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Abstract 

When performing novel tasks, we often apply the rules we have learned from previous, 

similar tasks. Knowing when to generalize previous knowledge, however, is a complex 

challenge. In this study, we investigated the properties of learning generalization in a 

visual search task, focusing on the role of search difficulty. We used a spatial probability 

learning paradigm in which individuals learn to prioritize their search toward the 

locations where a target appears more often (i.e., high probable location) than others 

(i.e., low probable location) in a search display. In the first experiment, during a training 

phase, we intermixed the easy and difficult search trials within blocks, and each was 

respectively paired with a distinct high probable location. Then, during a testing phase, 

we removed the probability manipulation and assessed any generalization of spatial 

biases to a novel, intermediate difficulty task. Results showed that, as training 

progressed, the easy search evoked a stronger spatial bias to its high probable location 

than the difficult search. Moreover, there was greater generalization of the easy search 

learning than difficult search learning at test, revealed by a stronger bias toward the 

former’s high probable location. Two additional experiments ruled out alternatives that 

learning during difficult search itself is weak and learning during easy search 

specifically weakens learning of the difficult search. Overall, the results demonstrate 

that easy search interferes with difficult search learning and generalizability when the 

two levels of search difficulty are intermixed.  
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Introduction 

 

We use past experience to improve our visual search performance, but doing so is 

not a trivial matter. Each unique visual search we engage is virtually never identical to 

previous searches, so how do we know when to generalize what we have learned? When 

we buy apples in our regular supermarket, we might have learned the probable location of 

the apple display. Will this information help or hurt us when we seek apples in a different 

supermarket?    

A long line of research has explored the non-conscious influences of long-term 

past experience on behavior (Nissen & Bullemer, 1987; Reber, 1967, 1989; Reber et al., 

1991; Rossetti & Revonsuo, 2000), with a growing number of studies focusing 

specifically on visual search (Chun & Jiang, 2003; Geng & Behrmann, 2005; Howard & 

Howard, 1997). This body of research paints the picture of a vast arrangement of implicit 

cognitive machinery that is ever-active, continuously monitoring environments in the 

world and robustly influencing our search behavior. However, much remains unknown 

about the generalizability of such learning phenomena. The scope and extent of learning 

generalizability is of great consequence in the practical world; what is the use of such a 

sophisticated cognitive mechanism if it over or under-generalizes across task conditions? 

In this study, we focus on search difficulty as a factor that may modulate 

generalizability. There are several reasons why we focus on this variable. From an 

ecological perspective, task difficulty may serve to differentiate distinct task contexts, in 

which separate behavioral approaches to the task may apply. Cognitive control research 

has demonstrated we have a dedicated neural system that is sensitive to task demands, 
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which can alert a person to adopt a different task processing mode than when the task is 

easy (Botvinick et al., 2001).  Specific to the domain of visual search, difficulty is a 

universal feature in every search task. Therefore, investigation of search difficulty may 

apply to many search behaviors. Also, the underlying mechanism of search difficulty has 

been thoroughly examined in the fundamental visual search literature (Duncan & 

Humphreys, 1989; Treisman & Gelade, 1980; Wolfe, 1994). Practically, search difficulty 

is easily manipulated by only minimal changes of search items, which helps us keep the 

task identical in various search difficulties (see Figure 1A). Suppose observers search for 

a letter T among many letters Ls. The search task difficulty depends on how similar the 

letter L looks to the letter T. As the offset of two lines of letter L is bigger; the search 

becomes harder. Regardless of the letter Ls’ shapes, the task is always “searching for a 

letter T quickly.”  

 This study is not the first one examining how search difficulty relates to learning 

generalizability. Several previous studies showed that implicit learning is generalizable 

across two search tasks having two different contexts (Hong et al., 2020; de Waard et al., 

2022) or two different levels of search difficulty – easy search to difficult search and vice 

versa (contextual cueing: Chun & Jiang, 1998; Jiang & Song, 2005; probability cueing: 

Jiang et al., 2014). For example, Jiang et al. (2014) trained participants in an easy (or 

difficult) search task in which the target T more often appeared in a specific location in a 

search display than any of other locations. As the experiment progressed, participants 

implicitly learned target location probabilities and found the target faster when it 

appeared in high probable locations vs. when it appeared in low probable locations, 

called probability cueing. After training, participants engaged in the same search task 
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during the testing phase. Here, the target was distributed evenly, while the distractors 

either became more akin to the target (resulting in a difficult search task) or diverged 

further from the target (yielding an easy search task). Nonetheless, participants 

consistently exhibited a bias toward the preceding high probable location, offering 

compelling evidence of the generalization of probability cueing across variations in task 

difficulty.  

While the previous studies examined whether experience with one search that has 

a fixed difficulty is transferred to a new search that has the same or a different level of 

difficulty, here we question whether observers learn specific difficulty-based task 

contexts or whether they generalize learning across them. In particular, we created 

distinct contingencies between probable target locations and task difficulty (e.g., difficult 

search trials are associated with probable targets in the upper left quadrant of the display 

while easy trials are associated with probable targets in the lower right). Will observers 

demonstrate learning specificity, in which they prioritize the relevant high-probable 

locations during visual search, depending on the task difficulty? Or, will they simply 

generalize the probability information across the two levels of difficulty and prioritize 

both high-probable quadrants similarly across both levels of task difficulty? Further, we 

question how such learned contingencies may transfer to novel search tasks, either with a 

neutral difficulty level or one matching one of the original tasks.  

 We adopted the same probability cueing paradigm as Jiang et al. (2014; see also 

Geng & Behrmann, 2005). Observers were shown a search display that contains a target 

T and several non-target Ls. During a training phase, to create distinct contingencies 

between search difficulty and high-probable target locations, we presented two types of 
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search trials during a training phase – easy and difficult – which were randomly 

intermixed. Unbeknownst to participants, the target T more frequently appeared in a 

specific quadrant (called “easy / high probable quadrant” hereafter, easy HPQ) during the 

easy search task and more frequently appears in another specific quadrant (called 

“difficult / high probable quadrant”, hereafter, difficult HPQ) during difficult search.  The 

other two quadrants are considered “low probable quadrants” (hereafter LPQ).  In a 

subsequent testing phase, we tested participants in an intermediate search, the difficulty 

of which was approximated to be in the middle of the difficulty levels of the two training 

tasks on the search difficulty scale. Using an intermediate search after two searches 

represents an attempt to equitably compare the respective influences from two training-

phase searches. 

 We examined learning during easy and difficult search when these conditions 

were intermixed during training, and we assessed whether one of these search types 

demonstrates stronger generalization than the other to the intermediate test trials 

(Experiment 1). To better understand the impact of intermixing the trials during training, 

we also examined learning and generalization for the easy and difficult conditions when 

they were completed in pure blocks (Experiment 2). Lastly, we tested whether having 

two competing quadrants or just intermixing the trials influences learning and 

generalizability for the difficult condition using only a difficult HPQ without an easy 

HPQ during training while two types of search trials were still intermixed (Experiment 

3).   

 

Experiment 1 
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 In Experiment 1, we randomly intermixed two types of search trials – easy search 

and difficult search – during training. Each search type had its own high-probable 

location, easy HPQ and difficult HPQ, respectively. Then, we presented an intermediate 

difficulty of search trials during testing, in which the target appeared with equal 

frequency across the four quadrants. This design allowed us to address several questions.   

First, can individuals learn and exploit the associations between search difficulty 

level and the relevant high-probable location in a context-specific fashion?  If so, then 

during training, when trials are intermixed, participants will selectively prioritize the easy 

HPQ during easy trials and the difficult HPQ during difficult trials. Otherwise, during 

training, participants will prioritize either or both HPQs similarly. 

Second, is there any asymmetry in the learning during easy and difficult search?  

If so, during the training phase, participants will show greater prioritization toward the 

easy or difficult HPQ during training.  

Third, is there an asymmetry in generalization of learning from easy vs. difficult 

search to the intermediate search during testing?  If so, then participants will show greater 

prioritization toward the easy or difficult HPQ during testing.  

 

Method 

Participants. A pre-determined sample size of 12 student participants (10 women and 2 

men; mean age 18.3 years) with normal or corrected-to-normal visual acuity, who were 

naïve to the purpose of the study, were used in all experiments. The sample size was 

determined based on the previous study (Jiang, Won, et al., 2014), which the current 
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paradigm was adopted from. While our sample size was somewhat limited, we employed 

a post-hoc power analysis based on prior studies, which consistently demonstrated a 

robust effect size in probability cueing. Specifically, to gauge if 12 participants produced 

a sufficient power, we conducted a power analysis for the difference between the high 

probable condition and low probable condition (i.e., probability cueing effect) using 

G*Power (Version 3.1). This analysis yielded .99 of power with two-tails and α = .05 

with sample size of 12. However, it is worth noting that post-hoc power analysis often 

produces less accurate estimates than pre-study calculations (Althouse 2021; Zhang et al., 

2019), requiring careful use. Participation was compensated with course credit. The Ohio 

State University IRB approved the study protocol.  

 

Materials. Participants were tested in a dimly lit room. Stimuli were presented on 24-inch 

LCD monitor (vertical refresh rate: 60 Hz; 1920 x 1080) and generated using MATLAB 

(www.mathworks.com), with Psychtoolbox extensions (Brainard, 1997; Kleiner et al., 

2007; Pelli, 1997).  Head position was not fixed, and visual angles are reported assuming 

a typical viewing distance of 60 centimeters. 

 

Stimuli. Eight, 12, or 16 search items were presented (1.02ºx1.02º), including one target 

(a white T rotated to the left or right), and seven, 11, or 15 distractors (white Ls rotated 

0º, 90º, 180º, or 270º) against a gray background. A set size manipulation was added to 

assess the effectiveness of our search difficulty manipulation (easy, intermediate, and 

difficult search). The search items' locations were randomly chosen from a 10x10 

invisible matrix (15.28ºx15.28º), with a constraint that each quadrant had an equal 
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number of items (two, three, or four items). Target and distractor orientations were all 

randomly selected with replacement on each trial, so the target identity and motor 

response did not correlate with any experimental variables. Search difficulty was 

manipulated by adjusting the offset of the junction between the two line segments 

forming the L: easy search contained a small offset (0.05°; 2 pixels), the intermediate 

search had a medium offset (0.15°; 6px), and difficult search had a large offset (0.26°; 

10px).  Larger offsets increased the similarity between the Ls and Ts, thus increasing 

search difficulty (Duncan & Humphreys, 1989, see Figure 1A).  

 

Design. After 12 practice trials, each participant completed a 360-trial training phase, 

followed by a 360-trial testing phase. In the training phase, easy and difficult search trials 

were randomly but equally intermixed. Among the easy search trials, the target T more 

frequently appeared in one quadrant than any of the other three quadrants (50% in easy 

HPQ vs. 16.7% in each of the other three quadrants).  Among the difficult search trials, 

the target T more frequently appeared in one quadrant than any other three quadrants 

(50% in difficult HPQ vs. 16.7% in each of the other three quadrants).  Note that easy 

HPQ and difficult HPQ were never the same. In the testing phase, only intermediate 

search trials were presented, in which the target T now appeared equally often in all four 

quadrants (i.e., 25% per quadrant). In the training phase, three factors – two types of 

search (easy and difficult search), three types target location (easy HPQ, difficult HPQ, 

and LPQ), and set size (8, 12, and 16) – were all orthogonally counterbalanced and 

randomly intermixed during the experiment. The two HPQ (easy HPQ and difficult HPQ) 
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were counterbalanced across participants but were held constant for a given participant. 

Participants were not informed of the target’s spatial distribution. 

 

Procedure. Each trial began with the presentation of a small white square (0.51°x0.51°), 

whose position was randomly jittered within a range of .77º both vertically and 

horizontally from the center of the monitor and initiated by a mouse click on the jittered 

square, which required eye-hand coordination and enforced fixation at the center before 

the search began. After the mouse click, the screen was blank for 500-msec, after which 

the search display appeared, containing eight, 12, or 16 items. Participants were asked to 

report the orientation of the target T’s stem (left or right) using computer keyboard. 

When participants responded to the target T’s orientation, auditory feedback was given 

(three rising tones for 300-ms for a correct response; a low-tone buzz for 200-msec for an 

incorrect response). To discourage incorrect responses, participants were presented with a 

2-sec blank screen following errors. After 720 main search trials (both training and 

testing), participants were asked to answer two recognition questions that appeared on the 

screen. The first question asked whether the target was evenly or unevenly distributed 

across all four quadrants. Regardless of the first answer, a message informed participants 

that the target was unevenly distributed, and the second question asked them to select one 

quadrant where the target more often appeared. The task took approximately 1 hour. 

Figure 1B shows a schematic procedure of Experiment 1. All data have been made 

publicly available via OSF and can be accessed at 

https://osf.io/3jy68/?view_only=855f727c076a43d89da1e211b1c3b2d8. 
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Exp.1 99.4 99.4 99.2 96.1 96.1 96.3 98.8 98.3 97.7 

Exp.2a 98.9 N/A 98.5 N/A 97.6 N/A 96.4 

Exp.2b  N/A 97.8 97.9 N/A 98.4 98/1 

Exp.3 N/A 98.1 98.3 N/A 95.6 94.7 N/A 96.5 97.5 

 

RT. We removed 3.8% of trials from RT analyses as incorrect trials and RT outliers 

(trials with RTs slower than 3SD above each individual's mean). When the assumption of 

sphericity was violated (p < .05), Greenhouse-Geisser correction was applied. 

 

Training phase.  

A search difficulty (easy search, difficult search) x quadrant type (easy HPQ, 

difficult HPQ, LPQ) x set size (8, 12, 16) ANOVA showed that RTs for easy search were 

considerably faster than in difficult search, F(1, 11) = 175.04, p < .001, hp
2 = .93, and a 

significant interaction between search difficulty and set size was also significant, F(2, 22) 

= 27.68, p < .001, hp
2 = .76, demonstrating that the difficulty manipulation was effective 

(mean search slope for easy search: 81 msec/item, mean search slope for difficult search: 

245 msec/item).  We also found main effects of quadrant type, F(2, 22) = 11.63, p = .002, 

hp
2 = .51, and set size, F(2, 22) = 156.32, p < .001, hp

2 = .93. The interaction between 

search difficulty and quadrant type was significant, F(2, 22) = 4.75, p = .045, hp
2 = .30. 

Quadrant type and set size didn’t interact each other, F(4, 44) = 1.33, p = .27. We didn’t 

find a significant 3-way interaction among search difficult, quadrant type, and set size, F 

< 1.  
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To characterize the significant interaction between search difficulty and quadrant 

type, we did a further pairwise t-test among the conditions of quadrant type in easy and 

difficult search tasks, separately. In the easy search, we found that the RT for the easy 

HPQ was significantly faster than that of the difficult HPQ, t(11) = 2.68, p = .02, d = .77, 

BF10 = 3.231, and also than that of the LPQ, t(11) = 2.92, p = .014, d = .84, BF10 = 4.49. 

However, the RT for the difficult HPQ was not faster than that for the LPQ, t(11) = .44, p 

= .667, d = .13, BF10 = .31. 

In the difficult search, we found that participants responded more rapidly to 

targets appearing in the easy HPQ than difficult HPQ, t(11) = 2.59, p = .025, d = .75, 

BF10  = 2.82, and also than that of the LPQ, t(11) = 3.17, p = .009, d = .92, BF10 = 6.50. 

The targets that appeared in the difficult HPQ were also found faster than the targets that 

appeared in the LPQ, t(11) = 3.293, p = .007, d = .95, BF10 = 7.77.  

 

Testing phase. A quadrant type x set size ANOVA revealed a significant main effect of 

quadrant type, F(2, 22) = 19.22, p < .001, hp
2 = .64, and set size, F(2, 22) = 100.73, p < 

.001, hp
2 = .90. Quadrant type and set size did not interact each other, F(4, 44) = 1.17, p = 

.34, hp
2 = .096. Taking a closer look at quadrant, a pairwise t-test showed that RTs to 

targets in the easy HPQ were faster than targets in the difficult HPQ, t(11) = 4.98, p < 

.001, hp
2 = 1.44, BF10 = 84.62, and the LPQ, t(11) = 5.10, p < .001, d = 1.47, BF10 = 

99.63. However, the RTs were not different for targets in the difficult HPQ and LPQ, 

t(11) = .69, p = .51, d = .20, BF10 = .35. Figure 2 shows the RT results of Experiment 1. 

	
1 We provided Bayes factors (BF), which quantify the relative likelihood of obtaining the observed data under the 

alternative hypothesis compared to the null hypothesis (BF10) (Rouder et al., 2009). 
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Figure 2. Experiment 1 RT result 

Training 

A.  

Testing 

B.   
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C.  

Note. A. RTs in the training phase separated on search difficulty, quadrant type, and set 

size in Experiment 1. In both searches, search RTs were the shortest for the target in 

Easy HPQ. In Easy Search, search RTs for target in difficult HPQ and that in LPQ were 

comparable. In Difficult Search, search RTs for target in difficult HPQ was shorter than 

that in LPQ. B. RTs in testing phase separated on quadrant type and set size in 

Experiment 1. Search RT for the target in easy HPQ was shorter than that in LPQ and 

Difficult HPQ, but search RT for the target in difficult HPQ was comparable with that in 

LPQ. LPQ stands for low probability quadrant and HPQ means high probability 

quadrant. C. Cueing effects (RTs in LPQ – RTs in HPQ) of two search difficulty levels in 

training and testing phases. Error bars show 95% confidence interval. 

 

Discussion 

There were three main findings in this experiment. First, there was a significant 

interaction between search difficulty and quadrant type, suggesting that prioritization to 

the different HPQs differed during easy and difficult search.   
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 Second, we found a clear asymmetry in the learning of HPQs: in both easy and 

difficult trials, the easy HPQ was prioritized more than the difficult HPQ. Thus, in the 

intermixed conditions during training, the easy trial condition produced stronger learning.   

Asymmetric learning has been noted in similar visual search paradigms, 

illustrating how one form of learning may overshadow or block another. For instance, 

Rosenbaum and Jiang (2013) observed that in the context of contextual cueing, scene-

based cues can overshadow array-based cues. Likewise, Kunar et al. (2013) showed that 

configural cues have the capacity to overshadow color cues within the same contextual 

cueing framework. 

We can conceive of two basic reasons for the asymmetry in search difficulty 

observed in Experiment 1. On the one hand, easy search simply produces stronger 

probability learning than difficult search. On the other hand, both search types can 

produce robust learning in isolation, but the easy search dominates difficult search in 

probability learning when the two are placed in competition with one another (as in the 

case of the intermixed trials of this experiment). We test these alternatives in Experiment 

2. 

Third, the generalization of learning to the intermediate trials of test was 

asymmetric. Given that learning was asymmetric during training, it may not be surprising 

that easy trials showed greater generalization during testing. Experiment 2 will test if 

easy and difficult search truly show asymmetric learning during training even in 

isolation. If we observe similarly robust learning in the easy and difficult trials during 

training, we can then suggest the asymmetric learning and generalization are due to 

“intermixed” trials of easy and difficult task.    
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Experiment 2 

 

Here, we assess the robustness of learning and generalization when the easy and 

difficult search trials are presented in isolation (i.e., not in competition with one another). 

Participants first performed a training phase containing blocks of only easy (Experiment 

2A) or difficult search (Experiment 2B). Like Experiment 1, each participant had two 

HPQs, but they were now both presented only in the context of a fixed level of difficulty 

during training. Then, for both Experiments 2A and 2B, participants completed a testing 

phase identical to Experiment 1, consisting of intermediate trials in which the target 

appeared equiprobably at all quadrants.   

 If learning and/or generalization is simply more robust for easy than difficult 

trials, we will observe greater learning for the easy than the difficult trials during training 

and/or stronger transfer of the easy HPQ to the intermediate trials of test than that of 

difficult HPQ. Alternatively, if easy and difficult learning and generalization are similarly 

robust in isolation, we will observe significant learning effects during training as well as 

comparable transfer to the intermediate trials of the testing phase in both search tasks.    

 

Method 

Participants. Another 12 participants (8 women, and 4 men; mean age: 18.6 years) 

participated in Experiment 2A; another 12 participants (6 females and 6 males; mean age: 

18.9 years) participated in Experiment 2B. 
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Materials, Design, and Procedure. All aspects of the experiment were the same as those 

of Experiment 1 except the following: we replaced difficult search trials with easy search 

trials in Experiment 2A (i.e., only easy search trials in the training phase), and easy 

search trials with difficult search trials in Experiment 2B (i.e., only difficult search trials 

in the training phase), which results in two easy HPQs in Experiment 2A, and two 

difficult HPQs in Experiment 2B (each HPQ has a target on 33% of trials, which is 

matched to Experiment 1).  

 

Results 

Experiment 2A  

RT. We eliminated 3.8% of trials in Experiment 2A as incorrect trials and RT outliers. 

Training phase. A quadrant type (easy HPQ and LPQ) x set size (8, 12, 16) ANOVA 

showed that participants found the target faster when it appeared in any of easy HPQ than 

when it appeared in any of LPQ, F(1, 11) = 24.50, p < .001, hp
2 = .69, that is, the cueing 

effect was significant, t(11) = 4.95, p < .001, BF10 = 81.14. Also, the participants made 

longer RTs as set size increased, F(2, 22) = 69.70, p < .001, hp
2 = .86. The two way 

interaction between quadrant type and set size was significant, F(4, 44) = 8.01, p =.002,  

hp
2 = .42.  

 

Testing. A quadrant type x set size ANOVA revealed that the target in any of easy HPQ 

was found faster than that in any of LPQs, F(1, 11) = 8.88, p = .013, hp
2 = .4, that is, the 

cueing effect was significant, t(11) = 2.98, p = .013, BF10 = 4.93. Also, the participants 

made longer RTs as set size increased, F(2, 22) = 86.39, p < .001, hp
2 = .89. The two-way 
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interaction between two factors was not significant, F(2, 22) = 1.71, p = .22,  hp
2 = .14. 

Figure 3 shows the RT results of Experiment 2A. 

 

 

 

 

 

 

 

Figure 3. Experiment 2A RT result 

      Training                           Testing 

A. B.  
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C.  

Note. A. RTs in the training phase separated on quadrant type and set size in Experiment 

2A. Search RT was shorter for the target in Easy HPQ than that in LPQ. B. RTs in testing 

phase separated on quadrant type and set size in Experiment 2A. Search RT for the target 

in easy HPQ was shorter than that in LPQ. LPQ stands for low probability quadrant and 

HPQ means high probability quadrant. C. Cueing effects (RTs in LPQ – RTs in HPQ) in 

training and testing phases. Error bars show 95% confidence interval. 

 

Experiment 2B 

RT. We removed 3.9% of trials in Experiment 2B as incorrect trials and RT outliers.  

Training phase. A quadrant type (difficult HPQs and LPQs) x set size (8, 12, 16) 

ANOVA revealed that participants found the target in any of difficult HPQs faster than 

that in any of LPQs, F(1, 11) = 7.20, p = .021, hp
2 = .40, that is, the cueing effect was 

significant, t(11) = 2.68, p = .021, BF10 = 3.22. Also, participants made longer RTs as the 

set size increased, F(2, 22) = 97.69, p < .001, hp
2 = .90. The two factors did not interact, 

F < 1. 
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Testing phase. A quadrant type x epoch ANOVA showed that, unlike Experiment 1, 

participants found the target faster when it appeared in any of the difficult HPQs than in 

any of the LPQs, F(1, 11) = 19.43, p = .001, hp
2 = .64, that is, the cueing effect was 

significant, t(11) = 4.41, p = .001, BF10 = 38.47. The RTs were longer as the set size 

increased, F(2, 22) = 158.45, p < .001, hp
2 = .94. The two factors did interact each other, 

F(2, 22) = 4.12, p = .030, hp
2 = .27. Figure 4 shows the RT results of Experiment 2B. 

 

 

 

 

 

 

 

 

Figure 4. Experiment 2B RT result 

Training             Testing 
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A. B.  

C.  

Note. A. RTs in the training phase separated on quadrant type and set size in Experiment 

2B. Search RT was shorter for the target in difficult HPQ than that in LPQ. B. RTs in 

testing phase separated on quadrant type and set size in Experiment 2B. Search RT for 

the target in difficult HPQ was shorter than that in LPQ. LPQ stands for low probability 

quadrant and HPQ means high probability quadrant. C. Cueing effects (RTs in LPQ – 

RTs in HPQ) in training and testing phases. Error bars show 95% confidence interval. 

 

Experiment 2A vs. Experiment 2B. We compared the results of testing phase between 

Experiment 2A (easy search during training) and Experiment 2B (difficult search during 
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training). An quadrant type (HPQ, LPQ) x set size (8, 12, 16) x experiment (Experiment 

2A, Experiment 2B) ANOVA (quadrant type and set size as within-groups factors and 

experiment as between-group factor) revealed significant main effects of quadrant, F(1, 

22) = 27.12, p = .001, hp
2 = .55, set size, F(2, 44) = 222.82, p < .001, hp

2 = .91, and a 

significant interaction between quadrant type and set size, F(2, 44) = 5.03, p = .019, hp
2 = 

.19. However, there was no main effect of the experiment, and more importantly, no 

factor interacted with experiment, Fs < 1, which suggests that we did not find any 

statistically significant difference in cueing effect during testing between the two 

experiments. Figure 5 shows cueing effects in the testing phase from Experiment 2. 

 

Figure 5. Experiment 2 Cueing effect (RT in LPQ – RT in HPQ) 

 

 

Note. Cueing effects of the testing phase in Experiment 2A containing only easy search 

trials during training (Easy HPQ) and Experiment 2B containing only difficult search 

Exp 2A Exp 2B

n.s.

Intermediate search

Testing
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trials during training (Difficult HPQ). The cueing effects were comparable between two 

experiments. LPQ stands for low probability quadrant and HPQ means high probability 

quadrant. Error bars show 95% confidence interval. 

 

 

Experiment 1 vs. Experiment 2.  We next compared the results of testing phase between 

Experiment 1 and Experiment 2 by conducting a quadrant type (easy HPQ, LPQ) x set 

size x experiment (Experiment 1, Experiment 2A) ANOVA and a quadrant type (difficult 

HPQ, LPQ) x set size x experiment (Experiment 1, Experiment 2B) ANOVA. First, in 

comparison of cueing effect of easy HPQ, we found two significant main effects of 

quadrant type, F(1, 22) = 32.05, p < .001, hp
2 = .59 and set size, F(2, 44) = 166.77, p < 

.001, hp
2 = .88, but did not find any significant interaction effects, ps > .07. Especially, 

the lack of interaction between quadrant type and experiment suggests that easy HPQ 

produces a comparable cueing effect regardless of easy and difficult search trials 

intermixed or in isolation. Secondly, when comparing the testing phase between difficult 

HPQ in Experiment 1 and Experiment 2B, we found significant main effects of quadrant 

type, F(1, 22) = 15.45, p < .001, hp
2 = .41 and set size, F(2, 44) = 303.23, p < .001, hp

2 = 

.93, and a significant interaction between quadrant type and set size. However, more 

importantly, a significant interaction between quadrant type and experiment was found, 

F(1, 22) = 9.64, p = .005, hp
2 = .31, which suggests that Experiment 1 where difficult 

search trials were intermixed with easy trials showed a weaker cueing effect in difficult 

HPQ than Experiment 2B where difficult search trials were presented in isolation. Other 
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effects did not reach to significance, Fs < 1. Figure 6 shows cueing effects in the testing 

phase from Experiment 1 and Experiment 2.  

 

Figure 6. Experiment 1 and Experiment 2 Cueing effects (RT in LPQ – RT in HPQ) 

A.  

   B.  

Easy HPQ in Exp 1 Exp 2A

n.s.

Intermediate search

Testing

Difficult HPQ in Exp 1 Exp 2B

**

Intermediate search

Testing
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Note: A. Cueing effects of easy HPQ in the testing phase in Experiment 1 and Experiment 

2A. The cueing effects were comparable between two experiments. B. Cueing effects of 

difficult HPQ in the testing phase in Experiment 1 and Experiment 2B. The cueing effect 

in Experiment 2B was greater than  that in Experiment 1. LPQ stands for low probability 

quadrant and HPQ means high probability quadrant. Error bars show 95% confidence 

interval. 

 

Discussion 

The results are clear and stand in contrast to Experiment 1. Whereas we found 

asymmetric learning and generalization favoring the easy trials in Experiment 1, we now 

found robust learning and generalization in both the easy and difficult conditions of 

Experiment 2. The prioritization of the HPQs during testing was equivalent for the easy 

and difficult groups. These results rule out the account that learning is simply more 

robust in easy than difficult search. It instead supports the notion that the intermixing of 

easy and difficult trials during training creates a competition in which learning during 

easy search dominates learning during difficult search.  

Why does easy search dominate difficult search when they are placed in 

competition with one another? We consider two possibilities: 1) the mere presence of 

interleaved easy search interferes with learning during difficult search and generalization; 

2) the learning that occurs during easy search interferes with learning during difficult 

search. Experiment 1 cannot differentiate these possibilities because both easy and 

difficult search were each paired with distinct HPQs. Experiment 3 was designed to 

differentiate the two alternative accounts.  
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Experiment 3 

 

 Here we test whether the mere presence of easy trials or the learning during easy 

search could explain the weak learning during difficult trials in Experiment 1.  To do so, 

we returned to the Experiment 1 design but removed the easy HPQ during training; that 

is, the target evenly appeared across four quadrants when easy search was presented. The 

difficult HPQ remained.  If learning of the easy HPQ dominated learning of the difficult 

HPQ in Experiment 1, then we should observe a robust learning effect from difficult 

search.  Additionally, this learning should transfer to the intermediate trials of the testing 

phase. If the mere presence of easy trials during training disrupts learning during difficult 

trials, then we should find poor learning and generalization of the difficult HPQ, as we 

found in Experiment 1.   

 

Method 

Participants. Another 12 participants (8 women and 4 men; mean age 20.3 years) 

participated in Experiment 3. 

 

Materials, Design, and Procedure. All materials, design, and procedure were identical 

with those in Experiment 1 except the following change: the target evenly (25%) 

appeared across four quadrants in easy search (i.e., no easy HPQ).  

 

Results 
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RT. We removed 4.7% of trials as incorrect trials and RT outliers in Experiment 3. 

Training phase. A search difficulty x quadrant type x set size ANOVA revealed two 

significant main effects. That is, easy search was faster than difficult search, F(1, 11) = 

88.38, p < .001, hp
2 = .89, and search became slower as set size increased, F(2, 22)  = 

90.32, p < .001, hp
2 = .89. There was a significant interaction between task and set size, 

F(2, 22)  = 12.37, p < .001, hp
2 = .53 (mean search slope for easy search: 88 msec/item, 

mean search slope for difficult search: 204 msec/item). However, critically, we did not 

find a significant difference between quadrant type, F < 1, which means the cueing effect 

was not significant, t(11) = .55, p = .60, BF10 = .33 for the easy task; t(11) = .47, p = .65, 

BF10 = .32. Also, any other interaction was not significant, ps > .17.  

 

Testing phase. An ANOVA on quadrant type x set size showed a main effect of set size, 

F(2, 22) = 122.47, p < .001, hp
2 = .92, however, neither that of quadrant type, F(1, 11) = 

2.65, p = .13, hp
2 = .19, nor an interaction between quadrant type and set size, F < 1, was 

significant which means the cueing effect was not significant, t(11) = 1.63, p = .13, BF10 

= .81. It is important to exercise caution in interpreting the results, given the weak Bayes 

Factor (BF) value. Figure 7 shows the RT results of Experiment 3. 
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Figure 7. Experiment 3 RT results 

        Training 

A.   

               Testing 

B.	   
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C.  

Note. A. RTs in the training phase separated on search difficulty, quadrant type, and set 

size in Experiment 3. No learning of difficult HPQ was found in the training phase. B. 

RTs in testing phase separated on quadrant type and set size in Experiment 3 No learning 

of difficult HPQ was found in the testing phase. LPQ stands for low probability quadrant 

and HPQ means high probability quadrant. C. Cueing effects (RTs in LPQ – RTs in 

HPQ) of two search difficulty in training and testing phases. Error bars show 95% 

confidence interval. 

 

Discussion 

Here, even though we removed the easy HPQ during easy search, we didn’t 

observe significant learning or generalization of the difficult HPQ.  In fact, though we 

found significant prioritization of the difficult HPQ during the difficult trials of the 

training phase in Experiment 1, we do not see it during the training phase in Experiment 

3.  For the testing phase, there is no significant prioritization of the HPQ. Overall, the 

present experiment suggests that the mere presence of easy search trials during training 
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interferes with the learning of the difficult HPQ during difficult search and generalization 

to the intermediate trials of test. 

 

Awareness of spatial probability 

 Previous studies have gauged the role of awareness in probability learning by 

asking several recognition questionnaires at the end of the experiment. They found that 

participants rarely reported their awareness of uneven target probability and the high 

probable locations no better than chance level. (Jiang et al., 2014) showed that once the 

bias has been established, the bias is automatic and not changed even when the 

participants are explicitly told that the target evenly appeared across all quadrants during 

the testing phase.  

We also gauged the awareness of the target probability manipulation during the 

task by asking participants to complete questionnaires after each experiment.  

The first question was whether the location of the target was evenly distributed all 

over the place or it was more often found in some places than others. Regardless of their 

first answer, they were informed that the target more often appeared in some places than 

in others and asked to choose one quadrant where the target most frequently appeared. 

Although there were two high probable locations (easy and difficult HPQs) in 

Experiment 1, participants were asked to choose one quadrant because we were curious 

which HPQ they would pick. All recognition results are reported in Table 2.  

 

Table 2. Recognition results. Each value indicates the number of participants. 

Question 1 Even Uneven 
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Question 2 

Easy-high 

probable 

Difficult-high 

probable 

Low 

probable 

Easy-high 

probable 

Difficult-high 

probable 

Low 

probable 

Exp1  4 0 4 1 0 3 

Exp2a  5 N/A 2 3 N/A 2 

Exp2b  N/A 4 4 N/A 3 1 

Exp3  N/A 2 4 N/A 2 4 

 

In all experiments, 29 out of 48 participants reported the target was evenly 

distributed. Also, among the 19 participants who answered the target unevenly appeared, 

only 9 participants (47.3%) chose one of the two HPQs. Among the 29 participants who 

answered the target evenly appeared, 15 participants (51.7%) chose one of the HPQs. 

Based on these numbers, the explicit awareness about target probability did not seem to 

play a critical role in this study. However, considering that the questionnaires were 

presented after the testing phase where the target was evenly distributed, the awareness of 

high probable locations right after the training phase may have been higher than what we 

measured (Giménez-Fernández et al., 2020). 

 

General Discussion 

 

 In this study, we set out to investigate how search difficulty impacts spatial 

probability learning. We investigated context specificity of learning, as well as 

asymmetries in the acquisition of learning and generalization of it to a novel context.   

To review, in Experiment 1, we found strong learning and generalizability of easy 

search and weak learning and negligible generalizability of difficult search when two 
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search trials were randomly interleaved. These results show that easy search learning 

dominates difficult search learning, which promotes greater generalizing to a novel 

difficulty level. It is worth noting that interpreting the lack of generalizability of difficult 

search learning in the training phase to the intermediate search in testing requires caution, 

given the weak Bayes Factor (BF10 = 0.35). 

  In Experiment 2, we ruled out an alternative that difficult search itself might 

produce a weaker cueing effect than easy search in isolation, such that it could not 

survive during testing. Indeed, we found a robust spatial bias of difficult search during 

training and robust generalizability during testing, comparable with that of easy search in 

isolation. These results show that the lack of learning and generalization from difficult 

search found in Experiment 1 was due to competition from the intermixed easy trials. 

Despite intentionally matching the number of HPQs in Experiments 1 and 2, with 

two HPQs each, there was a notable difference: Experiment 1 had one 'difficult' HPQ, 

akin to Experiment 3, whereas Experiment 2 featured two 'difficult' HPQs. This 

inconsistency raised the possibility that the quantity of HPQs might influence learning 

effectiveness and, consequently, generalization in the testing phase. However, we 

conducted a pilot study in which participants engaged in a difficult search task that was 

identical to Experiment 2B, with the sole difference being the inclusion of only one 

difficult-HPQ. The outcomes were similar to those of Experiment 2B, indicating that the 

number of HPQs did not account for the observed differences across experiments. 

Also, some might wonder why we chose a between-subject design for Experiment 

2 instead of a within-subject design involving three blocks of easy-only search followed 

by three blocks of difficult-only search, and vice versa. Previous studies have 
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demonstrated that probability learning can be long-lasting and persistent, even after a 

change in probability (Jiang et al., 2013; Golan & Lamy, 2023). Therefore, our choice 

aimed to mitigate any potential lingering learning effects from the previous blocks (e.g., 

easy search blocks), which could occur with a within-subject design. Furthermore, we 

considered that adopting a within-subject design might make it challenging to assess the 

full extent of generalizability due to possible interference between these two types of 

learning. 

 In Experiment 3, we ruled out the alternative that learning during easy search 

specifically weakened learning of the difficult HPQ. We tested this alternative by 

including easy trials without its HPQ. However, again, we saw neither learning during 

training nor generalizability during testing. These results suggest that the lack of learning 

from difficult search was not due to the competition for attention between two HPQs, but 

due to the mere presence of easy search trials that were intermixed during training.   

The absence of learning regarding difficult HPQ during training in Experiment 3, 

where intermixed easy trials did not include any HPQ, is intriguing when compared to the 

robust learning of difficult HPQ during training in Experiment 1, where intermixed easy 

trials did include an easy HPQ. Based on these findings, we suggest that the lack of 

generalization of difficult HPQ is not due to competition with easy HPQ. However, it 

remains unclear why the presence of easy search trials with an even target distribution in 

Experiment 3 interfered with the learning of difficult HPQ. We speculate that the ‘even’ 

distribution of targets in easy search in Experiment 3 might disrupt the probability 

learning of difficult search by increasing the variability of signal to noise ratio (SNR) 

signals (0% vs. 50% probability; Hong et al., 2022 and Jungé et al., 2007). In other 
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words, participants might develop a stronger sense of "randomness" from the easy search, 

potentially weakening the statistical learning of difficult search. However, this is a 

speculative hypothesis that requires further investigation. 

It is possible that the learning effect of difficult HPQ is fragile and rapidly 

extinguishes with time, potentially leading to weaker generalizability in Experiment 1's 

testing phase. Additionally, learning to prioritize difficult HPQ in Experiment 3's training 

phase might require more time to develop and, therefore, occur later point. To investigate 

this, we analyzed the learning effect in Experiment 1's testing phase and the 

generalization effect in Experiment 3's training phase across five blocks to determine 

whether there is any temporal discounting of generalization and late emergence of 

learning, respectively. However, we observed neither a decrease in generalization in 

Experiment 1's testing phase nor an increase in learning in Experiment 3's training phase. 

Furthermore, when comparing the search RT for difficult HPQ with LPQ in the first 

block of Experiment 1's testing and the last block of Experiment 3's training, the RTs did 

not differ significantly. These results suggest that, at least, the learning of difficult HPQ is 

not easily generalized, and learning of difficult HPQ does not easily emerge when 

difficult search trials are intermixed with easy search trials with an even target 

probability. It is worth noting that this analysis is exploratory, so we should be cautious 

with our interpretation due to potentially low power. It is worth noting that this analysis is 

exploratory, so we should be cautious with our interpretation due to potentially low 

power. 
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Overall, these three experiments suggest that prior experiences with easy search 

more strongly influences the current search than prior experience with difficult search, 

when the two levels of difficulty are intermixed. 

 An important question remains. Why do these two searches show different 

intensity of learning and generalization? While further research will be needed to provide 

a definitive answer, we offer a speculative account, which holds that difficult search 

induces weaker reinforcement learning (or search habit) than easy search when they are 

randomly intermixed. Jiang and colleagues (Jiang, 2018; Jiang & Sisk, 2019; Jiang, 

Swallow, et al., 2014; Jiang, Won, et al., 2014; Salovich et al., 2018; for review, Jiang, 

2018) proposed that in a search trial, successful target detection reinforces the preceding 

sequence of attentional shifts, increasing the likelihood that they will be deployed again 

during future search attempts. However, easy search is typically comprised of fewer and 

faster attentional shifts until the target is found than difficult search (Williams & 

Pollatsek, 2007; Zelinsky & Sheinberg, 1997). Thus, there is likely to be greater 

correlation across trials among sequences of attentional shifts in easy search than difficult 

search, which could facilitate the development of a search habit. This suggests that the 

learning of difficult search, while robust in isolation, could be relatively fragile when 

intermixed with other search conditions (even when they lack high probable locations).    

We note that asymmetric generalizability depending on task difficulty has also 

been found in the perceptual learning literature (reverse hierarchy theory; Ahissar & 

Hochstein, 1997, 2004). Unlike the current form of learning investigated, perceptual 

learning is characterized as improvements in a specific perceptual task (e.g., finding a 

slightly tilted vertical line among vertical lines) after long intensive training and sensitive 
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to the specific stimulus (e.g., vertical line; for review; Gibson, 1969).  Ahissar and 

Hochstein (1997, 2004) found after training in an easy perceptual task, participants 

generalized their learning to a different stimulus (e.g., horizontal line) whereas after 

training in a difficult perceptual task, the learning remained highly stimulus specific (e.g., 

only vertical line). Despite the differences between perceptual learning and the present 

form of implicit learning, it is notable that both forms of learning exhibit similar results—

namely, asymmetric generalizability depending on the context of intermixing easy and 

difficult search trials. Further work will be needed to determine whether a similar 

mechanism may underlie these similar findings. 

A recent study demonstrated a noteworthy slope effect in probability cueing, 

revealing a shallow slope for the HPQ in contrast to the LPQ. This finding strongly 

suggests a significant influence of probability on attentional allocation (Golan & Lamy, 

2023). Unfortunately, the present studies yielded mixed results concerning the slope 

effect. We hypothesized that the inconsistency of the slope effect in our study might be 

attributed to the smaller sample size and, more importantly, the distribution of high 

quadrants in the search displays. Our study featured two HPQs and two LPQs, deviating 

from the one HPQ and three LPQs arrangement in Golan & Lamy (2023). This 

difference, coupled with the potential impact of larger high-probable areas and more 

search items, might account for the attenuated slope effect observed in our findings. 

Subsequent studies are necessary to empirically investigate these speculations. 

Also, although shorter RTs for the target in the HPQ likely indicate attentional 

guidance toward probable locations, as suggested by previous eye-tracking studies (Jiang, 

Won, & Swallow, 2014; Jones & Kaschak, 2012; Walthew & Gilchrist, 2006), it remains 
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challenging to definitively exclude the alternative explanation that covert attention might 

initially shift to the LPQs and then rapidly reject items in those locations, resulting in 

shorter RTs. Further studies are necessary for more comprehensive investigations. 

In conclusion, this study examined how past search experiences interact with each 

other and which search experience influences the current search behavior using search 

difficulty. We found that when easy search experiences and difficult search experiences 

are mixed, the former show dominant learning over the latter and also are generalizable 

to the current search. 
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