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Abstract

When performing novel tasks, we often apply the rules we have learned from previous,
similar tasks. Knowing when to generalize previous knowledge, however, is a complex
challenge. In this study, we investigated the properties of learning generalization in a
visual search task, focusing on the role of search difficulty. We used a spatial probability
learning paradigm in which individuals learn to prioritize their search toward the
locations where a target appears more often (i.e., high probable location) than others
(i.e., low probable location) in a search display. In the first experiment, during a training
phase, we intermixed the easy and difficult search trials within blocks, and each was
respectively paired with a distinct high probable location. Then, during a testing phase,
we removed the probability manipulation and assessed any generalization of spatial
biases to a novel, intermediate difficulty task. Results showed that, as training
progressed, the easy search evoked a stronger spatial bias to its high probable location
than the difficult search. Moreover, there was greater generalization of the easy search
learning than difficult search learning at test, revealed by a stronger bias toward the
former’s high probable location. Two additional experiments ruled out alternatives that
learning during difficult search itself is weak and learning during easy search
specifically weakens learning of the difficult search. Overall, the results demonstrate
that easy search interferes with difficult search learning and generalizability when the
two levels of search difficulty are intermixed.
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Introduction

We use past experience to improve our visual search performance, but doing so is
not a trivial matter. Each unique visual search we engage is virtually never identical to
previous searches, so how do we know when to generalize what we have learned? When
we buy apples in our regular supermarket, we might have learned the probable location of
the apple display. Will this information help or hurt us when we seek apples in a different
supermarket?

A long line of research has explored the non-conscious influences of long-term
past experience on behavior (Nissen & Bullemer, 1987; Reber, 1967, 1989; Reber et al.,
1991; Rossetti & Revonsuo, 2000), with a growing number of studies focusing
specifically on visual search (Chun & Jiang, 2003; Geng & Behrmann, 2005; Howard &
Howard, 1997). This body of research paints the picture of a vast arrangement of implicit
cognitive machinery that is ever-active, continuously monitoring environments in the
world and robustly influencing our search behavior. However, much remains unknown
about the generalizability of such learning phenomena. The scope and extent of learning
generalizability is of great consequence in the practical world; what is the use of such a
sophisticated cognitive mechanism if it over or under-generalizes across task conditions?

In this study, we focus on search difficulty as a factor that may modulate
generalizability. There are several reasons why we focus on this variable. From an
ecological perspective, task difficulty may serve to differentiate distinct task contexts, in
which separate behavioral approaches to the task may apply. Cognitive control research

has demonstrated we have a dedicated neural system that is sensitive to task demands,
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which can alert a person to adopt a different task processing mode than when the task is
easy (Botvinick et al., 2001). Specific to the domain of visual search, difficulty is a
universal feature in every search task. Therefore, investigation of search difficulty may
apply to many search behaviors. Also, the underlying mechanism of search difficulty has
been thoroughly examined in the fundamental visual search literature (Duncan &
Humphreys, 1989; Treisman & Gelade, 1980; Wolfe, 1994). Practically, search difficulty
is easily manipulated by only minimal changes of search items, which helps us keep the
task identical in various search difficulties (see Figure 1A). Suppose observers search for
a letter T among many letters Ls. The search task difficulty depends on how similar the
letter L looks to the letter T. As the offset of two lines of letter L is bigger; the search
becomes harder. Regardless of the letter Ls’ shapes, the task is always “searching for a
letter T quickly.”

This study is not the first one examining how search difficulty relates to learning
generalizability. Several previous studies showed that implicit learning is generalizable
across two search tasks having two different contexts (Hong et al., 2020; de Waard et al.,
2022) or two different levels of search difficulty — easy search to difficult search and vice
versa (contextual cueing: Chun & Jiang, 1998; Jiang & Song, 2005; probability cueing:
Jiang et al., 2014). For example, Jiang et al. (2014) trained participants in an easy (or
difficult) search task in which the target T more often appeared in a specific location in a
search display than any of other locations. As the experiment progressed, participants
implicitly learned target location probabilities and found the target faster when it
appeared in high probable locations vs. when it appeared in low probable locations,

called probability cueing. After training, participants engaged in the same search task
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during the testing phase. Here, the target was distributed evenly, while the distractors
either became more akin to the target (resulting in a difficult search task) or diverged
further from the target (yielding an easy search task). Nonetheless, participants
consistently exhibited a bias toward the preceding high probable location, offering
compelling evidence of the generalization of probability cueing across variations in task
difficulty.

While the previous studies examined whether experience with one search that has
a fixed difficulty is transferred to a new search that has the same or a different level of
difficulty, here we question whether observers learn specific difficulty-based task
contexts or whether they generalize learning across them. In particular, we created
distinct contingencies between probable target locations and task difficulty (e.g., difficult
search trials are associated with probable targets in the upper left quadrant of the display
while easy trials are associated with probable targets in the lower right). Will observers
demonstrate learning specificity, in which they prioritize the relevant high-probable
locations during visual search, depending on the task difficulty? Or, will they simply
generalize the probability information across the two levels of difficulty and prioritize
both high-probable quadrants similarly across both levels of task difficulty? Further, we
question how such learned contingencies may transfer to novel search tasks, either with a
neutral difficulty level or one matching one of the original tasks.

We adopted the same probability cueing paradigm as Jiang et al. (2014; see also
Geng & Behrmann, 2005). Observers were shown a search display that contains a target
T and several non-target Ls. During a training phase, to create distinct contingencies

between search difficulty and high-probable target locations, we presented two types of
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search trials during a training phase — easy and difficult — which were randomly
intermixed. Unbeknownst to participants, the target T more frequently appeared in a
specific quadrant (called “easy / high probable quadrant” hereafter, easy HPQ) during the
easy search task and more frequently appears in another specific quadrant (called
“difficult / high probable quadrant”, hereafter, difficult HPQ) during difficult search. The
other two quadrants are considered “low probable quadrants” (hereafter LPQ). In a
subsequent testing phase, we tested participants in an intermediate search, the difficulty
of which was approximated to be in the middle of the difficulty levels of the two training
tasks on the search difficulty scale. Using an intermediate search after two searches
represents an attempt to equitably compare the respective influences from two training-
phase searches.

We examined learning during easy and difficult search when these conditions
were intermixed during training, and we assessed whether one of these search types
demonstrates stronger generalization than the other to the intermediate test trials
(Experiment 1). To better understand the impact of intermixing the trials during training,
we also examined learning and generalization for the easy and difficult conditions when
they were completed in pure blocks (Experiment 2). Lastly, we tested whether having
two competing quadrants or just intermixing the trials influences learning and
generalizability for the difficult condition using only a difficult HPQ without an easy
HPQ during training while two types of search trials were still intermixed (Experiment

3).

Experiment 1
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In Experiment 1, we randomly intermixed two types of search trials — easy search
and difficult search — during training. Each search type had its own high-probable
location, easy HPQ and difficult HPQ, respectively. Then, we presented an intermediate
difficulty of search trials during testing, in which the target appeared with equal
frequency across the four quadrants. This design allowed us to address several questions.

First, can individuals learn and exploit the associations between search difficulty
level and the relevant high-probable location in a context-specific fashion? If so, then
during training, when trials are intermixed, participants will selectively prioritize the easy
HPQ during easy trials and the difficult HPQ during difficult trials. Otherwise, during
training, participants will prioritize either or both HPQs similarly.

Second, is there any asymmetry in the learning during easy and difficult search?
If so, during the training phase, participants will show greater prioritization toward the
easy or difficult HPQ during training.

Third, is there an asymmetry in generalization of learning from easy vs. difficult
search to the intermediate search during testing? If so, then participants will show greater

prioritization toward the easy or difficult HPQ during testing.

Method

Participants. A pre-determined sample size of 12 student participants (10 women and 2
men; mean age 18.3 years) with normal or corrected-to-normal visual acuity, who were
naive to the purpose of the study, were used in all experiments. The sample size was

determined based on the previous study (Jiang, Won, et al., 2014), which the current
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paradigm was adopted from. While our sample size was somewhat limited, we employed
a post-hoc power analysis based on prior studies, which consistently demonstrated a
robust effect size in probability cueing. Specifically, to gauge if 12 participants produced
a sufficient power, we conducted a power analysis for the difference between the high
probable condition and low probable condition (i.e., probability cueing effect) using
G*Power (Version 3.1). This analysis yielded .99 of power with two-tails and o = .05
with sample size of 12. However, it is worth noting that post-hoc power analysis often
produces less accurate estimates than pre-study calculations (Althouse 2021; Zhang et al.,
2019), requiring careful use. Participation was compensated with course credit. The Ohio

State University IRB approved the study protocol.

Materials. Participants were tested in a dimly lit room. Stimuli were presented on 24-inch
LCD monitor (vertical refresh rate: 60 Hz; 1920 x 1080) and generated using MATLAB
(www.mathworks.com), with Psychtoolbox extensions (Brainard, 1997; Kleiner et al.,
2007; Pelli, 1997). Head position was not fixed, and visual angles are reported assuming

a typical viewing distance of 60 centimeters.

Stimuli. Eight, 12, or 16 search items were presented (1.02°x1.02°), including one target
(a white T rotated to the left or right), and seven, 11, or 15 distractors (white Ls rotated
0°,90°, 180°, or 270°) against a gray background. A set size manipulation was added to
assess the effectiveness of our search difficulty manipulation (easy, intermediate, and
difficult search). The search items' locations were randomly chosen from a 10x10

invisible matrix (15.28°x15.28°), with a constraint that each quadrant had an equal
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number of items (two, three, or four items). Target and distractor orientations were all
randomly selected with replacement on each trial, so the target identity and motor
response did not correlate with any experimental variables. Search difficulty was
manipulated by adjusting the offset of the junction between the two line segments
forming the L: easy search contained a small offset (0.05°; 2 pixels), the intermediate
search had a medium offset (0.15°; 6px), and difficult search had a large offset (0.26°;
10px). Larger offsets increased the similarity between the Ls and Ts, thus increasing

search difficulty (Duncan & Humphreys, 1989, see Figure 1A).

Design. After 12 practice trials, each participant completed a 360-trial training phase,
followed by a 360-trial testing phase. In the training phase, easy and difficult search trials
were randomly but equally intermixed. Among the easy search trials, the target T more
frequently appeared in one quadrant than any of the other three quadrants (50% in easy
HPQ vs. 16.7% in each of the other three quadrants). Among the difficult search trials,
the target T more frequently appeared in one quadrant than any other three quadrants
(50% 1in difficult HPQ vs. 16.7% in each of the other three quadrants). Note that easy
HPQ and difficult HPQ were never the same. In the testing phase, only intermediate
search trials were presented, in which the target T now appeared equally often in all four
quadrants (i.e., 25% per quadrant). In the training phase, three factors — two types of
search (easy and difficult search), three types target location (easy HPQ, difficult HPQ,
and LPQ), and set size (8, 12, and 16) — were all orthogonally counterbalanced and

randomly intermixed during the experiment. The two HPQ (easy HPQ and difficult HPQ)
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were counterbalanced across participants but were held constant for a given participant.

Participants were not informed of the target’s spatial distribution.

Procedure. Each trial began with the presentation of a small white square (0.51°x0.51°),
whose position was randomly jittered within a range of .77° both vertically and
horizontally from the center of the monitor and initiated by a mouse click on the jittered
square, which required eye-hand coordination and enforced fixation at the center before
the search began. After the mouse click, the screen was blank for 500-msec, after which
the search display appeared, containing eight, 12, or 16 items. Participants were asked to
report the orientation of the target T’s stem (left or right) using computer keyboard.
When participants responded to the target T’s orientation, auditory feedback was given
(three rising tones for 300-ms for a correct response; a low-tone buzz for 200-msec for an
incorrect response). To discourage incorrect responses, participants were presented with a
2-sec blank screen following errors. After 720 main search trials (both training and
testing), participants were asked to answer two recognition questions that appeared on the
screen. The first question asked whether the target was evenly or unevenly distributed
across all four quadrants. Regardless of the first answer, a message informed participants
that the target was unevenly distributed, and the second question asked them to select one
quadrant where the target more often appeared. The task took approximately 1 hour.
Figure 1B shows a schematic procedure of Experiment 1. All data have been made
publicly available via OSF and can be accessed at

https://osf.io/3]y68/?view_only=855f727c076a43d89dale211bl1c3b2d8.
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Figure 1.

Schematic stimuli and procedure of Experiment 1.
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is difficult search with a set size of 16). The set size varied among 8, 12, and 16 items.

Results

Because accuracy of all conditions was high (the lowest = 96.1%) in all of four

experiments (Experiment 1-Experiment 3; Table 1), we focus on RT data for the

remaining analyses.

Table 1. Mean accuracy (%) of search tasks in four experiments.

phase Training phase Testing phase
search Easy search Difficult search Intermediate search
Easy difficult LPQ easy difficult LPQ Easy difficult LPQ
quadrant
HPQ HPQ HPQ HPQ HPQ HPQ

11
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Exp.1 99.4 99.4 99.2 96.1 96.1 96.3 98.8 98.3 97.7

Exp.2a | 98.9 N/A 98.5 N/A 97.6 N/A 96.4

Exp.2b N/A 97.8 97.9 N/A 98.4 98/1

Exp.3 N/A 98.1 98.3 N/A 95.6 94.7 N/A 96.5 97.5

RT. We removed 3.8% of trials from RT analyses as incorrect trials and RT outliers
(trials with RTs slower than 3SD above each individual's mean). When the assumption of

sphericity was violated (p < .05), Greenhouse-Geisser correction was applied.

Training phase.

A search difficulty (easy search, difficult search) x quadrant type (easy HPQ,
difficult HPQ, LPQ) x set size (8, 12, 16) ANOVA showed that RTs for easy search were
considerably faster than in difficult search, F(1, 11) =175.04, p <.001, 7,*> = .93, and a
significant interaction between search difficulty and set size was also significant, F(2, 22)
=27.68, p <.001, 1,> = .76, demonstrating that the difficulty manipulation was effective
(mean search slope for easy search: 81 msec/item, mean search slope for difficult search:
245 msec/item). We also found main effects of quadrant type, F(2, 22) = 11.63, p = .002,
np? = .51, and set size, F(2, 22) = 156.32, p < .001, n,> = .93. The interaction between
search difficulty and quadrant type was significant, F(2, 22) = 4.75, p = .045, n,> = .30.
Quadrant type and set size didn’t interact each other, F(4, 44) = 1.33, p = .27. We didn’t

find a significant 3-way interaction among search difficult, quadrant type, and set size, F'

<1.
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To characterize the significant interaction between search difficulty and quadrant
type, we did a further pairwise t-test among the conditions of quadrant type in easy and
difficult search tasks, separately. In the easy search, we found that the RT for the easy
HPQ was significantly faster than that of the difficult HPQ, #11) =2.68, p =.02,d = .77,
BF1o = 3.23!, and also than that of the LPQ, #(11) =2.92, p = .014, d = .84, BF 1o = 4.49.
However, the RT for the difficult HPQ was not faster than that for the LPQ, #11) = .44, p
=.667,d=.13, BFio=31.

In the difficult search, we found that participants responded more rapidly to
targets appearing in the easy HPQ than difficult HPQ, #(11) = 2.59, p = .025, d = .75,
BF10 =2.82, and also than that of the LPQ, #(11) =3.17, p =.009, d = .92, BF10 = 6.50.
The targets that appeared in the difficult HPQ were also found faster than the targets that

appeared in the LPQ, #11) =3.293, p =.007, d = .95, BF1o=7.77.

Testing phase. A quadrant type x set size ANOVA revealed a significant main effect of
quadrant type, F(2, 22) = 19.22, p < .001, 7,> = .64, and set size, F(2,22) = 100.73, p <
.001, 7,2 =.90. Quadrant type and set size did not interact each other, F(4, 44) = 1.17, p =
34, ny? = .096. Taking a closer look at quadrant, a pairwise t-test showed that RTs to
targets in the easy HPQ were faster than targets in the difficult HPQ, #(11) =4.98, p <
001, n2 = 1.44, BF1o = 84.62, and the LPQ, #(11) = 5.10, p <.001, d = 1.47, BF o =
99.63. However, the RTs were not different for targets in the difficult HPQ and LPQ,

t(11)=.69, p=.51,d = .20, BFio = .35. Figure 2 shows the RT results of Experiment 1.

! We provided Bayes factors (BF), which quantify the relative likelihood of obtaining the observed data under the
alternative hypothesis compared to the null hypothesis (BFio) (Rouder et al., 2009).

13
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Figure 2. Experiment 1 RT result
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Easy Task Difficult Task Intermediate Task
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Note. A. RTs in the training phase separated on search difficulty, quadrant type, and set
size in Experiment 1. In both searches, search RTs were the shortest for the target in
Easy HPQ. In Easy Search, search RTs for target in difficult HPQ and that in LPQ were
comparable. In Difficult Search, search RTs for target in difficult HPQ was shorter than
that in LPQ. B. RTs in testing phase separated on quadrant type and set size in
Experiment 1. Search RT for the target in easy HPQ was shorter than that in LPQ and
Difficult HPQ, but search RT for the target in difficult HPQ was comparable with that in
LPQ. LPQ stands for low probability quadrant and HPQ means high probability
quadrant. C. Cueing effects (RTs in LPQ — RTs in HPQ) of two search difficulty levels in

training and testing phases. Error bars show 95% confidence interval.

Discussion

There were three main findings in this experiment. First, there was a significant
interaction between search difficulty and quadrant type, suggesting that prioritization to

the different HPQs differed during easy and difficult search.
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Second, we found a clear asymmetry in the learning of HPQs: in both easy and
difficult trials, the easy HPQ was prioritized more than the difficult HPQ. Thus, in the
intermixed conditions during training, the easy trial condition produced stronger learning.

Asymmetric learning has been noted in similar visual search paradigms,
illustrating how one form of learning may overshadow or block another. For instance,
Rosenbaum and Jiang (2013) observed that in the context of contextual cueing, scene-
based cues can overshadow array-based cues. Likewise, Kunar et al. (2013) showed that
configural cues have the capacity to overshadow color cues within the same contextual
cueing framework.

We can conceive of two basic reasons for the asymmetry in search difficulty
observed in Experiment 1. On the one hand, easy search simply produces stronger
probability learning than difficult search. On the other hand, both search types can
produce robust learning in isolation, but the easy search dominates difficult search in
probability learning when the two are placed in competition with one another (as in the
case of the intermixed trials of this experiment). We test these alternatives in Experiment
2.

Third, the generalization of learning to the intermediate trials of test was
asymmetric. Given that learning was asymmetric during training, it may not be surprising
that easy trials showed greater generalization during testing. Experiment 2 will test if
easy and difficult search truly show asymmetric learning during training even in
isolation. If we observe similarly robust learning in the easy and difficult trials during
training, we can then suggest the asymmetric learning and generalization are due to

“intermixed” trials of easy and difficult task.
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Experiment 2

Here, we assess the robustness of learning and generalization when the easy and
difficult search trials are presented in isolation (i.e., not in competition with one another).
Participants first performed a training phase containing blocks of only easy (Experiment
2A) or difficult search (Experiment 2B). Like Experiment 1, each participant had two
HPQs, but they were now both presented only in the context of a fixed level of difficulty
during training. Then, for both Experiments 2A and 2B, participants completed a testing
phase identical to Experiment 1, consisting of intermediate trials in which the target
appeared equiprobably at all quadrants.

If learning and/or generalization is simply more robust for easy than difficult
trials, we will observe greater learning for the easy than the difficult trials during training
and/or stronger transfer of the easy HPQ to the intermediate trials of test than that of
difficult HPQ. Alternatively, if easy and difficult learning and generalization are similarly
robust in isolation, we will observe significant learning effects during training as well as

comparable transfer to the intermediate trials of the testing phase in both search tasks.

Method
Participants. Another 12 participants (8§ women, and 4 men; mean age: 18.6 years)
participated in Experiment 2A; another 12 participants (6 females and 6 males; mean age:

18.9 years) participated in Experiment 2B.

17



Asymmetric probability learning

Materials, Design, and Procedure. All aspects of the experiment were the same as those
of Experiment 1 except the following: we replaced difficult search trials with easy search
trials in Experiment 2A (i.e., only easy search trials in the training phase), and easy
search trials with difficult search trials in Experiment 2B (i.e., only difficult search trials
in the training phase), which results in two easy HPQs in Experiment 2A, and two
difficult HPQs in Experiment 2B (each HPQ has a target on 33% of trials, which is

matched to Experiment 1).

Results

Experiment 24

RT. We eliminated 3.8% of trials in Experiment 2A as incorrect trials and RT outliers.
Training phase. A quadrant type (easy HPQ and LPQ) x set size (8, 12, 16) ANOVA
showed that participants found the target faster when it appeared in any of easy HPQ than
when it appeared in any of LPQ, F(1, 11) = 24.50, p < .001, 7,> = .69, that is, the cueing
effect was significant, #(11) =4.95, p <.001, BF1o = 81.14. Also, the participants made
longer RTs as set size increased, F(2, 22) = 69.70, p < .001, n,> = .86. The two way
interaction between quadrant type and set size was significant, F(4, 44) = 8.01, p =.002,

mp? = .42.

Testing. A quadrant type x set size ANOVA revealed that the target in any of easy HPQ
was found faster than that in any of LPQs, F(1, 11) = 8.88, p = .013, 1,> = .4, that is, the
cueing effect was significant, #(11) = 2.98, p = .013, BF10 = 4.93. Also, the participants

made longer RTs as set size increased, F(2, 22) = 86.39, p <.001, n,> = .89. The two-way
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interaction between two factors was not significant, F(2,22) = 1.71,p = .22, ny’

Figure 3 shows the RT results of Experiment 2A.

Figure 3. Experiment 24 RT result
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Note. A. RTs in the training phase separated on quadrant type and set size in Experiment
24. Search RT was shorter for the target in Easy HPQ than that in LPQ. B. RTs in testing
phase separated on quadrant type and set size in Experiment 2A. Search RT for the target
in easy HPQ was shorter than that in LPQ. LPQ stands for low probability quadrant and
HPQ means high probability quadrant. C. Cueing effects (RTs in LPQ — RTs in HPQ) in

training and testing phases. Error bars show 95% confidence interval.

Experiment 2B

RT. We removed 3.9% of trials in Experiment 2B as incorrect trials and RT outliers.
Training phase. A quadrant type (difficult HPQs and LPQs) x set size (8, 12, 16)
ANOVA revealed that participants found the target in any of difficult HPQs faster than
that in any of LPQs, F(1, 11) = 7.20, p = .021, n,> = .40, that is, the cueing effect was
significant, #(11) = 2.68, p = .021, BF10 = 3.22. Also, participants made longer RTs as the
set size increased, F(2, 22) = 97.69, p < .001, 7,2 = .90. The two factors did not interact,

F<1.
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Testing phase. A quadrant type x epoch ANOVA showed that, unlike Experiment 1,
participants found the target faster when it appeared in any of the difficult HPQs than in
any of the LPQs, F(1, 11) = 19.43, p = .001, 7,*> = .64, that is, the cueing effect was
significant, #(11) =4.41, p = .001, BF1o = 38.47. The RTs were longer as the set size
increased, F(2, 22) = 158.45, p <.001, 7, = .94. The two factors did interact each other,

F(2,22)=4.12, p=.030, i, = .27. Figure 4 shows the RT results of Experiment 2B.

Figure 4. Experiment 2B RT result
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Note. A. RTs in the training phase separated on quadrant type and set size in Experiment
2B. Search RT was shorter for the target in difficult HPQ than that in LPQ. B. RTs in
testing phase separated on quadrant type and set size in Experiment 2B. Search RT for
the target in difficult HPQ was shorter than that in LPQ. LPQ stands for low probability
quadrant and HPQ means high probability quadrant. C. Cueing effects (RTs in LPQ —

RTs in HPQ) in training and testing phases. Error bars show 95% confidence interval.

Experiment 24 vs. Experiment 2B. We compared the results of testing phase between

Experiment 2A (easy search during training) and Experiment 2B (difficult search during
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training). An quadrant type (HPQ, LPQ) x set size (8, 12, 16) x experiment (Experiment
2A, Experiment 2B) ANOVA (quadrant type and set size as within-groups factors and
experiment as between-group factor) revealed significant main effects of quadrant, F(1,
22)=27.12, p=.001, ny?> = .55, set size, F(2, 44) =222.82, p <.001, 17, = 91,and a
significant interaction between quadrant type and set size, F(2, 44) = 5.03, p = .019, 1> =
.19. However, there was no main effect of the experiment, and more importantly, no
factor interacted with experiment, F's < 1, which suggests that we did not find any
statistically significant difference in cueing effect during testing between the two

experiments. Figure 5 shows cueing effects in the testing phase from Experiment 2.

Figure 5. Experiment 2 Cueing effect (RT in LPQ — RT in HPQ)

Testing

Intermediate search

0.5 — n.s.

0.4 —

0.3

0.2

Cueing Effect (sec)

0.1+

0.0

Exp 2A Exp 2B

Note. Cueing effects of the testing phase in Experiment 2A containing only easy search

trials during training (Easy HPQ) and Experiment 2B containing only difficult search
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trials during training (Difficult HPQ). The cueing effects were comparable between two
experiments. LPQ stands for low probability quadrant and HPQ means high probability

quadrant. Error bars show 95% confidence interval.

Experiment 1 vs. Experiment 2. We next compared the results of testing phase between
Experiment 1 and Experiment 2 by conducting a quadrant type (easy HPQ, LPQ) x set
size x experiment (Experiment 1, Experiment 2A) ANOVA and a quadrant type (difficult
HPQ, LPQ) x set size x experiment (Experiment 1, Experiment 2B) ANOVA. First, in
comparison of cueing effect of easy HPQ, we found two significant main effects of
quadrant type, F(1, 22) =32.05, p < .001, 7,> = .59 and set size, F(2, 44) = 166.77, p <
.001, 7,2 = .88, but did not find any significant interaction effects, ps > .07. Especially,
the lack of interaction between quadrant type and experiment suggests that easy HPQ
produces a comparable cueing effect regardless of easy and difficult search trials
intermixed or in isolation. Secondly, when comparing the testing phase between difficult
HPQ in Experiment 1 and Experiment 2B, we found significant main effects of quadrant
type, F(1,22) = 15.45, p < .001, n,> = .41 and set size, F(2, 44) = 303.23, p <.001, ,> =
.93, and a significant interaction between quadrant type and set size. However, more
importantly, a significant interaction between quadrant type and experiment was found,
F(1,22)=9.64, p = .005, n,> = .31, which suggests that Experiment 1 where difficult
search trials were intermixed with easy trials showed a weaker cueing effect in difficult

HPQ than Experiment 2B where difficult search trials were presented in isolation. Other
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effects did not reach to significance, F's < 1. Figure 6 shows cueing effects in the testing

phase from Experiment 1 and Experiment 2.

Figure 6. Experiment 1 and Experiment 2 Cueing effects (RT in LPQ — RT in HPQ)
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Note: A. Cueing effects of easy HPQ in the testing phase in Experiment 1 and Experiment
2A. The cueing effects were comparable between two experiments. B. Cueing effects of
difficult HPQ in the testing phase in Experiment 1 and Experiment 2B. The cueing effect
in Experiment 2B was greater than that in Experiment 1. LPQ stands for low probability
quadrant and HPQ means high probability quadrant. Error bars show 95% confidence

interval.

Discussion

The results are clear and stand in contrast to Experiment 1. Whereas we found
asymmetric learning and generalization favoring the easy trials in Experiment 1, we now
found robust learning and generalization in both the easy and difficult conditions of
Experiment 2. The prioritization of the HPQs during testing was equivalent for the easy
and difficult groups. These results rule out the account that learning is simply more
robust in easy than difficult search. It instead supports the notion that the intermixing of
easy and difficult trials during training creates a competition in which learning during
easy search dominates learning during difficult search.

Why does easy search dominate difficult search when they are placed in
competition with one another? We consider two possibilities: 1) the mere presence of
interleaved easy search interferes with learning during difficult search and generalization;
2) the learning that occurs during easy search interferes with learning during difficult
search. Experiment 1 cannot differentiate these possibilities because both easy and
difficult search were each paired with distinct HPQs. Experiment 3 was designed to

differentiate the two alternative accounts.
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Experiment 3

Here we test whether the mere presence of easy trials or the learning during easy
search could explain the weak learning during difficult trials in Experiment 1. To do so,
we returned to the Experiment 1 design but removed the easy HPQ during training; that
is, the target evenly appeared across four quadrants when easy search was presented. The
difficult HPQ remained. If learning of the easy HPQ dominated learning of the difficult
HPQ in Experiment 1, then we should observe a robust learning effect from difficult
search. Additionally, this learning should transfer to the intermediate trials of the testing
phase. If the mere presence of easy trials during training disrupts learning during difficult
trials, then we should find poor learning and generalization of the difficult HPQ, as we

found in Experiment 1.

Method
Participants. Another 12 participants (8§ women and 4 men; mean age 20.3 years)

participated in Experiment 3.

Materials, Design, and Procedure. All materials, design, and procedure were identical

with those in Experiment 1 except the following change: the target evenly (25%)

appeared across four quadrants in easy search (i.e., no easy HPQ).

Results
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RT. We removed 4.7% of trials as incorrect trials and RT outliers in Experiment 3.
Training phase. A search difficulty x quadrant type x set size ANOVA revealed two
significant main effects. That is, easy search was faster than difficult search, F(1, 11) =
88.38, p < .001, 7,2 = .89, and search became slower as set size increased, F(2, 22) =
90.32, p <.001, 7,2 = .89. There was a significant interaction between task and set size,
F(2,22) =12.37, p<.001, n,> = .53 (mean search slope for easy search: 88 msec/item,
mean search slope for difficult search: 204 msec/item). However, critically, we did not
find a significant difference between quadrant type, F < 1, which means the cueing effect
was not significant, #(11) = .55, p = .60, BF1o = .33 for the easy task; #(11) = .47, p = .65,

BF10 =.32. Also, any other interaction was not significant, ps > .17.

Testing phase. An ANOVA on quadrant type x set size showed a main effect of set size,

F(2,22)=122.47, p <.001, n,> = .92, however, neither that of quadrant type, F(1, 11) =
2.65, p=.13, > = .19, nor an interaction between quadrant type and set size, F < 1, was
significant which means the cueing effect was not significant, #11) = 1.63, p = .13, BF1o
= .81. It is important to exercise caution in interpreting the results, given the weak Bayes

Factor (BF) value. Figure 7 shows the RT results of Experiment 3.
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Figure 7. Experiment 3 RT results

Response Time (sec)

2.6 -
2.4 -
22 -
2.0 -
1.8
16
1.4 -
1.2 4

1.0 -

Training
Easy search Difficult search
5.0 -
o Difficult HPQ e Difficult HPQ
o LPQ 45 0OLPQ
)
%
— 4.0 {
(0]
£
|_
° 3.5 -
(%)
C
S 3.0
(7]
(0]
o
2.5
2.0 -
\ \ \ \ \ \
8 12 16 8 12 16
Set Size Set Size
Testing
Intermediate search
3.5
o Difficult HPQ
o LPQ
S 3.0
[0}
@
g 25
=
?
c 2.0
(@]
o
[2]
[0]
C 15
1.0 -
\ \ \
8 12 16
Set Size
B.

29



Asymmetric probability learning
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Note. A. RTs in the training phase separated on search difficulty, quadrant type, and set
size in Experiment 3. No learning of difficult HPQ was found in the training phase. B.
RTs in testing phase separated on quadrant type and set size in Experiment 3 No learning
of difficult HPQ was found in the testing phase. LPQ stands for low probability quadrant
and HPQ means high probability quadrant. C. Cueing effects (RTs in LPQ — RTs in
HPQ) of two search difficulty in training and testing phases. Error bars show 95%

confidence interval.

Discussion

Here, even though we removed the easy HPQ during easy search, we didn’t
observe significant learning or generalization of the difficult HPQ. In fact, though we
found significant prioritization of the difficult HPQ during the difficult trials of the
training phase in Experiment 1, we do not see it during the training phase in Experiment
3. For the testing phase, there is no significant prioritization of the HPQ. Overall, the

present experiment suggests that the mere presence of easy search trials during training
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interferes with the learning of the difficult HPQ during difficult search and generalization

to the intermediate trials of test.

Awareness of spatial probability

Previous studies have gauged the role of awareness in probability learning by
asking several recognition questionnaires at the end of the experiment. They found that
participants rarely reported their awareness of uneven target probability and the high
probable locations no better than chance level. (Jiang et al., 2014) showed that once the
bias has been established, the bias is automatic and not changed even when the
participants are explicitly told that the target evenly appeared across all quadrants during
the testing phase.

We also gauged the awareness of the target probability manipulation during the
task by asking participants to complete questionnaires after each experiment.

The first question was whether the location of the target was evenly distributed all
over the place or it was more often found in some places than others. Regardless of their
first answer, they were informed that the target more often appeared in some places than
in others and asked to choose one quadrant where the target most frequently appeared.
Although there were two high probable locations (easy and difficult HPQs) in
Experiment 1, participants were asked to choose one quadrant because we were curious

which HPQ they would pick. All recognition results are reported in Table 2.

Table 2. Recognition results. Each value indicates the number of participants.

Question 1 Even Uneven
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Easy-high | Difficult-high Low Easy-high | Difficult-high Low
Question 2
probable probable probable probable probable probable
Expl 4 0 4 1 0 3
Exp2a 5 N/A 2 3 N/A 2
Exp2b N/A 4 4 N/A 3 1
Exp3 N/A 2 4 N/A 2 4

In all experiments, 29 out of 48 participants reported the target was evenly
distributed. Also, among the 19 participants who answered the target unevenly appeared,
only 9 participants (47.3%) chose one of the two HPQs. Among the 29 participants who
answered the target evenly appeared, 15 participants (51.7%) chose one of the HPQs.
Based on these numbers, the explicit awareness about target probability did not seem to
play a critical role in this study. However, considering that the questionnaires were
presented after the testing phase where the target was evenly distributed, the awareness of
high probable locations right after the training phase may have been higher than what we

measured (Giménez-Fernandez et al., 2020).

General Discussion

In this study, we set out to investigate how search difficulty impacts spatial
probability learning. We investigated context specificity of learning, as well as
asymmetries in the acquisition of learning and generalization of it to a novel context.

To review, in Experiment 1, we found strong learning and generalizability of easy

search and weak learning and negligible generalizability of difficult search when two
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search trials were randomly interleaved. These results show that easy search learning
dominates difficult search learning, which promotes greater generalizing to a novel
difficulty level. It is worth noting that interpreting the lack of generalizability of difficult
search learning in the training phase to the intermediate search in testing requires caution,
given the weak Bayes Factor (BFio = 0.35).

In Experiment 2, we ruled out an alternative that difficult search itself might
produce a weaker cueing effect than easy search in isolation, such that it could not
survive during testing. Indeed, we found a robust spatial bias of difficult search during
training and robust generalizability during testing, comparable with that of easy search in
isolation. These results show that the lack of learning and generalization from difficult
search found in Experiment 1 was due to competition from the intermixed easy trials.

Despite intentionally matching the number of HPQs in Experiments 1 and 2, with
two HPQs each, there was a notable difference: Experiment 1 had one 'difficult' HPQ,
akin to Experiment 3, whereas Experiment 2 featured two 'difficult’ HPQs. This
inconsistency raised the possibility that the quantity of HPQs might influence learning
effectiveness and, consequently, generalization in the testing phase. However, we
conducted a pilot study in which participants engaged in a difficult search task that was
identical to Experiment 2B, with the sole difference being the inclusion of only one
difficult-HPQ. The outcomes were similar to those of Experiment 2B, indicating that the
number of HPQs did not account for the observed differences across experiments.

Also, some might wonder why we chose a between-subject design for Experiment
2 instead of a within-subject design involving three blocks of easy-only search followed

by three blocks of difficult-only search, and vice versa. Previous studies have
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demonstrated that probability learning can be long-lasting and persistent, even after a
change in probability (Jiang et al., 2013; Golan & Lamy, 2023). Therefore, our choice
aimed to mitigate any potential lingering learning effects from the previous blocks (e.g.,
easy search blocks), which could occur with a within-subject design. Furthermore, we
considered that adopting a within-subject design might make it challenging to assess the
full extent of generalizability due to possible interference between these two types of
learning.

In Experiment 3, we ruled out the alternative that learning during easy search
specifically weakened learning of the difficult HPQ. We tested this alternative by
including easy trials without its HPQ. However, again, we saw neither learning during
training nor generalizability during testing. These results suggest that the lack of learning
from difficult search was not due to the competition for attention between two HPQs, but
due to the mere presence of easy search trials that were intermixed during training.

The absence of learning regarding difficult HPQ during training in Experiment 3,
where intermixed easy trials did not include any HPQ, is intriguing when compared to the
robust learning of difficult HPQ during training in Experiment 1, where intermixed easy
trials did include an easy HPQ. Based on these findings, we suggest that the lack of
generalization of difficult HPQ is not due to competition with easy HPQ. However, it
remains unclear why the presence of easy search trials with an even target distribution in
Experiment 3 interfered with the learning of difficult HPQ. We speculate that the ‘even’
distribution of targets in easy search in Experiment 3 might disrupt the probability
learning of difficult search by increasing the variability of signal to noise ratio (SNR)

signals (0% vs. 50% probability; Hong et al., 2022 and Jungé et al., 2007). In other
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words, participants might develop a stronger sense of "randomness" from the easy search,
potentially weakening the statistical learning of difficult search. However, this is a
speculative hypothesis that requires further investigation.

It is possible that the learning effect of difficult HPQ is fragile and rapidly
extinguishes with time, potentially leading to weaker generalizability in Experiment 1's
testing phase. Additionally, learning to prioritize difficult HPQ in Experiment 3's training
phase might require more time to develop and, therefore, occur later point. To investigate
this, we analyzed the learning effect in Experiment 1's testing phase and the
generalization effect in Experiment 3's training phase across five blocks to determine
whether there is any temporal discounting of generalization and late emergence of
learning, respectively. However, we observed neither a decrease in generalization in
Experiment 1's testing phase nor an increase in learning in Experiment 3's training phase.
Furthermore, when comparing the search RT for difficult HPQ with LPQ in the first
block of Experiment 1's testing and the last block of Experiment 3's training, the RTs did
not differ significantly. These results suggest that, at least, the learning of difficult HPQ is
not easily generalized, and learning of difficult HPQ does not easily emerge when
difficult search trials are intermixed with easy search trials with an even target
probability. It is worth noting that this analysis is exploratory, so we should be cautious
with our interpretation due to potentially low power. It is worth noting that this analysis is
exploratory, so we should be cautious with our interpretation due to potentially low

power.
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Overall, these three experiments suggest that prior experiences with easy search
more strongly influences the current search than prior experience with difficult search,
when the two levels of difficulty are intermixed.

An important question remains. Why do these two searches show different
intensity of learning and generalization? While further research will be needed to provide
a definitive answer, we offer a speculative account, which holds that difficult search
induces weaker reinforcement learning (or search habit) than easy search when they are
randomly intermixed. Jiang and colleagues (Jiang, 2018; Jiang & Sisk, 2019; Jiang,
Swallow, et al., 2014; Jiang, Won, et al., 2014; Salovich et al., 2018; for review, Jiang,
2018) proposed that in a search trial, successful target detection reinforces the preceding
sequence of attentional shifts, increasing the likelihood that they will be deployed again
during future search attempts. However, easy search is typically comprised of fewer and
faster attentional shifts until the target is found than difficult search (Williams &
Pollatsek, 2007; Zelinsky & Sheinberg, 1997). Thus, there is likely to be greater
correlation across trials among sequences of attentional shifts in easy search than difficult
search, which could facilitate the development of a search habit. This suggests that the
learning of difficult search, while robust in isolation, could be relatively fragile when
intermixed with other search conditions (even when they lack high probable locations).

We note that asymmetric generalizability depending on task difficulty has also
been found in the perceptual learning literature (reverse hierarchy theory; Ahissar &
Hochstein, 1997, 2004). Unlike the current form of learning investigated, perceptual
learning is characterized as improvements in a specific perceptual task (e.g., finding a

slightly tilted vertical line among vertical lines) after long intensive training and sensitive

36



Asymmetric probability learning

to the specific stimulus (e.g., vertical line; for review; Gibson, 1969). Ahissar and
Hochstein (1997, 2004) found after training in an easy perceptual task, participants
generalized their learning to a different stimulus (e.g., horizontal line) whereas after
training in a difficult perceptual task, the learning remained highly stimulus specific (e.g.,
only vertical line). Despite the differences between perceptual learning and the present
form of implicit learning, it is notable that both forms of learning exhibit similar results—
namely, asymmetric generalizability depending on the context of intermixing easy and
difficult search trials. Further work will be needed to determine whether a similar
mechanism may underlie these similar findings.

A recent study demonstrated a noteworthy slope effect in probability cueing,
revealing a shallow slope for the HPQ in contrast to the LPQ. This finding strongly
suggests a significant influence of probability on attentional allocation (Golan & Lamy,
2023). Unfortunately, the present studies yielded mixed results concerning the slope
effect. We hypothesized that the inconsistency of the slope effect in our study might be
attributed to the smaller sample size and, more importantly, the distribution of high
quadrants in the search displays. Our study featured two HPQs and two LPQs, deviating
from the one HPQ and three LPQs arrangement in Golan & Lamy (2023). This
difference, coupled with the potential impact of larger high-probable areas and more
search items, might account for the attenuated slope effect observed in our findings.
Subsequent studies are necessary to empirically investigate these speculations.

Also, although shorter RTs for the target in the HPQ likely indicate attentional
guidance toward probable locations, as suggested by previous eye-tracking studies (Jiang,

Won, & Swallow, 2014; Jones & Kaschak, 2012; Walthew & Gilchrist, 2006), it remains
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challenging to definitively exclude the alternative explanation that covert attention might
initially shift to the LPQs and then rapidly reject items in those locations, resulting in
shorter RTs. Further studies are necessary for more comprehensive investigations.

In conclusion, this study examined how past search experiences interact with each
other and which search experience influences the current search behavior using search
difficulty. We found that when easy search experiences and difficult search experiences
are mixed, the former show dominant learning over the latter and also are generalizable

to the current search.
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