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Abstract

Motivated from sequential detection of transient signals in high dimensional data

stream, we first study the performance of EWMA and MA charts for detecting a

transient signal in a single sequence in terms of the power of detection under the

constraint of false detecting probability in the stationary state. Satisfactory approx-

imations are given for the false detection probability and the power of detection.

Comparison of EWMA, MA, and CUSUM charts shows that both charts are quite

competitive. A multivariate EWMA procedure is considered by using the squared

sum of individual EWMA processes and a fairly accurate approximation for the false

detection probability is also given. To increase the power of detection, we use the

Min-δ procedure by truncating the estimated weak signals. Dow Jones 30 industrial

stock prices are used for illustration.
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1 INTRODUCTION

Consider a sequence of independent normal random vari-

ables {Xi} that follow N(0, 1) for i f ÿ and N(ÿ, 1) for

i > ÿ. To detect a positive change with ÿ > 0, the tra-

ditional Shewhart chart (Shewshart, 1931) makes an alarm

when Xi > c. That means, the alarm is only made based

on the current observation. The CUSUM (Page, 1954),

EWMA (Roberts, 1959), and Shiryayev-Roberts (S-R)

(Roberts (1966) and Shiryayev (1963)) charts are developed

for a quick detection of change. For example, we may focus

to find a stopping time ÿ that minimizes the conditional

delay detection time CADT(ÿ) = E[ÿ − ÿ|ÿ > ÿ] for given

ARL0 = T . The optimality of CUSUM and S-R charts has

been established under different criteria in terms of ÿ for a

given reference value ÿ of ÿ.

From signal detection point of view, the CUSUM and

S-R charts assume that the signal will be present forever

after the change. However, in the case that the signal just

appears in one observation, the Shewhart chart will possess

certain optimality as shown in Pollak and Krieger (2013) and

Moustakides (2014).

In this communication, we consider the detection of tran-

sient signal. That means, the signal only appears in a relatively

short period of time with length L, say, from ÿ+1 to ÿ+L. An

obvious chart is the MOSUM (moving sum) chart (Bauer &

Hackel, 1978) that uses partial sum
∑k+L

i=k+1Xi = Sk,L to detect

the signal by raising an alarm at

ÿMA = inf
{

n > 0 ∶ Sn−l,l > c
}

= inf

{
n > l ∶ max

1fkfn−l
Sk,l > c

}

where l is a pre-selected window size. Note that the MOSUM

chart is indeed equivalent to MA (moving average) chart.

General weighted moving average chart is considered in

Lai (1974), and Wu (1996) also considered an optimal linear

kernel smoother in order to achieve high constant efficiency

for unknown strength of signal under the change point model.

Several authors have proposed other procedures. Gueppie

et al. (2012) proposed to use a window-limited CUSUM pro-

cedure under the constraint on the false alarm probability

P0(ÿ < ÿ < ÿ + L) for just one alarm interval. Noonan and

Zhigljavsky (2020) studied the power of MA chart by using

the corrected diffusion approximation under the constraint
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on ARL0. Tartakovsky et al. (2021) considered a modified

CUSUM procedure that is shown to be optimal when the sig-

nal length L follows an exponential distribution under the

constraint of the conditional detection false alarm probability

maxÿ P0[ÿ f ÿ + L|ÿ > ÿ].

Here we assume that the transient signal appears far away

from the beginning. In notation, we denote by ÿi for i g 1

as the intervals between consecutive false alarms where the

detecting process will start new after each alarm. So ARL0 =

E0ÿ1. Let

ÿ = inf
{

j > 0 ∶ ÿ1 + · · · + ÿj > ÿ
}
.

As ÿ → ∞, the instantaneous returned (controlled) process

at the change time will be at its stationary state. The stationary

average delay detection time (SADDT) is defined as

SADDT = lim
ÿ→∞

E [ÿ1 + · · · + ÿÿ − ÿ] ,

under the change point model. This criterion is considered

in Srivastava and Wu (1993) and Reynolds Jr. and Stoum-

bos (2004). A more recent discussion by using Markov chain

approach is given in Knoth (2021).

By denoting P∗
ÿ
(.) as the probability measure when the con-

trolled process starts at the stationary state with signal ÿ, we

can write SADDT = E∗
ÿ
[ÿ].

Our main focus is to study the performance of the EWMA

and MA charts as the detection procedures for the transient

signal with length L. Following the suggestions given in

Lai (1995) and Reynolds Jr. and Stoumbos (2004), we define

the power of detection as P∗
ÿ(ÿ f L) for signal length L, and

P∗
0
(ÿ f L) as the false detection probability. Just like in statis-

tical hypothesis test, we evaluate the power of detection under

the constraint on false detection probability. Alternatives to

the false detection probability have been considered by other

authors. For example, Margavio et al. (1995) considered the

false alarm rate P0[ÿ = j|ÿ > j − 1] for CUSUM and EWMA

chart. Frisén (1992) also proposed to use the predictive value

of an alarm.

The rest of the paper is organized as follows. In Section 2,

we first review several charts in terms of SADDT under the

single change point model. In Section 3, we study the per-

formance of EWMA and MA charts under the constraint on

the false detection probability P∗
0
(ÿ f L) in terms of the

power of detection P∗
ÿ(ÿ f L). Satisfactory approximations

are obtained for practical implementation. The comparison

between EWMA, MA and CUSUM charts shows that the

both procedures perform quite well. In Section 4, we con-

sider a multivariate EWMA procedure by using the square

norm of multi-dimensional EWMA process as the detecting

rule. Accurate approximation for false detection probability

is obtained for practical use. In Section 5, when the sig-

nal is sparse, we further propose to use the Max-K and

Min-δ procedures by truncating off the weak signal esti-

mations. Dow Jones 30 industrial stock prices are used for

illustration.

2 PERFORMANCE OF CONTROL CHARTS

UNDER THE CHANGE POINT MODEL

We give the definitions of several detecting procedures and

briefly review their performances in terms of the SADDT

E∗[ÿ] at a reference value ÿ for ÿ with the same ARL0 = T .

1. Shewhart chart: Define

ÿSH = inf {n > 0 ∶ Xn > c} .

Obviously, ARL0 =
1

1−Φ(c)
. Since 1 − Φ(c) ≈

1

c
ÿ(c),

thus

c ≈
√

2 log(T),

and no matter what ÿ is, the mean delay detection time

SADDT = E∗
ÿ [ÿSH] =

1

1 − Φ(c + ÿ)
.

2. EWMA chart: Define Zn = (1 − ÿ)Zn−1 + ÿXn as the

EWMA process. The EWMA chart makes an alarm at

ÿEW = inf

{
n > 0 ∶ Zn > b

(
ÿ

2 − ÿ

)1∕2
}

,

where
ÿ

2−ÿ
= limn→∞ Var (Zn).

In Srivastava and Wu (1993), the optimal values of b

and ÿ are obtained under a continuous time change point

model that minimizes the SADDT for given ARL0 = T

at the reference value ÿ = ÿ where

ÿ∗ =
2c∗ÿ2

b∗2
; b∗2 ≈ 2 log (c∗T) ,

and

SADDT ≈
2.4554

ÿ2
log (c∗T) ,

where c∗ ≈ 0.5117.

3. CUSUM procedure: For the reference signal strength ÿ,

the CUSUM procedure makes an alarm at

ÿCS = inf {n > 0 ∶ Yn = max (0,Yn−1 + Xn − ÿ∕2) > d} ,

which gives d ≈ log
(
ÿ2T∕2

)
∕ÿ for given ARL0 = T

and

SADDT ≈
2

ÿ2
log

(
ÿ2T∕2

)
.

4. S-R procedure: The S-R procedure raises an alarm at

ÿSR = inf
{

n > 0 ∶ Rn = (Rn−1 + 1) eÿXn−ÿ
2∕2 > B

}
,

with R0 = 0. An accurate approximation for selecting B

is ARL0 ≈ Beÿÿ+ for ÿ+ = 0.5826, that is, B ≈ Te−ÿÿ+ ,

and

SADDT ≈
2

ÿ2
log

(
ÿ2T∕2

)
.

5. Finite Moving Average (FMA) chart: For window

length l, define

ÿMA = inf
{

n > l ∶ Xn−l;l = (Xn−l+1 +· · ·+ Xn) ∕l > h
}
.

The selection of optimal h and l for given ARL0 can be

achieved by assuming the signal strength as ÿ or the signal

length as L. An accurate approximation for ARL0 is given in
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Noonan and Zhigljavsky (2020). In the case h = ÿ, Wu (1996)

showed that if l ≈
2

ÿ2
log(T), then

SADDT ≈
2

ÿ2
log

(
ÿ2T∕2

)
.

That means, the MA chart can be made as efficient at ÿ as

the CUSUM and S-R charts.

When the signal strength ÿ is unknown, a comparison

in terms of SADDT between CUSUM, EWMA, and S-R

procedures in the continuous time case is given in Srivas-

tava and Wu (1993). Knoth (2021) conducted a comparison

by using the Markov chain approach in terms SADDT and

quasi-stationary average delay detection time limÿ→∞ E[ÿ −

ÿ|ÿ > ÿ].

3 FALSE DETECTION PROBABILITY AND

POWER OF DETECTION

When the signal length is L, a more natural performance mea-

sure is the power of detection under the stationary state given

by P∗
ÿ
[ÿ f L]. As Lai (1995) suggested, for the transient sig-

nal, the proper constraint under null hypothesis will be the

false detection probability under the stationary state given by

P∗
0
[ÿ f L] f ÿ when ÿ = 0. Tartakovsky et al. (2021) also

noted that this constraint defines a subclass as the constraints

on ARL0 f T .

For technical convenience, we shall assume that ÿ → 0 and

L → ∞. We first note that for the Shewhart chart,

P∗
ÿ [ÿSH f L] = 1 − ΦL(c + ÿ),

with false detection probability P∗
0
[ÿSH f L] = 1 − ΦL(c).

3.1 EWMA procedure

For the EWMA procedure, at the change point ÿ, we assume

that Zÿ follows the stationary distribution N(0, (ÿ∕(2−ÿ))). As

shown in Appendix A, this stationary distribution is approx-

imately equivalent to the stationary state distribution for the

controlled process as the detecting process is positively recur-

rent. Thus, the power of detection can be written as

P∗
ÿ

[
max
1fkfL

Zk g b(ÿ∕(2 − ÿ))1∕2

]
.

The following theorem gives the approximation for the

power of detection and its proof is given in Appendix A.

Theorem 1 Assume ÿ → 0, ÿL → ∞ and b−

ÿ∕(ÿ∕(2 − ÿ))1∕2
→ ∞. The power of detection

is approximated by

P∗
ÿ

[
max
1fkfL

Zk g b(ÿ∕(2 − ÿ))1∕2

]

= P∗
0

[
max
1fkfL

(
Zk +

(
1 − (1 − ÿ)k

)
ÿ
) g b(ÿ∕(2 − ÿ))1∕2

]

= 1 − exp

[
−∫

Lÿ

0

m(u)2(1 − Φ(m(u)))du

]
+ o(1). (3.1)

where m(u) = b − (1 − e−u) ÿ∕(ÿ∕(2 − ÿ))1∕2.

When ÿ = 0, it gives the false detection

probability

ÿ = P∗
0

[
max
1fkfL

Zk g b(ÿ∕(2 − ÿ))1∕2

]

≈ 1 − e−Lÿb2(1−Φ(b)) ≈ Lÿb2(1 − Φ(b)). (3.2)

Remark 1 The approximation for ÿ can be

obtained by other methods as discussed in

Pickands (1969), Berman (1969), and Qualls

and Watanabe (1972)). Here we used the

method given in Davis (1982) where it is shown

that no matter what the initial state is,

ÿ ≈ 1 − e−Lÿ∕∫ b

0
ÿ−1(u)du, (3.3)

by the recurrent property. As a matter of fact, by

noting that

1∕∫
b

0

ÿ−1(u)du ≈ bÿ(b)
(
1 − 1∕b2 + o

(
1∕b2

)) )

≈ b2(1 − Φ(b))
(
1 + o

(
1∕b2

))
,

we see that the approximation is equivalent to

lemma 3.1 of Davis (1982) up to the second

order of 1∕b.

Remark 2 When ÿ = 0, we can also apply

the classical extreme value theory and obtain an

approximation for the probability in Equation

(3.2). For example, applying Theorem A1 in

Bickel and Rosenblatt (1973) with C = 1 and

ÿ = 1, let Q = Lÿ, we obtain for all z ∈ R that

P

(
(2 log Q)1∕2

(
max

0fufQ
e−uW

(
e2u
)
− B(Q)

)
g z

]

→ 1 − exp(− exp(−z)), (3.4)

where the centering term

B(Q) = (2 log Q)1∕2 + (2 log Q)−1∕2

(
21∕2 log log Q − 21∕2 logÿ

)
. (3.5)

Let z = (2 log Q)1∕2(b − B(Q)). Then the probability in

Equation (3.1) can be approximated by the right hand side

of Equation (3.4). However our numerical study in Table 1

shows that the approximation (3.4) is, as expected, quite

inaccurate since the extreme value convergence is quite slow.

Remark 3 For practical implementation of

the approximation, we need to correct the

boundary b with the overshoot. As ÿ → 0,

b
√
ÿ∕(2 − ÿ) → ∞ such that ÿ3∕2b → 0, when

Zk−1 is close to the boundary b,

Zk ≈ Zk−1 + ÿXk.

That means, the EWMA process can be approximated by a

local normal random walk with drift 0. So we can correct the

boundary b(ÿ∕(2 − ÿ))1∕2 with b(ÿ∕(2 − ÿ))1∕2 − ÿÿ+ where
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TABLE 1 Simulated and approximated one-sided false detection probability for ÿL = 5 and ÿ = 0

L = 500 (ÿ = .01) L = 100 (ÿ = .05) L = 20 (ÿ = .25) Lÿ = 5

b Simul (cor) Simul (cor) Simul (cor) No cor (3.4)

2.5 0.1578 (0.1636) 0.1264 (0.1316) 0.0794 (0.0810) 0.1941 0.1534

3.0 0.0482 (0.0488) 0.0384 (0.0370) 0.0207 (0.0204) 0.0607 0.0657

3.5 0.0113 (0.0109) 0.0083 (0.0078) 0.00366 (0.00385) 0.0143 0.0273

4.0 0.0019 (0.0019) 0.0014 (0.0013) 0.00064 (0.00056) 0.0025 0.0112

4.5 0.00025 (0.00024) 0.00014 (0.00015) 0.000052 (0.000062) 0.00034 0.00459

ÿ+ ≈ 0.5826 (e.g., Siegmund (1985, [3.29]) is the mean over-

shoot. That means, to apply Theorem 1, we need to correct b

to b∗ = b + ÿÿ+∕(ÿ∕(2 − ÿ))1∕2.

Table 1 gives the numerical comparison with simulated val-

ues at ÿ = 0 with L = 500 (ÿ = 0.01), L = 100 (ÿ = 0.05)

and L = 20 (ÿ = 0.25) and thus m = b and Lÿ = 5.

The uncorrected approximation is given in the second col-

umn from last from Equation (3.2). Listed in the last column

are also the approximated values based on Equation (3.4). As

we noted that both approximations give overestimated values,

particularly when ÿ gets larger. The corrected approxima-

tions are given in the brackets. All simulations are replicated

50 000 times. The corrected approximation gives very satis-

factory results and can be used for designing the boundary

b for given false detecting probability ÿ. Also, we note that

when ÿ increases, the false detection probability decreases

significantly.

In Table 2, simulated power of detection for ÿ = 0.1,0.2,0.5

is given for ÿL = 5. The approximated power is calculated by

using Equation (3.1) with b being replaced with the corrected

boundary = b+ÿÿ+∕(ÿ∕(2 − ÿ))1∕2. We see that the approxi-

mation with correction works very well except for large ÿ and

small b.

Remark 4 As a referee commented, for

one-sided detection, we can force Zk =

−b
√
ÿ∕(2 − ÿ) whenever Zk < −b

√
ÿ∕(2 − ÿ)

to avoid too negative values when change

occurs. On the other hand, the EWMA chart can

be naturally used to detect two-sided signals. An

alarm will be made at

ÿEW2 = inf

{
n > 0 ∶ |Zn| > b

(
ÿ

2 − ÿ

)1∕2
}

.

The false detection probability can be approximated by

P∗
0

[
max
1fkfL

|Zk| g b(ÿ∕(2 − ÿ))1∕2

]
≈ 1 − e−2Lÿb2(1−Φ(b))

≈ 2Lÿb2(1 − Φ(b)). (3.6)

See Dirkse (1975) for a second order approximation in the

continuous time case.

Table 7 in Section 4 also gives the comparison of simulated

and approximated values for the false alarm probability for

two-sided EWMA chart corresponding to the case N = 1.

TABLE 2 Simulated power of detection for ÿL = 5

L = 500 (ÿ = .01) 100 (.05) 20 (.25)

b ÿ Simul (cor) Simul (cor) Simul (cor)

2.5 0.1 0.7563 (0.7297) 0.34 (0.3542) 0.1353 (0.1352)

0.2 0.9942 (0.2265) 0.64312 (0.6503) 0.2172 (0.2143)

0.5 1 (1) 0.9978 (0.3643) 0.5796 (0.5720)

3.0 0.1 0.4883 (0.5032) 0.1371 (0.1381) 0.04056 (0.03845)

0.2 0.9648 (0.3905) 0.3675 (0.3728) 0.0735 (0.0700)

0.5 1 (1) 0.98208 (0.2746) 0.30804 (0.2981)

3.5 0.1 0.2397 (0.2433) 0.0424 (0.0400) 0.0087 (0.0082)

0.2 0.8618 (0.6357) 0.1564 (0.1537) 0.0170 (0.0171)

0.5 1 (1) 0.9123 (0.5550) 0.1211 (0.1131)

4.0 0.1 0.0868 (0.0865) 0.0089 (0.0087) 0.00146 (0.0013)

0.2 0.6496 (0.5964) 0.0484 (0.0470) 0.0035 (0.0032)

0.5 1 (1) 0.7374 (0.6293) 0.0352 (0.0320)

4.5 0.1 0.0233 (0.0230) 0.000152 (0.00015) 0.00012 (0.00017)

0.2 0.3876 (0.3714) 0.0114 (0.0109) 0.00050 (0.00045)

0.5 1 (1) 0.4806 (0.4544) 0.0082 (0.0069)

3.2 MA procedure

For the MA chart, we assume that l is the window size

and h is the control limit. The power of detection can be

written as

P∗
0

[
max
1fkfL

Xk−l+1 + · · · + Xk + min(k, l)ÿ

l
g h

]
, (3.7)

where all X′
i
s for i = −l, … , 0, … , are iid N(0, 1)′s. In Noo-

nan and Zhigljavsky (2020), approximations for the power

of detection is studied given ARL0 and compared with the

CUSUM procedure. Here since we fix the false detection

probability, we give a simpler approximation using the similar

technique as in Theorem 1 by treating its limit as a stationary

Gaussian process without proof.

Theorem 2 Assume that f ≔√
l(h− ÿ) → ∞

such that fÿ(f )L∕l → 0 and f g √
2 log(L∕l).

Then the probability in Equation (3.7) can be

approximated by

∫
L∕l

0

(
√

lh −
√

l min(u, 1)ÿ)2

× [1 − Φ(
√

lh −
√

l min(u, 1)ÿ)]du
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TABLE 3 Simulated false detection probability and power of detection for L = 20 for MA chart

l 5 10 15 20

h ÿ Simul (cor) Simul (cor) Simul (cor) Simul (cor)

1.0 0 0.1407 (0.1563) 0.00846 (0.00916) 0.00052 (0.00062) 0.00006 (0.00004)

0.1 0.2133 (0.2273) 0.0168 (0.0187) 0.0016 (0.0016) 0.000014 (0.00013)

0.2 0.3069 (0.3150) 0.0377 (0.0368) 0.0051 (0.0044) 0.00038 (0.000043)

0.3 0.4158 (0.4126) 0.0762 (0.06731) 0.0124 (0.0109) 0.0020 (0.0014)

0.9 0 0.2216 (0.2379) 0.02012 (0.02243) 0.0023 (0.0024) 0.00028 (0.00028)

0.1 0.3157 (0.3265) 0.0424 (0.0416) 0.0058 (0.0056) 0.00072 (0.00072)

0.2 0.4324 (0.4248) 0.0784 (0.0735) 0.0143 (0.0130) 0.0023 (0.0020)

0.3 0.5520 (0.5194) 0.1425 (0.1195) 0.0333 (0.0277) 0.0077 (0.0052)

0.8 0 0.3297 (0.3396) 0.0498 (0.0490) 0.0081 (0.0081) 0.0014 (0.0014)

0.1 0.4385 (0.4383) 0.0892 (0.0825) 0.0177 (0.0167) 0.0035 (0.0032)

0.2 0.5665 (0.5331) 0.1533 (0.1302) 0.0392 (0.0330) 0.0095 (0.0074)

0.3 0.6811 (0.6045) 0.2467 (0.1872) 0.0818 (0.05945) 0.0240 (0.0160)

0.7 0 0.4556 (0.4526) 0.1020 (0.0948) 0.0241 (0.0230) 0.0059 (0.0059)

0.1 0.5737 (0.5471) 0.1691 (0.1444) 0.0506 (0.0414) 0.0127 (0.0116)

0.2 0.6958 (0.6178) 0.2643 (0.2028) 0.0942 (0.0704) 0.0315 (0.0223)

0.3 0.7928 (0.6437) 0.3848 (0.2558) 0.1705 (0.1069) 0.0682 (0.0397)

= ∫
1

0

(
√

lh −
√

luÿ)2[1 − Φ(
√

lh −
√

luÿ)]du

+ (L − l)(h − ÿ)2(1 − Φ(
√

lh −
√

lÿ)), if L g l. (3.8)

When ÿ = 0, the false alarm probability is

approximately

P∗
0

[
max
1fkfL

Xk−l+1 +· · ·+ Xk

l
g h

]
≈ Lh2(1− Φ(h

√
l)). (3.9)

Remark 5 For practical use, we can use

the continuous correction by adding the

mean overshoot to h. When l is large,

(Xk−l+1 + · · · + Xk) ∕l behaves like a random

walk with increment Xk∕l. So we can change

h to h∗ = h + ÿ+∕l with ÿ+ = 0.5826. As for

the EWMA process, the MA chart can also be

naturally used for two-sided test.

To show how well the approximation behaves, we take

L = 20, l = 5,10,15,20, and h = 0.7,0.8,0.9,1.0. Table 3

gives the simulated false detection probability and the power

of detection for ÿ = 0.1,0.2 and 0.3. The approximated val-

ues from Equations (3.8) and (3.9) with corrected boundary

are given in the bracket. Again, we see that the approximation

with corrected boundary works quite well except for large ÿ.

3.3 CUSUM chart

For the CUSUM procedure, for given signal strength ÿ, the

control limit d is typically chosen based on the approximation

for ARL0. The power of the detection can be written as

P∗
ÿ (ÿCS f L|Y0 =d Y∞) = P∗

ÿ

(
max
0fkfL

Yk > d|Y0 =d Y∞

)
,

where Y∞ follows the stationary distribution.

Note that P∗
0
[ÿCS f L|Y0 =d Y∞] is essentially the same

as the significance level for the likelihood ratio test for Ha:

X1, … ,Xk and Xn+1, … ,XL follow N(0, 1) and Xk+1, … ,Xn

follow N(0, ÿ), where Y0 = 0. The power of detection

corresponds to the power for testing Ha under the special

alternative k = 0 and n = L.

An approximation for P0 (ÿCS f L|Y0 = 0) =P0 (max0fkfnfL

(Sn − Sk − (n − k)ÿ∕2) > d) is given in Siegmund (1985,

p. 240) by using the boundary crossing probability approx-

imation for a normal random walk {Sn} with drift zero. By

assuming ÿL∕2 > d,

P0 (ÿCS f L|Y0 = 0) ≈ ÿ(ÿL∕2 − d)e−ÿ(d+2ÿ+),

where ÿ+ = 0.5826.

3.4 Comparison of power of detection

In this subsection, we compare the EWMA, MA and CUSUM

charts in terms of power of detection for fixed false detection

probability ÿ at the stationary state.

For L = 20, ÿ = .01, and ÿ = .01, .025, .05, .10, the approx-

imated value for the boundary b are calculated as 2.2874,

2.6713, 2.8914 and 3.0636 from Equation (3.6), respectively,

by using corrected approximation given in Theorem 1. Table 4

gives the power of detection. We see that ÿ = .05 and 0.10

should be recommended as it has the largest power no matter

what the strength of signal is.

For the MA chart, for L = 20 and ÿ = .01, and l =

5,10,15,20, we use the corrected approximation by doubling

the value given in Equation (3.9) and find the corresponding

corrected h as 1.2578, 0.9136, 0.7548, and 0.6582. Table 5

gives the simulated power of detection as in Table 5. Compar-

ing the two tables, we see that two charts differ very little by

considering the effect of approximation.
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TABLE 4 Simulated power of detection with L = 20 and
ÿ = .01 for EWMA chart

ÿ∕ÿ 0.01 0.025 0.05 0.1

0.25 0.09923 0.0843 0.0851 0.0791

0.5 0.2922 0.3200 0.3442 0.3315

0.75 0.5926 0.6906 0.7367 0.7124

1.00 0.8474 0.9274 0.9523 0.9461

1.25 0.9673 0.9923 0.9966 0.9961

1.5 0.9958 0.9998 0.9998 0.99998

1.75 0.9997 1 1 1

2.0 1 1 1 1

TABLE 5 Simulated power of detection with L = 20 and
ÿ = .01 for MA chart

ÿ∕1 5 10 15 20

0.25 0.1221 0.09700 0.0863 0.0682

0.5 0.3369 0.3405 0.3335 0.3180

0.75 0.6470 0.6925 0.7158 0.7186

1.00 0.8897 0.9293 0.9432 0.9522

1.25 0.9829 0.9938 0.9956 0.9971

1.5 0.9989 0.9998 0.9998 0.9999

1.75 0.9999 1 1 1

2.0 1 1 1 1

TABLE 6 Simulated power of detection
for L = 20 and ÿ = .01 for CUSUM chart

ÿ∕ÿ0 0.5 1.0

0.25 0.0813 0.06082

0.5 0.3577 0.2694

0.75 0.7546 0.6425

1.00 0.9600 0.9181

1.25 0.9978 0.9926

1.5 0.99996 0.99966

1.75 1 1

2.0 1 1

For the CUSUM chart, we take two popular reference value

ÿ0 = 0.5 and 1.0. For ÿ = .01 and L = 20, the simu-

lated values for boundary are d = 8.5 and 5.9 respectively

(Table 6).

We see that although the CUSUM chart gives slightly larger

power of detection for larger values of ÿ, it is too sensitive to

the choice of the reference value of ÿ.

4 MULTI-DIMENSIONAL EWMA CHART

In this section, we consider a natural multivariate EWMA

procedure that can detect a change without knowing the direc-

tion of signal. Let Xi = (Xi(1), … ,Xi(N))T for i g 1 be

N independent normal vector sequences that follows N(0,Σ)

for i f ÿ and N(ÿ,Σ) for i = ÿ + 1, … , ÿ + L, where

ÿ = (ÿ1, … , ÿN)
T is the reference signal with the strength

of the signal being defined as ||ÿ||Σ =
√
ÿTΣ−1ÿ and ||.||Σ

denotes the Mahalanobis-norm.

Define

Zj = (1 − ÿ)Zj−1 + ÿXj.

For the control limit b2, an alarm will be raised at

ÿMEW = inf
{

j > 0 ∶ ZT
j
Σ−1Zj > b2(ÿ∕(2 − ÿ))

}
.

See Lowry et al. (1992) for the numerical evaluation of

ARL0 and ARL1.

Note that ZT
j
Σ−1Zj is simply a chi-square process as a sum

of squared EMWA processes. Similar to Theorem 1, we can

show that as ÿ → 0 and L → ∞ such that ÿL → ∞,

ZT
j
Σ−1Zj∕

√
ÿ∕(2 − ÿ) ⇒

{
e−u‖‖‖W

(
e2u
) ‖‖‖, 0 f u f Lÿ

}
,

where W(t) is a N-dimensional Brownian motion.

The following theorem gives the approximation for the false

detection probability P
[
max0fufLÿ e−u‖‖‖W

(
e2u
) ‖‖‖ > b

]
.

Theorem 3 As ÿL → ∞ and b → ∞, the false

probability of detection P∗
0
(ÿMEW f t) is equal

to

P

(
max

0ftfLÿ
Yt g b2

2

)

≈ 1 − exp

(
−

2Lÿ

Γ(N∕2)∫ b2∕2

0
u−N∕2eudu

)

≈ 1 − exp

(
−

2Lÿ
(
b2∕2

)N∕2

Γ(N∕2)
e−b2∕2

(
1 − N∕b2

))
. (4.1)

Remark 6 A second order approximation is

also given in De Long (1981) where it is shown

that

P

[
max

0fufLÿ
e−u‖‖‖W

(
e2u
) ‖‖‖ > b

]
≈

bN

2N∕2Γ(N∕2)
e−b2∕2

×
[
2Lÿ

(
1 −

N

b2

)
+

4

b2
+ O

(
1

b4

)]
.

We note that the difference is only a second order term in

1∕b2. Since we use the continuous model as an approximation

for the discrete time case, this term can be ignored.

Remark 7 To apply the above approximation,

we need a continuous correction for the over-

shoot. We first note that

ZT
k
Σ−1Zk = ((1 − ÿ)Zk−1 + ÿXk)

TΣ−1 ((1 − ÿ)Zk−1 + ÿXk)

= (1 − ÿ)2ZT
k−1

Σ−1Zk−1 + 2ÿ(1 − ÿ)ZT
k−1

Σ−1Xk >

+ ÿ2XT
k
Σ−1Xk

= (1 − ÿ)2ZT
k−1

Σ−1Zk−1 + 2ÿ(1 − ÿ)
(
ZT

k−1
Σ−1Zk−1

)1∕2

×
ZT

k−1
Σ−1Xk

(
ZT

k−1
Σ−1Zk−1

)1∕2
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646 WU AND WU

TABLE 7 Simulated and approximate false detection probability for N = 1,2,10,100

L = 500 (ÿ = .01) 100 (.05) 20 (.25) Lÿ = 5

N b Simul (cor) Simul (cor) Simul (cor) No cor

1 2.5 0.3059 (0.3272) 0.2519 (0.2632) 0.1564 (0.1620) 0.3882

3.0 0.0957 (0.0976) 0.0736 (0.0740) 0.0404 (0.0408) 0.1215

3.5 0.0220 (0.0218) 0.0158 (0.0156) 0.0077 (0.0077) 0.0285

4.0 0.0037 (0.0038) 0.0026 (0.0026) 0.00114 (0.00122) 0.0051

4.5 0.00049 (0.00048) 0.00037 (0.00031) 0.00011 (0.00012) 0.00069

2 3 0.3006 (0.2771) 0.2434 (0.2268) 0.1400 (0.1424) 0.4110

3.5 0.0863 (0.0848) 0.0652 (0.0637) 0.0328 (0.0339) 0.1165

4 0.0177 (0.0175) 0.0121 (0.0123) 0.0056 (0.0057) 0.0242

4.5 0.0026 (0.0026) 0.0015 (0.0017) 0.00074 (0.00072) 0.00374

5 0.00020 (0.00029) 0.00018 (0.00018) 0.00008 (0.00007) 0.00044

10 4.5 0.5655 (0.5359) 0.4818 (0.4636) 0.3056 (0.3194) 0.9342

5 0.2010 (0.2022) 0.1531 (0.1550) 0.0778 (0.0844) 0.2919

5.5 0.0441 (0.0435) 0.0299 (0.0303) 0.0138 (0.0138) 0.0602

6 0.0056 (0.0061) 0.0042 (0.0039) 0.0017 (0.0016) 0.0087

6.5 0.00068 (0.000060) 0.00048 (0.00036) 0.00040 (0.00012) 0.00090

100 11.5 0.46904 (0.4832) 0.3800 (0.4007) 0.2210 (0.2488) 0.8108

12 0.1337 (0.1399) 0.0943 (0.1005) 0.0425 (0.0475) 0.2006

12.5 0.0204 (0.0211) 0.0135 (0.0136) 0.0048 (0.0052) 0.0306

13 0.0019 (0.0019) 0.0011 (0.0011) 0.00046 (0.00037) 0.00298

13.5 0.00004 (0.00012) 0.00012 (0.000063) 0.00004 (0.00002) 0.000190

+ ÿ2

(
ZT

k−1
Σ−1Xk

)2

ZT
k−1

Σ−1Zk−1

+ ÿ2

(
XT

k
Σ−1Xk −

(
ZT

k−1
Σ−1Xk

)2

ZT
k−1

Σ−1Zk−1

)

=

(
(1 − ÿ)

(
ZT

k−1
Σ−1Zk−1

)1∕2
+ ÿ

ZT
k−1

Σ−1Xk

(
ZT

k−1
Σ−1Zk−1

)1∕2

)2

+ ÿ2

(
XT

k
Σ−1Xk −

(
ZT

k−1
Σ−1Xk

)2

ZT
k−1

Σ−1Zk−1

)
.

Note that ÿk = ZT
k−1

Σ−1Xk∕
(
ZT

k−1
Σ−1Zk−1

)1∕2
is N(0, 1),

and Yk = XT
k
Σ−1Xk −

(
ZT

k−1
Σ−1Xk

)2
∕ZT

k−1
Σ−1Zk−1 is a ÿ2

N−1

random variable, and the two are mutually independent and

both are also independent of Zk−1. That means, we can write

ZT
k
Σ−1Zk as

ZT
k
Σ−1Zk =

(
(1 − ÿ)

(
ZT

k−1
Σ−1Zk−1

)1∕2
+ ÿÿk

)2

+ ÿ2Yk = ÿ2

×

[(
1 − ÿ

ÿ

(
ZT

k−1
Σ−1Zk−1

)1∕2
+ ÿk

)2

+ Yk

]
.

Thant means, ZT
k
Σ−1Zk∕ÿ

2 is not only a Markov chain, but

is distributed as a non-central chi-square with non-central

parameter (1 − ÿ)ZT
k−1

Σ−1Zk−1

)
1∕2∕ÿ given ZT

k−1
Σ−1Zk−1.

As ÿ → 0 and
(
ZT

k−1
Σ−1Zk−1

)1∕2
≈ b

√
ÿ∕(2 − ÿ) → ∞

such that ÿ3∕2b → 0,

(
ZT

k
Σ−1Zk

)1∕2
= (1 − ÿ)

(
ZT

k−1
Σ−1Zk−1

)1∕2
+ ÿÿk + Op

(
ÿ2
)
.

Therefore, just like in the one-dimensional case,(
ZT

k
Σ−1Zk

)1∕2
behaves locally as a normal random walk as

ÿ
(
ZT

k
Σ−1Zk

)1∕2
is at the lower order. Thus, we can correct b

to b∗ = b + ÿ+ÿ∕
√
ÿ∕(2 − ÿ).

Table 7 gives the simulated value for the false alarm proba-

bility along with the corrected values for N = 1,2,10,100 and

ÿL = 5 with ÿ = 0. For the corrected approximation we used

the approximation given in Equation (4.1). We see that the

approximation without correction significantly overestimates

the true value. The corrected approximation works very well,

even for large N and ÿ.

Remark 8 To study the power of detection,

we assume that the signal is ÿ = (ÿ1, … , ÿN)

with strength ||ÿ||Σ. With a simple transfor-

mation, we can assume that the signal only

appear in the first panel with strength ||ÿ||Σ.

By denoting B̃(t) as the (N − 1)-dimensional

standard Brownian motion that is independent

of a Brownian motion W(t), as in the proof

for Theorem 3, we can write the power of

detection as

P

(
max

0fufLÿ
e−2u

((
W
(
e−2u

)
+ ||ÿ||Σ (1− e−u)∕

√
ÿ∕(2−ÿ)

)2

+
‖‖‖B̃

(
e−2u

)‖‖‖
2
)

> b2

)

By using the same technique as in the proof for Theorem 1

and noting e−2u‖‖‖B̃
(
e−2u

)‖‖‖
2

is a stationary chi-square process,
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TABLE 8 Comparison of false detection probability and power of detection under intra-class model

ÿi = ÿ ÿ = 0 0.1 0.2 0.3 0.4 0.5

0.0 0.0302 (0.0294) 0.0303 (0.2738) 0.0306 (0.4228) 0.0292 (0.5235) 0.0308 (0.5936) 0.0309 (0.6458)

0.25 0.1091 (0.1089) 0.1491 (0.3643) 0.1940 (0.4997) 0.2466 (0.5927) 0.3241 (0.6535) 0.4343 (0.6983)

0.5 0.5947 (0.5948) 0.7860 (0.6954) 0.8937 (0.7546) 0.9603 (0.7955) 0.9902 (0.8289) 0.9989 (0.8472)

0.75 0.9802 (0.9802) 0.9987 (0.9834) 0.99996 (0.9860) 1.00 (0.9869) 1.00 (0.9884)8 1.00 (0.9886)

1.00 1.00 (1.00) 1.00 (1.00) 1.0 (1.00) 1.0 (1.00) 1.0 (1.00) 1.0 (1.00)

TABLE 9 False detection probability and power of detection for ÿ = .05, L = 20, N = 100 and K = 10

ÿ

Original b = 11.5 11.6 11.7 11.8 11.9 12

0.0 0.1088 0.0804 0.0599 0.0441 0.0309 0.0217

0.25 0.2214 0.1777 0.1380 0.1086 0.0829 0.0624

0.50 0.7713 0.7235 0.6752 0.6221 0.5721 0.5217

0.75 0.9983 0.9974 0.9961 0.9947 0.9926 0.9890

1.00 1 1 1 1 1 1

Oracle (N = K = 10) b = 4.6 4.7 4.8 4.9 5.0 5.1

0.0 0.1159 0.0889 0.0688 0.0511 0.0375 0.0269

0.25 0.5623 0.5054 0.4565 0.4031 0.3574 0.3112

0.50 0.9976 0.9964 0.9955 0.9936 0.9911 0.9873

0.75 1 1 1 1 1 1

1.00 1 1 1 1 1 1

max-K (=10) b=7 7.1 7.2 7.3 7.4 7.5

0.0 0.1083 0.0798 0.0574 0.0400 0.0275 0.0190

0.25 0.3123 0.2541 0.2048 0.1593 0.1237 0.0956

0.5 0.9226 0.9004 0.8686 0.8350 0.7978 0.7520

0.75 0.99998 0.99998 99 988 0.99974 0.99968 0.99974

1 1 1 1 1 1 1

Min-δ (=0.25) b = 7 7.1 7.2 7.3 7.4 7.5

0.0 0.127 0.1066 0.0855 0.0693 0.0556 0.0429

0.25 0.3770 0.3320 0.2917 0.2570 0.218 0.1891

0.5 0.9387 0.9250 0.9076 0.8919 0.8683 0.8467

0.75 0.99994 0.99994 0.99994 0.99992 0.99994 0.99976

1.0 1 1 1 1 1 1

we can approximate the above probability as

∫
Lÿ

0

E

£
¤¤¥

((
b2 − Ỹ2(∞)

)1∕2

−
||ÿ||Σ(1 − exp(−u))√

ÿ∕(2 − ÿ)

)2

×

(
1−Φ

((
b2 − Ỹ2(∞)

)1∕2

−
||ÿ||Σ(1− exp(−u))√

ÿ∕(2 − ÿ)

))]
du

where Ỹ2(∞)
)

is a (N − 1)-dimensional chi-square random

variable as in the proof for Theorem 3.

Example 1 Under the intra-class correlation

model, Xij = aj + ÿij for i = 1, … ,N and

j = 1, 2, … before the change with aj follows

N
(
0, ÿ2

a

)
and eij follows N

(
0, ÿ2

e

)
and aj and eij

are independent crossing i and j. We can find

Σ = ÿ2((1 − ÿ)I + ÿJ),

where IN×N is the identity matrix, JN×N is the

matrix with elements being 1, and ÿ2 = ÿ2
a +ÿ2

e

and ÿ = ÿ2
a∕ÿ

2. From Sylvester’ theorem, we

know

Σ−1 =
1

ÿ2(1 − ÿ)

(
I −

ÿ

1 + ÿ(N − 1)
J

)
.

Thus,

ÿMEW = inf

{
t > 0 ∶ YT

t Σ
−1Yt > b2

(
ÿ

2 − ÿ

)}

= inf

⎧
⎪«⎪¬

t > 0∶
1

ÿ2(1 − ÿ)

»¼¼½

N∑
i=1

Y2
it
−

ÿ

1+ÿ(N−1)

(
N∑

i=1

Yit

)2¿ÀÀÁ

> b2

(
ÿ

2 − ÿ

)«⎪¬⎪­
. (4.2)
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648 WU AND WU

TABLE 10 Simulated power of detection of Min-δ chart for ÿ = .05 and L = 20 with N = 100 and ÿ0 = 0.25

ÿ b = 7 7.1 7.2 7.3 7.4 7.5

ÿ = 0 0.127 0.1066 0.08546 0.06932 0.055556 0.04294

K = 1

0.25 0.1459 0.1237 0.1029 0.0806 0.0637 0.0509

0.5 0.1940 0.1624 0.1349 0.1116 0.0925 0.0742

0.75 0.2966 0.2560 0.2176 0.1884 0.1565 0.1317

1.0 0.4679 0.4207 0.3757 0.3317 0.2938 0.2542

K = 5

0.25 0.2294 0.1978 0.1710 0.1402 0.1139 0.0934

0.5 0.6069 0.5589 0.5164 0.4791 0.4304 0.3889

0.75 0.9639 0.9527 0.9427 0.9281 0.9160 0.8958

1.0 0.9992 0.9998 0.9997 0.9994 0.9991 0.9988

K = 10

0.25 0.3770 0.3320 0.2917 0.2570 0.2180 0.1891

0.5 0.9387 0.9250 0.9076 0.8919 0.8683 0.8467

0.75 0.99994 0.99994 0.99994 0.99992 0.99994 0.99976

1.0 1 1 1 1 1 1

TABLE 11 Simulated power of detection of two-sided Min-δ chart for ÿ = .05 and L = 20 with N = 100 and ÿ0 = 0.25

ÿ b = 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0

ÿ = 0 0.1314 0.10772 0.08304 0.06616 0.0524 0.03946 0.02904 0.02244

K = 1

0.25 0.1422 0.1135 0.0908 0.0699 0.0555 0.0409 0.03216 0.0236

0.5 0.1740 0.1377 0.1142 0.0899 0.0703 0.0539 0.0414 0.0324

0.75 0.2409 0.2033 0.1683 0.1342 0.1110 0.0880 0.0701 0.0524

1.0 0.3816 0.3352 0.2837 0.2466 0.2066 0.1730 0.1450 0.01233

K = 5

0.25 0.1892 0.1559 0.1270 0.1019 0.0805 0.0627 0.0478 0.0371

0.5 0.5034 0.4552 0.4076 0.3637 0.3222 0.2839 0.2435 0.2077

0.75 0.9317 0.9177 0.9013 0.8792 0.8571 0.8317 0.8008 0.7712

1.0 0.9995 0.9993 0.9990 0.9988 0.9979 0.9973 0.9959 0.9948

K = 10

0.25 0.2873 0.2471 0.2109 0.1785 0.1477 0.1208 0.1023 0.0803

0.5 0.8951 0.8734 0.8508 0.8231 0.7953 0.7649 0.7253 0.6923

0.75 0.9999 0.9999 0.9998 0.9996 0.9996 0.9994 0.9992 0.9991

1.0 1 1 1 1 1 1 1 1

We can use the intra-class model to check how the

cross-correlation affects the power of the regular control chart

ÿ0 given

ÿ0 = inf
{

t > 0 ∶ YT
t Yt > b2(ÿ∕(2 − ÿ))

}
(4.3)

by ignoring the cross-correlation.

For N = 10, Table 8 gives the simulated power of detection

when ARL0 = 1000, ÿ = 100, ÿ = .05, and ÿ2
a = 0.0, 0.1, 0.2,

0.3, 0.4, 0.5 and ÿ2
e = 1,0.9,0.8,0.7,0.6,0.5 correspondingly

to make ÿ2 = 1. The control limit b is selected as 5.5

that corresponds to false detection probability 0.03. For sig-

nal ÿ1 = · · · = ÿN , at the stationary state we assume Y0

follows N
(

0,
ÿ

2−ÿ
Σ
)

. The numbers in the brackets are the

corresponding values for ÿ0.

From Table 8, we can see that the intra-calls correlation

dramatically increases the false detection probability under

the regular control chart. In addition, as ÿ gets larger, it has

even lower power of detection.

5 MODIFIED MEWMA CHART FOR

DETECTING SPARSE TRANSIENT SIGNALS

When the change or signal only appears in a small portion of

the N panels, called sparse signal, the power of detection will

be low if we use the original MEWMA chart without consid-

ering the sparsity of the signal. To show how much power can

be improved, we first conduct a simulation study in the oracle

case, that means, we know exactly which portion of the pan-

els changes. Without loss of generality, we can assume that Xj

follows N(0, I) without change.

We choose ÿ = 0.05 and L = 20. Suppose N = 100

and the common change occurs in the first K = 10 panels

with signal strength ÿ = 0 (no change), 0.25, 0.5, 0.75, 1.0.

For the regular MEWMA chart, we choose b = 11.5, 11.6

11.7, 11.8, 11.9, 12. For the oracle case, we just use the first

10 panels to form the MEWMA chart with N = 10 and

b = 4.6, 4.7, 4.8, 4.9, 5.0, 5.1. Table 9 gives the simulated

significance level and power of detection.
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FIGURE 1 EWMA and sum of squared EWMA processes for 30 Dow Jones industrial stocks

From Table 9, we see that the power of detection increases

drastically if we know exactly which panels have changes.

However, as we do not know which panels the common

change occurs, we need to trim the panels without change. We

first assume that we know the post-change mean is positive

among those changed panels.

From isolating changed panel point of view, we can use the

K maximum EWMA processes at each time, that is. we make

an alarm at

ÿK = inf
{

j > 0 ∶ Z2
j
[1] + · · · + Z2

j
[K] > b2

1

(
ÿ∕(2 − ÿ

)}
,

where Zj[1], … ,Zj[K] are the largest K EWMA processes at

time j. Here, the reference value for K needs to be given.

From detecting signal point of view, we can use those Zj(i)′s

such that Zj(i) > ÿ0, say, where ÿ0 is the minimum signal

strength to be detected, that is, we make an alarm at

ÿÿ0
= inf

{
j > 0 ∶

N∑
k=1

Z2
j
(i)I[Zj(i)>ÿ0

] > b2
2
(ÿ∕(2 − ÿ)

}

In Table 9, we also presented the simulated results for ÿK

and ÿ2 for b1 = b2 = 7, 7.1, 7.2, 7.3, 7.4, 7.5 where K = 10

and ÿ0 = 0.25. From the simulation results, we see that the

max-K and min-δ procedures give much improved power of

detection. However, from signal detection point of view, ÿÿ0

gives larger power, although the number of panels used at

every step is random. So we recommend to use the Min-δ

procedure.

To show how the number of changed panels affects the

power of detection, Table 10 gives the simulated powers for

K = 1,5,10 under the same design as in Table 9 for Min-ÿ

chart with ÿ0 = 0.25. Theoretically, there is an optimiza-

tion problem on how to choose the optimal minimum signal

strength ÿ0 for detecting a signal with strength ÿ.

When the sign of post-change mean is unknown, we need to

use a pair of truncated MEWMA charts by making an alarm

at min
(
ÿÿ0

, ÿ−ÿ0

)
, where for −ÿ0,

ÿ−ÿ0
= inf

{
j > 0 ∶

N∑
k=1

Z2
j
(i)I[Zj(i)<−ÿ0

] > b2
2
(ÿ∕(2 − ÿ)

}

Table 11 gives the corresponding results as in Table 10.

Comparing Tables 10 and 11, we see that although the

power of detection for the two-sided case is lower than that

for the one-sided case, it still has significant improved power

comparing with the original one.

6 APPLICATION WITH A REAL DATA

EXAMPLE

To detect a transient signal in a single panel, we can run the

EWMA process and initiate the monitoring for any segment
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650 WU AND WU

of length L or segment by segment. For multiple panels, we

are more interested in detecting a common transient signal.

We can run all individual EWMA processes simultaneously

and use the squared sum as the detecting process in a segment

with length L. If an alarm is raised, we can inspect the indi-

vidual EWMA processes and isolate those panels with larger

(absolute) values.

For a demonstration, we use Dow Jones 30 industrial stock

closing prices from May 26, 2020 to May 26, 2021 as a

demonstration. The data are downloaded from finance.yahoo.

com. For total 244 days, we use the simple exponential normal

random walk model for daily closing price Pt. That means, we

use the differences of the logarithms ln (Pt∕Pt−1) as the raw

data. As we are only interested in detecting transient segment

change, so we first modify the data by truncating the outliers

with ±3ÿ-rule and then standardize by subtracting the sam-

ple mean and dividing the standard deviation to satisfying our

model assumptions. The ACF plots show that there are no

significant correlations. The 30 stocks are

AXP, AMGN, AAPL, BA, CAT, CSCO, CVX, GS, HD,

HON, IBM, INTC, JNJ, KO, JPM,

MCD, MMM, MRK, MSFT, NKE, PG, TRV, UHN, CRM,

VZ, V, WBA, WMT, DIS, DOW.

We first calculated the EWMA processes for each stock.

Figure 1 gives the plots for AXP, BA, JPM, MCD, and TRV.

The sum of squared EWMA processes is also plotted in the

last graph. For N = 30, ÿ = .05, ÿ = .05 and L = 20,

the approximation by using Theorem 3 gives b∗ ≈ 7.2 after

continuous correction. This gives b∗ÿ∕(2 − ÿ) ≈ 1.33. The

two boundary crossing segments are detected as [8,9] and

[109–111].

To identify which stocks have the increment segment sig-

nal, we also run each individual EWMA process with ÿ =

0.10. By Theorem 2, this gives b∗ ≈ 2 and b∗
√
ÿ∕(2 − ÿ) ≈

0.32. The individual charts show that the five stocks plotted

here show increment in mean around 9; while no stock shows

increment in the second segment. Therefore, we can claim that

the a common change segment is [1–9], that is, from May 26,

2020 to June 5, 2020.

7 CONCLUSION AND DISCUSSIONS

In this communication, we studied the performance of

EWMA and MA processes as detection procedures in terms

of power of detection given false detecting probability for

a transient signal. The EWMA and MA charts have the

advantage that they can be conveniently generalized to

multi-dimensional case that can also be modified to deal

with common transient signal case. In particular, the contin-

uous time analog of EWMA process is a diffusion process

and accurate approximations for false detecting probability

and power of detection with a continuous correction. The

same techniques developed here may help to deal with more

complex models with serial dependent observations such as

AR(1) model. Future research may also consider the follow-

ing aspects.

1. One can consider different signal patterns

such as variance change or clustered sig-

nals. This is typical in network or spatial

data monitoring where the signal may appear

as clusters. An EWMA chart for variance

change based on log-transformation is con-

sidered in Crowder and Hamilton (1993). A

recent discussion on the selection of vari-

ables is given in Capizzi (2015).

2. A more general measure of performance

for a transient signal may include both the

power of detection and the truncated delay

detection time E∗[min(ÿ,m)] for a stopping

time ÿ. A recent discussion for the redesign

of control chart is given in Woodall and

Faltin (2019).

3. The investigation of multivariate MA chart

and comparison with MEWMA chart will be

one of the future objectives.
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APPENDIXA

A.1 Proof of Theorem 1

Let {W(t)}, t g 0, be the standard Brownian motion. Standard

weak convergence theory shows that, as ÿ → 0 and Lÿ → ∞,
{

Zk∕(ÿ∕(2 − ÿ))1∕2, 1 f k f L
}

⇒

{
e−uW

(
e2u
)
, 0 f u f Lÿ

}
. (A1)

Note that
{

e−uW
(
e2u
)
, u g 0

}
is a stationary Gaus-

sian process and an Ornstein–Uhlenbeck process. Since

maxag0 |(1 − ÿ)a∕ÿ−e−a| = O(ÿ) as ÿ → 0, by Equation (A1),

we have

P∗
0

[
max
1fkfL

(
Zk +

(
1 − (1 − ÿ)k

)
ÿ
) g b(ÿ∕(2 − ÿ))1∕2

]

= P

(
max

0fufLÿ

[
e−uW

(
e2u
)
+

(1 − e−u) ÿ

(ÿ∕(2 − ÿ))1∕2

]
> b

]
+ o(1)

as ÿ → 0 and Lÿ → ∞.

Next we shall apply lemma 3.1 in Davis (1982) and show

that

P

(
max

0fufLÿ

[
e−uW

(
e2u
)
+

(1 − e−u) ÿ

(ÿ∕(2 − ÿ))1∕2

]
> b

]

= 1 − exp

[
−∫

Lÿ

0

m(u)2(1 − Φ(m(u)))du

]
+ o(1).

(A2)

Let Px(⋅) be the probability measure of the Ornstein-

Uhlenbeck process given e−uW
(
e2u
)|||u=0

= x. By lemma 3.1

in Davis (1982), for vt with limt→∞ vt = ∞ we have for all x

that

Px

[
max
0fuft

e−uW
(
e2u
) f vt

]
= exp

[
−tv2

t (1 − Φ (vt))
]
+ o(1)

(A3)

as t → ∞. Let J ∈ N be fixed and Ij = [(j − 1)t∕J, jt∕J],

j = 1, … , J. Assume minjfJ vt,j → ∞. By Equation (A3), we

have

P

[
max
u∈Ij

e−uW
(
e2u
) f vt,j for j = 1, … , J

]

=

J∏
j=1

exp
[
−J−1tv2

t,j

(
1 − Φ

(
vt,j

))]
+ o(1) (A4)
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To see the above, without loss of generality let J = 2. Let

event Aj =
{

maxu∈Ij
e−uW

(
e2u
) f vt,j

}
. Then by Markovian

property

P (A1 ∩ A2) = E
[
1A1

P
(
A2|e−uW

(
e2u
)
, u ∈ I1

)]

= E
[
1A1

P
(
A2|e−t∕2W

(
et
))]

. (A5)

By Equation (A3) and the Lebesgue dominated conver-

gence theorem,

lim
t→∞

E|P (A2|e−t∕2W
(
et
))

− exp
[
− 2−1tv2

t,2

(
1 − Φ

(
vt,2

)) | = 0. (A6)

Then Equation (A4) follows. Now let t = Lÿ, vt,j =

maxu∈Ij
m(u) and v

t,j
= minu∈Ij

m(u). Then

P

[
max
u∈Ij

e−uW
(
e2u
) f v

t,j
for j = 1, … , J

]

f P

(
max

0fufLÿ

[
e−uW

(
e2u
)
+

(1 − e−u) ÿ

(ÿ∕(2 − ÿ))1∕2

]
f b

]

f P

[
max
u∈Ij

e−uW
(
e2u
) f vt,j for j = 1, … , J

]
, (A7)

by the monotonicity of cumulative distribution functions. By

elementary calculations,

lim
J→∞

|||| exp

[
−J−1

J∑
j=1

tv
2
t,j

(
1 − Φ

(
vt,j

))]

− exp

[
−J−1

J∑
j=1

tv2
t,j

(
1 − Φ

(
v

t,j

))] |||| = 0. (A8)

Therefore Equation (A2) follows from

lim
J→∞

|||| exp

[
−J−1

J∑
j=1

tv
2
t,j

(
1 − Φ

(
vt,j

))]

− exp

[
−∫

Lÿ

0

m(u)2(1 − Φ(m(u)))du

] |||| = 0. (A9)

A.2 Proof of Theorem 3

Here we give a proof based on Davis (1982). Since an O-U

process defined by dXt = −Xtdt + dWt has asymptotic vari-

ance 1/2, and if the initial state is stationary, then it is in

distribution equivalent to 2−1∕2e−tB
(
e2t
)

for a standard Brow-

nian motion B(t). By treating ‖Zk‖2∕(2ÿ∕(1 − ÿ)) as the sum

of N squared O-U processes, we get the well-known CIR

(Cox-Ingersoll-Ross, 1985) process. Indeed, if we denote X
(i)
t

are N independent O-U processes satisfying

dX
(i)
t = −X

(i)
t dt + dW

(i)
t ,

where W
(i)
t are independent standard Brownian motions.

Since

d
(

X
(i)
t

)2

=

(
−2
(

X
(i)
t

)2

+ 1

)
dt + 2X

(i)
t dW

(i)
t .

Thus, Yt =
∑N

i=1

(
X
(i)
t

)2

satisfies

dYt = (N − 2Yt) dt + 2

N∑
i=1

X
(i)
t dW

(i)
t .

Note that ∫ t

0

∑N

i=1X
(i)
u dW

(i)
u has quadratic variation ∫ t

0
Yudu.

Thus, by Levy’s characterization theorem, the process

W̃t = ∫
t

0

1√
Yu

N∑
i=1

X
(i)
u dW

(i)
u

is a Brownian motion, that is,

dYt = (N − 2Yt) dt + 2
√

YtdW̃t.

That means, Yt is a diffusion process with drift ÿ(x) = N −

2x and diffusion ÿ2(x) = 4x.

Thus, the probability in (4.10) is equivalent to P
(
max0ftfLÿ

Yt g b2∕2
)
. Following the standard notation of diffusion

process, since

s(x) = exp

(
−∫

x
2ÿ(u)

ÿ2(u)
du

)

= exp

(
−∫

x (
N

2u
− 1

)
du

)
= x−N∕2ex,

so the scale function S(x) is given by

S(x) = ∫
x

0

s(u)du = ∫
x

0

u−N∕2eudu.

On the other hand, the speed function M(x) = ∫ x

0
m(u)du

where the speed density m(x) is given by

m(x) =
2

ÿ2(x)s(x)
=

1

2
xN∕2−1e−x,

with total mass

|m| = M(∞) = ∫
∞

0

m(x)dx = Γ(N∕2)∕2.

From theorem 3.2 of Davis (1982), we have the following

approximation.

P

(
max

0ftfLÿ
Yt g b2

2

)
≈ 1 − exp

(
−

Lÿ

S
(
b2∕2

) |m|

)

= 1 − exp

(
−

2Lÿ

Γ(N∕2)∫ b2∕2

0
u−N∕2eudu

)
.

As x → ∞,

xN∕2e−x∫
x

0

u−N∕2eudu = ∫
x

0

(
1 −

u

x

)−N∕2

e−udu

≈ ∫
x

0

e−u(1−N∕2x)dx =
1

1 − N∕2x
,

that is,

∫
x

0

u−N∕2eudu ≈
1

1 − N∕2x
x−N∕2ex.

Thus,
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P

(
max

0ftfLÿ
Yt g b2

2

)

≈ 1 − exp

(
−

2Lÿ(b2∕2)
N∕2

Γ(N∕2)
e−b2∕2

(
1 − N∕b2

))
.

A.3 Asymptotic equivalence of uncontrol led and con-

trol led stat ionary distribution

The result for single O-U process is well known. For the CIR

process defined in the proof for Theorem 3, the uncontrolled

stationary density ÿ(x) follows Gamma (N/2). Since 0 is an

attainable boundary, we fist let ÿ > 0 be the initial state and

the Green function can be written as

G(ÿ, x) =
1

2
xN∕2−1e−x

∫ b2∕2

max(ÿ,x)
u−N∕2eudu∫ min(ÿ,x)

0
u−N∕2eudu

∫ b2∕2

0
u−N∕2eudu

.

So the controlled stationary density function by letting ÿ →

0 is obtained as

ÿ∗(x) = lim
ÿ→0

G(ÿ, x)

∫ b2∕2

0
G(ÿ, x)dx

=
xN∕2−1e−x∫ b2∕2

x
u−N∕2eudu

∫ b2∕2

0
xN∕2−1e−x∫ b2∕2

x
u−N∕2eududx

=
xN∕2−1e−x∫ b2∕2

x
u−N∕2eudu

∫ b2∕2

0
u−N∕2eu∫ u

0
xN∕2−1e−xdxdu

As b → ∞,

ÿ∗(x) ≈
xN∕2−1e−x

∫ b2∕2

0
xN∕2−1e−xdx

,

for x f b2∕2, which is the truncated Gamma (N∕2) density

function.
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