rem 1 in the next subsection.

2.3. Gaussian Approximation

In this subsection, we provide the formal theory supporting our
test. We orst present necessary assumptions. The following is to
guarantee the smoothness of the trend functionsμj(u)when no
break occurs.

Assumption 2.1. Function fj ∈ C2[0, 1] with max1≤j≤p |f ′j |∞ ≤
cf , max1≤j≤p |f ′′j |∞ ≤ cf for some constant cf > 0.

Additionally, to ensure the property of our kernel estimation,
we need conditions on the kernel function.

Assumption 2.2. The kernelK(.) ≥ 0 is symmetric with support

[−1, 1], assume |K|∞ < ∞ and
∫ 1
−1 K(x)dx = 1. Also assume

K(x) has orst-order derivative with |K ′|∞ < ∞ on (0, 1). Let
b → 0 and bn → ∞. Denote κi =

∫ 1
0 xiK(x)dx. Assume κ2

1 
=
κ2κ0.

We also set conditions on the regularity of the long-run
covariance matrix and the dependency strength of the noise
sequence.

Assumption 2.3. (Lower bound for the long run variance) σj,j ≥
cσ , 1 ≤ j ≤ p for some onite constant cσ > 0.

We need enough separation between adjacent breakpoints.

Assumption 2.4. (Separation) Assume min1≤i,j≤K0 |τi − τj| �
bn.

It is worth noting that Assumption 2.4 implies that the num-
ber of breaks K0 shall not exceed the order 1/b.

Assumption 2.5. (Dependence strength)

max1≤j≤p
∑

k≥i |Ak,j,·|2/σ 1/2
j,j ≤ cs(i ∨ 1)−β , where β > 0

is some constant and Ak,j,· is the jth row of Ak.

Assumption 2.5 is a very general spatial and temporal depen-
dence condition and embraces many interesting processes. It
requires an algebraic decay rate of the temporal dependence.
However, the cross-sectional dependence does not need to be
weak; and in fact, it can be strong such that it has a factor
structure. We provide an example as follows.

Example 1. Assume that ηt , η
′
t ∈ R

p are iid random vectors with
zero mean and covariance matrix Ip. Let

εt = Ft + Zt , with Zt =
∑

k≥0

	kηt−k and Ft =
∑

k≥0

vf�k η′
t−k,

(20)

where 	k = diag(λk,1, . . . , λk,p), v = (v1, . . . , vp)
� and fk =

(fk,1, . . . , fk,p)
�. Here Ft is the factor term and Zt,j are indepen-

dent for diferent j. Then the long-run variances for Zt,j and Ft,j
are σZ,j = (

∑

k≥0 λk,j)
2 and σF,j = |

∑

k≥0 fk|22v2j , respectively.
If for some constant c > 0,

∑

k≥i

|λk,j|/σ 1/2
Z,j ≤ ci−α and

∑

k≥i

|fk|2|vj|/σ 1/2
F,j ≤ ci−α ,

(21)

then Assumption 2.5 holds with β = α. To see this, we note
|Ak,j,·|2 = (λ2k,j + |fk|22v2j )1/2, and σj,j = σ 2

Z,j + σ 2
F,j. Hence,

∑

k≥i

|Ak,j,·|2 ≤
∑

k≥i

(|λk,j| + |vj||fk|2) ≤ ci−α(σ
1/2
Z,j + σ

1/2
F,j )

≤
√
2ci−ασ

1/2
j,j .

Assumption 2.6. (Finite moment) The innovations ηi,j are iid
with μq = ‖η1,1‖q < ∞ for some q ≥ 4.

Assumption 2.7. (Subexponential) The innovations ηi,j are iid

with μe = Eea0|η1,1| < ∞, for some a0 > 0.

Assumptions 2.6 and 2.7 put tail assumptions on the dis-
tribution of the noise sequences. Given the above-mentioned
conditions, we provide the main Gaussian approximation theo-
rem, which is essential for the asymptotic distribution of our test
statistics Tn. Our theorem extends the Gaussian approximation
theory in Chernozhukov, Chetverikov, and Kato (2013, 2017),
which build on the Stein’s method and the anti-concentration
bounds.Markedly, our theory is developed formodeling depen-
dent data. To this aim, one important technical non-triviality
lies in handling the spatial-temporal dependency of the trend
stationary high-dimensional processes. We derive the corre-
sponding concentration inequalities based on m-dependence
approximation of the underlying processes. Compared to the
existing results on Gaussian approximation for time series, for
example Zhang et al. (2017), our setting works for noncentered
Gaussian approximation that accommodates our interest for
time series with breaks.

Theorem 1 (Gaussian approximation). Under Assumptions 2.1–
2.5,

(i) if Assumption 2.6 holds, and np(bn)−q/2(log(np))3q/2 =
o(1), then for

� = (bn)−1/6log7/6(pn) + (bn)−β/(3+3β)log2/3(np)

+ b5/2n1/2log1/2(np),
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we have

sup
u∈R

∣

∣P(Tn ≤ u) − P(|d + Z|∞ ≤ u)
∣

∣

� � + ((np)2/q/(bn))1/3log(pn),

(ii) if Assumption 2.7 holds, and
(bn)−1(log(np))max{7,2(1+β)/β} = o(1), we have

sup
u∈R

∣

∣P(Tn ≤ u) − P(|d + Z|∞ ≤ u)
∣

∣ � �,

where the constants in� are independent of n, p, b.

If in addition

b5nlog(np) = o(1), (22)

then under both cases, we have

sup
u∈R

∣

∣P(Tn ≤ u) − P(|d + Z|∞ ≤ u)
∣

∣ → 0. (23)

Remark 1. (Allowed dimension) One key theoretical insight is
that we explicitly show the trade-of between the tail assumption
of the innovations and the alloweddimension of the time series p
relative to the sample size n in the above theorem. In particular,
when we have exponential tail assumption on the distribution
of the innovations, we allow an ultra-high dimensional setup
indicating p to be at an exponential rate with respect to n. And
when we have only onite moment assumptions, we can allow
p to be at a polynomial order with respect to n. Speciocally,
for Theorem 1 case (i), we allow p to be of some polynomial
order of n, and its order depends on the value of q. For some
ν1 > 0 and 0 < ν2 < 1/2, assume p 
 nν1 and b 
 n−ν2 .
If ν1 < (1 − ν2)q/2 − 1 and ν2 > 1/5, then Equation (23)
holds. It is easy to see that the bigger the moment q is, the larger
the allowance of the dimension p. The moment Condition (2.6)
depends on q which characterizes the heavy tailedness of the
noise, larger q means thinner tails. For case (ii), we can allow
p to be exponential in n, that is, the ultra-high dimensional
scenario. For instance, for some ν1 > 0 and 1/5 < ν2 < 1,
we can set p 
 en

ν1
and b 
 n−ν2 . If ν1 < 5ν2 − 1 and

ν1max{7, 2(1 + β)/β} < 1 − ν2, then Equation (23) holds.

It is not hard to understand the size and power implication
of Theorem 1 to our test. Under the null hypothesis, we have
d = 0, then for any preoxed signiocant level α ∈ (0, 1), we
have the critical value of our test as qα , that is, the quantile of
the Gaussian limit distribution,

qα = inf
r≥0

{r : P(|Z|∞ > r) ≤ α}. (24)

As from the Gaussian approximation result in Equation (23), we
have the approximated sizes of the test statistics,

∣

∣

∣
P(Tn > qα) − P(|Z|∞ > qα)

∣

∣

∣
→ 0.

We shall reject the null hypothesis at the signiocant level α, if
the test statistics exceed the critical value, that is, Tn > qα .

To evaluate our testing power, consider the alternative that
if not all γk = 0, then d is non-zero. We have the following
corollary for the power, which is a straightforward consequence
of Theorem 1.

Corollary 1. (Power) Under conditions in Theorem 1 (i) or (ii).
The testing power βα satisoes

βα = P(|d + Z|∞ ≥ qα) + o(1).

Thus, we can see that the power of our test would depend
on the vector d. The size of it is determined by the true jump
sizes that is, γks. Since the covariance matrix for Z isQ = (Qi,j),
where Qi,j = �i,j	

−1�	−1 with �i,j deoned in Equation (18).
It can be calculated that �i,i 
 (bn)−1, therefore |Z|∞ =
OP((bn)−1/2log(np)), which tends to zero by Assumptions 2.6
and 2.7. Thus, if |d|∞ � (bn)−1/2log(np), βα → 1 by
Corollary 1.

3. Estimation and Inference of Breaks

In this section, we show how to estimate the number of
change-points, the time stamps, the spatial coordinates and the
sizes of the structural breaks. We summarize the key steps of
the adopted two-step procedure for the multiple change-point
detection. The main reason for a two-step estimation is to
achieve an optimal rate of consistency for our break estimation.
The orst step can be regarded as an extension of the MOSUM
l∞ aggregation. Namely, in our orst step, we conduct a <rough=
estimation though a MOSUM type statistic as in Equation (9),
and we can draw a conclusion on the existence of a break. In
case it exists, we obtain a <rough= estimate of the change-points
locations. In the second step, we reone our jump estimates based
on a one-dimensional aggregated time series. The aggregation
can be viewed as a projection using information on the jump
estimators from the orst step. To be more specioc, within each
time region around the kth breakpoint, we can aggregate data
by a weighted sum of diferent coordinates whose weights are
determined by the orst step jump size estimators (γ̂k). Instead
of looking at the biggest break at one time point, the aggregated
change-point statistics carrymore information regarding signif-
icant jumps across contemporaneous locations, and would thus
provide better precision. In the following, we introduce the orst
<rough= estimation step and its properties in Section 3.1.We fur-
ther improve the orst step in Section 3.1 through an aggregated
statistics , which is proposed and analyzed in Section 3.2.

3.1. The <Rough= Estimation Step

We deone the sizes of the breakpoints at time k as

|	−1γk|∞.

Here, we normalize γk by the long-run standard deviations for
the same reason as Vi in Equation (9). Intuitively, the noise
nuctuation levels for diferent locations can be very diferent,
and at one location, a break can be signiocant due to purely high
noise level without normalization. We deone the minimum size
of breaks over time as

δ� = min
1≤k≤K0

|	−1γk|∞. (25)

In the following, we outline the steps of our testing, detecting
and estimation procedure.
Step 1. For signiocance level α, we test the existence of jumps
based on the critical value qα in Equation (24). If we ond no
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signiocant breaks, then we cannot reject the null H0. In case
our test statistic exceeds the critical value, we reject H0 and
acknowledge the existence of breaks, then we proceed to step 2.
Step 2.Todetect the change-points, we collect all the time stamps
with the jump statistics |Vτ |∞ exceeding a threshold value w†,
namely, A1 = {bn + 1 ≤ τ ≤ n − bn : |Vτ |∞ > w†}, where
Vτ is deoned in Equation (9). Let τ̂1 be the time point τ in A1

that maximizes the test statistics |Vτ |∞. We further eliminate a
2bn neighborhood of time points around τ̂1 from A1 to create
A2. Then we ond the next point in A2 that maximize |Vτ |∞,
and repeat the same operation until the setAk is empty. Namely,
for k ≥ 1, we let the kth estimated break point be denoted as
τ̂k = argmaxτ∈Ak

|Vτ |∞ and Ak+1 = Ak \ {τ : |τ − τ̂k| ≤
2bn}. We denote the maximum number of breakpoints as K̂0,
with K̂0 = maxk≥1{k : Ak 
= ∅}. It is worth noting that we have
chosen 2bn to exclude both bn neigborhood of τ and τ̂ .
Step 3.Given the detected breakpoints in Step 2, we calculate the
break sizes over time.We denote the window size to beM = bn,

γ̂k = μ̂
(l)
τ̂k−M

− μ̂
(r)
τ̂k+M

and δ̂� = min
1≤k≤K̂0

|	−1γ̂k|∞. (26)

It is worth noting that in this algorithm, we only need to
calculate the gap statistics |Vτ |∞ once for each point. Hence, it
is not time consuming regardless of the true number of break-
points. In Step 1, we test the existence of the breaks. In Step 2, we
use the estimated |Vτ |∞ for all the points from bn+ 1 to n− bn
and select the points that are beyond the thresholdw. Intuitively,
the points in A1 would contain the break indices, as well as
points in their neighborhood where estimates are contaminated
by the breaks. Therefore, in Step 2, we ond the local maximums
and discard points around them. In Step 3, we estimate the sizes
of the change-points and calculate their minimum values.

In the following, we shall provide consistency results of
estimates of the break numbers, locations and break sizes in
Theorem 2; and derive asymptotic distribution of break sizes in
Theorem 3.

We need to orst impose the minimum jump size condition
on the break size as

Assumption 3.1. Assume the break size satisoes δ� �
max

{√

log(pn)/(bn), b
}

.

It can be seen that the break size requirement is related to the
dimensionality of the time series, the number of observations
available and the bandwidth parameter. The rate

√

log(pn)/(bn)
is due to the variance of the estimation error with the typical
log(pn) term compensating for the dimensionality of the test
statistics and b is due to the incurred bias in the setting of
the smooth varying trend. If we assume the trend function to
be piecewise constant, then the term b disappears. The larger
the sample n, the smaller the requirement for δ� due to the
better approximation of the trends. In the following theorem,we
show that we would asymptotically obtain the right number of
breaks. Moreover, we can bind the errors of the estimated break
locations and the break sizes. The threshold ω† shall be set as a
high quantile of its limited Gaussian distribution to ensure the
consistent estimation of the breaks.

Theorem 2. We assume conditions in Theorem 1 (i) or (ii),
Assumption 3.1, and Equation (22) hold. If min{δ� −ω†,ω†} ≥

2c′w
√

log(pn)/(bn), where c′w is the constant deoned as the limit
(bn

∑n
i=0 w

2
i )

1/2 → c′w, then

(i) P(K̂0 = K0) → 1.
(ii) under Theorem 1 (i), |τ̂k − τk∗| = OP{(np)2/q/δ�2}, and

under Theorem 1 (ii), |τ̂k − τk∗| = OP{log2(np)/δ�2},
uniformly over k, where k∗ = argmini|τ̂k − τi|.

(iii) |	−1(γ̂k − γk∗)|∞ = OP((bn)−1/2log(np)1/2 + b),

uniformly over k, which indicates |δ̂� − δ�| =
OP((bn)−1/2log(np)1/2 + b).

Result (i) indicates that the number of breaks can be con-
sistently estimated, (ii) suggests that the estimated break dates
uk can be consistently determined in view of uk = τk/n and
(iii) shows that the break sizes can be consistently recovered.
The convergence rate of the break sizes dependents on the band-
width b, sample sizen and the dimension of the time series p. It is
worth noting that the bias is of order b in (iii), as the diference is
taken with a gap of 2M as in Equation (26). It shall be noted that
the consistency rate of τ̂k depends on the break size δ�, which
depends only on the maximum break size for any oxed time.
Therefore, having several large breaks simultaneously would not
improve the break size estimation.With respect to the condition
min{δ�−ω†,ω†} ≥ 2c′w

√

log(pn)/(bn), relative to the summary
in the Table 1 in Cho (2016), our break size δ� is comparable up
to the weakest condition δ�(nb)1/2 → ∞ up to a logarithmic
factor. Moreover, when p = 1, our requirement of breaksize is
similar to the rate as in Theorem 3.2 in Wu and Zhou (2019),
namely δ� ≥

√

logn/
√
nb.

Given the consistency of the breakpoints, we can obtain a
distribution theory that facilitates us in making inferences on
the break sizes. Let Z̃ be a Gaussian vector inRp with zero mean
and covariance matrix

Q̃ := Qbn+1,bn+1 = 2

bn
∑

t=1

w2
t 	

−1�	−1. (27)

Theorem 3. (Break size inference) Assume conditions in Theo-
rem 2 and b3nlog(np) = o(1). We have

sup
u∈R

|P(|	−1(γ̂k − γk∗)|∞ ≤ u) − P(|Z̃|∞ ≤ u)| → 0, where

k∗ = argmini|τ̂k − τi|.

This theorem indicates that the maximum of the diference
between the estimated jump size γ̂k and the true jump size γk
can be approximated by the maximum of a Gaussian random
vector with the same asymptotic variance-covariance structure.
Based on Theorem 2 (ii) and Theorem 3, we can construct joint
conodence interval for γk∗,j. We set

α = P(|Z̃|∞ ≥ q) and θ = (σ
1/2
1,1 , σ

1/2
2,2 , ..., σ

1/2
p,p )�, (28)

some α > 0. Then as n → ∞ with probability close to 1 − α,
we have

−qσ
1/2
j,j + γ̂k,j ≤ γk∗,j ≤ qσ

1/2
j,j + γ̂k,j ∀j. (29)

Theorem 3 can be extended to hold uniformly over k by
stacking the statistics overall k’s. In addition, we see that The-
orem 2 and Theorem 3 are closely connected in the sense that
we can reach the same threshold by stacking γ̂k overall k’s.
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3.2. The Reoned Aggregation Step

The estimation in the orst step is only driven by |γk|∞, that is,
the maximum size of jumps at a time point τk. Therefore, it is
only sensitive to the biggest jump across all the time series at
the same time. The l∞ type test potentially have more power
for certain alternatives than the l2 type statistics. However, if
the majority or all of the entities exhibit simultaneous jumps,
the supremum statistic tends to have lower power than the l2
statistic.

In case there are multiple simultaneous time series jumps,
it would be beneocial to modify our procedure to aggregate
all of the series with a jump. This enlightens us to propose
a two-stage method: orst, we follow the steps in the previous
subsections to detect the <rough= timing of the jumps and the
estimated jump sizes; second, for each bn neighborhood of a
change-point estimate τ̂k obtained from step one, we update the
change-point estimates according to a newly aggregated time
series. The time series is calculated with a weighted sum of
simultaneous observations corresponding to signiocant jump
locations and the weights are based on the jump size estimates
in the orst step. The aggregation returns a one-dimensional time
series with richer information on the cross-sectional jumps.

We denote Sk to be the set of series that jump at location τk,
that is,

Sk = {1 ≤ j ≤ p | γk,j 
= 0}, (30)

where γk,j is the jth coordinate of γk. Detailed steps of the
aggregation are formulated as follows:
Stage 1. Apply Steps 1-3 in Section 3.1 to obtain τ̂k and γ̂k, k =
1, 2, . . . , K̂0. For some w† > 0, let the estimation of Sk be

Ŝk =
{

1 ≤ j ≤ p
∣

∣|(	−1γ̂k)j| ≥ w†
}

. (31)

In practice, w† can be chosen to be large enough to ensure that
we can detect all the jumps with probability 1 as in Theorem 2.
Stage 2. For |t − τ̂k| ≤ 2bn, we let

Xt =
∑

j∈Ŝk

(	−1γ̂k)j(	
−1Yt)j. (32)

Note that aver the modiocation, for all the jump locations, the
new time series Xt would only contain positive sized jumps that
is,

∑

j∈Ŝk
(	−1γ̂k)

2
j . This step can be understood as a projection

of the high-dimensional observations 	−1Yt according to the

direction of 	−1γ̂k(j ∈ Ŝk). This is similar to the idea of Wang
and Samworth (2018).

Based on the aggregated time series Xt , the reoned change-
point locations can be detected through a CUSUM type of test

statistics, for k = 1, 2, . . . , K̂0,

τ̃k = argmax
|t−τ̂k|≤bn

( τ̂k+2bn
∑

s=τ̂k−2bn

Xs
t − τ̂k + 2bn

4bn + 1
−

t−1
∑

s=τ̂k−2bn

Xs

)

(33)

×
√

4bn + 1

(t − (τ̂k − 2bn) + 1)(τ̂k + 2bn − t)
. (34)

Aver we update the break points estimation, we can con-
struct conodence intervals for the updated breakpoints esti-
mates τ̃k. We denote the long-run correlation matrix to be

(σ̃i,j)i,j = 	−1�	−1, where � is the long-run covariance

matrix for εt . We let �̃k = (σ̃i,j)i,j∈Sk
be the sub covariance

matrix corresponding to coordinates in Sk at time τk and let
the standardized signiocant break sizes γ̃k = (	−1γk)i∈Sk

.
We deone two objects involved in the limit distributions of the
breaks, that is,

ak = |γ̃k|22 and ς2
k = γ̃ �

k �̃kγ̃k. (35)

Then ς2
k is the long-run variance for the sequence

∑

j∈Sk
(	−1γk)j(	

−1εt)j. For the aggregated jump estimation,
we alternatively deone the minimum jump size across diferent
locations and time points as

δ† = min
1≤k≤K0

min
j∈Sk

|(	−1γk)j|.

Then δ† ≤ δ� and it functions similarly as δ� to capture the
identioable jump size of the time series. We shall put the same
assumption on δ† as on δ�. It is worth noting that δ† is the
minimum jump size to ensure the consistency of our break
estimation.

Assumption 3.2. Let δ† � max
{√

log(pn)/(bn), b
}

.

In the following corollary, we show that we can consistently
recover the locations of the series with a jump for each change-
point. It can be directly derived from Theorem 2 (iii).

Corollary 2. Weassume conditions in Theorem 1 (i) or (ii) hold,
and Assumption 3.2. If δ†/2 ≥ w† � (bn)−1/2log(np)1/2 + b,
then we have

P(Ŝk = Sk, 1 ≤ k ≤ K0) → 1.

In addition, we provide a theorem that allows us to make
inference on the estimated break-dates τ̃k.

Theorem 4. (Aggregated break estimation) Assume conditions
in Corollary 2, and that for some constants c1, c2 > 0,

c1 ≤ λmax(	
−1�	−1)/λmin(	

−1�	−1) ≤ c2. (36)

Recall deonition of ak and ςk in (35). Then we have for any oxed
1 ≤ k ≤ K0,
(i) |τ̃k − τk∗ | = OP(ς2

k /a2k).
(ii) In addition, if Assumption 2.5 holds with β > 1, and 1 �
ς2
k /a2k � bn, then we have

τ̃k − τk∗
D→ (ςk/ak)

2argmaxr(−2−1|r| + W(r)),

where W(r) is a two-sided Brownian motion. That is W(r) =
W1(r), if r > 0, andW(r) = W2(−r), if r ≤ 0.W1,W2 are two
independent Brownian motions.

Remark 2. We shall note that the consistency rate of τ̃k is
improved compared to the results for τ̂ in Theorem 2 ii). ak
which is an l2 aggregation of simultaneous signiocant break
sizes, plays a role in the rate of convergence of τ̃k. For instance,
if we assume that there are s breaks which are of size δ > 0
in the cross-sectional dimensional, then ak = sδ2. If moreover
there is no cross-sectional correlation, that is, �̃k = I, then
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we may expect τ̃k to be consistent so long that 1/(sδ2) → 0,
while τ̂k can be not consistent. Thus, the rate of τ̃k will be
better than τ̂ . Moreover, the long-run variance also plays a
critical role in the rate of convergence. For example, when the
variance part of the limit distribution satisoes ς2

k ≤ |�̃k|2ak,
if |�̃k|2/ak = o(1) then by Theorem 4 (i), we have τ̃k → τk
in probability. This corresponds to the insight of Bai (2010)

and Hansen (2000). We can also see that when the breaks are
truly sparse in the cross sectional dimension or the break size
for each time series is very small, the l2 aggregation cannot
improve the performance compared to the previous step. Also
when there are strong cross-sectional dependence l2 aggregation
will not improve the break estimation performance. Moreover,
we also need the aggregated breaksize to shrink to zero (1 �

Figure 1. Histogram of τ̂ − τ0 (left) and τ̃ − τ0 (right) for n = 100, p = 10, 30, 100, and 150, K0 = 1. The number of breaks in the cross-sectional dimension are
s = 1, 5, 20, and 30, respectively, and there are 100 simulation samples. (a) describes the case with p = 10, s = 1; (b) describes the case with p = 30, s = 5; (c) describes
the case with p = 100, s = 20; and, (d) describes the case with p = 150, s = 30.
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ς2
k /a2k) to obtain the limit distribution. If �̃k is a d-banded

matrix, |�̃k|2 ≤ (|�̃k|1|�̃k|∞)1/2 ≤ d. We can derive that
|τ̃k − τk| = OP(d/ak).

To illustrate the insight of Remark 2, we compare the per-
formance of a simple model withN (0, 0.1) and one breakpoint
placed at τ0 = 50. Figure 1 shows the histogram of τ̂ − τ0
and τ̃ − τ0, respectively. The jump-size for all breaks are the
same, with the value 1.6

√

log(np)(τ0)
−1/3. As the dimension p

grows, we see the signiocant improvement of the performance
of τ̃ relative to that of τ̂ .

From Theorem 4, with estimates of ak and ςk, we can con-
struct a 100(1 − α)% conodence interval for τ̃k:

(

τ̃k − �q̂′
1−α/2� − 1, τ̃k + �q̂′

α/2� + 1
)

, (37)

where q′
1−α/2 (q′

α/2) is 1 − α/2 (α/2)th quantile of the limit

distribution of the break point τ̃k, that is, argmaxr{−2−1ak|r| +
ςkW(r)} and q̂′

α/2(q̂
′
1−α/2) are estimates of the quantiles. �·�

denotes the noor function. q′
1−α/2 (q

′
α/2) can be calculated fol-

lowing Stryhn (1996). Alternatively, we can also simulate the
critical values.

4. Long-run CovarianceMatrix

In the previous sections, we assume that � is known. However,
this is unrealistic in practice, as we mostly do not know the
long-run covariance matrix. Thus, an estimation of the long-
run covariance matrix is needed in Gaussian approximation.
A simpler version of this problem was considered by Politis,
Romano, and Wolf (1999) and Lahiri (2003), who allowed
for a constant mean of the random vector. More generally,
Chen and Wu (2019) considered the high-dimensional situa-
tion with smooth trends. However, this does not ot directly to
our interest due to the possible existence of the breakpoints.
We then propose a robust covariance matrix estimation moti-
vating from the M-estimation method in Catoni (2012). It
is worth noting that due to the jumps, our method shall be
diferent from the classical covariance matrix estimation. Our
long-run variance-covariance matrix estimation is complemen-
tary to the recent article on high-dimensional robust matrix
method under independence settings in Fan, Li, and Wang
(2017).

First of all, to account for temporal dependency,we group our
observations into blocks of the same size m, for some m ∈ N.
We denote the number of blocks N1 = �(n − m)/m�, and the
observation indices within a block k is set to be Ak = {t ∈ N :
km + 1 ≤ t ≤ (k + 1)m}, and we let

ξk =
∑

t∈Ak

Yt/m,

be the average observations within the block Ak. Without
jumps, a natural estimate of the long-run covariance matrix is

N1
∑

k=1

(m/2)(ξk − ξk−1)(ξk − ξk−1)
�/N1.

Note that we take the diference ξk − ξk−1 to cancel out the
trends, as the trend functionμ(·) is smooth, and the aggregated
diference between two consecutive blocks can be shown to be
of order m/n, which vanishes when m/n → 0. However, this
estimator can be greatly contaminated by the jumps, as jumps
are not smooth and cannot be canceled out by taking difer-
ence. Thus, a robust covariance matrix estimation is needed.
We borrow the framework of Catoni (2012), who considered a
new robust M- estimation method. We extend the method for
estimating our long-run covariance matrix.

Figure 3. Plot of estimation of the robust long-run correlation matrix;m = 10.

Figure 2. Plot of unemployment rate of 20 U.S. states.
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We denote ξk = (ξk,1, ξk,2, . . . , ξk,p)
� and let

σ̂i,j,k = m(ξk,i − ξk−1,i)(ξk,j − ξk−1,j)/2, k = 1, 2, . . . ,N1.

(38)

For some αi,j > 0, we denote the M- estimation zero function
of our variance-covariance matrix to be

hi,j(u) =
N1
∑

k=1

φαi,j(σ̂i,j,k − u)/N1, (39)

where φα(x) = α−1φ(αx) and

φ(x) =

⎧

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

¬

log(2), x ≥ 1,

−log(1 − x + x2/2), 0 ≤ x ≤ 1,

log(1 + x + x2/2), −1 ≤ x ≤ 0,

−log(2), x ≤ −1.

(40)

Remark 3. Function |φ(·)| is bounded by log(2) and is Lipschitz
continuous with the Lipschitz constant bounded by 1. Also note
that the function has envelopes of nice form,

−log(1 − x + x2/2) ≤ φ(x) ≤ log(1 + x + x2/2). (41)

We set the estimates of the components of the long-run
covariance matrix σ̂i,j to be the solution to hi,j(u) = 0 (if more
than one root, pick one of them).We can collect all the estimates
of the variance and covariances and organize them into the
variance covariance matrix,

�̂ = (σ̂i,j)1≤i,j≤p and 	̂ = diag(σ̂
1/2
1,1 , σ̂

1/2
2,2 , . . . , σ̂

1/2
p,p ).

(42)

We denote σ̄i,i = 2
∑

N1/4≤k≤3N1/4
σ̂i,i,(k)/N1, where σ̂i,i,(k) is

the ordered statistic of σ̂i,i,k as in (38), and let the αi,j in (39) be

σ̄
1/2
i,i σ̄

1/2
j,j (m/n)1/2.

Figure 4. Plot of estimated breakpoints τ̃k(τ̂k) (red lines) and their conodence intervals (dotted black lines). τ̃k (upper panel), τ̂k (lower panel). The blue time series line
represents the average unemployment rate over states under consideration.



1962 L. CHEN, W. WANG, ANDWEI B. WU

Theorem 5. (Long-run variance precision) We assume that
Assumption 2.5 holds with β ≥ 1.5 and let

ς = |	−1(�̂ − �)	−1|max.

Then for K0 onite, we have ς = OP(n−1/4log(np)) under either
one of the following two conditions:

(i) Assuming conditions in Theorem 1 (i), p ≤ cnv with
v < q/8 − 1/2 and some c > 0, we take m =
min{n1−8v/(q−4), n1/2}.

(ii) Assuming conditions in Theorem 1 (ii), we takem = n1/2.

By the above theorem, for the diagonal values, we have

max1≤i≤p |σ̂i,i − σi,i|/σi,i = oP(1). Let Q̂ be the same as Q in

(18), with � therein replaced by �̂ in Equation (42). We denote

Ẑ as the Gaussian vector with covariance matrix Q̂, then by

Theorem 5 and Lemma 3, |Ẑ + d|∞ converges to |Z + d|∞ in

distribution. Thus, all previous results are still valid with �̂ as
well.

5. Application

As an application, we analyze the monthly the unemployment
rate data in 20 U.S. states (namely Alabama, Arizona, Cali-
fornia, Colorado, Florida, Georgia, Illinois, Indiana, Kentucky,
Michigan, Mississippi, New Jersey, New York, North Carolina,
Ohio, Pennsylvania, Texas, Virginia, Washington, and Wiscon-
sin). The data time span is from January 1976 to Septem-
ber 2018 (n = 513), and the data source is Bureau of
Labor Statistics from Department of Labor in the United States
(https://www.bls.gov/). Figure 2 displays the 20 time series of
unemployment rate. Although from a long time-span and on an
overall level, we do not see obvious abrupt structural changes,
it would be still of great interest to consider detected changes
induced by some well-known exogenous shocks, such as the
subprime mortgage crisis in 2007–2008. It is understood that
there will be likely a smooth cyclical trend associated with
the unemployment time series, as they mostly rise during a
recession and fall during periods of economics prosperity, fol-
lowing the business cycle. Further studies on whether the shock
induced by recessions creates a signiocant structural change
in the unemployment rate should be performed. We select b
according to a cross-validation method, m = 10, and αi,j =
σ̄
1/2
i,i σ̄

1/2
j,j (m/bn)1/2 which varies over diferent i,j. We have used

the estimated 0.999 quantile of the maximum of the Gaussian
random variables (as in Equation (19) with correlation matrix
replaced by its estimator), which in our case is estimated as 2.10.
We refer to the guidance of the selection of tuning parameters
as in Remark 4 in the supplementary materials.

Figure 3 shows the estimated robust long-run correlation
matrix using themethod in Section 4. One sees some signiocant
values in the correlations between residuals in diferent states.
We can see that the correlations across diferent locations are not
negligible, however ourmethod is robust against the underlying
spatial–temporal dependency.

Figure 4 plots the estimated breakpoints and the conodence
intervals around them.We see that the estimated breaks τ̃k using
the CUSUM statistics in Equation (33) pick up the breaks earlier

than the estimates obtained from the non-aggregated method,
that is, τ̂k. We can see that our method can identify important
dates such as the onancial crisis period starting in January, 2009.
Moreover, τ̃k tends to detect earlier dates of structure changes
than the observed averaged peaks in the time series. Other
time-points with signiocant jumps detected are January 1977,
October 1981, January 1991, and October 2001. There are a
few recession periods documented by the national bureau of
Economics Research, namely November 1973 to March 1975,
July 1981 to November 1982, July 1990 toMarch 1975, July 1981
to November 1982, July 1990 to March 1991, and March 2001
to November 2001. All the break-dates of the unemployment
structure happen during or slightly before the recession periods,
featuring a close relationship between the structure change of
unemployment rate and the economic cycles. This implies that
economic recessions indeed bring signiocant structural changes
in unemployment rates across all the states.
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