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Abstract

Motivated from sequential detection of transient signals in high dimensional data
stream, we first study the performance of EWMA and MA charts for detecting a
transient signal in a single sequence in terms of the power of detection under the
constraint of false detecting probability in the stationary state. Satisfactory approx-
imations are given for the false detection probability and the power of detection.
Comparison of EWMA, MA, and CUSUM charts shows that both charts are quite
competitive. A multivariate EWMA procedure is considered by using the squared
sum of individual EWMA processes and a fairly accurate approximation for the false
detection probability is also given. To increase the power of detection, we use the
Min-8 procedure by truncating the estimated weak signals. Dow Jones 30 industrial
stock prices are used for illustration.
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1 | INTRODUCTION

Consider a sequence of independent normal random vari-
ables {X;} that follow N(0,1) for i < v and N(u,1) for
i > v. To detect a positive change with y > 0, the tra-
ditional Shewhart chart (Shewshart, 1931) makes an alarm
when X; > c. That means, the alarm is only made based
on the current observation. The CUSUM (Page, 1954),
EWMA (Roberts, 1959), and Shiryayev-Roberts (S-R)
(Roberts (1966) and Shiryayev (1963)) charts are developed
for a quick detection of change. For example, we may focus
to find a stopping time 7 that minimizes the conditional
delay detection time CADT(v) = E[z — v|t > v] for given
ARLy = T. The optimality of CUSUM and S-R charts has
been established under different criteria in terms of v for a
given reference value 6 of p.

From signal detection point of view, the CUSUM and
S-R charts assume that the signal will be present forever
after the change. However, in the case that the signal just
appears in one observation, the Shewhart chart will possess
certain optimality as shown in Pollak and Krieger (2013) and
Moustakides (2014).

In this communication, we consider the detection of tran-
sient signal. That means, the signal only appears in a relatively
short period of time with length L, say, from v+1 to v+L. An
obvious chart is the MOSUM (moving sum) chart (Bauer &
Hackel, 1978) that uses partial sum Zf:kL +1Xi = g1 to detect
the signal by raising an alarm at

s =inf {n>0: 8, >c}

=inf{n>l : 1inax Sk > c}

<n-I

where [ is a pre-selected window size. Note that the MOSUM
chart is indeed equivalent to MA (moving average) chart.
General weighted moving average chart is considered in
Lai (1974), and Wu (1996) also considered an optimal linear
kernel smoother in order to achieve high constant efficiency
for unknown strength of signal under the change point model.
Several authors have proposed other procedures. Gueppie
et al. (2012) proposed to use a window-limited CUSUM pro-
cedure under the constraint on the false alarm probability
Po(v < 7 < v+ L) for just one alarm interval. Noonan and
Zhigljavsky (2020) studied the power of MA chart by using
the corrected diffusion approximation under the constraint
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on ARLy. Tartakovsky et al. (2021) considered a modified
CUSUM procedure that is shown to be optimal when the sig-
nal length L follows an exponential distribution under the
constraint of the conditional detection false alarm probability
max, Po[t < v+ L|t > v].

Here we assume that the transient signal appears far away
from the beginning. In notation, we denote by z; for i > 1
as the intervals between consecutive false alarms where the
detecting process will start new after each alarm. So ARLy =
Eyt. Let

k=inf{j>0:7+ - +7>v}.

As v — o0, the instantaneous returned (controlled) process
at the change time will be at its stationary state. The stationary
average delay detection time (SADDT) is defined as

SADDT:}LTOE[Tl + T — V],
under the change point model. This criterion is considered
in Srivastava and Wu (1993) and Reynolds Jr. and Stoum-
bos (2004). A more recent discussion by using Markov chain
approach is given in Knoth (2021).

By denoting P;(.) as the probability measure when the con-
trolled process starts at the stationary state with signal 5, we
can write SADDT = E;‘[T].

Our main focus is to study the performance of the EWMA
and MA charts as the detection procedures for the transient
signal with length L. Following the suggestions given in
Lai (1995) and Reynolds Jr. and Stoumbos (2004), we define
the power of detection as P},(t < L) for signal length L, and
P{(z < L) as the false detection probability. Just like in statis-
tical hypothesis test, we evaluate the power of detection under
the constraint on false detection probability. Alternatives to
the false detection probability have been considered by other
authors. For example, Margavio et al. (1995) considered the
false alarm rate Po[r = j|r > j — 1] for CUSUM and EWMA
chart. Frisén (1992) also proposed to use the predictive value
of an alarm.

The rest of the paper is organized as follows. In Section 2,
we first review several charts in terms of SADDT under the
single change point model. In Section 3, we study the per-
formance of EWMA and MA charts under the constraint on
the false detection probability Pj(r < L) in terms of the
power of detection P,(z < L). Satisfactory approximations
are obtained for practical implementation. The comparison
between EWMA, MA and CUSUM charts shows that the
both procedures perform quite well. In Section 4, we con-
sider a multivariate EWMA procedure by using the square
norm of multi-dimensional EWMA process as the detecting
rule. Accurate approximation for false detection probability
is obtained for practical use. In Section 5, when the sig-
nal is sparse, we further propose to use the Max-K and
Min-8 procedures by truncating off the weak signal esti-
mations. Dow Jones 30 industrial stock prices are used for
illustration.
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2 | PERFORMANCE OF CONTROL CHARTS
UNDER THE CHANGE POINT MODEL

We give the definitions of several detecting procedures and
briefly review their performances in terms of the SADDT
E*[r] at a reference value 6 for y with the same ARLy = T.

1. Shewhart chart: Define
sy =inf{n>0:X,>c}.
Obviously, ARLy = #ﬂ Since 1 — ®(c) ~ +(0),
thus
c =~ \/2log(T),

and no matter what v is, the mean delay detection time
S S
1-®(c+6)

2. EWMA chart: Define Z, = (1 — f)Z,_1 + pX, as the
EWMA process. The EWMA chart makes an alarm at

ﬂ 1/2
TEW=1nf{n>0:Zn>b<m> },

where zi = lim,_ o, Var(Z,).

In Srivastava and Wu (1993), the optimal values of b
and f are obtained under a continuous time change point
model that minimizes the SADDT for given ARLy = T
at the reference value y = 6 where

SADDT = E:; [TSH] =

* 2C*62 # *
p =W; bZzZIOg(c T,
and 2.4554
SADDT ~ = AR log (¢*T),

52
where ¢* ~ 0.5117.
3. CUSUM procedure: For the reference signal strength 4,
the CUSUM procedure makes an alarm at

tes =inf{n>0: Y, =max (0, Y,y + X, —6/2) > d},
which gives d ~ log (6°T/2) /5 for given ARLy = T
and 5

~ 2
SADDT ~ — log (6°T/2).
4. S-R procedure: The S-R procedure raises an alarm at

rge = inf {n >0 Ry = (Ro_y + 1)&X/2 > B},

with Ry = 0. An accurate approximation for selecting B
is ARLy ~ Be"+ for p, = 0.5826, that is, B ~ Te "+,
and 5
~ 2
SADDT ~ = log (6°T/2).

5. Finite Moving Average (FMA) chart: For window
length /, define

T = inf{n S Xpoit = Kptat +- -+ Xo) /1> h}

The selection of optimal 4 and / for given ARLy can be
achieved by assuming the signal strength as 6 or the signal
length as L. An accurate approximation for ARL is given in
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. 2
showed that if [ ~ = log(T), then
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Noonan and Zhigljavsky (2020). In the case h = 6, Wu (1996) When 6 = 0, it gives the false detection
probability
2 2 .
SADDT ~ = log (6°T/2) . = pr —pyl/2?
5 102 (6°7/2) a =Py | maxZi > b(B/2 = p)
That means, the MA chart can be made as efficient at § as ~ ] — e LBPa=00) [ ﬁb2(1 — ®(b)). (3.2)

the CUSUM and S-R charts.

When the signal strength yp is unknown, a comparison
in terms of SADDT between CUSUM, EWMA, and S-R
procedures in the continuous time case is given in Srivas-
tava and Wu (1993). Knoth (2021) conducted a comparison
by using the Markov chain approach in terms SADDT and
quasi-stationary average delay detection time lim,_ o, E[7 —
vlT > v].

3 | FALSE DETECTION PROBABILITY AND
POWER OF DETECTION

When the signal length is L, a more natural performance mea-
sure is the power of detection under the stationary state given
by Pi[r < L]. As Lai (1995) suggested, for the transient sig-
nal, the proper constraint under null hypothesis will be the
false detection probability under the stationary state given by
Pilr < L] < a when 6 = 0. Tartakovsky et al. (2021) also
noted that this constraint defines a subclass as the constraints
onARLy <T.

For technical convenience, we shall assume that 5 — 0 and
L — oo. We first note that for the Shewhart chart,

Pjlzsy < Ll =1 - @"(c +9),

with false detection probability P} [zsy < L] = 1 — ®(c).

3.1 | EWMA procedure

For the EWMA procedure, at the change point v, we assume
that Z, follows the stationary distribution N(0, (8/(2—§))). As
shown in Appendix A, this stationary distribution is approx-
imately equivalent to the stationary state distribution for the
controlled process as the detecting process is positively recur-
rent. Thus, the power of detection can be written as

% > _ 1/2
Ps | maxZ, > b(F/(2 = p))""| -
The following theorem gives the approximation for the
power of detection and its proof is given in Appendix A.

Theorem 1  Assume f — 0, pL — co and b—
8/(B/(2 = p)/? = co. The power of detection
is approximated by

P; [&%Zk > b(p/2~p)" 2]

=P; [maxL (Ze+ (1= -p)8) = b(B/2- ﬂ))l/z]

1<k<

Lp
=1-—exp [—/ m(u)z(l - <I>(m(u)))du] +o(1). (3.1
0

where m(u) = b — (1 —e™)8/(B/(2 — p)'/2.

Remark 1 The approximation for a can be
obtained by other methods as discussed in
Pickands (1969), Berman (1969), and Qualls
and Watanabe (1972)). Here we used the
method given in Davis (1982) where it is shown
that no matter what the initial state is,

am | — e LB o i (3.3)

by the recurrent property. As a matter of fact, by
noting that

b
1// ¢~ (wydu = bpb) (1 — 1/b* +0 (1/b%)))
0
~ b (1 - @) (1+0(1/b%)),

we see that the approximation is equivalent to
lemma 3.1 of Davis (1982) up to the second
order of 1/b.

Remark 2 When 6 = 0, we can also apply
the classical extreme value theory and obtain an
approximation for the probability in Equation
(3.2). For example, applying Theorem Al in
Bickel and Rosenblatt (1973) with C = 1 and
a =1, let Q = LB, we obtain for all z € R that

P <(2 log 0)'/? ( max e™“W () — B(Q)) > z]

0<u<Q
— 1 —exp(—exp(=2)), 3.4

where the centering term

B(Q) = (2log 0)'/* + (21og Q)™'/?
(22 loglogQ — 2'*log 7). (3.5)

Let z = (2log Q)!/?(b — B(Q)). Then the probability in
Equation (3.1) can be approximated by the right hand side
of Equation (3.4). However our numerical study in Table 1
shows that the approximation (3.4) is, as expected, quite
inaccurate since the extreme value convergence is quite slow.

Remark 3 For practical implementation of
the approximation, we need to correct the
boundary b with the overshoot. As § — 0,
by/p/(2 = p) = oo such that f3/2b — 0, when
Zy— is close to the boundary b,

Zy = 21 + Xy
That means, the EWMA process can be approximated by a

local normal random walk with drift 0. So we can correct the
boundary b(8/(2 — )"/ with b(B/(2 — p))'/? — pp, where
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TABLE 1 Simulated and approximated one-sided false detection probability for JL = 5 and 6 = 0
L =500 (g =.01) L =100 (g =.05) L=20(g=.25) Lg=5

b Simul (cor) Simul (cor) Simul (cor) No cor 34

2.5 0.1578 (0.1636) 0.1264 (0.1316) 0.0794 (0.0810) 0.1941 0.1534

3.0 0.0482 (0.0488) 0.0384 (0.0370) 0.0207 (0.0204) 0.0607 0.0657

35 0.0113 (0.0109) 0.0083 (0.0078) 0.00366 (0.00385) 0.0143 0.0273

4.0 0.0019 (0.0019) 0.0014 (0.0013) 0.00064 (0.00056) 0.0025 0.0112

4.5 0.00025 (0.00024) 0.00014 (0.00015) 0.000052 (0.000062) 0.00034 0.00459

p+ ~ 0.5826 (e.g., Siegmund (1985, [3.29]) is the mean over-
shoot. That means, to apply Theorem 1, we need to correct b
to b* = b+ fpi/(B/2 — ).

Table 1 gives the numerical comparison with simulated val-
ues at 6 = 0 with L = 500 (f = 0.01), L = 100 (f = 0.05)
and L = 20(f = 0.25) and thus m = b and L = 5.
The uncorrected approximation is given in the second col-
umn from last from Equation (3.2). Listed in the last column
are also the approximated values based on Equation (3.4). As
we noted that both approximations give overestimated values,
particularly when g gets larger. The corrected approxima-
tions are given in the brackets. All simulations are replicated
50000 times. The corrected approximation gives very satis-
factory results and can be used for designing the boundary
b for given false detecting probability a. Also, we note that
when f increases, the false detection probability decreases
significantly.

In Table 2, simulated power of detection for 6 = 0.1,0.2,0.5
is given for fL = 5. The approximated power is calculated by
using Equation (3.1) with b being replaced with the corrected
boundary = b+ fp, /(B/(2 — f))/>. We see that the approxi-
mation with correction works very well except for large 6 and
small b.

Remark 4 As a referee commented, for
one-sided detection, we can force Z; =
—b+/B/(2 — B) whenever Z; < —b+/B/(2 - P)
to avoid too negative values when change
occurs. On the other hand, the EWMA chart can
be naturally used to detect two-sided signals. An
alarm will be made at

s 1/2
Tsz=inf{n>02|Zn|>b<m> }

The false detection probability can be approximated by

" _ 12| ~ 1 _ ,—2LBP*(1-®(b))
P; [g,gélzuzz;(ﬂ/(z ) ]~1 e

~ 2LPL*(1 — d(D)). (3.6)

See Dirkse (1975) for a second order approximation in the
continuous time case.

Table 7 in Section 4 also gives the comparison of simulated
and approximated values for the false alarm probability for
two-sided EWMA chart corresponding to the case N = 1.

TABLE 2 Simulated power of detection for fL =5

L =500(8=.01) 100(.05) 20 (.25)

b 6 Simul (cor) Simul (cor) Simul (cor)

25 0.1 0.7563 (0.7297) 0.34 (0.3542) 0.1353 (0.1352)
0.2 0.9942 (0.2265) 0.64312 (0.6503) 0.2172 (0.2143)
05 1(1) 0.9978 (0.3643) 0.5796 (0.5720)

3.0 0.1 0.4883(0.5032) 0.1371 (0.1381) 0.04056 (0.03845)
0.2 0.9648 (0.3905) 0.3675 (0.3728) 0.0735 (0.0700)
05 1(1) 0.98208 (0.2746) 0.30804 (0.2981)

35 0.1 0.2397(0.2433) 0.0424 (0.0400) 0.0087 (0.0082)
02  0.8618(0.6357) 0.1564 (0.1537) 0.0170 (0.0171)
05 1(D) 0.9123 (0.5550) 0.1211 (0.1131)

40 0.1  0.0868 (0.0865) 0.0089 (0.0087) 0.00146 (0.0013)
0.2 0.6496 (0.5964) 0.0484 (0.0470) 0.0035 (0.0032)
05 1(1) 0.7374 (0.6293) 0.0352 (0.0320)

45 0.1  0.0233(0.0230) 0.000152 (0.00015)  0.00012 (0.00017)
02 0.3876(0.3714) 0.0114 (0.0109) 0.00050 (0.00045)
05 1(1) 0.4806 (0.4544) 0.0082 (0.0069)

3.2 | MA procedure

For the MA chart, we assume that [ is the window size
and & is the control limit. The power of detection can be
written as
" Xi—i+1 + - - - + Xi + min(k, )6
P | max

> )
0 ] i<k<L / zhl 3.7)

where all X;s fori=—[, ... ,0, ... ,areiid N(0, 1)’s. In Noo-
nan and Zhigljavsky (2020), approximations for the power
of detection is studied given ARLy and compared with the
CUSUM procedure. Here since we fix the false detection
probability, we give a simpler approximation using the similar
technique as in Theorem 1 by treating its limit as a stationary
Gaussian process without proof.

Theorem 2  Assume that f := \/i(h —0) > 00

such that fp(f)L/l — 0 and f > +/21og(L/]).
Then the probability in Equation (3.7) can be

approximated by

Ll
/ (Vih = Vimin(u, 1)5)?
0
x [1 — ®(\/1h — VI min(u, 1)8)]du
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TABLE 3  Simulated false detection probability and power of detection for L = 20 for MA chart

1 5 10 15 20

h o Simul (cor) Simul (cor) Simul (cor) Simul (cor)

1.0 0 0.1407 (0.1563) 0.00846 (0.00916) 0.00052 (0.00062) 0.00006 (0.00004)
0.1 0.2133 (0.2273) 0.0168 (0.0187) 0.0016 (0.0016) 0.000014 (0.00013)
0.2 0.3069 (0.3150) 0.0377 (0.0368) 0.0051 (0.0044) 0.00038 (0.000043)
0.3 0.4158 (0.4126) 0.0762 (0.06731) 0.0124 (0.0109) 0.0020 (0.0014)

0.9 0 0.2216 (0.2379) 0.02012 (0.02243) 0.0023 (0.0024) 0.00028 (0.00028)
0.1 0.3157 (0.3265) 0.0424 (0.0416) 0.0058 (0.0056) 0.00072 (0.00072)
0.2 0.4324 (0.4248) 0.0784 (0.0735) 0.0143 (0.0130) 0.0023 (0.0020)
0.3 0.5520 (0.5194) 0.1425 (0.1195) 0.0333 (0.0277) 0.0077 (0.0052)

0.8 0 0.3297 (0.3396) 0.0498 (0.0490) 0.0081 (0.0081) 0.0014 (0.0014)
0.1 0.4385 (0.4383) 0.0892 (0.0825) 0.0177 (0.0167) 0.0035 (0.0032)
0.2 0.5665 (0.5331) 0.1533 (0.1302) 0.0392 (0.0330) 0.0095 (0.0074)
0.3 0.6811 (0.6045) 0.2467 (0.1872) 0.0818 (0.05945) 0.0240 (0.0160)

0.7 0 0.4556 (0.4526) 0.1020 (0.0948) 0.0241 (0.0230) 0.0059 (0.0059)
0.1 0.5737 (0.5471) 0.1691 (0.1444) 0.0506 (0.0414) 0.0127 (0.0116)
0.2 0.6958 (0.6178) 0.2643 (0.2028) 0.0942 (0.0704) 0.0315 (0.0223)
0.3 0.7928 (0.6437) 0.3848 (0.2558) 0.1705 (0.1069) 0.0682 (0.0397)

1
= / VIh = Vs [1 = (V1 — V1us)]du
0

+(L=Dh— 6821 —0(WIh—Is)ifL>1 (3.8)
When 6 = O, the false alarm probability is

approximately
X, o4 X
P [maxM > h| ~ LE2(1 - (VD). (3.9)
1<k<L [
Remark 5 For practical use, we can use

the continuous correction by adding the
mean overshoot to h. When [ is large,
(Xj—i+1 + - - - + X)) /I behaves like a random
walk with increment X;/l. So we can change
hto h* = h+ py/l with p, = 0.5826. As for
the EWMA process, the MA chart can also be
naturally used for two-sided test.

To show how well the approximation behaves, we take
L = 20,1 = 5,10,15,20, and & = 0.7,0.8,0.9,1.0. Table 3
gives the simulated false detection probability and the power
of detection for 6 = 0.1,0.2 and 0.3. The approximated val-
ues from Equations (3.8) and (3.9) with corrected boundary
are given in the bracket. Again, we see that the approximation
with corrected boundary works quite well except for large 6.

3.3 | CUSUM chart

For the CUSUM procedure, for given signal strength 6, the
control limit d is typically chosen based on the approximation
for ARLy. The power of the detection can be written as

P (tcs < L|Yo =4 Yoo) P5<(§2]?§Yk>d|Yo dYoo>,

where Y, follows the stationary distribution.

Note that Pj[rcs < L|Yy =4 Yol is essentially the same
as the significance level for the likelihood ratio test for H,:
Xi, ..., Xpand X,,4q, ... , X follow N(0, 1) and X1, ... , X,
follow N(0,6), where Yy = 0. The power of detection
corresponds to the power for testing H, under the special
alternative k =0 and n = L.

An approximation for Py (z¢s < L| Yy =0) = Po(maxo<r<n<r
(S, — Sk —(n—k)5/2) > d) is given in Siegmund (1985,
p. 240) by using the boundary crossing probability approx-
imation for a normal random walk {S,,} with drift zero. By
assuming 6L/2 > d,

Po (tcs < L|Yy = 0) ~ 8(SL/2 — d)e~®(@+20+),
where p, = 0.5826.

3.4 | Comparison of power of detection

In this subsection, we compare the EWMA, MA and CUSUM
charts in terms of power of detection for fixed false detection
probability « at the stationary state.

For L = 20,a = .01,and § = .01,.025, .05, .10, the approx-
imated value for the boundary b are calculated as 2.2874,
2.6713, 2.8914 and 3.0636 from Equation (3.6), respectively,
by using corrected approximation given in Theorem 1. Table 4
gives the power of detection. We see that § = .05 and 0.10
should be recommended as it has the largest power no matter
what the strength of signal is.

For the MA chart, for L = 20 and a = .01, and [ =
5,10,15,20, we use the corrected approximation by doubling
the value given in Equation (3.9) and find the corresponding
corrected h as 1.2578, 0.9136, 0.7548, and 0.6582. Table 5
gives the simulated power of detection as in Table 5. Compar-
ing the two tables, we see that two charts differ very little by
considering the effect of approximation.
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TABLE 4 Simulated power of detection with L = 20 and
a = .01 for EWMA chart

8/p 0.01 0.025 0.05 0.1
0.25 0.09923 0.0843 0.0851 0.0791
0.5 0.2922 0.3200 0.3442 0.3315
0.75 0.5926 0.6906 0.7367 0.7124
1.00 0.8474 0.9274 0.9523 0.9461
1.25 0.9673 0.9923 0.9966 0.9961
1.5 0.9958 0.9998 0.9998 0.99998
1.75 0.9997 1 1 1

2.0 1 1 1 1

TABLE 5  Simulated power of detection with L = 20 and
a = .01 for MA chart

6/1 5 10 15 20
0.25 0.1221 0.09700 0.0863 0.0682
0.5 0.3369 0.3405 0.3335 0.3180
0.75 0.6470 0.6925 0.7158 0.7186
1.00 0.8897 0.9293 0.9432 0.9522
1.25 0.9829 0.9938 0.9956 0.9971
1.5 0.9989 0.9998 0.9998 0.9999
1.75 0.9999 1 1 1

2.0 1 1 1 1

TABLE 6 Simulated power of detection
for L = 20 and a = .01 for CUSUM chart

8/8y 0.5 1.0

0.25 0.0813 0.06082
0.5 0.3577 0.2694
0.75 0.7546 0.6425
1.00 0.9600 0.9181
1.25 0.9978 0.9926
1.5 0.99996 0.99966
1.75 1 1

2.0 1 1

For the CUSUM chart, we take two popular reference value
69 = 05 and 1.0. For « = .01 and L = 20, the simu-
lated values for boundary are d = 8.5 and 5.9 respectively
(Table 6).

We see that although the CUSUM chart gives slightly larger
power of detection for larger values of ¢, it is too sensitive to
the choice of the reference value of 6.

4 | MULTI-DIMENSIONAL EWMA CHART

In this section, we consider a natural multivariate EWMA
procedure that can detect a change without knowing the direc-
tion of signal. Let X; = (X;(1), ... ,X;(N))" fori > 1 be

N independent normal vector sequences that follows N (0, Z)
fori < vand N(6,2) fori = v+ 1,...,v+ L, where

6 = (61, ... ,5N)T is the reference signal with the strength

of the signal being defined as ||§||z = Vé67Z7'6 and ||.||s
denotes the Mahalanobis-norm.
Define

Zj =1 = p)Zi—1 + pX;.

For the control limit 2, an alarm will be raised at
ey = inf {j >0: 2727z, > (/2 - ﬁ))} .

See Lowry et al. (1992) for the numerical evaluation of
ARLy and ARL,;.

Note that ZjTZ‘IZj is simply a chi-square process as a sum
of squared EMWA processes. Similar to Theorem 1, we can
show that as § — 0 and L — oo such that fL — oo,

2= P > {e

where W(z) is a N-dimensional Brownian motion.
The following theorem gives the approximation for the false

|>b].

W () [0 <u SLﬂ},

detection probability P [maxoS“sLﬂ e ”W (62”)

Theorem3 AsfL — coandb — oo, the false
probability of detection P (tyew < 1) is equal

to
2
P < max Y, > b—)
0<t<Lp 2
2L
~1l—exp| — )
1“(N/2)/0 u=N/2eudy
N/2
2L/3(b2/2) 5
~1-— — 2 (1=N/P?) ). 4.1
exp T2 e ( / ) 4.1

Remark 6 A second order approximation is
also given in De Long (1981) where it is shown
that

\%% (e2u)

P | max e
0<u<Lp

| ] bN —b2/2
>blv ——¢
V2N /2)

e (1-2)+ S0 ()]

We note that the difference is only a second order term in
1/b?. Since we use the continuous model as an approximation
for the discrete time case, this term can be ignored.

Remark 7  To apply the above approximation,
we need a continuous correction for the over-
shoot. We first note that
Z{E7'Z = (1 = P)Ziey + BXOTE7 (1 = B)Ziot + BX0)
=(1-p°Z 7'z +2p1 - PZ]_ Z7'X >
+ A°X[ 71X,
= (1= 2 ="' 7y + 260 - p)(Z =7 7y)?
VAR

=)
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TABLE7 Simulated and approximate false detection probability for N = 1,2,10,100
L =500 (8 = .01) 100 (.05) 20 (.25) LB=5
N b Simul (cor) Simul (cor) Simul (cor) No cor
1 2.5 0.3059 (0.3272) 0.2519 (0.2632) 0.1564 (0.1620) 0.3882
3.0 0.0957 (0.0976) 0.0736 (0.0740) 0.0404 (0.0408) 0.1215
35 0.0220 (0.0218) 0.0158 (0.0156) 0.0077 (0.0077) 0.0285
4.0 0.0037 (0.0038) 0.0026 (0.0026) 0.00114 (0.00122) 0.0051
45 0.00049 (0.00048) 0.00037 (0.00031) 0.00011 (0.00012) 0.00069
2 3 0.3006 (0.2771) 0.2434 (0.2268) 0.1400 (0.1424) 0.4110
3.5 0.0863 (0.0848) 0.0652 (0.0637) 0.0328 (0.0339) 0.1165
4 0.0177 (0.0175) 0.0121 (0.0123) 0.0056 (0.0057) 0.0242
4.5 0.0026 (0.0026) 0.0015 (0.0017) 0.00074 (0.00072) 0.00374
5 0.00020 (0.00029) 0.00018 (0.00018) 0.00008 (0.00007) 0.00044
10 45 0.5655 (0.5359) 0.4818 (0.4636) 0.3056 (0.3194) 0.9342
5 0.2010 (0.2022) 0.1531 (0.1550) 0.0778 (0.0844) 0.2919
55 0.0441 (0.0435) 0.0299 (0.0303) 0.0138 (0.0138) 0.0602
6 0.0056 (0.0061) 0.0042 (0.0039) 0.0017 (0.0016) 0.0087
6.5 0.00068 (0.000060) 0.00048 (0.00036) 0.00040 (0.00012) 0.00090
100 11.5 0.46904 (0.4832) 0.3800 (0.4007) 0.2210 (0.2488) 0.8108
12 0.1337 (0.1399) 0.0943 (0.1005) 0.0425 (0.0475) 0.2006
12.5 0.0204 (0.0211) 0.0135 (0.0136) 0.0048 (0.0052) 0.0306
13 0.0019 (0.0019) 0.0011 (0.0011) 0.00046 (0.00037) 0.00298
13.5 0.00004 (0.00012) 0.00012 (0.000063) 0.00004 (0.00002) 0.000190
T v-ly )2 T v-ly )2 Ts-17\1/2
(ZzI =7'X) B (ZI =7'X) B(ZI'=7'Zc) '~ is at the lower order. Thus, we can correct b
+ P 2 XTex - ,
zr 377, zr 377, o b* =b+pif/\B/2~P)
A Table 7 gives the simulated value for the false alarm proba-
k—1 k bility along with the corrected values for N = 1,2,10,100 and

- 172
=(a-pZ z'z)" R —E
(Zk—lz Zk—l)

77 371x,)
+ﬁ2 X]Z-E_lxk _ ( k—1 )
zl 277,

Note that & = 27 =7'X/ (2] 27'Z:1)"" is N(O, 1),
and Y; = X'=7'X, — (27 =7'X,)% /2 27 Zyisa 22,
random variable, and the two are mutually independent and
both are also independent of Z;_;. That means, we can write
ZI's7'Z; as

_ _ 1/2 2
75717, = ((1 —p(Z = z) " + ﬁek> + B2V, = B2
2
1- _ 1/2
<Tﬁ(ZZ—IZ IZk_l) / +8k> + Y

Thant means, Z] £™'Z;/f* is not only a Markov chain, but
is distributed as a non-central chi-square with non-central
parameter (1 — ﬂ)ZkT_IZ_IZk_l)l/z/ﬂ given ZkT_lZ_le_l.

Asf — Oand (2 57'7,,)"" ~ b\//2-PB) »
such that §3/2b — 0,

(Z's7'2)"? = (1 = p)(Z 27 2c0) 2 + B + 0, (F) .

Therefore, just like in the one-dimensional case,

(ZkT Z_IZk)l/ > behaves locally as a normal random walk as

BL =5 with 6 = 0. For the corrected approximation we used
the approximation given in Equation (4.1). We see that the
approximation without correction significantly overestimates
the true value. The corrected approximation works very well,
even for large N and f.

Remark 8 To study the power of detection,
we assume that the signal is 6 = (61, ... ,0n)
with strength ||6]|x. With a simple transfor-
mation, we can assume that the signal only
appear in the first panel with strength ||5||s.
By denoting l~3(t) as the (N — 1)-dimensional
standard Brownian motion that is independent
of a Brownian motion W(#), as in the proof
for Theorem 3, we can write the power of
detection as

P< max ¢~ ((W(e'z“) + 161l (1~ t‘f"‘)/\/ﬁ/(2—ﬁ))2

O<u<Lp
2

By using the same technique as in the proof for Theorem 1
—2u ﬁ ( e—2u)

+[[B ()

2
and noting e is a stationary chi-square process,
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TABLE 8 Comparison of false detection probability and power of detection under intra-class model

6 =6
0.0
0.25
0.5
0.75
1.00

p=0

0.0302 (0.0294)
0.1091 (0.1089)
0.5947 (0.5948)
0.9802 (0.9802)
1.00 (1.00)

0.1

0.0303 (0.2738)
0.1491 (0.3643)
0.7860 (0.6954)
0.9987 (0.9834)
1.00 (1.00)

0.2

0.0306 (0.4228)
0.1940 (0.4997)
0.8937 (0.7546)

0.99996 (0.9860)

1.0 (1.00)

0.3

0.0292 (0.5235)
0.2466 (0.5927)
0.9603 (0.7955)
1.00 (0.9869)
1.0 (1.00)

0.4

0.0308 (0.5936)
0.3241 (0.6535)
0.9902 (0.8289)
1.00 (0.9884)8
1.0 (1.00)

TABLE 9 False detection probability and power of detection for f = .05, L =20, N = 100 and K = 10

[
Original
0.0

0.25
0.50
0.75
1.00

b=115
0.1088
0.2214
0.7713
0.9983

Oracle (N = K = 10) b=4.6

0.0

0.25

0.50

0.75

1.00

max-K (=10)
0.0

0.25

0.5

0.75

1

Min-5 (=0.25)
0.0

0.25

0.5

0.75

1.0

0.1159
0.5623
0.9976
1

1

b=7
0.1083
0.3123
0.9226
0.99998
1

b=17
0.127
0.3770
0.9387
0.99994
1

we can approximate the above probability as

Lp ~
/0 E <b2 - 1/2(00))1/2 _ |

x(1-@ (bz—?z(oo)>

161l=(1 — exp(—u))

VB/2=p)

12 |18lls(1 = exp(-u))

VB/2—-p)

11.6

0.0804
0.1777
0.7235
0.9974

4.7
0.0889
0.5054
0.9964

1

1

7.1
0.0798
0.2541
0.9004
0.99998
1

7.1
0.1066
0.3320
0.9250
0.99994
1

where }N’z(oo)) is a (N — 1)-dimensional chi-square random
variable as in the proof for Theorem 3.

Example 1 Under the intra-class correlation
model, X;; = a; + g fori = 1,... ,N and
Jj = 1,2, ... before the change with a; follows
N (0,02) and ¢;; follows N (0, 02) and a; and e;;

are independent crossing i and j. We can find

T =61 = p)l + p)),

11.7

0.0599
0.1380
0.6752
0.9961

4.8
0.0688
0.4565
0.9955
1

1

72
0.0574
0.2048
0.8686
99988
1

72
0.0855
0.2917
0.9076

11.8

0.0441
0.1086
0.6221
0.9947

4.9
0.0511
0.4031
0.9936
1

1

7.3
0.0400
0.1593
0.8350
0.99974
1

7.3
0.0693
0.2570
0.8919

0.99994 0.99992

1

Thus

TMEW:inf{t>O c Yy, > b2<

=inf¢t>0:

1

11.9 12
0.0309 0.0217
0.0829 0.0624
0.5721 0.5217
0.9926 0.9890
1 1

5.0 5.1
0.0375 0.0269
0.3574 0.3112
0.9911 0.9873
1 1

1 1

7.4 7.5
0.0275 0.0190
0.1237 0.0956
0.7978 0.7520

0.99968 0.99974
1 1

7.4 7.5
0.0556 0.0429
0.218 0.1891
0.8683 0.8467
0.99994 0.99976
1 1

0.5
0.0309 (0.6458)
0.4343 (0.6983)
0.9989 (0.8472)
1.00 (0.9886)

1.0 (1.00)

where Iyxy is the identity matrixX, Jyxy is the
matrix with elements being 1, and 62 = 62 + 02
and p = o62/c%. From Sylvester’ theorem, we

know

-1 1

p

T 621

s

1

N
2

(st

2-p

I —
—p)< L+p(N-1)

P
2-p

p

)
))

- y2- %
(1 =p|& " T+p(N=D)

N

>

i=1

WILEY—**
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TABLE 10 Simulated power of detection of Min- chart for f = .05 and L = 20 with N = 100 and §, = 0.25
& b=17 7.1 7.2 7.3 7.4 7.5
6=0 0.127 0.1066 0.08546 0.06932 0.055556 0.04294
K=1
0.25 0.1459 0.1237 0.1029 0.0806 0.0637 0.0509
0.5 0.1940 0.1624 0.1349 0.1116 0.0925 0.0742
0.75 0.2966 0.2560 0.2176 0.1884 0.1565 0.1317
1.0 0.4679 0.4207 0.3757 0.3317 0.2938 0.2542
K=5
0.25 0.2294 0.1978 0.1710 0.1402 0.1139 0.0934
0.5 0.6069 0.5589 0.5164 0.4791 0.4304 0.3889
0.75 0.9639 0.9527 0.9427 0.9281 0.9160 0.8958
1.0 0.9992 0.9998 0.9997 0.9994 0.9991 0.9988
K=10
0.25 0.3770 0.3320 0.2917 0.2570 0.2180 0.1891
0.5 0.9387 0.9250 0.9076 0.8919 0.8683 0.8467
0.75 0.99994 0.99994 0.99994 0.99992 0.99994 0.99976
1.0 1 1 1 1 1 1

TABLE 11

Simulated power of detection of two-sided Min-8 chart for f = .05 and L = 20 with N = 100 and §, = 0.25

é b=173 74 7.5 7.6 7.7 7.8 7.9 8.0
6=0 0.1314 0.10772 0.08304 0.06616 0.0524 0.03946 0.02904 0.02244
K=1

0.25 0.1422 0.1135 0.0908 0.0699 0.0555 0.0409 0.03216 0.0236
0.5 0.1740 0.1377 0.1142 0.0899 0.0703 0.0539 0.0414 0.0324
0.75 0.2409 0.2033 0.1683 0.1342 0.1110 0.0880 0.0701 0.0524
1.0 0.3816 0.3352 0.2837 0.2466 0.2066 0.1730 0.1450 0.01233
K=5

0.25 0.1892 0.1559 0.1270 0.1019 0.0805 0.0627 0.0478 0.0371
0.5 0.5034 0.4552 0.4076 0.3637 0.3222 0.2839 0.2435 0.2077
0.75 0.9317 0.9177 0.9013 0.8792 0.8571 0.8317 0.8008 0.7712
1.0 0.9995 0.9993 0.9990 0.9988 0.9979 0.9973 0.9959 0.9948
K=10

0.25 0.2873 0.2471 0.2109 0.1785 0.1477 0.1208 0.1023 0.0803
0.5 0.8951 0.8734 0.8508 0.8231 0.7953 0.7649 0.7253 0.6923
0.75 0.9999 0.9999 0.9998 0.9996 0.9996 0.9994 0.9992 0.9991
1.0 1 1 1 1 1 1 1 1

We can use the intra-class model to check how the
cross-correlation affects the power of the regular control chart
Ty given

to=inf {tr>0: Y'Y, >b*B/2-p)} (@43)

by ignoring the cross-correlation.

For N = 10, Table 8 gives the simulated power of detection
when ARLy = 1000, v = 100, § = .05, and 62 = 0.0, 0.1, 0.2,
0.3,0.4, 0.5 and 022 = 1,0.9,0.8,0.7,0.6,0.5 correspondingly
to make 6> = 1. The control limit b is selected as 5.5
that corresponds to false detection probability 0.03. For sig-
nal 6; = = 6y, at the stationary state we assume Y

follows N <O, ﬁZ) The numbers in the brackets are the
corresponding values for 7.

From Table 8, we can see that the intra-calls correlation
dramatically increases the false detection probability under
the regular control chart. In addition, as 6 gets larger, it has

even lower power of detection.

5 | MODIFIED MEWMA CHART FOR
DETECTING SPARSE TRANSIENT SIGNALS

When the change or signal only appears in a small portion of
the N panels, called sparse signal, the power of detection will
be low if we use the original MEWMA chart without consid-
ering the sparsity of the signal. To show how much power can
be improved, we first conduct a simulation study in the oracle
case, that means, we know exactly which portion of the pan-
els changes. Without loss of generality, we can assume that X;
follows N(0, I) without change.

We choose f = 0.05 and L = 20. Suppose N = 100
and the common change occurs in the first K = 10 panels
with signal strength 6 = 0 (no change), 0.25, 0.5, 0.75, 1.0.
For the regular MEWMA chart, we choose b = 11.5,11.6
11.7, 11.8, 11.9, 12. For the oracle case, we just use the first
10 panels to form the MEWMA chart with N = 10 and
b =46,47,4.8,49,5.0,5.1. Table 9 gives the simulated
significance level and power of detection.
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FIGURE1 EWMA and sum of squared EWMA processes for 30 Dow Jones industrial stocks

From Table 9, we see that the power of detection increases
drastically if we know exactly which panels have changes.
However, as we do not know which panels the common
change occurs, we need to trim the panels without change. We
first assume that we know the post-change mean is positive
among those changed panels.

From isolating changed panel point of view, we can use the
K maximum EWMA processes at each time, that is. we make
an alarm at

TK=inf{j>0 : zj?[1]+~~+zj2[1(]>b§(ﬂ/(2—/3)},

where Zj[1], ... ,Z;[K] are the largest K EWMA processes at
time j. Here, the reference value for K needs to be given.

From detecting signal point of view, we can use those Z;(i)/s
such that Z;(i) > 6o, say, where &g is the minimum signal
strength to be detected, that is, we make an alarm at

N
= inf { J> 05 Y 2Dz s) > b3B/2 - ﬁ)}
k=1

In Table 9, we also presented the simulated results for 7g
and 7, forby = b, =7,7.1,7.2,7.3,7.4,7.5 where K = 10
and 6y = 0.25. From the simulation results, we see that the
max-K and min-6 procedures give much improved power of
detection. However, from signal detection point of view, 75,
gives larger power, although the number of panels used at

every step is random. So we recommend to use the Min-o
procedure.

To show how the number of changed panels affects the
power of detection, Table 10 gives the simulated powers for

= 1,5,10 under the same design as in Table 9 for Min-6
chart with 69 = 0.25. Theoretically, there is an optimiza-
tion problem on how to choose the optimal minimum signal
strength &y for detecting a signal with strength 6.

When the sign of post-change mean is unknown, we need to
use a pair of truncated MEWMA charts by making an alarm
at min (150, 1_50), where for —§,

N
7_5, = inf { j>0: ZZJ?(i)I[Z/ (<3, > D38/ (2~ ﬁ)}
k=1

Table 11 gives the corresponding results as in Table 10.

Comparing Tables 10 and 11, we see that although the
power of detection for the two-sided case is lower than that
for the one-sided case, it still has significant improved power
comparing with the original one.

6 | APPLICATION WITH A REAL DATA
EXAMPLE

To detect a transient signal in a single panel, we can run the
EWMA process and initiate the monitoring for any segment
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of length L or segment by segment. For multiple panels, we
are more interested in detecting a common transient signal.
We can run all individual EWMA processes simultaneously
and use the squared sum as the detecting process in a segment
with length L. If an alarm is raised, we can inspect the indi-
vidual EWMA processes and isolate those panels with larger
(absolute) values.

For a demonstration, we use Dow Jones 30 industrial stock
closing prices from May 26, 2020 to May 26, 2021 as a
demonstration. The data are downloaded from finance.yahoo.
com. For total 244 days, we use the simple exponential normal
random walk model for daily closing price P,. That means, we
use the differences of the logarithms In (P,;/P,;) as the raw
data. As we are only interested in detecting transient segment
change, so we first modify the data by truncating the outliers
with +30-rule and then standardize by subtracting the sam-
ple mean and dividing the standard deviation to satisfying our
model assumptions. The ACF plots show that there are no
significant correlations. The 30 stocks are

AXP, AMGN, AAPL, BA, CAT, CSCO, CVX, GS, HD,
HON, IBM, INTC, JNJ, KO, JPM,

MCD, MMM, MRK, MSFT, NKE, PG, TRV, UHN, CRM,
VZ,V, WBA, WMT, DIS, DOW.

We first calculated the EWMA processes for each stock.
Figure 1 gives the plots for AXP, BA, JPM, MCD, and TRV.
The sum of squared EWMA processes is also plotted in the
last graph. For N = 30, « = .05, § = .05 and L = 20,
the approximation by using Theorem 3 gives b* =~ 7.2 after
continuous correction. This gives b*f/(2 — ) ~ 1.33. The
two boundary crossing segments are detected as [8,9] and
[109-111].

To identify which stocks have the increment segment sig-
nal, we also run each individual EWMA process with ¢ =
0.10. By Theorem 2, this gives b* ~ 2 and b*+/f/(2 — f) =
0.32. The individual charts show that the five stocks plotted
here show increment in mean around 9; while no stock shows
increment in the second segment. Therefore, we can claim that
the a common change segment is [1-9], that is, from May 26,
2020 to June 5, 2020.

7 | CONCLUSION AND DISCUSSIONS

In this communication, we studied the performance of
EWMA and MA processes as detection procedures in terms
of power of detection given false detecting probability for
a transient signal. The EWMA and MA charts have the
advantage that they can be conveniently generalized to
multi-dimensional case that can also be modified to deal
with common transient signal case. In particular, the contin-
uous time analog of EWMA process is a diffusion process
and accurate approximations for false detecting probability
and power of detection with a continuous correction. The
same techniques developed here may help to deal with more

complex models with serial dependent observations such as
AR(1) model. Future research may also consider the follow-
ing aspects.

1. One can consider different signal patterns
such as variance change or clustered sig-
nals. This is typical in network or spatial
data monitoring where the signal may appear
as clusters. An EWMA chart for variance
change based on log-transformation is con-
sidered in Crowder and Hamilton (1993). A
recent discussion on the selection of vari-
ables is given in Capizzi (2015).

2. A more general measure of performance
for a transient signal may include both the
power of detection and the truncated delay
detection time E*[min(z, m)] for a stopping
time 7. A recent discussion for the redesign
of control chart is given in Woodall and
Faltin (2019).

3. The investigation of multivariate MA chart
and comparison with MEWMA chart will be
one of the future objectives.
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APPENDIXA

A.1 | Proofof Theorem1

Let {W(#)},t > 0, be the standard Brownian motion. Standard
weak convergence theory shows that, as f — 0 and Lf — oo,

{Zu/(B/@~ BN 1 <k <L}
> {e“W (™), 0<u<Lp}. (A1)
Note that {e W (¢),u >0} is a stationary Gaus-
sian process and an Ornstein—Uhlenbeck process. Since

max,so |(1 = §)/P—e=| = O(P) as § — 0, by Equation (A1),
we have

fo [f“,f"i (Ze+ (1= =p*)5) 2 b(p/2 - ﬁ»lﬂ]

=P < max [e‘”W (62”) +
0<u<Lp

asf - 0and Lf — 0.
Next we shall apply lemma 3.1 in Davis (1982) and show
that

(1—e™)5

Bja- ﬂ))w] g b] *o

p< max [e'“W () +

(1—-e™)é
o1, Ble- ﬁ))‘/z] g b]
Lp
=1-—exp [—/ m@u)*(1 — <D(m(u)))du] + o(1).
0
(A2)

Let P*(-) be the probability measure of the Ornstein-
Uhlenbeck process given e™*W (ez“)l _, =% Bylemma3.1
in Davis (1982), for v, with lim,_,, v, Z % we have for all x
that

P [maxe‘“W (ez”) < v,] = exp [—tv,2 1- (v,))] +o(1)

0<u<t
(A3)
ast — oo. Let J € Nbe fixed and I; = [(j — D)¢t/J,jt/J]],
Jj=1,...,J. Assume minjc; v;; — co. By Equation (A3), we

have

P [maxe‘”W (™) <wy for j=1, ... ,J]

u€l;

=[Texe [—J‘ltvii (1-o (v,,,-))] +o(l) (A4

J
J=1
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To see the above, without loss of generality let J/ = 2. Let
eventA; = {maxuell_ e "W (ez") <v J}. Then by Markovian
property

P(A NAy) =E [14,P (Asle™W () ,u € )]
= E [14,P (A2]e™?W ()] . (AS)

By Equation (A3) and the Lebesgue dominated conver-
gence theorem,

mEIP (Aale” W ()
—exp[ -2, (1 - @ (vi2)) | =0. (A6)
Then Equation (A4) follows. Now let t = Lf, v;; =

maxyej, m(u) and V= minuell_ m(u). Then

P [maxe‘“W (62”) SE:,; for j=1, ... ,J]

uel;
—upy () 3 L8
=" <023?5ﬂ [e W)+ Gra- ﬁ))‘ﬂ] < b]

maxe "W (e*) <V,; for j=1, ... ,J] , (A7)

u€l;

<P

by the monotonicity of cumulative distribution functions. By
elementary calculations,

exp l_J_IZﬁ?J (1-@ (VZJ))]
—exp [—J—lityii (1 - @ (L,j))] ’ =0. (A8

Therefore Equation (A2) follows from

exp l—J_I;ﬁtzJ (1-o (VIJ))]

lim
J—o0

lim
J—oo

Lp
—exp [— / m(u)*(1 —(D(m(u)))du] =0. (A9
0

A.2 | Proofof Theorem 3

Here we give a proof based on Davis (1982). Since an O-U
process defined by dX; = —X;dt + dW, has asymptotic vari-
ance 1/2, and if the initial state is stationary, then it is in
distribution equivalent to 2~'/%¢~B (¢?') for a standard Brow-
nian motion B(#). By treating ||Zk||2/(2ﬁ/(1 — ) as the sum
of N squared O-U processes, we get the well-known CIR
(Cox-Ingersoll-Ross, 1985) process. Indeed, if we denote Xt(i)
are N independent O-U processes satisfying

X = —XOds 4 aw,

where W are independent standard Brownian motions.
Since

N\ 2 A\ 2 . .
d(x") = <—2<X§”) +l>dt+2Xl(’)dW§’).

N o\ .
Thus, ¥; = 3,0, (X, ) satisfies

N
dY, = (N = 2Y,)dt +2) X dW".

i=1

Note that /OIZLXL(})dMP has quadratic variation fot Y,du.
Thus, by Levy’s characterization theorem, the process

t N
W, = / L xOaw?
0 VY, =1
is a Brownian motion, that is,
dY, = (N = 2Y,) dt + 2+/Y,dW,.

That means, Y, is a diffusion process with drift u(x) = N —
2x and diffusion o%(x) = 4x.

Thus, the probability in (4.10) is equivalent to P (maxogsw
Y, > b*/ 2). Following the standard notation of diffusion
process, since

s(x) = exp <—/xi_/;—((uu))du>
= exp <—/X (% - 1) du> = x N2,

so the scale function S(x) is given by

S(x):/ s(u)du:/ u N dy.
0 0

On the other hand, the speed function M(x) = foxm(u)du
where the speed density m(x) is given by

) = 2 _ lxN/z—le—x

V= 2 ost0 2

with total mass
|m| = M(c0) = / m(x)dx =T(N/2)/2.
0

From theorem 3.2 of Davis (1982), we have the following
approximation.

< b2> e
Pl max ¥V, > — |~ 1l —-exp| ~———
0<i<Lp 2 S (%/2) |m|

_, 2Lp
=l-ep| - T .
CWN/2) [, uNetdu

Asx - oo,

x x —-N/2
xN/ze_X/ u N et dy = / (1 - E) e “du
0 0 X

X
1
~ ~u(1=N/29) gy —
/Oe * 1-N/2x

that is,

/ u N 2etdy ~ ;x_N/ze”.
0 1-N/2x

Thus,
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So the controlled stationary density function by letting e —
P o@i"fﬁy’ Z 0 is obtained as

il
2
~ LB 2) )" /2 2
1—exp < —Tan ¢ (l—N/b) .

A3 | Asymptotic equivalence of uncontrolled and con-
trolled stationary distribution

The result for single O-U process is well known. For the CIR
process defined in the proof for Theorem 3, the uncontrolled
stationary density z(x) follows Gamma (N/2). Since 0 is an
attainable boundary, we fist let € > 0 be the initial state and
the Green function can be written as

29 ;
fb / u‘N/Ze”dumem(é’x)u‘Nﬂe“du

max(e,x)

G(g,x) = %xNﬂ_le_x

/Ob2 /ZM'N /2etdy

2*(x) = lim b(;(#
=0 (B2 Ge x)dx

xN/z‘le"‘/Xb P2y=N12gu gy
) sz/zx"’ﬂ—‘e"‘sz/zu""/ze”dudx
0 X
e [P gy
fobz/zu—N/ze”fouxN/Z—le"‘dxdu

As b — oo,

for x < b?/2, which is the truncated Gamma (N /2) density
function.
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