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ABSTRACT

For multiple change-points detection of high-dimensional time series, we provide asymptotic theory
concerning the consistency and the asymptotic distribution of the breakpoint statistics and estimated break
sizes. The theory backs up a simple two-step procedure for detecting and estimating multiple change-
points. The proposed two-step procedure involves the maximum of a MOSUM (moving sum) type statistics
in the first step and a CUSUM (cumulative sum) refinement step on an aggregated time series in the second
step. Thus, for a fixed time-point, we can capture both the biggest break across different coordinates
and aggregating simultaneous breaks over multiple coordinates. Extending the existing high-dimensional
Gaussian approximation theorem to dependent data with jumps, the theory allows us to characterize the
size and power of our multiple change-point test asymptotically. Moreover, we can make inferences on
the breakpoints estimates when the break sizes are small. Our theoretical setup incorporates both weak
temporal and strong or weak cross-sectional dependence and is suitable for heavy-tailed innovations.
A robust long-run covariance matrix estimation is proposed, which can be of independent interest. An
application on detecting structural changes of the U.S. unemployment rate is considered to illustrate the
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usefulness of our method.

1. Introduction

Statistical inference of structural breaks in mean is an important
subject to study, and involves estimating the trend functions,
detecting and locating abnormal changes and making inferences
on the break estimators. Breaks may arise in various applications
in different fields, such as in network analysis, biology, engineer-
ing, economics and finance, among others. Specific examples
are anomaly of network traffic data caused by attacks (Lévy-
Leduc and Roueft 2009), recurrent DNA copy number variants
in multiple samples (Zhang et al. 2010), abrupt changes in
household electrical power consumption (Harlé et al. 2016) and
minimum wage policy changes analysis (Chen, Wang, and Wu
2020), etc. In those data scenarios, temporal and cross-sectional
dependence for large-dimensional data might pose challenges
to statistical analysis.

To formulate our problem, we assume that observation vec-
tors Y1, Yy, ..., Y, follow the model,

Yi=put/n)+e, t=12,...,n (1)

where (€;); is a sequence of zero-mean p-dimensional stationary
noise vectors and u(-) = (u1(-), u2(-), ... ,,up(~))T :[0,1] —
R? is a vector of unknown trend functions. In this way, the data-
generating process is trend stationary. We will model breaks
occurring on the vector of trend functions . (t/n). Notably, we
assume that the trend function satisfies

Ko
() =f@) + Y Viluzup 2)

i=1

where Kj is an unknown integer representing the number of
breaks; f(-) (f() = (fi()fo()s . (DT 2 [0,1] — RP)
is a vector of smooth trend functions; uxs with 0 < u; <
Uy < < ug, < 1 are the time stamps of the change-
points with |u; — uj| > b, where b is the bandwidth parameter;
and yx € RP are the jump vectors with size |Ykloo (|-loo is
the infinity norm) at point uy. Note that the jump sizes are
characterized in terms of the infinity norm; therefore, we do
not require simultaneous jumps for all entities 1 < j <
p, and some coordinates of yk can be zero. Namely, we will
focus on the largest jump (i.e., |k|co) happening in the cross-
sectional dimension for any fixed time point k (see Theorem 2),
and this is of particular interest when the jumps are sparse.
In case many series jump at the same time, we further pro-
pose a refined method, which aggregates all the contempo-
raneous jumps (cf. Theorem 4). In most of the change-point
settings, the smooth part of the trend functions is zero (ie.,
f = 0). This means that the trend functions are piecewise
constant for each coordinate. In contrast, our model is more
flexible and realistic, since we allow the mean functions to
vary smoothly instead of staying at the same level between
break-points.

The goal of this paper is to provide theory for structural
break inference. We first detect the existence of breaks. We then
deliver theorems to test for the existence of breaks, identify their
change-point uy, calibrate sizes of the breaks, that is, |y|oc>
1 < k < Ky, and construct confidence intervals for the
estimated break points. Our theorem allows us to consider a
multiple change-point test based on a threshold method on
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the maximum of generalized MOSUM statistics. We derive the
asymptotic distribution of the test statistics including estimated
breaks sizes, and the estimated breakpoint locations (see The-
orems 3 and 4 ii) ). The results provide solid foundations for
conducting statistical inferences for multiple change-point esti-
mation in high dimensional time series. Moreover, we consider
a further aggregation step targeting at simultaneous breaks, and
also this step gives us finer consistency rates of the break location
estimation.

Multiple change-point detection can be classified into two
categories, that is, model selection and testing. The tradi-
tional model selection method, for example BIC, has the draw-
back of computational inefficiency, which can be improved
by some modified penalization procedure; see, for exam-
ple, Killick, Fearnhead, and Eckley (2012), and LASSO (least
absolute shrinkage and selection operator)-type penalization
such as by Tibshirani and Wang (2007), Li, Qian, and Su
(2016) and Lee, Seo, and Shin (2016). Regarding multiple
change-point detection via testing, a classical method uti-
lizes an exhaustive search, which examines all the possible
breakpoints combination. An exhaustive search is very time
consuming and some dynamic technique and improved ver-
sions are invented; see, for instance, Bai and Perron (1998,
2003) and Jackson et al. (2005). A very popular approach
is the binary segmentation introduced in Scott and Knott
(1974). However, its power might suffer for certain alternatives.
This drawback can be handled by the wild binary segmen-
tation algorithm developed in Fryzlewicz (2014) and sparsi-
fied binary segmentation as in Cho and Fryzlewicz (2015).
Moreover, Fryzlewicz (2018) recently introduced a bottom-
up algorithm to overcome the disadvantage of the classical
binary segmentation. Besides, Wu and Zhou (2019) proposed
multiscale abrupt change estimation under complex temporal
dynamics.

Detection using the MOSUM (moving sum) statistics is
another popular way for multiple change-point analysis; see, for
example, Huskova and Slaby (2001) for iid data; Wu and Zhao
(2007) and Eichinger and Kirch (2018) for general temporal
dependent data. Preuss, Puchstein, and Dette (2015) dealt with
multivariate time series for structural breaks in covariance. A
MOSUM procedure has the advantage of computation simplic-
ity and can avoid issues due to multiple testing in multiple break
inference. A possible drawback is that MOSUM introduces a
new bandwidth parameter. Such an issue can be dealt with
through a multi-scale MOSUM, which uses multiple band-
widths; see, for instance Meier, Kirch, and Cho (2019). Eichinger
and Kirch (2018) provide a comprehensive theoretical analy-
sis of multiple change-point detection using MOSUM analysis
including the distribution theory of the estimated breakpoint.
Our work can be viewed as a generalization of their work on the
high-dimensional case as we adopt a MOSUM type of statistics
in our first step.

Change-point detection for high-dimensional time series
has recently drawn a lot of attention due to the increasing
number of applications. In particular, we shall consider the
case of p — o0. Even in the simplest setup of a mean-shift
model, large p may pose challenge to change-point detection.
It is common to consider aggregation, either over the origi-
nal time series or certain transformed statistics of individual

time series and to convert the problem to a one-dimensional
analysis. For instance, targeting at sparse breaks, Cho and Fry-
zlewicz (2015) proposed a sparse binary segmentation which
concerns an 1;-based aggregation with a hard threshold, and
Wang and Samworth (2018) considered sparse singular value
decomposition based on the CUSUM (cumulative sum) statis-
tics. Moreover, there are a few other work looking at I,-based
aggregation of statistic: Bai (2010) evaluates the performance
of a least-square estimation of a single breakpoint with distri-
bution theory on the break location estimates without assum-
ing cross sectional dependency; Zhang et al. (2010) extended
the method in Olshen et al. (2004), Enikeeva and Harchaoui
(2019), and Liu, Gao, and Samworth (2019) regard the detec-
tion of change-points in a high-dimensional mean vector as
a minimax testing problem. For a single break point in time
and targeting at sparse break coordinates, Jirak (2015) studied
a CUSUM type statistic for each coordinate and then takes
maximum of them, and asymptotic theory is provided to facil-
itate the simultaneous inferences of the breakpoint estima-
tion. Cho (2016) proposed a double-CUSUM algorithm, etc.
For a single change-point in time, distribution theory is still
available in a few works, see, for example, Bai (2010). How-
ever, Bai (2010) is only concerning cross-sectional indepen-
dent data. When it comes to multiple change points detection,
the majority of the aforementioned work focus on developing
novel algorithms, and a complete distribution theory is not
readily available due to the complexity of the problem. An
exception is Jirak (2015). Compared to Jirak (2015), we are
taking a different path in terms of an algorithm using the
MOSUM and an aggregation step with refined rates of estima-
tor achieved. We thus provide a new angle to conduct infer-
ences in multiple change-point analysis for high-dimensional
time series.

It shall be noted that as there are already many novel algo-
rithms developed, we do not claim a total superiority of ours.
The algorithm proposed here is a generalization or modification
of the existing methods, which facilitates us to obtain a complete
theory and good theoretical rates. Nevertheless, our aggregation
step is different and complement to existing algorithms. For
example, one main difference with the aggregation step is that
our project is based on the estimates in the first step. Cho and
Fryzlewicz (2015) and Wang and Samworth (2018) used other
approaches to find the best projection direction.

To summarize, we provide theory for a two-step multiple
change-point procedure. We prove consistency results as well
as distribution theorems for breakpoint location estimation,
which is crucial for inference of breakpoints. The aggrega-
tion step can help us to achieve good rates of the break-
point estimation. We deliver general theoretical results that
allow heavy-tailed distribution and general spatial-temporal
dependency assumption on the error term, and we do not
require the mean function to be piece-wise constant (i.e.,
f = 0). The detection procedure is not computationally
expensive, as we only need to evaluate the statistic once for
each point t. Additionally, we consider the estimation of the
long-run covariance matrices. This article is structured as fol-
lows. Section 2 constructs a test and delivers its asymptotic
performance for testing the existence of change-points. Sec-
tion 3 introduces the two-step algorithm for inference on break



estimation. The associated consistency and asymptotic distri-
bution theorems are also covered in this section. Long-run
covariance matrix estimation is derived in Section 4. Simulation
results are in Section A in supplementary materials and an
application on U.S. unemployment rate is given in Section 5.
Detailed proofs are presented in Section B in the supplementary
materials.

Notations: For a constant k € N and a vector v =
1. .»va) T € R4, wedenote |vx = (XL, [vil)Y, |v] = v,
and |v|oc = max;<4|v;|. For a matrix A = (@i1<i<mi<j<n
we define the spectral norm |A|, = max, =1 |Av| and the
max norm |A|max = max;;|a;j|. For a function f, we denote
[floo = sup, |f (x)|. We set (a,,) and (b,) to be positive number
sequences. We write a, = O(b,) or a, < by(resp. a, < by)
if there exists a positive constant C such that a,,/b, < C(resp.
1/C < a,/b, < C) for all large n, and we denote a, = o(b,)
(vesp. a, ~ by), if a,/b, — 0 (resp. a,/b, — 1). For two
sequences of random variables (X,,) and (Y},), we write X,, =
op(Yy), if X,,/Y, — 0 in probability.

2. Testing the Existence of Change-points

In this section, we provide a test for the existence of breaks. Con-
sidering our observations generated by the model in Equations
(1) and (2), we would like to test the null hypothesis,

Ho: Yi=y2=...=V¥k =0,

which corresponds to the case of no breaks, against the alterna-
tive of the existence of at least one break, thatis, H4 : 3 k €
{1,...,Ko}, s.t. yr # 0. It shall be noted that we do not
need to assume the number of breaks (K;) to be bounded, but
to rather restrict on the separation between breakpoints (see
Assumption 2.4).

In Section 2.1, we derive our test statistic. Its asymptotic
property is given in Section 2.2. In Section 2.3, we derive the per-
formance of the test based on Gaussian approximation, which
provides the theoretical foundation for calculating the size and
power of the test.

2.1. Test Statistic

In this subsection, we introduce the test statistics and some
intuition. Recall that our trend function w(u) can be disentan-
gled into two parts, namely a smooth transition part f (1) and a
jump part y;1,>,,. We can define the jump vector at point u as
a gap between the right-side function 1" (1) and the left-side
function 1 (1), which is

Jw) = u® W) — u® ), where we define

1 () = lifn w(t) and
tlu

1O (w) = lim pu(t).
ttu

Due to the smoothness of the constitutes of f (), the gap function
J(u) = 0 when there is no jump, and J(#) = y, when u = wuy.
A natural way to test the existence of change-points is to check
whether the gap is zero (i.e., J(u) = 0). To this end, we need
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27 (u) and 2P (u), which are estimates of 1 (1) and 1 (u).
We propose to adopt the local linear estimation technique, see
Fan and Gijbels (1996).

The local linear estimates of ) (1) and " (1) at the point
u = i/n are of the following weighted form:

i—1
~ (1 NP
,ul() = ,u(l)(z/n) = Z wi_t Y}

and 3)
t=i—bn
i+bn
A =0/ = Y wiiYe,
t=i+1
with weights
wi =wp = wp(0,i/n), i>1, wo=0. (4)

The weight functions are defined as

K((v —w)/b)[S2(u) — (u — v)S1(w)]
Sa(1)So (u) — S3(w)

wp(u,v) =

>

Si(w) = Y (u— i/m)'K((i/n — u)/b), (5)

i=1

where K () is a kernel function and b is a bandwidth with b — 0
and bn — oo. It is worth noting that the estimator in (3)
is equivalent to adopting a one-sided kernel function, that is,
K(u)1,>0 to fix the boundary estimation issue for the kernel
estimation method.

If there is no jump around the time point 4 = i/, then
the gap estimate JGi/n) = ,&}l) — /lfr) would be small for all
coordinates. Otherwise if for some entity 1 < j < p, the gap
estimate |7j(i /n)| is large, there might exist a jump around time
i/n at coordinate j. Note that the test statistics is in fact of a
MOSUM type, and we replace the uniform kernel for MOSUM
by a local linear one to adapt for slowly varying trends f(u) in
Equation (2).

To conduct the breakpoint detection with p — 0o, we con-
sider the maximum of the gap statistics. Furthermore, we need
to standardize our test statistics in order to get a regular limit
distribution. To obtain the long-run variance matrix involved
in the standardization, we need to specify the error process, as
in model (1). We would like to make a general temporal and
cross-sectional dependence assumption. This is a crucial issue,
since for time series data, dependence is the rule rather than the
exception. Specifically, we let

€ = ZAkUt—k, (6)

k>0

where n; € RP are independent and identically distributed
(iid) random vectors with zero mean and an identity covariance
matrix. Ag, k > 0, are coefficient matrices in R? *P such that €
is a proper random vector, and p < p < ¢,p, for some constant
¢p > L.IfA; = Oforalli > 1, then the noise sequences are
temporally independent; if p = p and matrices A; are diagonal,
then the sequences become the model in Bai (2010), which is
spatially independent. The VM A (00) process is very general and
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includes many important time series models such as a vector
autoregressive moving averages (VARMA) model, that is,

t
(1—2@&)){ X; — Z@X i = Bk
j=1 j=1 =1
where ®; and Ey are real matrices such that det(1 — Z;:l ®jz)
is not zero for all |z] < 1 and B is the backshift operator.
Correspondingly, we define the sum of the coefficient matrix
tobeS = ;. o Ak. Thelong run covariance matrix for the error

process is
=ss". 7)

We denote & = (0ij), 1 <i,j <p, and

. 12 172 1/2

A:dlag(al/l,azé,..., pé) (8)
Following the previous intuition of the effect of jumps on the
gap statistics J(.), we consider the test statistic

|Viloos where Vi=A"1(a" —a"),

9)

We adopt a supreme type of statistics as it shares good property
under certain alternatives. However, we do not claim the strict
superiority of our test statistics. When the majority of locations
exhibit simultaneous jumps, an I, type statistics tends to have
better power.

We exclude Y; in V;, because that the weights in front of Y;
would be the same for the right side and the left side estimator,
and will be canceled when taking the difference. Note that
we consider the normalized statistic as multiplying the jump
estimates J(i/n) = /Ll(l) (r) by A! since the long-run
variances oj; for different coordmates 1 < j < pcan be very
different. We refer to T}, as an infeasible test statistic since A is
unknown. The estimation of A is deferred to Section 4.

T, = max

bn+1<i<n—bn

2.2. Properties of the Test Statistics

We shall show the asymptotic properties of our test statistics T},
in Equation (9) in this subsection. First we analyze the mean
of the normalized jump estimators, that is, EV;. Intuitively, we
can decompose the level of our jump estimator EV; into two
parts, one is the commonly encountered bias term for the non-
parameteric kernel estimators of the smooth trend functions,
and the other is induced by jumps on the deterministic trend,
which is denoted as d;. Recall the definition of w; in Equation
4) fori = 1,2,...,bn,and w; = Ofori = Oandi >
bn. We denote the location of breaks as 1 = nuy and 2; as
a set of indices indicating the break locations within the bn
neighborhood around time i, namely €2; = {k| li—tk| < bn,1 <
k < Ko}.If t; — 7j = n(u; — u;j) < n, for any i, then for large
n, the cardinality of €2; is at most one, that is, |2;| < 1. Actually,
this condition can be relaxed to min; <jj<x, |7i — 7j| > bn. For
a time point i where 2; # J, we define the weighted break sizes
to be,

[i—k]

di=01- Z wt)A_lyk, k= argminjegih’ - 7jl,
t=1

(10)

and for the rest of locations i, let d; = 0. We further stack d;
over all breakpoints that are of interest, which is denoted by d =

(dan, g2 d,j_bn)T. It should be noted that under the
null, d = 0.
We denote the smooth part of the local linear estimate as
i—1 i+bn
fi(l) = Z wi—f (t/n) and fi(’) = Z we—if (¢/n).

t=i—bn t=i+1

By Fan and Gijbels (1996), under some smoothness conditions,
the bias part of the estimated smooth functions would be of the
order b%, which goes to zero by assumption, that is,

1,21 2

max
bn+1<i<n—bn

o). (11)

Given the definition of our model Y; = w(i/T) + €, d; can be
expressed as

di=B{A~ (@ =) = G =)

— ]E{Vl _ A—l(]?i(r) _f:(l))}

(12)

Combining Equations (11) and (12), EV; can be approximated
by the part induced by jumps yxs, as

IEV; — diloo = AT (" = F D)oo = 0%, (13)

Let us now consider the V; — EV; part. We observe that the
centered statistics can be expressed as a weighted sum of the
error term, namely

i—1 i+bn

—1 —1
E wi_ A" € — E wi—iA" €. (14)
I=i—bn l=i+1

To approximate its distribution, we introduce a scaling matrix
for variance of the limit distribution. Recall § = ), Ak
and define a block matrix G° = (G Dpnt1<i<n—bni<i<n €

R(=2bmpxnp with components as p x p dimension matrices,

wiATLS,  if i—bn<l<i-—1,
= (15)
’ —wi_iATLS, if i+ 1<I<i+bn,

and elsewhere zero. Let z be a Gaussian vector in R"? with
zero mean and 1dent1ty covariance matrix. We set G}, to be
(G} I,GZZ, ...»G},). It can be shown that G z has a ‘similar
covariance structure as V; — EV;. We shall use the distribution
of |GZ-§|°° to approximate the distribution of |V; — EVj|s.
Combining this approximation with the bias term in Equation
(13), we shall expect that for each time point 7, our normalized
break test statistics can be approximated by the maximum of a
Gaussian vector centered at d;, that is,

P(|Viloo < u) = P(ld; + G zloo < w).

We now let the statistics go over all the time points, and recall
T, = maXpy41<i<n—bn | Viloo- Then we shall expect

P(Ty < w) ~ P(ld + G°zloo < ), (16)
and equivalently
P(Ty < w) = P(1d + Z|oo < u), (17)



T T T :
where Z = iy Zopsrr 3 Zy_pn and (Z;)pn+1<i<n—bn 18
a sequence of centered Gaussian vectors in R? with covariance

matrices cov(Z;, Z;) = Qj; of the following form:

)T

Qi,j = w’i,jA_IEA_I and (18)

n
= Z Wi w)j—1 sign(i — Dsign(j — ).

I=1

ZD,'J

To see the equivalence between (16) and (17), let
Q = (Qipbn+1<ij<n—bn = G°GT.
Then Z is a Gaussian vector with zero mean and covariance
matrix Q. Note that

Z; 4 Gz and Z 4 G’z. (19)

This transformation from G°z to Z is to show that the involved
Gaussian process only depends on the long-run covariance
matrix ¥ and the weight functions. We note that Z are not
element-wise independent, but with dependency governed by
G°. The above argument will be rigorously formulated in Theo-
rem 1 in the next subsection.

2.3. Gaussian Approximation

In this subsection, we provide the formal theory supporting our
test. We first present necessary assumptions. The following is to
guarantee the smoothness of the trend functions (1) when no
break occurs.

Assumption 2.1. Function f; € C?[0,1] with maxj<j<p U;.’|Oo <

¢f, MaX<j<p [];-”|oo < ¢f for some constant ¢; > 0.

Additionally, to ensure the property of our kernel estimation,
we need conditions on the kernel function.

Assumption 2.2. The kernel K(.) > 0 is symmetric with support
[—1,1], assume |K|s < 00 and filK(x)dx = 1. Also assume
K (x) has first-order derivative with |K'|oc < 00 on (0, 1). Let
b — 0and bn — oo. Denote «; = fol x'K(x)dx. Assume K12 *
K2K(.

We also set conditions on the regularity of the long-run
covariance matrix and the dependency strength of the noise
sequence.

Assumption 2.3. (Lower bound for the long run variance) 0j; >
¢o» 1 < j < p for some finite constant ¢, > 0.

We need enough separation between adjacent breakpoints.

Assumption 2.4. (Separation) Assume min;<;j<k, |Ti — 7j| >

bn.

It is worth noting that Assumption 2.4 implies that the num-
ber of breaks Kj shall not exceed the order 1/b.

Assumption 2.5. (Dependence strength)
maxi<j<p D js |Ak,j,|2/<7j;/2 < ¢(iv1)P where p > 0

is some constant and Ay ;. is the jth row of A.
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Assumption 2.5 is a very general spatial and temporal depen-
dence condition and embraces many interesting processes. It
requires an algebraic decay rate of the temporal dependence.
However, the cross-sectional dependence does not need to be
weak; and in fact, it can be strong such that it has a factor
structure. We provide an example as follows.

Example 1. Assume that 7, n; € RP are iid random vectors with
zero mean and covariance matrix Ip. Let

€ =F +7Z;, with Z; = Z Agni—g and F; = Z vf,;rn;_k,
k>0 k>0
(20)
where Ax = diag(Ak1, ... Akp), v = (V1,... ,vp)T and fi =
(fets---» fk,p)T. Here F; is the factor term and Z; ; are indepen-
dent for different j. Then the long-run variances for Z;; and Fy
2 2.2 .
are 0z = (Q k= My)” and op; = | Zkzofk|2"j , respectively.
If for some constant ¢ > 0,
1/2 — 1/2 —
Y Djlfogt < and Y fiblvil/op < i,
k>i k>i
(21)
then Assumption 2.5 holds with 8 = «. To see this, we note
|[Akj 12 = ()\ij + [fk|%vj2)1/2, and 0j; = oé’j + GI%J. Hence,

—a, 1/2 1/2
Y 1Ak 2 < Y (hkjl + Willflo) < 670, + op)
k>i k>i
< \/Eci_"‘a.l/z.
13
Assumption 2.6. (Finite moment) The innovations 7; j are iid
with g = [In1,1llg < oo for some g > 4.

Assumption 2.7. (Subexponential) The innovations »;; are iid
with e = Ee®Imil < oo, for some ag > 0.

Assumptions 2.6 and 2.7 put tail assumptions on the dis-
tribution of the noise sequences. Given the above-mentioned
conditions, we provide the main Gaussian approximation theo-
rem, which is essential for the asymptotic distribution of our test
statistics Ty,. Our theorem extends the Gaussian approximation
theory in Chernozhukov, Chetverikov, and Kato (2013, 2017),
which build on the Stein’s method and the anti-concentration
bounds. Markedly, our theory is developed for modeling depen-
dent data. To this aim, one important technical non-triviality
lies in handling the spatial-temporal dependency of the trend
stationary high-dimensional processes. We derive the corre-
sponding concentration inequalities based on m-dependence
approximation of the underlying processes. Compared to the
existing results on Gaussian approximation for time series, for
example Zhang et al. (2017), our setting works for noncentered
Gaussian approximation that accommodates our interest for
time series with breaks.

Theorem 1 (Gaussian approximation). Under Assumptions 2.1-
2.5,

(i) if Assumption 2.6 holds, and np(bn)~/?(log(np))31/? =
o(1), then for
A = (bn)~Slog”/S (pn) + (bn)~P/C+3P1og?/3 (np)

+ b2 Plog! 2 (np),
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we have

sup [P(T,
uelR

<) = P(d + Zloo < v

< A+ ((np)*1/ (bn))log(pn),

(ii) if Assumption 2.7 holds,
(bn) "L (log(np))™ax{7:20+A)/B} — o(1), we have

sup |[P(T, < u) —P(ld+ Zlos < w)| S A,
uelR

and

where the constants in < are independent of #, p, b.
If in addition
bsnlog(np) =o0(1), (22)
then under both cases, we have

sup |IP’(Tn
ueR

<uw) —P(d+Zlw <w)| > 0. (23)

Remark 1. (Allowed dimension) One key theoretical insight is
that we explicitly show the trade-oft between the tail assumption
of the innovations and the allowed dimension of the time series p
relative to the sample size # in the above theorem. In particular,
when we have exponential tail assumption on the distribution
of the innovations, we allow an ultra-high dimensional setup
indicating p to be at an exponential rate with respect to n. And
when we have only finite moment assumptions, we can allow
p to be at a polynomial order with respect to n. Specifically,
for Theorem 1 case (i), we allow p to be of some polynomial
order of n, and its order depends on the value of g. For some
vp > 0and 0 < v, < 1/2,assume p =< n"land b =< n™'2
Ifvi < (1 —vy)g/2 — 1and v, > 1/5, then Equation (23)
holds. It is easy to see that the bigger the moment g is, the larger
the allowance of the dimension p. The moment Condition (2.6)
depends on g which characterizes the heavy tailedness of the
noise, larger g means thinner tails. For case (ii), we can allow
p to be exponential in #, that is, the ultra-high dimensional
scenario. For instance, for some v; > 0and 1/5 < v, < 1,
we can set p < e and b < n 2. Ifv; < 51, — 1 and
v1 max{7,2(1 + B)/B} < 1 — v,, then Equation (23) holds.

It is not hard to understand the size and power implication
of Theorem 1 to our test. Under the null hypothesis, we have
d = 0, then for any prefixed significant level « € (0,1), we
have the critical value of our test as gy, that is, the quantile of
the Gaussian limit distribution,

o = ing{r P(Z]oo > 1) < a}. (24)
r=

As from the Gaussian approximation result in Equation (23), we

have the approximated sizes of the test statistics,

P(T, > Qa) —P(Z]eo > Qa) — 0.

We shall reject the null hypothesis at the significant level «, if
the test statistics exceed the critical value, that is, T}, > qq.

To evaluate our testing power, consider the alternative that
if not all yx = 0, then d is non-zero. We have the following
corollary for the power, which is a straightforward consequence
of Theorem 1.

Corollary 1. (Power) Under conditions in Theorem 1 (i) or (ii).
The testing power B, satisfies

Bu =P(ld + Zloo = qa) + o(D).

Thus, we can see that the power of our test would depend
on the vector d. The size of it is determined by the true jump
sizes that is, ys. Since the covariance matrix for Z is Q = (Q;;),
where Q;; = w,-,jAf1 > A1 with w;; defined in Equation (18).
It can be calculated that w;; =< (bn)~!, therefore |Z|oo =
Op((bn)~1/?log(np)), which tends to zero by Assumptions 2.6
and 2.7. Thus, if |d|c > (bn)_l/zlog(np), Ba — 1 by
Corollary 1.

3. Estimation and Inference of Breaks

In this section, we show how to estimate the number of
change-points, the time stamps, the spatial coordinates and the
sizes of the structural breaks. We summarize the key steps of
the adopted two-step procedure for the multiple change-point
detection. The main reason for a two-step estimation is to
achieve an optimal rate of consistency for our break estimation.
The first step can be regarded as an extension of the MOSUM
lo aggregation. Namely, in our first step, we conduct a “rough”
estimation though a MOSUM type statistic as in Equation (9),
and we can draw a conclusion on the existence of a break. In
case it exists, we obtain a “rough” estimate of the change-points
locations. In the second step, we refine our jump estimates based
on a one-dimensional aggregated time series. The aggregation
can be viewed as a projection using information on the jump
estimators from the first step. To be more specific, within each
time region around the kth breakpoint, we can aggregate data
by a weighted sum of different coordinates whose weights are
determined by the first step jump size estimators (k). Instead
of looking at the biggest break at one time point, the aggregated
change-point statistics carry more information regarding signif-
icant jumps across contemporaneous locations, and would thus
provide better precision. In the following, we introduce the first
“rough” estimation step and its properties in Section 3.1. We fur-
ther improve the first step in Section 3.1 through an aggregated
statistics , which is proposed and analyzed in Section 3.2.

3.1. The “Rough” Estimation Step
We define the sizes of the breakpoints at time k as

IA™ Ykl oo

Here, we normalize yk by the long-run standard deviations for
the same reason as V; in Equation (9). Intuitively, the noise
fluctuation levels for different locations can be very different,
and at one location, a break can be significant due to purely high
noise level without normalization. We define the minimum size
of breaks over time as

§° = min |[A" 9leo. (25)

1<k<Kjp
In the following, we outline the steps of our testing, detecting
and estimation procedure.
Step 1. For significance level o, we test the existence of jumps
based on the critical value g, in Equation (24). If we find no



significant breaks, then we cannot reject the null H,. In case
our test statistic exceeds the critical value, we reject Ho and
acknowledge the existence of breaks, then we proceed to step 2.
Step 2. To detect the change-points, we collect all the time stamps
with the jump statistics | V7| exceeding a threshold value w',
namely, A; = {bn +1 <1 < n—bn: |Vi|oo > w'}, where
V. is defined in Equation (9). Let 7; be the time point t in A,
that maximizes the test statistics | V¢ |co. We further eliminate a
2bn neighborhood of time points around 7; from A, to create
Aj. Then we find the next point in .4, that maximize | V7|0,
and repeat the same operation until the set Ay is empty. Namely,
for k > 1, we let the kth estimated break point be denoted as
T = argmax, 4, |Vzloo and A1 = A\ {t 1 |t — %] <
2bn}. We denote the maximum number of breakpoints as Ko,
with Ky = maxy>1{k : Ax # 0}. It is worth noting that we have
chosen 2bn to exclude both bn neigborhood of t and 7.

Step 3. Given the detected breakpoints in Step 2, we calculate the
break sizes over time. We denote the window size to be M = bn,

=0l =R, and 8= min [A7' P, (26)
1<k=<Kp

It is worth noting that in this algorithm, we only need to
calculate the gap statistics | V| once for each point. Hence, it
is not time consuming regardless of the true number of break-
points. In Step 1, we test the existence of the breaks. In Step 2, we
use the estimated | V| for all the points from bn+ 1 ton — bn
and select the points that are beyond the threshold w. Intuitively,
the points in .4; would contain the break indices, as well as
points in their neighborhood where estimates are contaminated
by the breaks. Therefore, in Step 2, we find the local maximums
and discard points around them. In Step 3, we estimate the sizes
of the change-points and calculate their minimum values.

In the following, we shall provide consistency results of
estimates of the break numbers, locations and break sizes in
Theorem 2; and derive asymptotic distribution of break sizes in
Theorem 3.

We need to first impose the minimum jump size condition
on the break size as

Assumption 3.1. Assume the break size satisfies §° >

max {,/log(pn)/(bn), b}.

It can be seen that the break size requirement is related to the
dimensionality of the time series, the number of observations
available and the bandwidth parameter. The rate \/log(pn)/ (bn)
is due to the variance of the estimation error with the typical
log(pn) term compensating for the dimensionality of the test
statistics and b is due to the incurred bias in the setting of
the smooth varying trend. If we assume the trend function to
be piecewise constant, then the term b disappears. The larger
the sample n, the smaller the requirement for §° due to the
better approximation of the trends. In the following theorem, we
show that we would asymptotically obtain the right number of
breaks. Moreover, we can bind the errors of the estimated break
locations and the break sizes. The threshold w' shall be set as a
high quantile of its limited Gaussian distribution to ensure the
consistent estimation of the breaks.

Theorem 2. We assume conditions in Theorem 1 (i) or (ii),
Assumption 3.1, and Equation (22) hold. If min{§® — o', 0’} >
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2¢,,/log(pn)/(bn), where ¢, is the constant defined as the limit
(bn Y 1 whHl? — ¢, then

() PKy =Ky — 1.

(i) under Theorem 1 (i), |tk — Tks| = Op{(np)*/1/8°%}, and
under Theorem 1 (ii), |Tx — T| = Op{logz(np)/csoz},
uniformly over k, where k* = argmin |7 — 7.

(i) 1A7 Pk — Y)loo = Op((bn)~'2log(np)/? + b),
uniformly over k, which indicates [5° 8¢l =
Op((bn)~'?log(np)'/? + b).

Result (i) indicates that the number of breaks can be con-
sistently estimated, (ii) suggests that the estimated break dates
uj can be consistently determined in view of uy = t/n and
(iii) shows that the break sizes can be consistently recovered.
The convergence rate of the break sizes dependents on the band-
width b, sample size n and the dimension of the time series p. It is
worth noting that the bias is of order b in (iii), as the difference is
taken with a gap of 2M as in Equation (26). It shall be noted that
the consistency rate of 7x depends on the break size §°, which
depends only on the maximum break size for any fixed time.
Therefore, having several large breaks simultaneously would not
improve the break size estimation. With respect to the condition
min{8°—ow’, w'} > 2¢,,/log(pn)/(bn), relative to the summary
in the Table 1 in Cho (2016), our break size §° is comparable up
to the weakest condition §°(nb)!/? — 00 up to a logarithmic
factor. Moreover, when p = 1, our requirement of breaksize is
similar to the rate as in Theorem 3.2 in Wu and Zhou (2019),
namely §° > ,/logn/~/nb.

Given the consistency of the breakpoints, we can obtain a
distribution theory that facilitates us in making inferences on
the break sizes. Let Z be a Gaussian vector in R? with zero mean
and covariance matrix

bn
Q= Quuirbns1 =2 wiAT'ZATL
t=1

(27)

Theorem 3. (Break size inference) Assume conditions in Theo-
rem 2 and b>nlog(np) = o(1). We have

sup [P(IA™ Pk — ¥i)loo < ) — P(|Z|oo < u)| — 0, where
uelR

k* = argmin,| T, — 1;].

This theorem indicates that the maximum of the difference
between the estimated jump size P and the true jump size yx
can be approximated by the maximum of a Gaussian random
vector with the same asymptotic variance-covariance structure.
Based on Theorem 2 (ii) and Theorem 3, we can construct joint
confidence interval for yy« ;. We set

12 _1/2 1/2)T

o =P(Z|e > g9 and 0= (0)1,0,5,.0p) (28)

some o > 0. Then as n — oo with probability close to 1 — «,
we have

1/2 A 1/2 N .
—qaj,/ + Vkj < Viej < 40; ,/ + Vi Vi (29)

Theorem 3 can be extended to hold uniformly over k by
stacking the statistics overall k’s. In addition, we see that The-
orem 2 and Theorem 3 are closely connected in the sense that
we can reach the same threshold by stacking yy overall k’s.
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3.2. The Refined Aggregation Step

The estimation in the first step is only driven by |yk|co, that is,
the maximum size of jumps at a time point ti. Therefore, it is
only sensitive to the biggest jump across all the time series at
the same time. The Iy, type test potentially have more power
for certain alternatives than the I, type statistics. However, if
the majority or all of the entities exhibit simultaneous jumps,
the supremum statistic tends to have lower power than the I
statistic.

In case there are multiple simultaneous time series jumps,
it would be beneficial to modify our procedure to aggregate
all of the series with a jump. This enlightens us to propose
a two-stage method: first, we follow the steps in the previous
subsections to detect the “rough” timing of the jumps and the
estimated jump sizes; second, for each bn neighborhood of a
change-point estimate 7 obtained from step one, we update the
change-point estimates according to a newly aggregated time
series. The time series is calculated with a weighted sum of
simultaneous observations corresponding to significant jump
locations and the weights are based on the jump size estimates
in the first step. The aggregation returns a one-dimensional time
series with richer information on the cross-sectional jumps.

We denote S to be the set of series that jump at location i,
that is,

Sk={1=<j=<plw;#0} (30)

where yy; is the jth coordinate of yk. Detailed steps of the
aggregation are formulated as follows:

Stage 1. Apply Steps 1-3 in Section 3.1 to obtain 7% and ¢, k =
1,2,...,Kp. For some w' > 0, let the estimation of Sj be

Sc={1<j=<plla™ )l = w'l.
.

(31)

In practice, w' can be chosen to be large enough to ensure that
we can detect all the jumps with probability 1 as in Theorem 2.
Stage 2. For |t — Ty| < 2bn, we let

Xp =) (AT'Pi(AT YY),
jeSk

(32)

Note that after the modification, for all the jump locations, the
new time series X; would only contain positive sized jumps that
is, Zj cd (A7} )?k)jz. This step can be understood as a projection
of the high-dimensional observations A~!Y; according to the
direction of A7k (j € Sk). This is similar to the idea of Wang
and Samworth (2018).

Based on the aggregated time series X;, the refined change-
point locations can be detected through a CUSUM type of test
statistics, for k = 1,2, ..., Ko,

T42bn t—1

t— T +2b
T = argmax( Z Xsﬂ — Z X;) (33)
|t—Tk|<bn s=T—2bn 4bn +1 s=T—2bn
4b 1
x _ nrl . (34)
(t — (F¢ — 2bm) + 1) (3 + 2bn — 1)

After we update the break points estimation, we can con-
struct confidence intervals for the updated breakpoints esti-
mates Tx. We denote the long-run correlation matrix to be

©ij)ij = AT AL where T is the long-run covariance
matrix for ;. We let £ = (5; Jj)ijes; be the sub covariance
matrix corresponding to coordinates in Sy at time 7 and let
the standardized significant break sizes yx = (A_lyk)iegk.
We define two objects involved in the limit distributions of the
breaks, that is,

= 12 2 _ 5T o

ap = |l and g =y Ty (35)
Then ¢} is the long-run variance for the sequence
Zjesk (A_lyk)j(A_let)j. For the aggregated jump estimation,
we alternatively define the minimum jump size across different
locations and time points as

8" = min min |[(A™ yp)il.

i moin (A vjl

Then §7 < §° and it functions similarly as §° to capture the
identifiable jump size of the time series. We shall put the same
assumption on 8T as on §°. It is worth noting that §' is the
minimum jump size to ensure the consistency of our break
estimation.

Assumption 3.2. Let 87 > max {,/log(pn)/(bn), b}.

In the following corollary, we show that we can consistently
recover the locations of the series with a jump for each change-
point. It can be directly derived from Theorem 2 (iii).

Corollary 2. We assume conditions in Theorem 1 (i) or (ii) hold,
and Assumption 3.2. If 8 /2 > w' > (bn)~1/2log(np)'/? + b,
then we have

PSSy =8k 1 <k<Ky — L

In addition, we provide a theorem that allows us to make
inference on the estimated break-dates 7.

Theorem 4. (Aggregated break estimation) Assume conditions
in Corollary 2, and that for some constants ¢;,c; > 0,

a1 < Amax(ATTEATY Amin(ATTZAT) <. (36)

Recall definition of a; and ¢ in (35). Then we have for any fixed
1 <k < Ko,

(i) 1Tk — Tr] = Op(s}/ap).

(ii) In addition, if Assumption 2.5 holds with 8 > 1,and 1 «
g,f / ai & bn, then we have

- D _
T — T — (Sk/ax)*argmax, (=271 |r| + W(r)),

where W(r) is a two-sided Brownian motion. That is W(r) =
Wi(r),ifr > 0,and W(r) = W, (—r),if r < 0. W1, W, are two
independent Brownian motions.

Remark 2. We shall note that the consistency rate of 7y is
improved compared to the results for 7 in Theorem 2 ii). ak
which is an [, aggregation of simultaneous significant break
sizes, plays a role in the rate of convergence of 7x. For instance,
if we assume that there are s breaks which are of size § > 0
in the cross-sectional dimensional, then a; = s82. If moreover
there is no cross-sectional correlation, that is, ¥y = I, then



we may expect Ty to be consistent so long that 1/ (s82) — 0,
while 7 can be not consistent. Thus, the rate of 7, will be
better than 7. Moreover, the long-run variance also plays a
critical role in the rate of convergence. For example, when the
variance part of the limit distribution satisfies g,f < |Zklhak
if |Skl2/ar = o(1) then by Theorem 4 (i), we have 7 — 7«
in probability. This corresponds to the insight of Bai (2010)
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and Hansen (2000). We can also see that when the breaks are
truly sparse in the cross sectional dimension or the break size
for each time series is very small, the [? aggregation cannot
improve the performance compared to the previous step. Also
when there are strong cross-sectional dependence I, aggregation
will not improve the break estimation performance. Moreover,
we also need the aggregated breaksize to shrink to zero (1 «
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(d) p =150

Figure 1. Histogram of T — 7 (left) and T — 7 (right) for n = 100, p = 10,30, 100, and 150, K = 1. The number of breaks in the cross-sectional dimension are
s =1,5,20, and 30, respectively, and there are 100 simulation samples. (a) describes the case with p = 10, s = 1; (b) describes the case with p = 30,s = 5; (c) describes

the case with p = 100, s = 20; and, (d) describes the case with p = 150, s = 30.
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g,f /ai) to obtain the limit distribution. If £ is a d-banded
matrix, |Zkl> < (1Zk]11Zkle0)/? < d. We can derive that
Tk — | = Op(d/ay).

To illustrate the insight of Remark 2, we compare the per-
formance of a simple model with A/(0, 0.1) and one breakpoint
placed at 7y = 50. Figure 1 shows the histogram of T — T
and T — 79, respectively. The jump-size for all breaks are the
same, with the value 1.6,/log(np)(z9) "!/3. As the dimension p
grows, we see the significant improvement of the performance
of T relative to that of 7.

From Theorem 4, with estimates of ax and ¢, we can con-
struct a 100(1 — )% confidence interval for T:

('Ek - Lq/l_a/zj -1, T+ Lq/a/zj + 1), (37)
where q;_, P (4, /2) is 1 — /2 (a/2)th quantile of the limit
distribution of the break point 7, that is, argmaxr{—z_lak|r| +
ckW(r)} and ¢, /2(?1’1_0[ /») are estimates of the quantiles. |-]
denotes the floor function. g, (q;,/,) can be calculated fol-
lowing Stryhn (1996). Alternatively, we can also simulate the
critical values.

4. Long-run Covariance Matrix

In the previous sections, we assume that X is known. However,
this is unrealistic in practice, as we mostly do not know the
long-run covariance matrix. Thus, an estimation of the long-
run covariance matrix is needed in Gaussian approximation.
A simpler version of this problem was considered by Politis,
Romano, and Wolf (1999) and Lahiri (2003), who allowed
for a constant mean of the random vector. More generally,
Chen and Wu (2019) considered the high-dimensional situa-
tion with smooth trends. However, this does not fit directly to
our interest due to the possible existence of the breakpoints.
We then propose a robust covariance matrix estimation moti-
vating from the M-estimation method in Catoni (2012). It
is worth noting that due to the jumps, our method shall be
different from the classical covariance matrix estimation. Our
long-run variance-covariance matrix estimation is complemen-
tary to the recent article on high-dimensional robust matrix
method under independence settings in Fan, Li, and Wang
(2017).

First of all, to account for temporal dependency, we group our
observations into blocks of the same size m, for some m € N.
We denote the number of blocks Ny = |[(n — m)/m], and the
observation indices within a block k is set to be Ay = {t € N :
km+1 <t < (k+ 1)m},and we let

§k = Z Y:/m,

te Ag

be the average observations within the block A;. Without
jumps, a natural estimate of the long-run covariance matrix is

Ny

> 0m/2) (i — &) Gk — &) /N1

k=1
Note that we take the difference & — &x_; to cancel out the
trends, as the trend function p(-) is smooth, and the aggregated
difference between two consecutive blocks can be shown to be
of order m/n, which vanishes when m/n — 0. However, this
estimator can be greatly contaminated by the jumps, as jumps
are not smooth and cannot be canceled out by taking differ-
ence. Thus, a robust covariance matrix estimation is needed.
We borrow the framework of Catoni (2012), who considered a
new robust M- estimation method. We extend the method for
estimating our long-run covariance matrix.
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Figure 3. Plot of estimation of the robust long-run correlation matrix; m = 10.
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We denote & = (§k,1, k2, - - - ,ék,p)—r and let

Gijk = m(&ki — &k—1,) Ekj — Ek-17)/2, k=1,2,...,N1.

(38)

For some «;; > 0, we denote the M- estimation zero function
of our variance-covariance matrix to be
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Remark 3. Function |¢ (-)| is bounded by log(2) and is Lipschitz
continuous with the Lipschitz constant bounded by 1. Also note

that the function has envelopes of nice form,
—log(1 — x+x%/2) < $(x) <log(1+x+x7/2).  (41)

We set the estimates of the components of the long-run
covariance matrix 6;; to be the solution to h;j(u) = 0 (if more

Ny
N than one root, pick one of them). We can collect all the estimates
h; ;i = (G — Ni, 39 ’
i (1) ;(ﬁa” (@ijx —w)/Ny (39) " of the variance and covariances and organize them into the
- variance covariance matrix,
where ¢y (x) = a ¢ (ax) and 2 A A . A1/2 A1)2 ~1/2
o Y = (0ij)1<ij<p and A= d1ag(al){ ,azé >-~-;Up,1/) ).
log(2), x>1, (42)
— — 2 <x< - A A .
505 = log(1 —x+x°/2), 0<x<1, (0) We denote 0;; = 2 Zyl/4fk§3N1/4 Giiky/ N1, where G;; (k) is
log(1 + x + x%/2), —-1<x<0, the ordered statistic of 6;;x as in (38), and let the «;; in (39) be
_1/2-1/2
—10g(2), x < — Oi,i/ aj,j/ (m/n)l/Z.
S -
o -
@ =]
& o
|
1980 1990 2000 2010 2020
o |
o -
&
<
T a T T T
1980 1990 2000 2010 2020

Figure 4. Plot of estimated breakpoints 7y () (red lines) and their confidence intervals (dotted black lines). Ty (upper panel), 7y (lower panel). The blue time series line

represents the average unemployment rate over states under consideration.
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Theorem 5. (Long-run variance precision) We assume that
Assumption 2.5 holds with 8 > 1.5 and let

¢ =IAT'E = DA e

Then for K finite, we have ¢ = Op(n~'/*log(np)) under either
one of the following two conditions:

(i) Assuming conditions in Theorem 1 (i), p < c¢n” with
v < ¢q/8 — 1/2 and some ¢ > 0, we take m =
min{nl—Sv/(q—li))nl/Z}.

(if) Assuming conditions in Theorem 1 (ii), we take m = nt/2,

By the above theorem, for the diagonal values, we have
maxi<j<p |6i; — 0i|/0i; = op(1). Let Q be the same as Q in
(18), with X therein replaced by 3 in Equation (42). We denote
Z as the Gaussian vector with covariance matrix Q, then by
Theorem 5 and Lemma 3, |Z + d|x converges to |Z + d| in
distribution. Thus, all previous results are still valid with T as
well.

5. Application

As an application, we analyze the monthly the unemployment
rate data in 20 U.S. states (namely Alabama, Arizona, Cali-
fornia, Colorado, Florida, Georgia, Illinois, Indiana, Kentucky,
Michigan, Mississippi, New Jersey, New York, North Carolina,
Ohio, Pennsylvania, Texas, Virginia, Washington, and Wiscon-
sin). The data time span is from January 1976 to Septem-
ber 2018 (n = 513), and the data source is Bureau of
Labor Statistics from Department of Labor in the United States
(https://www.bls.gov/). Figure 2 displays the 20 time series of
unemployment rate. Although from a long time-span and on an
overall level, we do not see obvious abrupt structural changes,
it would be still of great interest to consider detected changes
induced by some well-known exogenous shocks, such as the
subprime mortgage crisis in 2007-2008. It is understood that
there will be likely a smooth cyclical trend associated with
the unemployment time series, as they mostly rise during a
recession and fall during periods of economics prosperity, fol-
lowing the business cycle. Further studies on whether the shock
induced by recessions creates a significant structural change
in the unemployment rate should be performed. We select b

according to a cross-validation method, m = 10, and o;; =
o ili/ zéjlj/ > (m/bn)'/? which varies over different i,j. We have used

the estimated 0.999 quantile of the maximum of the Gaussian
random variables (as in Equation (19) with correlation matrix
replaced by its estimator), which in our case is estimated as 2.10.
We refer to the guidance of the selection of tuning parameters
as in Remark 4 in the supplementary materials.

Figure 3 shows the estimated robust long-run correlation
matrix using the method in Section 4. One sees some significant
values in the correlations between residuals in different states.
We can see that the correlations across different locations are not
negligible, however our method is robust against the underlying
spatial-temporal dependency.

Figure 4 plots the estimated breakpoints and the confidence
intervals around them. We see that the estimated breaks Ty using
the CUSUM statistics in Equation (33) pick up the breaks earlier

than the estimates obtained from the non-aggregated method,
that is, Tx. We can see that our method can identify important
dates such as the financial crisis period starting in January, 2009.
Moreover, Ty tends to detect earlier dates of structure changes
than the observed averaged peaks in the time series. Other
time-points with significant jumps detected are January 1977,
October 1981, January 1991, and October 2001. There are a
few recession periods documented by the national bureau of
Economics Research, namely November 1973 to March 1975,
July 1981 to November 1982, July 1990 to March 1975, July 1981
to November 1982, July 1990 to March 1991, and March 2001
to November 2001. All the break-dates of the unemployment
structure happen during or slightly before the recession periods,
featuring a close relationship between the structure change of
unemployment rate and the economic cycles. This implies that
economic recessions indeed bring significant structural changes
in unemployment rates across all the states.
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