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In the last quarter of a century, algebraic statistics has established itself as an expanding field which uses

multilinear algebra, commutative algebra, computational algebra, geometry, and combinatorics to tackle

problems in mathematical and computational statistics. These developments have found applications in a

growing number of areas, including biology, neuroscience, economics, and social sciences.

Naturally, new connections continue to be made with other areas of mathematics and statistics. We

outline three such connections: to statistical models used in educational testing, to a classification problem

for a family of nonparametric regression models, and to phase transition phenomena under uniform

sampling of contingency tables. We illustrate the motivating problems, each of which is for algebraic

statistics a new direction, and demonstrate an enhancement of related methodologies.

1. Introduction

We illustrate three new research directions in algebraic statistics which share the following common

philosophy: they connect algebraic statistics to applied problems from another research area, rein-

terpret that problem, and illustrate that this new connection is effective toward solving a family of

challenges. The choice of the three sets of problems is not made by ranking, but rather by opportu-

nity: namely, in fall of 2023, the Institute for Mathematics and Statistics Innovation hosted a long

program Algebraic statistics and our changing world. The program included two-day working group

sessions motivated by a problem presented in the ªQuestions and Consulting seminarº. This paper

illustrates three of the new research directions resulting from these interactions. In the spirit of the

Oberwolfach Lectures on algebraic statistics [20, Chapters 6±7], each section of this survey is self

contained.

In Section 2, Yulia Alexandr, Yuqi Gu, Jiayi Li, and Jose Israel Rodriguez study the likelihood geometry

of a statistical model motivated by cognitive diagnosis of latent skills in educational and psychological

measurement. A Bless model is a discrete statistical model with latent variables. Bless is an acronym

for a ªbinary latent clique star forest.º Identifiability of these models have been previously established

[26; 27] and reparametrizations have leveraged tools from algebraic statistics. The new direction here is

to study the likelihood geometry of the models for the statistical inference using maximum likelihood
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estimation. Since the Bless model can serve as a building block for identifiable deep generative models

with multiple latent layers [28], studying the likelihood geometry of the Bless model can pave the way

for a deeper understanding of these modern powerful generative models.

In Section 3, Maize Curiel, Sameer Despande, Joe Johnson and Bryson Kagy make progress toward

identifying (nearly) equivalent regression trees, which represent piecewise constant step functions (see

Figure 1). The new direction aims to leverage ideas from algebraic statistics and combinatorics to improve

the Bayesian additive regression trees (BART) [13] model for nonparametric regression.

In Section 4, Miles Bakenhus, Elizabeth Gross, Max Hill, Vishesh Karwa, Hanbaek Lyu, and Sonja

PetroviÂc study phase transitions problems on contingency tables through the lens of algebraic statistics.

The motivating problem is the appearance of a sharp phase transition in the estimability of the uniform

distribution on the space of tables by the hypergeometric distribution. The threshold for this phase transition

is expressed as a condition on the margins of the table, and has been solved for the two-dimensional case.

Interpreting the problem from the point of view of algebraic statistics, we propose the generalization

of this phenomenon to multiway tables and partially solve the problem for the three-dimensional case.

The two distributions are not only combinatorially interesting, but have statistical relevance: sampling

from the hypergeometric distribution is used for exact conditional tests of model fit, while sampling

from the uniform is needed for performing conditional volume tests under the multinomial sampling

scheme.

2. Likelihood geometry in a star-forest model with dependent binary latent variables

This section arose from the Questions and Consulting seminar by Yuqi Gu and subsequent discussions

amongst Yulia Alexandr, Jiayi Li, and Jose Israel Rodriguez.

2.1. Blessed models by parametrization. Consider the Binary Latent cliquE Star foreSt (Bless) model

[27] with the following parametrization. Let A ∈ {0, 1}K denote the latent random vector, and Y ∈ {0, 1}p
denote the observed random vector. We next describe the distribution of A and Y | A, respectively, to

complete the model specification. Assume the binary latent variables can be arbitrarily dependent on

each other with the following saturated parametrization:

P(A= α)= να for all α ∈ {0, 1}K ,

where
∑

α∈{0,1}K να = 1. Assume the observed Y1, . . . , Yp are conditionally independent given the

latent A, where each Y j has exactly one latent parent denoted by Apa( j) (here pa( j) ∈ {1, . . . , K }). In

other words, the bipartite graph from the latent A to the observed Y is a star-forest graph, and it follows

from the conditional independence property of the graphical model that

P(Y j | A)= P(Y j | Apa( j)).

Parametrize the conditional distribution of Y j | Apa( j) as follows:

P(Y j = 1 | Apa( j) = 1)= θ j,+,

P(Y j = 1 | Apa( j) = 0)= θ j,−.
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Based on the above assumptions, the marginal distribution of the observed random vector Y can be written

as: for all y ∈ {0, 1}p, it holds that

P(Y = y)=
∑

α∈{0,1}K
P(A= α)

p∏

j=1

P(Y j | A= α)

=
∑

α∈{0,1}K
να

p∏

j=1

P(Y j | Apa( j) = αpa( j))

=
∑

α∈{0,1}K
να

p∏

j=1

[
θ
αpa( j)

j,+ θ
1−αpa( j)

j,−
]y j

[
(1− θ j,+)

αpa( j)(1− θ j,−)
1−αpa( j)

]1−y j
.

We consider the following inequality constraints on the parameters 2 = {θ j,+, θ j,− : j ∈ [p]} and

ν = (να : α ∈ {0, 1}K ):
θ j,+ > θ j,− for all j ∈ [p],
να > 0 for all α ∈ {0, 1}K .

It is known that when each latent variable Ak has exactly two observed variables as children, the model

parameters 2 and ν are generically identifiable [27]. More specifically, in this case, {θ j,+, θ j,−} are

identifiable if and only if Ak is not independent from (A1, . . . , Ak−1, Ak+1, . . . , AK ) (i.e., parameters να

satisfy certain binomial inequalities). The arbitrary dependence allowed among the K latent variables

makes the Bless model an expressive modeling tool, and also makes it possible to extend it to identifiable

deep generative models with multiple latent layers.

Given N i.i.d. observed vectors { y1, . . . , yN } in a sample, the MLE (2̂, ν̂) is defined as the maximizer

of the likelihood function
∏N

i=1 P(Y = yi | 2, ν). The identifiability result stated above has a nice

consequence that the maximum likelihood estimator (MLE) of parameters (2, ν) is statistically consistent

as N →∞; see, e.g., [29, Proposition 3.4]. However, given a finite sample of size N , the properties

of the MLE are not well understood. Moreover, the computation of MLE is often through the iterative

EM algorithm, which is sensitive to parameter initialization. Relevant references in algebraic statistics

include [2; 3; 22; 40].

2.2. Likelihood geometry of Blessed models. Let n be the dimension of the ambient space of the

model M, i.e., M⊆ C
n . The maximum likelihood (ML) degree [42, Chapter 7] of an algebraic statistical

model M is the number of complex critical points of ℓu on the Zariski closure of M for generic data

u ∈1n−1. The ML degree measures the algebraic complexity of maximum likelihood estimation.

2.2.1. A first example and many states.

Example 1. Consider the Blessed model when K = 2, given by the graph

a

b

c

d
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where all random variables are binary. The model has dimension 11 inside 115. Its parametrization is

given by

pi j,kl = ν00 ai0 b j0 ck0 dl0+ ν10 ai1 b j1 ck0 dl0+ ν01 ai0 b j0 ck1 dl1+ ν11 ai1 b j1 ck1 dl1,

where

ai j =P(Y0 = i |α0 = j), bi j =P(Y1 = i |α0 = j), ci j =P(Y0 = i |α1 = j), di j =P(Y1 = i |α1 = j),

and pi j,kl are the coordinates of the image space.

The below code computes the implicit description of the model, utilizing bounded-degree Gröbner

basis computations in Macaulay2:

R=QQ[v_(0,0)..v_(1,1),a_(0,0)..a_(1,1),b_(0,0)..b_(1,1),c_(0,0)..c_(1,1),

d_(0,0)..d_(1,1), p_(0,0,0,0)..p_(1,1,1,1), MonomialOrder => Eliminate 20]

probabilities=toList(p_(0,0,0,0)..p_(1,1,1,1))

par = (i,j,k,l)->(

summ=0;

for m from 0 to 1 do (

for n from 0 to 1 do (

s=v_(m,n)*a_(i,m)*b_(j,m)*c_(k,n)*d_(l,n);

summ=summ+s;

););

return summ;)

gs={}; for p in probabilities do gs=append(gs, p-par((baseName p)#1));

G=ideal(gs); time I=ideal(selectInSubring(1,gens gb(G,DegreeLimit=>15)))

codim I

Checking the codimension of the resulting ideal, we find that the model is described by sixteen cubics.

Moreover, this model is precisely the 2-mixture of the 4× 4 independence model. This can be seen by

realizing the parametrization as a product of a 4× 2 matrix, 2× 2 matrix, and 2× 4 matrix, as follows:




p00,00 p00,01 p00,10 p00,11

p01,00 p01,01 p01,10 p01,11

p10,00 p10,01 p10,10 p10,11

p11,00 p11,01 p11,10 p11,11


=




a00 b00 a01 b01

a00 b10 a01 b11

a10 b00 a11 b01

a10 b10 a11 b11




[
ν00 ν01

ν10 ν11

]



c00 d00 c01 d01

c00 d10 c01 d11

c10 d00 c11 d01

c10 d10 c11 d11




T

Implicitly, the model is known to be described by all sixteen 3×3 minors of the matrix of joint prob-

abilities (pi j,kl), which confirms our earlier computations. Its ML degree is 191; it was computed in [30].

2.2.2. Implicit equations for general quartet trees and Blessed cherry orchard models. We are interested

in the generalization of Example 1, where K binary latent variables form a complete graph, and each

latent variable is adjacent to two n-category observed variables. Let Yi1 and Yi2 be the observed variables

adjacent to the latent variable Ai . We will refer to these models as Blessed cherry orchard models, denoted
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by MK ,n . Let T = (νi1...iK
) denote the K -way 2×· · ·×2 tensor. For each i ∈ [K ], we will let Mi denote

the n2× 2 matrix with the two columns

M
( j)

i =
[
P(Yi1 = ℓ1|αi = j) ·P(Yi2 = ℓ2|αi = j)

]
ℓ∈[n]2, one for each value of j = 0, 1.

Note that the parametrization of the model MK ,n can be realized as

pi1...iK
= νi1...iK

·M (i1)

1 ⊗M
(i2)

2 ⊗ · · ·⊗M
(iK )
K .

Therefore, MK ,n is the model of K -way n2 × n2 × · · · × n2 tensors with multilinear rank at most

(2, 2, . . . , 2). Its equations are just minors of flattenings, similar to Example 1. On the other hand,

mixtures of two independence models correspond to border rank at most two matrices, and their equations

are much more subtle. Invariants for these cases can be found in [34; 37].

Similarly, when the observed variables have a different number of states, the resulting models are

multilinear rank (2, 2, . . . , 2) tensors of different size. A recursive formula can be derived for these

models by the results in [38, Section 4].

2.2.3. EM algorithm for Blessed cherry orchard models. The EM algorithm is the standard method for

maximizing the likelihood function on Blessed models. Fixed points of the EM algorithm (Algorithm 1;

also see Algorithm 1 in [27]) on the Blessed cherry orchard model refer to the set of all points

Algorithm 1. Expectation-maximization algorithm.

Data: Observation data Y , initial parameters 2(0), ν(0).

Result: Estimated parameters 2̂, ν̂.

Input: Convergence threshold ϵ.

2←2(0);

ν← ν(0);

t← 0;

repeat

t← t + 1;

E-step: Calculate the expected value of the latent variables;

Q(2|2(t−1))← EA|Y ,2(t−1),ν(t−1)

[
log

∏N
i=1 P(Y = yi |2, ν)

]
;

Q(ν|ν(t−1))← EA|Y ,2(t),ν(t−1)

[
log

∏N
i=1 P(Y = yi |2, ν)

]
;

M-step: Find the parameters that maximize this quantity;

2(t)← arg max2 Q(2|2(t−1));

ν(t)← arg maxν Q(ν|ν(t−1));

Check for convergence;

if ∥2(t)−2(t−1)∥< ϵ and ∥ν(t)− ν(t−1)∥< ϵ then

break;

until convergence
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(2∗, ν∗) where

2∗ = arg max
2

EA|Y ,2∗,ν∗
[

log

N∏

i=1

P(Y = yi |2∗, ν∗)
]
,

ν∗ = arg max
ν

EA|Y ,2∗,ν∗
[

log

N∏

i=1

P(Y = yi |2∗, ν∗)
]
.

Maximizing the log-likelihood on MK ,n is a nonconvex optimization problem. The output of the EM

algorithm (2∗, ν∗), with respect to any initialization either lies in the relative interior or on the model’s

boundary. If (2∗, ν∗) is in the relative interior then (2∗, ν∗) is a critical point of the log-likelihood

function and the number of such points is counted by the ML degree. If (2∗, ν∗) is on the boundary

then (2∗, ν∗) is generally not a critical point of the log-likelihood requires studying the ML degree of

boundary components like in [33].

2.3. Remaining open questions. The following open questions about the model and the likelihood

geometry are of interest. First, note that the Blessed models we have considered so far have high ML

degrees, so there is no closed-form MLE. However, if one imposes symmetries like in [30, Section 3]

then closed formulas may be derived.

Question 2. Are there any other statistically meaningful restrictions that could guarantee closed-form

MLE?

For instance, when entries of the data are zero, this causes the 191 critical points to be partitioned into

sets according to their supports. This was previously explored in [25, Section 4.3] under the guise of ML

tables. A specific challenge problem is to characterize the ML table for the Blessed model in Example 1.

Second, what properties does the EM algorithm have for the Blessed cherry orchard models? An

algebraic approach to this would be to characterize the EM fixed points of these models like in [33],

however we expect such a characterization to be very challenging.

Third, can we perform formal statistical hypothesis tests of the goodness-of-fit of the Bless model based

on the algebraic characterizations? One direction is to adapt the idea of the Monte Carlo goodness-of-fit

test developed for the stochastic block model (SBM) in [31] to the Bless model. We conjecture that such

an extension is promising because both SBM and Bless share the common features of

(a) having discrete observed and latent variables and

(b) characterizing the joint distribution of the observed and latent variables via an exponential family

distribution.

More specifically, one could calculate the χ2 distance between the marginal distribution of the observed

variables of the contingency tables in the fiber and the empirical marginal distribution based on data,

and use this distance as a test statistic. Another approach could be to properly sample from logarithmic

Voronoi cells [1] (as well as describe their boundary), as the notion of sufficient statistic is not defined for

models with latent variables.

Fourth, what is the relationship of Blessed models with mixtures of independence models? Finally,

can we determine the boundaries of the image of these models? Are there any nontrivial inequalities?
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There are results [40] in algebraic statistics where the two apparently different parametric models have the

same image up to Zariski closure. We see another example of this phenomenon in Section 2.2.2 between

Blessed cherry orchard models and of multilinear rank 2× 2× · · ·× 2 tensors.

Question 3. What can be said about the inequalities defining the Blessed cherry orchard model, and are

they different from those defining the model of multilinear rank 2× 2× · · ·× 2 tensors?

3. Identifying (nearly) equivalent regression trees

This section grew from the Questions and Consulting seminar by Sameer K. Deshpande and follow up

discussions with Maize Curiel, Joseph Johnson, and Bryson Kagy.

3.1. Introduction. Motivation. Consider the nonparametric regression problem: given n observations

of covariates x ∈ R
p and outcomes y ∈ R from the model y ∼N ( f (x), σ 2), we would like to estimate

the function f : Rp→ R. Bayesian additive regression trees [13] is a Bayesian sum-of-trees model that,

at a high-level, approximates f with a large ensemble of regression trees (i.e., piecewise constant step

functions). Usually, f is nonlinear and involves complicated high-order interactions. Such nonlinearities

and interactions are typically impossible to specify correctly a priori using a parametric model. Using

BART, however, users often obtain extremely accurate predictions of function evaluations along with

reasonably well-calibrated uncertainty intervals without prespecifying the functional form of f or tuning

several hyperpriors. The ease-of-use and generally excellent, tuning-free performance have made BART

a popular ªoff-the-shelfº tool to be used within larger modeling workflows.

Formally, BART works by simulating draws from a posterior distribution over tree ensembles using

Markov chain Monte Carlo. In each iteration of the sampler, individual trees are grown (by splitting an

existing leaf node into two new child nodes) or pruned (by collapsing two leaf nodes to their common

parent). It has been observed empirically Ð and recently demonstrated theoretically [32; 39] Ð that such

local moves result in extremely slow mixing. Intuitively, we might expect to achieve faster mixing by

making more radical changes to the tree structure. And this is indeed the case, at least empirically: [36] was

able to explore tree space more efficiently using a proposal mechanism that radically changed the overall

structure of the tree. At a high-level that proposal simultaneously permuted the order of decision rules

within a tree and added or removed new subtrees. Motivated by those results, we conjecture that one can

obtain faster mixing by directly transitioning between trees that provide (nearly) identical fits to the data.

3.1.1. Setting & notation. To motivate this idea, consider the slightly simpler setting in which we

approximate the function f (x) with a single binary regression tree and know the residual variance σ 2.

Formally, a regression tree is a pair (T,µ) consisting of

(i) a finite, rooted binary decision tree T containing several terminal or leaf nodes and several nonterminal

or decision nodes and

(ii) a collection µ of scalars, one for each leaf node in T.

Every nonterminal node in T is connected to two children nodes, a left child and a right child. Further,

associated to every nonterminal node is a decision rule of the form X j < c, where (X1, . . . , X p) is a

random vector taking on states in [0, 1]p and c ∈ (0, 1).
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Given a decision tree T and any point x = (x1, . . . , x p) ∈ [0, 1]p, we can trace a path from the root to

a leaf by following the decision rules. Specifically, starting from the root, whenever the path reaches a

decision rule X j < c, it proceeds to the left if x j < c and to the right otherwise. We will restrict attention

only to those decision trees that partition [0, 1]p in the sense that

(i) every leaf node is reached by the decision-following path of at least one x ∈ X and

(ii) the decision-following path of every x ∈ [0, 1]p reaches a single, unique leaf.

Given (T,µ) and a point x ∈ [0, 1]p, let ℓ(x; T ) denote the leaf reached by x’s decision-following path.

By associating each leaf of T with its own scalar, the regression tree (T,µ) represents a piecewise

constant function of [0, 1]p. Formally, we introduce the evaluation function g(x; T,µ)= µℓ(x), which

returns the element of µ associated with the leaf reached by x’s decision-following path. Additionally,

given N points x1, . . . , xN ∈ [0, 1]p let Iℓ(T )= {i : ℓ(xi ; T )= ℓ} contain the set of indices of the points

that reach leaf ℓ.

With this notation in hand, we can define the single-tree Bayesian model with known residual variance σ 2

yi |T,µ,∼N (g(xi ; T,µ), σ 2) for i = 1, . . . , N ,

µℓ|T ∼N (0, τ 2) for µℓ ∈ µ,

T ∼5(T ),

where σ, τ, ν, λ > 0 are fixed positive constants and 5(T ) is the decision tree prior used in [13].

Under this model, we can compute the marginal likelihood of the decision tree T in closed-form:

p( y|T )∝
∏

ℓ

exp{stuff depending only on Iℓ(T )’s & y’s}

Importantly, the marginal likelihood of T depends on the decision tree only through the partition of the

points {x1, . . . , xN } it induces. We say that two decision trees T and T ′ are equivalent if they induce the

same partition of {x1, . . . , xN }.
We study the following questions: given a single decision tree T and a collection of points x1, . . . , xN ∈
[0, 1]p, can we

(1) enumerate or characterize the equivalence class of trees that induce the exact same partition of the

points?

(2) sample uniformly from the set of trees inducing the same partition?

(3) enumerate or characterize the set of trees that induce partitions that are close (in some sense) to the

one induced by the tree?

(4) sample uniformly from the set of trees inducing nearly the same partition?

Resolving these questions will enable construction of more efficient MCMC sampling techniques for

fitting BART. Beyond the motivating Bayesian context, however, answering these questions will more

generally facilitate uncertainty quantification about tree models. As one example, suppose we fit a compli-

cated machine learning model (e.g., a deep neural network) to (x, y) data to obtain predicted outcomes ŷ.
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X1 < 0.7

X2 < 0.4

X1 < 0.5

X2 < 0.25

Figure 1. We can form trivially equivalent trees by perturbing decision boundaries. Here

the tree topology for both trees is the same, but the decision rules for the tree on the left

and right are different but they are equivalent because they differentiate the data points

in the same way.

X1 < 0.7

X2 < 0.4 X2 < 0.4

µ1

µ2

µ3

µ4

X2 < 0.4

X1 < 0.7 X1 < 0.7

Figure 2. For full decision trees with the same rule at each level, we can form equivalent

trees by permuting the decision rules across levels.

Even if the fitted model is difficult to interpret, we can nevertheless obtain a much more interpretable

approximation by training a regression tree model to the pairs (x, ŷ). The set of (nearly) equivalent trees

provides one avenue to quantify uncertainty about the interpretation of the original fitted model.

3.2. Preliminaries & special cases. Before proceeding, we verify that equivalent trees do exist generally:

given a tree T and set of points x1, . . . , xN , we can trivially obtain equivalent trees by moving the decision

boundaries between the data points; see Figure 1 for an example with p = 2.

Henceforth, we will focus instead on identifying equivalent trees that do not change the decision

boundaries. To this end, consider first the case where T is

(i) a full binary tree of depth D containing 2D leaf nodes and

(ii) the same decision rule is used at every decision node at depth d .

Given such a tree, we can form an equivalent tree by permuting the decision rules across the levels. Figure 2

shows an example of equivalent trees of depth D = 2 with p = 2 and the associated partition of [0, 1]2.

3.2.1. The p = 1 setting. Now suppose that p = 1 and that T contains L ≥ 3 leaf nodes and L − 1

decision nodes. In this case, finding equivalent trees is not as simple as permuting decision rules

across the levels of T . Notice, however, that we can form an equivalent tree by replacing subtrees

of T with equivalent subtrees (see Figure 3 for an example). To see that the two trees are equivalent,

notice that the original subtree partitions the interval [0, 0.5)= [0, 0.25)∪ [0.25, 0.5) and then partitions
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0 .1 .25 .5 .8 1

X < 0.5

X < 0.25

X < 0.1

X < 0.8

X < 0.5

X < 0.1

X < 0.25

X < 0.8

Figure 3. We can form equivalent trees by replacing the green subtree on the left with

the equivalent red subtree on the right. Doing so amounts to partitioning [0, 0.5) into

[0, 0.1), [0.1, 0.25), and [0.25, 0.5) in different orders.

[0, 0.25)= [0, 0.1)∪[0.1, 0.25). The equivalent subtree first partitions [0, 0.5)= [0, 0.1)∪[0.1, 0.5) and

then partitions [0.1, 0.5)= [0.1, 0.25)∪ [0.25, 0.5). Essentially, replacing a subtree with an equivalent

tree amounts to arranging the decision boundaries in that subtree in a different order.

The example of Figure 3 gives us a strategy for counting the number of equivalent trees. To this end,

suppose that T contains L − 1 internal, decision nodes and let 0< c1 < · · ·< cL−1 < 1 be the ordered

decision boundaries. For any collection of ℓ− 1 consecutive decision boundaries let Cℓ−1 count the

number of equivalent trees that contain ℓ− 1 decision nodes associated with those decision boundaries.

Immediately, we know that C̃ℓ−1 < Cℓ−1, the (ℓ− 1)-st Catalan number, which counts the total number

of binary trees with ℓ− 1 internal nodes.

Further suppose that we have enumerated all C̃ℓ−1 such trees for every collection of ℓ− 1 consecutive

boundaries with ℓ < L . We can form a new tree T ⋆ as follows:

(1) Initialize T ⋆ to be just the root node.

(2) Pick one decision boundary ck to associate to T ⋆’s root.

(3) Draw one of the C̃k−1 trees with k− 1 decision boundaries {c1, . . . , ck−1}. Call it T ⋆
L .

(4) Draw one of the C̃L−k−1 trees with L − k− 1 decision boundaries {ck+1, . . . , cL−1}. Call it T ⋆
R .

(5) Connect the roots of T ⋆, T ⋆
L and T ⋆

R so that T ⋆
L ’s root is the left child of T ⋆’s root and T ⋆

R’s root is

the right child of T ⋆’s root.

Using this process, we have

C̃L−1 ≥
L−1∑

k=1

C̃k−1C̃L−k−1.

A strong induction argument show that, in fact, C̃L−1=CL−1. So when p= 1, there are a Catalan number

of equivalent trees with the same number of leaf nodes. Further, given any tree with L leaf nodes, we can
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X < 0.5

X < 0.25

X < 0.1

X < 0.8

X < 0.25

X < 0.1 X < 0.5

X < 0.8

X < 0.8

X < 0.1

X < 0.25

X < 0.5

Figure 4. Three trees equivalent to the ones in Figure 3.

Figure 5. Extending the cut along x2 = 0.4 does not change the underlying partition of the data.

−→ −→

Figure 6. The associated trees that correspond to the extension in Figure 5. The rightmost

tree corresponds to permuting the root node with all nodes in the first level.

form every other equivalent tree with the same number of leaf nodes and decision boundaries. Figure 4

shows some examples with L = 5.

3.3. The p = 2 setting. Consider the partitions of [0, 1]2 and 10 data points on the left of Figure 5. Notice

that we can further partition the blue rectangle [0.7, 1]× [0, 1] into [0.7, 1]× [0, 0.4)∪ [0.7, 1]× [0.4, 1]
without changing the partition of the data points. That is, we can obtain the partition on the right by

ªextendingº the cut separating pink and yellow rectangles across through the blue rectangle; this extended

cut is highlighted in the partition on the right of Figure 5.

The left and right partitions shown in Figure 5 correspond, respectively, to the left and middle trees of

Figure 6. Notice further that the middle tree in Figure 6 has the same special form as discussed above: it is

a full binary tree with the same decision rule at all nodes at the same level. We can therefore form an equiv-

alent tree by permuting the decision rules across levels, yielding the tree on the right of Figure 6. Unlike

in the earlier examples, the left and right trees in Figure 6 represent different partitions of [0, 1]2: the left
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Figure 7. An example of a line which cannot be contracted. The right image cannot be

constructed via trees since the decision at the root must create a line spanning opposite

sides, but no such spanning line exists.

tree partitions the space into three rectangles while the right partitions it into four. However, because they

induce the same partition of the points Ð and hence, same likelihood values Ð we view them as equivalent.

To implement an MCMC algorithm, moves must be reversible. Hence it is worth noting that not only

can one extend lines in the box diagram, but also one can delete them. It is important when deleting a line,

that the resulting diagram still corresponds to a tree. In Figure 7, the right diagram does not correspond

to a tree. We conjecture that the condition for a diagram to correspond to a tree is that the diagram must

have at least one vertical or horizontal line that goes across the whole diagram, and this same condition

must hold recursively in each of the halves that this spanning line creates.

3.4. Next steps. In higher dimensions (i.e., p > 2), constructing equivalent trees is somewhat harder.

However, if the tree is a subtree of a full binary tree that uses the same decision at each node at a given

level, then we can still permute the decision rules across levels as in Figure 2. Similarly, if we can safely

extend or contract cuts as in Figure 5, then we can form equivalent trees in higher dimensions.

4. Phase transition in 3-way contingency tables

This section arose from the Questions and Consulting seminar by Hanbaek Lyu and subsequent discussions

amongst Miles Bakenhus, Elizabeth Gross, Max Hill, Vishesh Karwa, and Sonja PetroviÂc. The sharp

phase transition phenomenon relates to two distributions on the space of tables with fixed marginal totals,

also known as the fiber of a log-linear model with those marginals as sufficient statistics. In this problem,

the question is how well the hypergeometric distribution can approximate the uniform distribution on

the fiber. In the case of two-dimensional tables, the answer toggles between ªreally wellº and ªrather

poorlyº at a phase transition point that can be explained by a condition on the margins of the table. This

project translates the setup for the problem into the contingency table language used in algebraic statistics,

allowing us to extend the basic notions needed to generalize the results to multiway tables.

4.1. Introduction. Log-linear models for cross-classified categorical data Ð contingency tables Ð have

a long history in statistics [9; 21] and appear in a broad variety of applications including ecology, biology,

educational testing, and network science. These models were also some of the first studied in the modern

algebraic statistics literature that took off in the 1990s, leading to a vast literature on sampling using
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algebraic and hybrid techniques, testing model fit using exact conditional tests, likelihood geometry of

log-linear models, the existence of maximum likelihood estimators (MLEs), and connections to classical

graphical models and, more recently, colored graphical models. While there are many flavors and

variations of how contingency tables appear in the algebraic statistics literature, one typically studies

models on tables under the multinomial, Poisson, or product-multinomial sampling scheme. It is well

known that the MLEs are the same under all three sampling schemes; see, for example, [21, Chapter 3].

In this work we consider another sampling scheme, namely, geometric. This distribution makes a

significant appearance in another vast collection of literature on contingency tables, here referred to as ªthe

phase-transition literatureº, which is detailed in the next section. One common thread that appears in both

the categorical data analysis and phase transition literature is the use of zero-margin tables, commonly

referred to as moves, to sample the space of tables given fixed marginals. The algebraic statistics literature

derives collections of such moves called Markov bases using techniques in computational algebraic

geometry and combinatorial commutative algebra. Markov bases contain moves guaranteed to connect all

sets of tables for a given choice of margins. Markov bases are theoretically defined and studied for many

models and types of table margins (see [4] for a recent overview and [19] whose introductory section

reviews the early theoretical considerations and statistical applications).

The table margins are sufficient statistics when considering discrete exponential family models. This

space of tables with fixed values of sufficient statistics is called the fiber of the log-linear model. Sampling

fibers provides a bona fide algorithm for testing model goodness of fit of every such exponential family.

Fibers are reference sets for the sampling, while the desired distribution for the exact conditional test is the

conditional distribution of tables given the marginals. For the Poisson and multinomial sampling schemes,

this distribution is hypergeometric. On the other hand, the uniform distribution on the contingency tables

also plays a central role in testing for the presence of interactions in cooccurrence tables, particularly

cooccurrence (between species i and habitat j ) tables arising in ecology [14; 41; 24; 12]. In these contexts,

the uniform distribution subject to the margin is taken as a null hypothesis of no interaction among species

without any particular modeling assumption. Diaconis [16] uses the uniform distribution on the fiber for

conditional volume tests under the multinomial sampling scheme. Further, we will see in Section 4.3 that

if the cells follow a geometric distribution, then the log-linear model’s conditional distribution given the

set of margins is, in fact, uniform (see Section 4.3.2).

In the next section we focus on two-dimensional tables and discuss the previous work on phase

transitions related to uniformly sampling the space of tables given marginal totals. In Section 4.3 we

compute a starting set of examples for three-dimensional tables, and close with a discussion in Section 4.3.6

on connections to algebraic statistics.

4.2. 2-way contingency tables.

4.2.1. Phase transition in random two-way tables with given margins. Two-way contingency tables

(CTs) are m × n matrices of nonnegative integer entries with prescribed row sums r = (a1, . . . , am)

and columns sums c = (b1, . . . , bn) called margins, where by M(r, c) we denote the set of all such

tables. They are fundamental objects in statistics for studying dependence structure between two or more

variables and also correspond to bipartite multigraphs with given degrees and play an important role
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Figure 8. Left: contingency table with parameters n, δ, B and C . First ⌊nδ⌋ rows and

columns have margins ⌊BCn⌋, the last n rows and columns have margins ⌊Cn⌋. Right:

Limiting distributions of the entries in the uniform contingency table X in the subcritical

B < Bc = 1+
√

1+ 1/C , left, and supercritical B > Bc, right, regimes for thick bezels
1
2
< δ < 1. Geom(λ) denotes geometric distribution with mean λ.

in combinatorics and graph theory; see, e.g., [6]. Counting their number |M(r, c)| and sampling an

element from M(r, c) uniformly at random are two fundamental problems concerning CTs with many

connections and applications to other fields [10] (e.g., testing hypothesis on cooccurrence of species in

ecology [14]). A historic guiding principle to these problems is the independent heuristic, which was

introduced by I. J. Good as far back as 1950 [23]. The heuristic states that the constraints for the rows and

columns of the table are asymptotically independent as the size of the table grows to infinity. This yields

a simple yet surprisingly accurate formula that approximates the count |M(r, c)|. The independence

heuristic also implies the hypergeometric (or Fisher±Yates) distribution should approximate the uniform

distribution on M(r, c).

Both of these implications of the independent heuristic have been verified when the margins are constant

or have a bounded ratio close to one [11]. However, when the margins are far from being constant,

Barvinok [7] conjectured that there is a drastic difference between the uniform and hypergeometric

distribution on M(r, c). This was based on investigating CTs with what is known as Barvinok margin, a

symmetric linear margin that has two values wherein a vanishing fraction has the larger value. That is,

consider an n× n margin (r, c) where r = c ∈ N
n and the first ⌊nδ⌋ coordinates have value ⌊BCn⌋ and

the rest ⌊Cn⌋, where B ≥ 1, C > 0 and δ ∈ [0, 1) are parameters. Barvinok and Hartigan [8] showed that

the independent heuristic gives a large undercounting of CTs. The work of Dittmer, Lyu, Pak [17] and

Lyu and Pak [35] provided the first complete answer to this puzzle; CTs exhibit a sharp phase transition

when the heterogeneity of margins exceeds a certain critical threshold. For instance, the hypergeometric

distribution correctly approximates the uniform distribution for B < Bc = 1+
√

1+ 1/C , but does so

drastically differently for B > Bc (see Figure 8). Such a sharp phase transition gives a probabilistic

answer to the statistical question of why sampling a uniformly distributed CT is hard. This result settles
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Barvinok’s conjecture [7]
(
except for the special case of δ ∈

[
0, 1

2

])
. In [35], Lyu and Pak obtained a

similar phase transition result for CTs, this time from the perspective of the counting problem. Roughly

speaking, the rows and columns of CTs are asymptotically independent (and hence the independence

heuristic is correct) when the ratio B between the two margins is strictly less than the critical threshold Bc,

but suddenly they become positively correlated as soon as B exceeds Bc and the independence heuristic

gives exponential undercounting.

4.2.2. Barvinok’s typical table and the mechanism of phase transition. The key insight in [17; 35] is

that the uniformly random CT, say X , with given margins concentrates around a deterministic table

called the ªtypical tableº, a notion first introduced by Barvinok [7]. Roughly speaking, this is the m× n

real-valued table with margin (r, c) that maximizes a ªgeometric entropy functionº. More precisely,

let P(r, c) ⊆ R
mn
≥0 denote the transportation polytope for margin (r, c). For each X = (X i j ) ∈ P(r, c),

define a strictly concave function

g(X)=
∑

1≤i≤n, 1≤ j≤m

f (X i j ), where f (x)= (x + 1) log(x + 1)− x log x . (1)

The typical table Z ∈P(r, c) for M(r, c) is defined to be the unique maximizer of g among all real-valued

tables with margin (r, c):

Z = arg max
X∈P(r,c)

g(X). (2)

The underlying mechanism of the sharp phase transition of uniformly random CTs with Barvinok

margin (in Figure 8) established in [17; 35] is the sharp phase transition of the typical table Z , which can

be shown by analyzing how the solution of the strictly concave optimization problem (2) that defines the

typical table changes as one varies the margin.

Open problems. Here we state three open problems related to the phase transition problem.

Problem 4. The phase transition in uniformly random CTs with Barvinok margin (Figure 8) is established

for the ªthick bezelº case δ > 1
2
. Can one establish a similar phase transition for the ªthin bezelº case

0≤ δ ≤ 1
2
? (Phase transition in the typical table is established for all δ ∈ [0, 1]; cf. [17, Lemma 5.1].)

Problem 5. Can we show the phase transition of the typical table when the margins assume three or

more distinct values? For instance, three values An, Bn,Cn for margins for 3×3 block CT of size n×n,

phase transition in functions of B/A and C/A (see [17, Lemma 5.1]). In general, can one characterize all

phase transitions in typical tables with respect to margin?

Problem 6. Can one show a similar sharp phase transition behavior in [17] for multiway CTs? For

example, consider n×n×n contingency tensors with margins assuming two values BCn and Cn. Possible

approach: Develop a parallel ªtypical tensorº theory for uniformly random contingency tensors, and show

phase transition in typical tensors as one varies the margin. Use ªtransference principleº to derive the

behavior of uniformly random CTs from the underlying statistical model with independent entries.
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4.3. 3-way tables with plane-sum margins. In this section, we provide a first study for ongoing work on

sharp phase transition in 3-way contingency tables and Markov bases [5]. This includes the statement of

a preliminary result in sharp phase transition on 3-way plane-sum contingency tables (Theorem 8) and a

sketch of proof. For more details we refer the interested readers for the upcoming full paper [5].

For 3-way tables, one can define more than one log-linear model. Here we consider the model of

independence, which in log-linear model notation from [21] is given by the margins [1][2][3]. We will

refer to these margins as 1-margins, or plane-sums of the table. This model is decomposable and as such

is known to have a quadratic Markov basis [18]. In other words, the set of contingency tables Y = (Yi jk)

with fixed 1-margins Yi++, Y+ j+, and Y++k is connected by moves containing exactly two +1’s and

two −1’s, arranged in pairs of levels of the table so that the 1-margins are zero. It is worth noting that the

model of independence stands in stark contrast with the no-three-factor interaction model [21], in which

one uses 2-margins Ð line sums, rather than plane sums Ð as sufficient statistics. In that model, Markov

bases can be arbitrarily complicated [15].

4.3.1. The model of independence. Fix a base measure µ on Z≥0. For each exponential tilting parameter

θ ∈ R, define the exponentially tilted measure µθ by

dµθ

dµ
(x)= e−θx−ψ(θ), ψ(θ) := log

( ∞∑

k=0

e−kθµ(k)

)
, (3)

where ψ above is the log partition function. Let 2 := {θ : ψ(θ) <∞}, which is the set of exponential

tilting parameters that makes the tilted measure µθ a probability measure. Note that if θ ∈2 and X ∼µθ ,

ψ ′(θ)= Eµθ [X ] and ψ ′′(θ)= Varµθ (X) > 0. (4)

The primary example is when the base measure µ is the counting measure, in which case 2= (0,∞)
and µθ becomes the geometric distribution on nonnegative integers with success probability 1− e−θ ,

which we denote Geom(1− e−θ ):

P
(
Geom(1− e−θ )= k

)
= ekθ (1− e−θ ) for k = 0, 1, . . . (5)

= ekθ−ψ(θ). (6)

Note that in this case,

E
[
Geom(1− e−θ )

]
= ψ ′(θ)= e−θ

1− e−θ
= 1

eθ − 1
. (7)

Now define a model of n1×n2×n3 table Y = (Yi jk) with independent entries with marginal distribution

Yi jk ∼ µθi jk
, (8)

where θi jk is the exponential tilting parameter for the (i, j, k) entry. We further make a ªrank-1º assumption

to the model (8). That is, fix vector parameters α ∈ R
n1

≥0, β ∈ R
n1

≥0, and γ ∈ R
n1

≥0. Then we assume that

each exponential tilting parameter θi jk is given as the sum

θi jk = αi +β j + γk . (9)

In this case, we denote
Y = (Yi jk)∼ µα,β,γ . (10)
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This model is the hierarchical log-linear specification of the model of independence [9], whose sufficient

statistics are one-dimensional table marginals. To see this, we note that the model can be written in the

exponential family form as follows:

P({yi jk})=
∏

i jk

eyi jkθi jk (1− eθi jk ) (11)

= exp

(∑

i jk

yi jkθi jk −
∑

i jk

ψ(θi jk)

)
(12)

= exp

(∑

i

αi

(∑

jk

yi jk

)
+

∑

j

β j

(∑

ik

yi jk

)
+

∑

k

γk

(∑

i j

yi jk

)
−

∑

i jk

ψ(θi jk)

)
(13)

= exp

(∑

i

αi yi+++
∑

j

β j y+ j++
∑

k

γk y++k −
∑

i jk

ψ(θi jk)

)
. (14)

The final equation is in the exponential family form h(y) exp
(
t (y)T η(θ)−ψ(θ)

)
, where h(y) = 1

is the base measure, t (y)=
(
{yi++}n1

i=1, {y+ j+}n2

j=1, {y++k}n3

k=1

)
is the vector of sufficient statistics, and

η(θ)=
(
{αi }n1

i=1, {β j }n2

j=1, {γk}n3

k=1

)
is the vector of natural parameters.

4.3.2. Uniform conditional distribution on the space of tables. Fix vectors a ∈ Z
n1

≥0, b ∈ Z
n2

≥0, and c ∈ Z
n3

≥0

such that ∥a∥1 = ∥b∥1 = ∥c∥1 =: N , where N denotes the total sum. Define

T (a, b, c)=
{

X ∈ Z
n1×n2×n3

≥0

∣∣∣∣
X i++ = ai , X+ j+ = bi , X++k = ci

for all (i, j, k) ∈ [n1]× [n2]× [n3]

}
, (15)

which is the set of all 3-way contingency tables with plane-sum margin (a, b, c). This set is called the

fiber of the given marginal counts under the model of independence.

The probability of Y conditional on satisfying the margin (a, b, c) is uniform over T (a, b, c). To see

this, note that for each X = (xi jk) ∈ T (a, b, c), the log likelihood of observing X under the Y -model is

log P(Y = X)−
∑

i, j,k

logµ(xi jk) (16)

= (αi +β j + γk)−ψ(αi +β j + γk) (17)

=
∑

i

xi++αi +
∑

j

x+ j+β j +
∑

k

x++kγk −
∑

i, j,k

ψ(αi +β j + γk) (18)

=
∑

i

aiαi +
∑

j

biβ j +
∑

k

ckγk −
∑

i, j,k

ψ(αi +β j + γk) (19)

=: ℓ(a,b,c)(α, β, γ ). (20)

Notice that the conditional log-likelihood ℓ(a,b,c)(α, β, γ ) defined above does not depend on the particular

choice of X ∈ T (a, b, c), but only to the margin (a, b, c) and the exponential tilting parameter (α, β, γ ).

Therefore, if the base measure µ is uniform (i.e., the counting measure), the log-likelihood is uniform

over the fiber T (r, c). Thus, in this case, the law of Y conditional on being in T (a, b, c) is uniform.
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In fact, a similar statement is true for general k-way contingency table models under the geometric

sampling scheme. For completeness, we provide a short proof of this fact:

Lemma 7. Let y denote a k-way contingency table in its vectorized form, and let

P(Y = y; θ)= h( y) exp
(
t ( y)T η(θ)−ψ(θ)

)

define a exponential family model on y where h( y) is the base measure, θ is a vector of parameters, t ( y)

is the vector of sufficient statistics. Then

P(Y = y|t ( y)= b)= h( y)∑
y′∈T (b) h( y′)

, (21)

where T (b)= { y : t ( y)= b} is the set of all tables whose sufficient statistics are equal to b.

Under the Poisson and multinomial sampling schemes on the cells, this conditional distribution on

the fiber is hypergeometric. Under geometric, the conditional distribution on the fiber is the uniform

distribution.

Proof. Note that the distribution of the sufficient statistics has the following form:

P(t ( y)= b)=
∑

y′∈T (b)
P(Y = y′) (22)

=
∑

y′∈T (b)
h( y′) exp

(
t ( y′)T η(θ)−ψ(θ)

)
(23)

= exp
(
bTη(θ)−ψ(θ)

)( ∑

y′∈T (b)
h( y′)

)
, (24)

Hence, we have

P( y|t ( y)= b)=





P( y)

P(t ( y)= b)
if y ∈ T (b),

0 otherwise

(25)

=
h( y) exp

(
bTη(θ)−ψ(θ)

)

exp
(
bTη(θ)−ψ(θ)

)(∑
y′∈T (b) h( y′)

) = h( y)∑
y′∈T (b) h( y′)

. (26)

It is now a direct consequence of this fact that when the underlying sampling scheme is a Poisson, or

multinomial distribution, the base measure

h( y)= N !∏
i yi !

,

where N =
∑

i yi and i loops over the multi-index I of the k-way contingency table. The corresponding

distribution on the fiber is hypergeometric:

(∏
i yi !

)−1

∑
y′∈T (b)

(∏
i y′i

)−1
. (27)
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When the sampling scheme is geometric, as in our case, then the base measure is h( y) = 1, then the

corresponding conditional distribution is uniform:

1∑
y′∈T (b) 1

= 1

|T (b)| . (28)

This completes the proof. □

4.3.3. The maximum likelihood problem. The MLE for the exponential tilting parameter (α, β, γ ) given

margin (a, b, c) is given by

max
α>0,β>0,γ>0

[
ℓ(a,b,c)(α, β, γ )=

∑

i

aiαi +
∑

j

biβ j +
∑

k

ckγk −
∑

i, j,k

ψ(αi +β j + γk)

]
. (29)

Note that the log-likelihood function ℓ(a,b,c) is strictly concave since

ψ ′′(θ)= Var(Geom(1− eθ )) > 0. (30)

Thus if a solution for (29) exists, then it is unique and is a critical point. Thus, solving the optimization

problem (29) is equivalent to solving the following MLE equations:




∑

j,k

ψ ′(αi +β j + γk)= ai , i = 1, . . . , n1,

∑

k,i

ψ ′(αi +β j + γk)= b j , j = 1, . . . , n2,

∑

i, j

ψ ′(αi +β j + γk)= ck, k = 1, . . . , n3.

(31)

Using (7), the above is equivalent to




∑

j,k

1

exp(αi+β j+γk)−1
= ai , i = 1, . . . , n1,

∑

k,i

1

exp(αi+β j+γk)−1
= b j , j = 1, . . . , n2,

∑

i, j

1

exp(αi+β j+γk)−1
= ck, k = 1, . . . , n3.

(32)

More concisely, this is simply requiring that the expected table E[Y ] satisfies the margin (a, b, c):

Z := E[Y ] ∈ T (a, b, c). (33)

This corresponds to the standard critical equation setup in log-linear models, and here the sufficient

statistics are the table plane sums.

4.3.4. The computational problem: plane sums of 3-way tables for 3-way Barvinok margin. Now we

consider the three-way plane-sum Barvinok margin for (n× n× n) three-way contingency tables:

a = b = c = (Bn2, n2, . . . , n2) ∈ R
n. (34)
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The resulting MLE problem is to find the parameters (α, β, γ ) such that the plane sums of the expected

table Z as in (33) match the values Bn2 or n2. This amounts to satisfying the MLE equations in (32) for

the three-way Barvinok margin (34). By symmetry, without loss of generality we can assume

α = (α1, α2, . . . , α2)= β = γ. (35)

Slices can be cut from Z in each of three directions, however due to (35), Z is symmetric and hence it

is sufficient to choose just one direction, as the plane sums of slices cut in the other two directions will

be the same. Therefore it will suffice to compute the plane sums Z++k , for k ∈ [n]. Observe that for

each k, the slice of Z corresponding to the sum Z++k can be decomposed into four blocks of entries: a

1× 1 block, an (n− 1)× (n− 1) block, and two blocks with dimensions 1× (n− 1) and (n− 1)× 1.

Due to (35), all entries in a block have the same value. Using this observation, it follows that the MLE

equation (32) in this case reduces to 0

Z++k = Z11k + 2(n− 1)Z12k + (n− 1)2 Z22k =
{

Bn2 if k = 1,

n2 if k ≥ 2.
(36)

Letting

P := eα1 and Q := eα2,

we have

Z111 =
1

P3− 1
, Z121 = Z112 =

1

P2 Q− 1
, Z221 = Z122 =

1

Q2 P − 1
, Z222 =

1

Q3− 1
. (37)

Since Zi jk ≥ 0, we must have P, Q ≥ 1. Also, this change of variables rewrites (36) as





1

P3−1
+ 2(n− 1)

1

P2 Q−1
+ (n−1)2

Q2 P−1
= Bn2,

1

P2 Q−1
+ 2(n− 1)

1

P Q2−1
+ (n−1)2

Q3−1
= n2.

(38)

Since all terms involved are nonnegative, dropping the first two terms in the second equation in (38), it

follows that (n− 1)3/(Q3− 1)≤ n3, so

Q ≥
((

n

n− 1

)3

+ 1

)1/3

= 2+ O(n−1). (39)

Thus Q3> 3
2

for all sufficiently large n. It follows that Zi jk = O(1) whenever (i, j, k) ̸= (1, 1, 1). Reusing

the second equation in (38) with this fact, we have

(n− 1)2

Q3− 1
= n2− O(n), (40)

so we deduce

Q3 = 2+ O(n−1). (41)

Thus, for all values of the ratio parameter B, Q ∼ 21/3. On the contrary, as we will see shortly, the

asymptotic of P will depend on B critically.
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4.3.5. Sharp phase transition in the maximum-likelihood expected table. Below is the result on sharp

phase transition in the expected table under the MLE model with three-dimensional Barvinok margin

(Bn2, n2, . . . , n2). This result is a three-way extension of [17, Lemma 5.1], which partially addresses

Problem 5.

Theorem 8. Let Z = Z r,c = Eα,β,γ [Y ], where Y ∼ µα,β,γ and (α, β, γ ) is an MLE for the rank-1 model

for the plane-sum margin (a, b, c) with a = b = c = (Bn2, n2, . . . , n2) ∈ R
n . For Bc := 1/(22/3− 1), the

following hold:

(i) (subcritical regime) Suppose B < Bc. Then

Z111 =
1

(
B−1+1

B−1
c +1

)3

− 1

+ O(n−1), Z121 = Z112 =
1

21/3
(

B−1+1

B−1
c +1

)2

− 1

+ O(n−1), (42)

Z221 = Z122 =
1

22/3
(

B−1+1

B−1
c +1

)
− 1
+ O(n−1), Z222 = 1+ O(n−1). (43)

(ii) (supercritical regime) Suppose B > Bc. Then

Z111 = (B− Bc)n
2− O(n), Z121 = Z112 =

1

21/3− 1
+ O(n−1), (44)

Z221 = Z122 =
1

22/3− 1
+ O(n−1), Z222 = 1+ O(n−1). (45)

Sketch of proof. First assume B < Bc. Dropping the first two terms in the first equation in (38) and using

the asymptotic of Q in (40),

(n− 1)2

Q2 P − 1
≤ Bn2. (46)

Solving for P and using B < Bc, we get

P ≥ Q−2

(
B−1

(
n− 1

n

)2

+ 1

)
∼ 2−2/3(B−1+ 1)= B−1+ 1

B−1
c + 1

> 1. (47)

It follows that

Z111 =
1

P3− 1
= O(1).

Hence the first two terms in the first equation in (38) are of order O(n), so we get

(n− 1)2

Q2 P − 1
= Bn2− O(n). (48)

Consequently, we deduce the following asymptotic of P in the subcritical regime:

P = B−1+ 1

B−1
c + 1

+ O(n−1). (49)

Now using (37) and the asymptotic of Q in (40), we conclude the asymptotics of the entries of Z stated

in (i).
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Next, assume B > Bc. Recall that taking P ↘ 1, the largest n2 asymptotic that the third term in the

first equation in (38) is at most Bcn2. Also recall that the second term in the first equation in (38) is of

order O(n). Therefore, since B > Bc, it follows that the first term 1/(P3− 1) must have contributions in

the (B− Bc)n
2. We can obtain more precise asymptotics as follows. Using the first equation in (38) and

that Z121 = O(1),

1

P3− 1
+ (n− 1)2

Q2 P − 1
= Bn2− O(n). (50)

Since Q3 = 2+ O(n−1), P3 = 1+ O(n−2), so

Z111 =
1

P3− 1
= (B− Bc)n

2− O(n). (51)

From this, we get

P3 = 1+ n−2

B− Bc

+ O(n−3). (52)

Then using (37) and the asymptotic of Q in (40), we can also conclude the asymptotics of the entries

of Z stated in (ii). □

We add a remark on the practical implications of the phase transition behavior stated in Theorem 8.

The phase transition in Theorem 8 tells us that the shape of the set of all contingency tables with a given

margin is very ªelongatedº in the supercritical phase. Thus, sampling uniformly from this set and counting

all elements in this set will likely be quite difficult.

In the two-way case, the fact that the counting problem is, in some sense, ªeasyº in the subcritical

phase is established by Barvinok and Hartigan for the class of ªδ-tameº margins [8]. These are the class

of margins for which the corresponding typical table has entries uniformly bounded between δ and δ−1.

Specializing to the Barvinok margin, such a ªδ-tame phaseº resides in the subcritical phase. A more

precise result is known for this case [35]: The independence heuristic [23] provides a good approximation

of the number of contingency tables in the subcritical phase, but it results in a significant undercounting

in the supercritical phase.

4.3.6. Algebraic statistics and phase transitions. We propose to connect the phase transition phenomena

to Markov bases for sampling fibers and also to the geometry of marginal polytopes.

First, phase transitions in two-way tables happen for so-called tame fibers, that is, two m× n margins

that are δ-tame, a concept introduced at the end of the previous section. From the point of view of discrete

exponential families, this means that the MLE is away from the boundary of the marginal polytope, which

is defined as the convex hull of all possible sufficient statistics for the exponential family. This implies

that the phase transition can be also interpreted on an infinite sequence of polytopes: for small table sizes,

the MLE is well in the relative interior of the polytope, but as the size grows, there is a threshold when

the MLE comes too close (within δ) to the face of the polytope. It would be of great interest to perform

some initial simulations in this direction.

Second, the moves used to connect the fiber in the 2-way table case provide a basis for a modified

Markov chain to sample from the fiber uniformly, until the phase transition occurs with the mass blowup
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on the corner (1, 1) cell of the cube. Naturally, we expect that this phenomenon generalizes to the 3-way

independence model when the mass concentrates on the (1, 1, 1) cell. To this end, we close with an

explicit description of Markov basis moves for the 3-way model of independence. These are the moves

analogous to the moves in the 2-way table model that can be used to explore the fiber uniformly, under

the ªtameº regime before the phase transition occurs.

The Markov moves m = (mi jk) for the independence model on the n1× n2× n3 table Y = (Yi jk) have

entries mi1 j1k1
= 1 and mi2 j2k2

= 1 with one of

{
mi1 j2k2

=−1,

mi2 j1k2
=−1,

{
mi1 j2k2

=−1,

mi2 j2k1
=−1,

or

{
mi2 j1k2

=−1,

mi2 j2k1
=−1,

where all other entries are zero, for each i1, i2 ∈ [n1], j1, j2 ∈ [n2], and k1, k2 ∈ [n3], where i1 ̸= i2,

j1 ̸= j2, and k1 ̸= k2. There are a total of 3
2
n1n2n3(n1 − 1)(n2 − 1)(n3 − 1) of these moves. Fixing

i1 j1k1 = (1, 1, 1) leaves 3(n1− 1)(n2− 1)(n3− 1) moves that apply to the entry Y111 in the table. Then,

the ratio of applicable moves to nonapplicable moves is

2

n1n2n3

→ 0 as n1, n2, n3→∞.

Simply the number of available moves does not reveal directly any phase transition phenomena, but this

is likely the case because Markov moves connect all possible fibers. In forthcoming work we will study

what moves are necessary and/or inapplicable for the particular margins are of the form (Bn2, n2, n2).
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