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In the last quarter of a century, algebraic statistics has established itself as an expanding field which uses
multilinear algebra, commutative algebra, computational algebra, geometry, and combinatorics to tackle
problems in mathematical and computational statistics. These developments have found applications in a
growing number of areas, including biology, neuroscience, economics, and social sciences.

Naturally, new connections continue to be made with other areas of mathematics and statistics. We
outline three such connections: to statistical models used in educational testing, to a classification problem
for a family of nonparametric regression models, and to phase transition phenomena under uniform
sampling of contingency tables. We illustrate the motivating problems, each of which is for algebraic
statistics a new direction, and demonstrate an enhancement of related methodologies.

1. Introduction

We illustrate three new research directions in algebraic statistics which share the following common
philosophy: they connect algebraic statistics to applied problems from another research area, rein-
terpret that problem, and illustrate that this new connection is effective toward solving a family of
challenges. The choice of the three sets of problems is not made by ranking, but rather by opportu-
nity: namely, in fall of 2023, the Institute for Mathematics and Statistics Innovation hosted a long
program Algebraic statistics and our changing world. The program included two-day working group
sessions motivated by a problem presented in the “Questions and Consulting seminar”. This paper
illustrates three of the new research directions resulting from these interactions. In the spirit of the
Oberwolfach Lectures on algebraic statistics [20, Chapters 6-7], each section of this survey is self
contained.

In Section 2, Yulia Alexandr, Yuqi Gu, Jiayi Li, and Jose Israel Rodriguez study the likelihood geometry
of a statistical model motivated by cognitive diagnosis of latent skills in educational and psychological
measurement. A Bless model is a discrete statistical model with latent variables. Bless is an acronym
for a “binary latent clique star forest.” Identifiability of these models have been previously established
[26; 27] and reparametrizations have leveraged tools from algebraic statistics. The new direction here is
to study the likelihood geometry of the models for the statistical inference using maximum likelihood
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estimation. Since the Bless model can serve as a building block for identifiable deep generative models
with multiple latent layers [28], studying the likelihood geometry of the Bless model can pave the way
for a deeper understanding of these modern powerful generative models.

In Section 3, Maize Curiel, Sameer Despande, Joe Johnson and Bryson Kagy make progress toward
identifying (nearly) equivalent regression trees, which represent piecewise constant step functions (see
Figure 1). The new direction aims to leverage ideas from algebraic statistics and combinatorics to improve
the Bayesian additive regression trees (BART) [13] model for nonparametric regression.

In Section 4, Miles Bakenhus, Elizabeth Gross, Max Hill, Vishesh Karwa, Hanbaek Lyu, and Sonja
Petrovi¢ study phase transitions problems on contingency tables through the lens of algebraic statistics.
The motivating problem is the appearance of a sharp phase transition in the estimability of the uniform
distribution on the space of tables by the hypergeometric distribution. The threshold for this phase transition
is expressed as a condition on the margins of the table, and has been solved for the two-dimensional case.
Interpreting the problem from the point of view of algebraic statistics, we propose the generalization
of this phenomenon to multiway tables and partially solve the problem for the three-dimensional case.
The two distributions are not only combinatorially interesting, but have statistical relevance: sampling
from the hypergeometric distribution is used for exact conditional tests of model fit, while sampling
from the uniform is needed for performing conditional volume tests under the multinomial sampling
scheme.

2. Likelihood geometry in a star-forest model with dependent binary latent variables

This section arose from the Questions and Consulting seminar by Yuqi Gu and subsequent discussions
amongst Yulia Alexandr, Jiayi Li, and Jose Israel Rodriguez.

2.1. Blessed models by parametrization. Consider the Binary Latent cliquE Star foreSt (Bless) model
[27] with the following parametrization. Let A € {0, 1}X denote the latent random vector, and Y € {0, 1}?
denote the observed random vector. We next describe the distribution of A and Y | A, respectively, to
complete the model specification. Assume the binary latent variables can be arbitrarily dependent on
each other with the following saturated parametrization:

P(A=a)=v, foralleaec/{0,1}X,

where Zae{O,l}K Ve = 1. Assume the observed Yi, ..., Y, are conditionally independent given the
latent A, where each Y; has exactly one latent parent denoted by Ap,(;) (here pa(j) € {1, ..., K}). In
other words, the bipartite graph from the latent A to the observed Y is a star-forest graph, and it follows
from the conditional independence property of the graphical model that

PY;|A) =P, | Apaj))-

Parametrize the conditional distribution of Y; | Ap,(j) as follows:
P =11Apnp=1D=0;+
P(Y;=1]Ap)=0)=6;_.
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Based on the above assumptions, the marginal distribution of the observed random vector Y can be written
as: for all y € {0, 1}, it holds that

p
PY =y)= Z P(A:oc)l_[[P’(Yj |A=0a)

ae{0,1}K j=1

p
= D v [ [P ] Apg) = opai)

ac{0, 1}k j=1

P
a() o 1 —pai) 1Y) » a1V
— Z Ve [9;4’;;(1)9]"7% m])/ [(1 _Qj’+)apd<,)(1 _9./,’_)1 apdm] Vi
ac{0, )X j=1
We consider the following inequality constraints on the parameters ® = {6; ,,0; _ : j € [p]} and
v = (Vg : & €10, 1}5):

0j+>0;_ forall j €[pl],

Vg >0 for all & € {0, 1}X.

It is known that when each latent variable A; has exactly two observed variables as children, the model
parameters © and v are generically identifiable [27]. More specifically, in this case, {6, 4,60, _} are
identifiable if and only if Ay is not independent from (Ay, ..., Ag—1, Ak+1, ..., Ag) (i.e., parameters vy
satisfy certain binomial inequalities). The arbitrary dependence allowed among the K latent variables
makes the Bless model an expressive modeling tool, and also makes it possible to extend it to identifiable
deep generative models with multiple latent layers.

Given N i.i.d. observed vectors {yj, ..., yy} in a sample, the MLE (@, p) is defined as the maximizer
of the likelihood function ]_[lN: | P(Y = y; | ©,v). The identifiability result stated above has a nice
consequence that the maximum likelihood estimator (MLE) of parameters (®, v) is statistically consistent
as N — oo; see, e.g., [29, Proposition 3.4]. However, given a finite sample of size N, the properties
of the MLE are not well understood. Moreover, the computation of MLE is often through the iterative
EM algorithm, which is sensitive to parameter initialization. Relevant references in algebraic statistics
include [2; 3; 22; 40].

2.2. Likelihood geometry of Blessed models. Let n be the dimension of the ambient space of the
model M, i.e., M C C". The maximum likelihood (ML) degree [42, Chapter 7] of an algebraic statistical
model M is the number of complex critical points of £, on the Zariski closure of M for generic data
u € A,_1. The ML degree measures the algebraic complexity of maximum likelihood estimation.

2.2.1. A first example and many states.

Example 1. Consider the Blessed model when K =2, given by the graph

a c



360 ALEXANDR ET AL.

where all random variables are binary. The model has dimension 11 inside As. Its parametrization is
given by
Pij.ki = Vooaiobjockodio + vioai1bjicrodio + voraiobjockidin +viiairbjicridpn,

where
aij=PYo=ilag=j), bij=PY1=ilag=j), cij=PFo=ilar=j), dij=PY=ila;=)),

and p;; i are the coordinates of the image space.
The below code computes the implicit description of the model, utilizing bounded-degree Grébner
basis computations in Macaulay?2:

R=QQ[v_(0,0)..v_(1,1),a_(0,0)..a_(1,1),b_(0,0)..b_(1,1),c_(0,0)..c_(1,1),
d_(0,0)..d_(1,1), p_(0,0,0,0)..p_(1,1,1,1), MonomialOrder => Eliminate 20]
probabilities=toList(p_(0,0,0,0)..p_(1,1,1,1))

par = (i,j,k,1)->(
summ=0;
for m from 0 to 1 do (

for n from 0 to 1 do (
s=v_(m,n)*a_(i,m)*b_(j,m)*c_(k,n)*d_(1,n);
Summ=summ+s ;
;)

return summ;)

gs={}; for p in probabilities do gs=append(gs, p-par((baseName p)#1));
G=ideal(gs); time I=ideal(selectInSubring(l,gens gb(G,DegreeLimit=>15)))
codim I

Checking the codimension of the resulting ideal, we find that the model is described by sixteen cubics.
Moreover, this model is precisely the 2-mixture of the 4 x 4 independence model. This can be seen by
realizing the parametrization as a product of a 4 x 2 matrix, 2 x 2 matrix, and 2 x 4 matrix, as follows:

T
DP00,00 P00,01 P00,10 P00,11 aopoboo ao1 boi coodoo co1do1
Po1,00 Po1,01 Poiio Poiil | _ | acobio aoibin |:U00 Vm] coodio co1di1
P10,00 P10,01 P00 Pioit | | @ioboo aiibor | |vio vii] | ciodoo ciido
P11,00 P11,01 P11,10 P11,11 ajobio anbn crodio ciid

Implicitly, the model is known to be described by all sixteen 3 x3 minors of the matrix of joint prob-
abilities (p;; 1), which confirms our earlier computations. Its ML degree is 191; it was computed in [30].

2.2.2. Implicit equations for general quartet trees and Blessed cherry orchard models. We are interested
in the generalization of Example 1, where K binary latent variables form a complete graph, and each
latent variable is adjacent to two n-category observed variables. Let Y;; and Y;, be the observed variables
adjacent to the latent variable A;. We will refer to these models as Blessed cherry orchard models, denoted
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by Mg . Let T = (v;, i) denote the K-way 2 x - - - x 2 tensor. For each i € [K], we will let M; denote
the n? x 2 matrix with the two columns

MY =[P = bl = j) -P(Yio = bale; = )] one for each value of j =0, 1.

Le[n]?’

Note that the parametrization of the model Mg , can be realized as
Pirie = Virix 'Ml(”) ®1‘42(12) R ® M;{ll().

2 % ... x n? tensors with multilinear rank at most

Therefore, Mg , is the model of K-way n?xn
(2,2,...,2). Its equations are just minors of flattenings, similar to Example 1. On the other hand,
mixtures of two independence models correspond to border rank at most two matrices, and their equations
are much more subtle. Invariants for these cases can be found in [34; 37].

Similarly, when the observed variables have a different number of states, the resulting models are
multilinear rank (2, 2, ..., 2) tensors of different size. A recursive formula can be derived for these

models by the results in [38, Section 4].

2.2.3. EM algorithm for Blessed cherry orchard models. The EM algorithm is the standard method for
maximizing the likelihood function on Blessed models. Fixed points of the EM algorithm (Algorithm 1;
also see Algorithm 1 in [27]) on the Blessed cherry orchard model refer to the set of all points

Algorithm 1. Expectation-maximization algorithm.

Data: Observation data Y, initial parameters Q0 O
Result: Estimated parameters 0, .
Input: Convergence threshold €.
0 — 00;
y O,
t < 0;
repeat
t<—t+1;
E-step: Calculate the expected value of the latent variables;
Q@10 ) — Eyy gu-n e [log [TL, P(¥Y = y; | ©,v)];
Q') < Eyy 000 [log[TL P = y; | ©,»)];
M-step: Find the parameters that maximize this quantity;
0" « argmaxe Q(®|@D);
v «— argmax, Q(v[v~D);
Check for convergence;
if |@Y — @ D| <€ and |[v? — v V| <€ then
break;

until convergence



362 ALEXANDR ET AL.

(©*, v*) where v
O* =arg mgx Eayy, o v [logl_[ PY =y; | ©F, v*)],

i=1

N
v* =argmax E4 |y o+ v+ [logl_[ PY =y; | ©F, v*)].
b i=1
Maximizing the log-likelihood on M , is a nonconvex optimization problem. The output of the EM
algorithm (®@*, v*), with respect to any initialization either lies in the relative interior or on the model’s
boundary. If (®@*, v*) is in the relative interior then (@*, v*) is a critical point of the log-likelihood
function and the number of such points is counted by the ML degree. If (®*, v*) is on the boundary
then (@*, v*) is generally not a critical point of the log-likelihood requires studying the ML degree of
boundary components like in [33].

2.3. Remaining open questions. The following open questions about the model and the likelihood
geometry are of interest. First, note that the Blessed models we have considered so far have high ML
degrees, so there is no closed-form MLE. However, if one imposes symmetries like in [30, Section 3]
then closed formulas may be derived.

Question 2. Are there any other statistically meaningful restrictions that could guarantee closed-form
MLE?

For instance, when entries of the data are zero, this causes the 191 critical points to be partitioned into
sets according to their supports. This was previously explored in [25, Section 4.3] under the guise of ML
tables. A specific challenge problem is to characterize the ML table for the Blessed model in Example 1.

Second, what properties does the EM algorithm have for the Blessed cherry orchard models? An
algebraic approach to this would be to characterize the EM fixed points of these models like in [33],
however we expect such a characterization to be very challenging.

Third, can we perform formal statistical hypothesis tests of the goodness-of-fit of the Bless model based
on the algebraic characterizations? One direction is to adapt the idea of the Monte Carlo goodness-of-fit
test developed for the stochastic block model (SBM) in [31] to the Bless model. We conjecture that such
an extension is promising because both SBM and Bless share the common features of

(a) having discrete observed and latent variables and

(b) characterizing the joint distribution of the observed and latent variables via an exponential family
distribution.

More specifically, one could calculate the x 2 distance between the marginal distribution of the observed
variables of the contingency tables in the fiber and the empirical marginal distribution based on data,
and use this distance as a test statistic. Another approach could be to properly sample from logarithmic
Voronoi cells [1] (as well as describe their boundary), as the notion of sufficient statistic is not defined for
models with latent variables.

Fourth, what is the relationship of Blessed models with mixtures of independence models? Finally,
can we determine the boundaries of the image of these models? Are there any nontrivial inequalities?
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There are results [40] in algebraic statistics where the two apparently different parametric models have the
same image up to Zariski closure. We see another example of this phenomenon in Section 2.2.2 between
Blessed cherry orchard models and of multilinear rank 2 x 2 x - - - X 2 tensors.

Question 3. What can be said about the inequalities defining the Blessed cherry orchard model, and are
they different from those defining the model of multilinear rank 2 x 2 x - - - x 2 tensors?

3. Identifying (nearly) equivalent regression trees

This section grew from the Questions and Consulting seminar by Sameer K. Deshpande and follow up
discussions with Maize Curiel, Joseph Johnson, and Bryson Kagy.

3.1. Introduction. Motivation. Consider the nonparametric regression problem: given n observations
of covariates x € R? and outcomes y € R from the model y ~ N (f (x), 02), we would like to estimate
the function f : R”? — R. Bayesian additive regression trees [13] is a Bayesian sum-of-trees model that,
at a high-level, approximates f with a large ensemble of regression trees (i.e., piecewise constant step
functions). Usually, f is nonlinear and involves complicated high-order interactions. Such nonlinearities
and interactions are typically impossible to specify correctly a priori using a parametric model. Using
BART, however, users often obtain extremely accurate predictions of function evaluations along with
reasonably well-calibrated uncertainty intervals without prespecifying the functional form of f or tuning
several hyperpriors. The ease-of-use and generally excellent, tuning-free performance have made BART
a popular “off-the-shelf” tool to be used within larger modeling workflows.

Formally, BART works by simulating draws from a posterior distribution over tree ensembles using
Markov chain Monte Carlo. In each iteration of the sampler, individual trees are grown (by splitting an
existing leaf node into two new child nodes) or pruned (by collapsing two leaf nodes to their common
parent). It has been observed empirically — and recently demonstrated theoretically [32; 39] — that such
local moves result in extremely slow mixing. Intuitively, we might expect to achieve faster mixing by
making more radical changes to the tree structure. And this is indeed the case, at least empirically: [36] was
able to explore tree space more efficiently using a proposal mechanism that radically changed the overall
structure of the tree. At a high-level that proposal simultaneously permuted the order of decision rules
within a tree and added or removed new subtrees. Motivated by those results, we conjecture that one can
obtain faster mixing by directly transitioning between trees that provide (nearly) identical fits to the data.
3.1.1. Setting & notation. To motivate this idea, consider the slightly simpler setting in which we
approximate the function f(x) with a single binary regression tree and know the residual variance o2.
Formally, a regression tree is a pair (T, p) consisting of

(i) afinite, rooted binary decision tree 7' containing several terminal or leaf nodes and several nonterminal
or decision nodes and
(i1) a collection p of scalars, one for each leaf node in 7.
Every nonterminal node in 7 is connected to two children nodes, a left child and a right child. Further,

associated to every nonterminal node is a decision rule of the form X; < ¢, where (Xy,..., X)) isa
random vector taking on states in [0, 1]7 and c € (0, 1).
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Given a decision tree T and any point x = (x1, ..., x,) € [0, 1]?, we can trace a path from the root to
a leaf by following the decision rules. Specifically, starting from the root, whenever the path reaches a
decision rule X ; < c, it proceeds to the left if x; < ¢ and to the right otherwise. We will restrict attention
only to those decision trees that partition [0, 1]7 in the sense that

(i) every leaf node is reached by the decision-following path of at least one x € X’ and

(ii) the decision-following path of every x € [0, 1] reaches a single, unique leaf.

Given (T, n) and a point x € [0, 1]7, let £(x; T) denote the leaf reached by x’s decision-following path.
By associating each leaf of 7" with its own scalar, the regression tree (7, u) represents a piecewise
constant function of [0, 1]7. Formally, we introduce the evaluation function g(x; 7', ) = [t¢(x), Which
returns the element of u associated with the leaf reached by x’s decision-following path. Additionally,
given N points x1, ..., xy € [0, 117 let I,(T) = {i : £(x;; T) = £} contain the set of indices of the points
that reach leaf £.

With this notation in hand, we can define the single-tree Bayesian model with known residual variance o'

yi|T,u,~N(g(xi;T,u),02) fori=1,...,N,
el T ~ N0, 7% for p¢ € p,
T ~TI(T),

where o, T, v, A > 0 are fixed positive constants and IT(7T’) is the decision tree prior used in [13].
Under this model, we can compute the marginal likelihood of the decision tree T in closed-form:

p(y|T) x 1_[ exp{stuff depending only on /,(T")’s & y’s}
¢

Importantly, the marginal likelihood of 7" depends on the decision tree only through the partition of the

points {xi, ..., xy} it induces. We say that two decision trees T and T’ are equivalent if they induce the
same partition of {x1,...,xy}.
We study the following questions: given a single decision tree 7" and a collection of points x1, ..., Xy €

[0, 117, can we

(1) enumerate or characterize the equivalence class of trees that induce the exact same partition of the
points?

(2) sample uniformly from the set of trees inducing the same partition?

(3) enumerate or characterize the set of trees that induce partitions that are close (in some sense) to the
one induced by the tree?

(4) sample uniformly from the set of trees inducing nearly the same partition?

Resolving these questions will enable construction of more efficient MCMC sampling techniques for
fitting BART. Beyond the motivating Bayesian context, however, answering these questions will more
generally facilitate uncertainty quantification about tree models. As one example, suppose we fit a compli-
cated machine learning model (e.g., a deep neural network) to (x, y) data to obtain predicted outcomes y.
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X, <07

X9 < 0.4

Figure 1. We can form trivially equivalent trees by perturbing decision boundaries. Here
the tree topology for both trees is the same, but the decision rules for the tree on the left
and right are different but they are equivalent because they differentiate the data points
in the same way.

X1 <07 Xo <04

2 122

Xo <04 X9 <04 X1 <07 X1 <07

M1 3

Figure 2. For full decision trees with the same rule at each level, we can form equivalent
trees by permuting the decision rules across levels.

Even if the fitted model is difficult to interpret, we can nevertheless obtain a much more interpretable
approximation by training a regression tree model to the pairs (x, y). The set of (nearly) equivalent trees
provides one avenue to quantify uncertainty about the interpretation of the original fitted model.

3.2. Preliminaries & special cases. Before proceeding, we verify that equivalent trees do exist generally:
given a tree T and set of points x1, ..., Xy, we can trivially obtain equivalent trees by moving the decision
boundaries between the data points; see Figure 1 for an example with p = 2.

Henceforth, we will focus instead on identifying equivalent trees that do not change the decision
boundaries. To this end, consider first the case where T is

(i) a full binary tree of depth D containing 27 leaf nodes and

(i1) the same decision rule is used at every decision node at depth d.

Given such a tree, we can form an equivalent tree by permuting the decision rules across the levels. Figure 2
shows an example of equivalent trees of depth D =2 with p = 2 and the associated partition of [0, 1]°.

3.2.1. The p = 1 setting. Now suppose that p = 1 and that T contains L > 3 leaf nodes and L — 1
decision nodes. In this case, finding equivalent trees is not as simple as permuting decision rules
across the levels of 7. Notice, however, that we can form an equivalent tree by replacing subtrees
of T with equivalent subtrees (see Figure 3 for an example). To see that the two trees are equivalent,
notice that the original subtree partitions the interval [0, 0.5) = [0, 0.25) U[0.25, 0.5) and then partitions
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0 1 .25 5 8 1
X <05 X <05
X <0.25 X <08 X <0.1 X <0.8
X < 0.25
X <010 ()
® O

Figure 3. We can form equivalent trees by replacing the green subtree on the left with
the equivalent red subtree on the right. Doing so amounts to partitioning [0, 0.5) into
[0,0.1), [0.1, 0.25), and [0.25, 0.5) in different orders.

[0, 0.25) =10, 0.1) U[0.1, 0.25). The equivalent subtree first partitions [0, 0.5) = [0, 0.1) U[0.1, 0.5) and
then partitions [0.1, 0.5) =[0.1, 0.25) U[0.25, 0.5). Essentially, replacing a subtree with an equivalent
tree amounts to arranging the decision boundaries in that subtree in a different order.

The example of Figure 3 gives us a strategy for counting the number of equivalent trees. To this end,
suppose that T contains L — 1 internal, decision nodes and let 0 < ¢} < --- <cp—1 < 1 be the ordered
decision boundaries. For any collection of £ — 1 consecutive decision boundaries let Cy,_; count the
number of equivalent trees that contain £ — 1 decision nodes associated with those decision boundaries.
Immediately, we know that C ¢r—1 < Cy_1, the (£ — 1)-st Catalan number, which counts the total number
of binary trees with £ — 1 internal nodes.

Further suppose that we have enumerated all C ¢v—1 such trees for every collection of ¢ — 1 consecutive
boundaries with £ < L. We can form a new tree T™* as follows:

(1) Initialize T™* to be just the root node.

(2) Pick one decision boundary c; to associate to 7*’s root.

(3) Draw one of the 5;{,1 trees with k — 1 decision boundaries {cy, ..., ¢;—1}. Call it T}.

(4) Draw one of the 5L,k, | trees with L — k — 1 decision boundaries {ci41, ..., cp—1}. Callit Ty.
(5) Connect the roots of T*, T} and Ty so that T;”s root is the left child of 7*’s root and T’s root is

the right child of 7*’s root.

Using this process, we have

L1
Cro1> E k—1CrL—k—1.
k=1

A strong induction argument show that, in fact, C 1—1=Cr—1. So when p =1, there are a Catalan number
of equivalent trees with the same number of leaf nodes. Further, given any tree with L leaf nodes, we can
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X <05 X <025 X <08

X <01
X <025 X <08 X <0.1 X <05

X <0.25

X <01 X <08
X <05

Figure 4. Three trees equivalent to the ones in Figure 3.

ol

Figure 5. Extending the cut along x, = 0.4 does not change the underlying partition of the data.

Current tree “Extend cut” Permute levels

X, <07 X, <0.7 Xy <04

— Xy <m< 0.4 —> X1 <07 X1 <0.7

Figure 6. The associated trees that correspond to the extension in Figure 5. The rightmost
tree corresponds to permuting the root node with all nodes in the first level.

form every other equivalent tree with the same number of leaf nodes and decision boundaries. Figure 4
shows some examples with L = 5.

3.3. The p =2 setting. Consider the partitions of [0, 1]> and 10 data points on the left of Figure 5. Notice
that we can further partition the blue rectangle [0.7, 1] x [0, 1] into [0.7, 1] x [0, 0.4) U[0.7, 1] x [0.4, 1]
without changing the partition of the data points. That is, we can obtain the partition on the right by
“extending” the cut separating pink and yellow rectangles across through the blue rectangle; this extended
cut is highlighted in the partition on the right of Figure 5.

The left and right partitions shown in Figure 5 correspond, respectively, to the left and middle trees of
Figure 6. Notice further that the middle tree in Figure 6 has the same special form as discussed above: it is
a full binary tree with the same decision rule at all nodes at the same level. We can therefore form an equiv-
alent tree by permuting the decision rules across levels, yielding the tree on the right of Figure 6. Unlike
in the earlier examples, the left and right trees in Figure 6 represent different partitions of [0, 1]%: the left
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Figure 7. An example of a line which cannot be contracted. The right image cannot be
constructed via trees since the decision at the root must create a line spanning opposite
sides, but no such spanning line exists.

tree partitions the space into three rectangles while the right partitions it into four. However, because they
induce the same partition of the points — and hence, same likelihood values — we view them as equivalent.

To implement an MCMC algorithm, moves must be reversible. Hence it is worth noting that not only
can one extend lines in the box diagram, but also one can delete them. It is important when deleting a line,
that the resulting diagram still corresponds to a tree. In Figure 7, the right diagram does not correspond
to a tree. We conjecture that the condition for a diagram to correspond to a tree is that the diagram must
have at least one vertical or horizontal line that goes across the whole diagram, and this same condition
must hold recursively in each of the halves that this spanning line creates.

3.4. Next steps. In higher dimensions (i.e., p > 2), constructing equivalent trees is somewhat harder.
However, if the tree is a subtree of a full binary tree that uses the same decision at each node at a given
level, then we can still permute the decision rules across levels as in Figure 2. Similarly, if we can safely
extend or contract cuts as in Figure 5, then we can form equivalent trees in higher dimensions.

4. Phase transition in 3-way contingency tables

This section arose from the Questions and Consulting seminar by Hanbaek Lyu and subsequent discussions
amongst Miles Bakenhus, Elizabeth Gross, Max Hill, Vishesh Karwa, and Sonja Petrovi¢. The sharp
phase transition phenomenon relates to two distributions on the space of tables with fixed marginal totals,
also known as the fiber of a log-linear model with those marginals as sufficient statistics. In this problem,
the question is how well the hypergeometric distribution can approximate the uniform distribution on
the fiber. In the case of two-dimensional tables, the answer toggles between “really well” and “rather
poorly” at a phase transition point that can be explained by a condition on the margins of the table. This
project translates the setup for the problem into the contingency table language used in algebraic statistics,
allowing us to extend the basic notions needed to generalize the results to multiway tables.

4.1. Introduction. Log-linear models for cross-classified categorical data— contingency tables — have
a long history in statistics [9; 21] and appear in a broad variety of applications including ecology, biology,
educational testing, and network science. These models were also some of the first studied in the modern
algebraic statistics literature that took off in the 1990s, leading to a vast literature on sampling using
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algebraic and hybrid techniques, testing model fit using exact conditional tests, likelihood geometry of
log-linear models, the existence of maximum likelihood estimators (MLEs), and connections to classical
graphical models and, more recently, colored graphical models. While there are many flavors and
variations of how contingency tables appear in the algebraic statistics literature, one typically studies
models on tables under the multinomial, Poisson, or product-multinomial sampling scheme. It is well
known that the MLEs are the same under all three sampling schemes; see, for example, [21, Chapter 3].

In this work we consider another sampling scheme, namely, geometric. This distribution makes a
significant appearance in another vast collection of literature on contingency tables, here referred to as “the
phase-transition literature”, which is detailed in the next section. One common thread that appears in both
the categorical data analysis and phase transition literature is the use of zero-margin tables, commonly
referred to as moves, to sample the space of tables given fixed marginals. The algebraic statistics literature
derives collections of such moves called Markov bases using techniques in computational algebraic
geometry and combinatorial commutative algebra. Markov bases contain moves guaranteed to connect all
sets of tables for a given choice of margins. Markov bases are theoretically defined and studied for many
models and types of table margins (see [4] for a recent overview and [19] whose introductory section
reviews the early theoretical considerations and statistical applications).

The table margins are sufficient statistics when considering discrete exponential family models. This
space of tables with fixed values of sufficient statistics is called the fiber of the log-linear model. Sampling
fibers provides a bona fide algorithm for testing model goodness of fit of every such exponential family.
Fibers are reference sets for the sampling, while the desired distribution for the exact conditional test is the
conditional distribution of tables given the marginals. For the Poisson and multinomial sampling schemes,
this distribution is hypergeometric. On the other hand, the uniform distribution on the contingency tables
also plays a central role in testing for the presence of interactions in cooccurrence tables, particularly
cooccurrence (between species i and habitat j) tables arising in ecology [14; 41; 24; 12]. In these contexts,
the uniform distribution subject to the margin is taken as a null hypothesis of no interaction among species
without any particular modeling assumption. Diaconis [16] uses the uniform distribution on the fiber for
conditional volume tests under the multinomial sampling scheme. Further, we will see in Section 4.3 that
if the cells follow a geometric distribution, then the log-linear model’s conditional distribution given the
set of margins is, in fact, uniform (see Section 4.3.2).

In the next section we focus on two-dimensional tables and discuss the previous work on phase
transitions related to uniformly sampling the space of tables given marginal totals. In Section 4.3 we
compute a starting set of examples for three-dimensional tables, and close with a discussion in Section 4.3.6
on connections to algebraic statistics.

4.2. 2-way contingency tables.

4.2.1. Phase transition in random two-way tables with given margins. Two-way contingency tables
(CTs) are m x n matrices of nonnegative integer entries with prescribed row sums r = (ay, ..., ay)
and columns sums ¢ = (by, ..., b,) called margins, where by M(r, ¢) we denote the set of all such
tables. They are fundamental objects in statistics for studying dependence structure between two or more
variables and also correspond to bipartite multigraphs with given degrees and play an important role
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Figure 8. Left: contingency table with parameters n, 8, B and C. First |n° | rows and
columns have margins | BCn], the last n rows and columns have margins |Cn]. Right:
Limiting distributions of the entries in the uniform contingency table X in the subcritical
B < B, =1+ ./1+1/C, left, and supercritical B > B,, right, regimes for thick bezels

% < § < 1. Geom(A) denotes geometric distribution with mean A.

in combinatorics and graph theory; see, e.g., [6]. Counting their number |[M(r, ¢)| and sampling an
element from M(r, ¢) uniformly at random are two fundamental problems concerning CTs with many
connections and applications to other fields [10] (e.g., testing hypothesis on cooccurrence of species in
ecology [14]). A historic guiding principle to these problems is the independent heuristic, which was
introduced by I. J. Good as far back as 1950 [23]. The heuristic states that the constraints for the rows and
columns of the table are asymptotically independent as the size of the table grows to infinity. This yields
a simple yet surprisingly accurate formula that approximates the count | M (r, ¢)|. The independence
heuristic also implies the hypergeometric (or Fisher—Yates) distribution should approximate the uniform
distribution on M(r, c).

Both of these implications of the independent heuristic have been verified when the margins are constant
or have a bounded ratio close to one [11]. However, when the margins are far from being constant,
Barvinok [7] conjectured that there is a drastic difference between the uniform and hypergeometric
distribution on M(r, ¢). This was based on investigating CTs with what is known as Barvinok margin, a
symmetric linear margin that has two values wherein a vanishing fraction has the larger value. That is,
consider an n x n margin (r, ¢) where r = ¢ € N" and the first |#°] coordinates have value | BCn] and
the rest |Cn |, where B > 1, C > 0 and § € [0, 1) are parameters. Barvinok and Hartigan [8] showed that
the independent heuristic gives a large undercounting of CTs. The work of Dittmer, Lyu, Pak [17] and
Lyu and Pak [35] provided the first complete answer to this puzzle; CTs exhibit a sharp phase transition
when the heterogeneity of margins exceeds a certain critical threshold. For instance, the hypergeometric
distribution correctly approximates the uniform distribution for B < B. = 1 +4/1+1/C, but does so
drastically differently for B > B. (see Figure 8). Such a sharp phase transition gives a probabilistic
answer to the statistical question of why sampling a uniformly distributed CT is hard. This result settles
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Barvinok’s conjecture [7] (except for the special case of § € [O, %]) In [35], Lyu and Pak obtained a
similar phase transition result for CTs, this time from the perspective of the counting problem. Roughly
speaking, the rows and columns of CTs are asymptotically independent (and hence the independence
heuristic is correct) when the ratio B between the two margins is strictly less than the critical threshold B,
but suddenly they become positively correlated as soon as B exceeds B, and the independence heuristic
gives exponential undercounting.

4.2.2. Barvinok’s typical table and the mechanism of phase transition. The key insight in [17; 35] is
that the uniformly random CT, say X, with given margins concentrates around a deterministic table
called the “typical table”, a notion first introduced by Barvinok [7]. Roughly speaking, this is the m x n
real-valued table with margin (r, ¢) that maximizes a “geometric entropy function”. More precisely,
let P(r, ¢) € RZ{ denote the transportation polytope for margin (r, ¢). For each X = (X;;) € P(r, ¢),
define a strictly_concave function

g(X)= Z f(Xij), where f(x)=(x+1)log(x+1) —xlogx. (D)

=iz=n, 1=/=

The typical table Z € P(r, c¢) for M(r, c) is defined to be the unique maximizer of g among all real-valued
tables with margin (r, ¢):
Z = argmax g(X). 2)
XeP(r,c)

The underlying mechanism of the sharp phase transition of uniformly random CTs with Barvinok
margin (in Figure 8) established in [17; 35] is the sharp phase transition of the typical table Z, which can
be shown by analyzing how the solution of the strictly concave optimization problem (2) that defines the
typical table changes as one varies the margin.

Open problems. Here we state three open problems related to the phase transition problem.

Problem 4. The phase transition in uniformly random CTs with Barvinok margin (Figure 8) is established
for the “thick bezel” case 6 > % Can one establish a similar phase transition for the “thin bezel” case
0<é< %? (Phase transition in the typical table is established for all § € [0, 1]; cf. [17, Lemma 5.1].)

Problem 5. Can we show the phase transition of the typical table when the margins assume three or
more distinct values? For instance, three values An, Bn, Cn for margins for 3 x 3 block CT of size n x n,
phase transition in functions of B/A and C/A (see [17, Lemma 5.1]). In general, can one characterize all
phase transitions in typical tables with respect to margin?

Problem 6. Can one show a similar sharp phase transition behavior in [17] for multiway CTs? For
example, consider n x n X n contingency tensors with margins assuming two values BCn and Cn. Possible
approach: Develop a parallel “typical tensor” theory for uniformly random contingency tensors, and show
phase transition in typical tensors as one varies the margin. Use “transference principle” to derive the
behavior of uniformly random CTs from the underlying statistical model with independent entries.
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4.3. 3-way tables with plane-sum margins. In this section, we provide a first study for ongoing work on
sharp phase transition in 3-way contingency tables and Markov bases [5]. This includes the statement of
a preliminary result in sharp phase transition on 3-way plane-sum contingency tables (Theorem 8) and a
sketch of proof. For more details we refer the interested readers for the upcoming full paper [5].

For 3-way tables, one can define more than one log-linear model. Here we consider the model of
independence, which in log-linear model notation from [21] is given by the margins [1][2][3]. We will
refer to these margins as 1-margins, or plane-sums of the table. This model is decomposable and as such
is known to have a quadratic Markov basis [18]. In other words, the set of contingency tables ¥ = (¥;;x)
with fixed 1-margins Y;; 1, Y, 1, and Y is connected by moves containing exactly two +1’s and
two —1’s, arranged in pairs of levels of the table so that the 1-margins are zero. It is worth noting that the
model of independence stands in stark contrast with the no-three-factor interaction model [21], in which
one uses 2-margins — line sums, rather than plane sums — as sufficient statistics. In that model, Markov
bases can be arbitrarily complicated [15].

4.3.1. The model of independence. Fix a base measure ( on Z>¢. For each exponential tilting parameter
0 € R, define the exponentially tilted measure py by

‘Zﬁ(x) =" VO y(6) = 1og(Ze"“’u(k>), 3)
K k=0

where Y above is the log partition function. Let ® := {6 : 1/ () < oo}, which is the set of exponential
tilting parameters that makes the tilted measure 1ty a probability measure. Note that if 6 € ® and X ~ g,

¥'(0) =E,,[X] and " (0) = Var,,(X) > 0. 4)

The primary example is when the base measure u is the counting measure, in which case ® = (0, co)

and g becomes the geometric distribution on nonnegative integers with success probability 1 — e,
which we denote Geom(1 — e~?):
P(Geom(1 —e ") =k) = (1—e™?) fork=0,1,... Q)
=MV O, ©6)
Note that in this case,
E[Geom(1 — e~ )] =y'(0) = e’ __! 7)
l—e? e —1

Now define a model of n| xny x n3 table Y = (¥;;;) with independent entries with marginal distribution
Yijk ~ o, (®)
where 6; . is the exponential tilting parameter for the (i, j, k) entry. We further make a “rank-1" assumption
to the model (8). That is, fix vector parameters o € IR;‘O, B € IR’;O, and y € R;‘O. Then we assume that

each exponential tilting parameter 6;; is given as the sum
Oijk = o + B + Wk 9

In this case, we denote

Y = (Yijk) ~ Ha,B,y- (10)
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This model is the hierarchical log-linear specification of the model of independence [9], whose sufficient
statistics are one-dimensional table marginals. To see this, we note that the model can be written in the
exponential family form as follows:

P({yije)) = [ [ (1 — e (11)
ijk
= exp(Z Vijkbije = Y w(e,-,-k)) (12)
ijk ijk
= eXP(Z o (Z yz'jk) + Z Bj <Z yijk) + Z Yk <Z yijk) - Z W(Qijk)) (13)
i Jjk j ik k ij ijk
= exp(Z oiyity + Zﬁ,y+]+ + Z VeVitk— ) w(el,/a) (14)
ijk

The final equation is in the exponential family form A(y) exp(t MTn©) — 1//(0)), where h(y) =1
is the base measure, £ (y) = ({y,++}:’; s j+}?2:1, {y4++k}i2,) is the vector of sufficient statistics, and
n(0) = (fo )7L, {ﬁj}] 1 {k}i2,) is the vector of natural parameters.

4.3.2. Uniform conditional distribution on the space of tables. Fix vectors a € Z';'O, be Z'fo, andc € Z’SO
such that ||a||1 = ||b]l1 = ||c]l1 =: N, where N denotes the total sum. Define

T(a,b,c)= {X A

Xivy=ai, X1jy=bi, X1 pp=c¢; (15)
for all (i, j, k) € [n1] X [n2] x [n3]

which is the set of all 3-way contingency tables with plane-sum margin (a, b, ¢). This set is called the
fiber of the given marginal counts under the model of independence.

The probability of Y conditional on satisfying the margin (a, b, ¢) is uniform over 7 (a, b, ¢). To see
this, note that for each X = (x;;x) € T (a, b, ¢), the log likelihood of observing X under the ¥-model is

log P(Y = X) = > _log u(xije) (16)
= (ci + B; ryku — Y (i + Bj + 1) (17)
—mel +Zx+]+ﬂj +Zx++kyk—2vf(al + B +w) (18)

ij.k
=Za,a,+2b ﬁ,+2ckyk—2w<a,+ﬁj+yk> (19)
i i,j,k
=: 00 (q, ,8, ). ’ (20)

Notice that the conditional log-likelihood £“-?9)(«, B, y) defined above does not depend on the particular
choice of X € T (a, b, c), but only to the margin (a, b, c) and the exponential tilting parameter (¢, 8, ).
Therefore, if the base measure  is uniform (i.e., the counting measure), the log-likelihood is uniform
over the fiber 7 (r, ¢). Thus, in this case, the law of Y conditional on being in 7 (a, b, ¢) is uniform.
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In fact, a similar statement is true for general k-way contingency table models under the geometric
sampling scheme. For completeness, we provide a short proof of this fact:

Lemma 7. Let y denote a k-way contingency table in its vectorized form, and let

P(Y = y; 0) = h(y) exp(t(»)" n(0) — ¥ (9))

define a exponential family model on 'y where h(y) is the base measure, 0 is a vector of parameters, t(y)
is the vector of sufficient statistics. Then

h(y)
S yerm M)’

where T (b) = {y : t(y) = b} is the set of all tables whose sufficient statistics are equal to b.

PY =ylt(y) =b) = 21

Under the Poisson and multinomial sampling schemes on the cells, this conditional distribution on
the fiber is hypergeometric. Under geometric, the conditional distribution on the fiber is the uniform
distribution.

Proof. Note that the distribution of the sufficient statistics has the following form:

Pt(y)=b= > PX¥=y) (22)
Y'eT®)
= > hO)exp(t(y) n®) — v (6)) (23)
Y ET(b)
=exp(an<9>—w<9>)< > h(y’)), (24)
Y'eT(b)
Hence, we have
P(y) .
— if T(b),
P(ylt(y)=b) = { Pt(y)=b) HyeT® (25)
0 otherwise
h(y)exp(b” 1(6) — v (9)) h(y)

= = . 26
xp(BT1O) — VO (X yeri ) Syeriy M) (20

It is now a direct consequence of this fact that when the underlying sampling scheme is a Poisson, or
multinomial distribution, the base measure

Hi)’i!’

where N =), y; and i loops over the multi-index Z of the k-way contingency table. The corresponding

h(y) =

distribution on the fiber is hypergeometric:

(Hi Yi !)_1 .
Yyera [T )~

(27)
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When the sampling scheme is geometric, as in our case, then the base measure is #(y) = 1, then the
corresponding conditional distribution is uniform:

1 1
Yyerm ! 1T®I
This completes the proof. U

(28)

4.3.3. The maximum likelihood problem. The MLE for the exponential tilting parameter (o, §, ) given
margin (a, b, c) is given by

(a.b,0) = o 8. — , .
M’%M[za C(a,ﬁ,w—IZa,a,+;b,ﬁ,+;cm ”z;w(a,w,wk)] (29)

Note that the log-likelihood function £@4-¢) s strictly concave since
¥ (0) = Var(Geom(1 — €%)) > 0. (30)

Thus if a solution for (29) exists, then it is unique and is a critical point. Thus, solving the optimization
problem (29) is equivalent to solving the following MLE equations:

VBt =a, i=1...n,

J.k
4 — . ._
) ;w<ai+ﬁj+yk)—b1, ]—1,---,’72, (31)

v @i+Bitw=ca. k=1 n.

i,j

Using (7), the above is equivalent to

Z L =aqa;, i=1,...,ny,
I exp(a;+8;+yi)—1
1 .
Ib', :1,...,n2,
; exp(a; +B8;+y)—1 A (32)
! =cx, k=1,...,n;3.
v exp(a; +B8;+yx)—1

More concisely, this is simply requiring that the expected table E[Y] satisfies the margin (a, b, ¢):
Z:=EY]eT(a,b,c). (33)

This corresponds to the standard critical equation setup in log-linear models, and here the sufficient
statistics are the table plane sums.

4.3.4. The computational problem: plane sums of 3-way tables for 3-way Barvinok margin. Now we
consider the three-way plane-sum Barvinok margin for (n x n x n) three-way contingency tables:

a=b=c=(Bn* n* ...,n* eR" (34)



376 ALEXANDR ET AL.

The resulting MLE problem is to find the parameters (¢, 8, y) such that the plane sums of the expected
table Z as in (33) match the values Bn? or n?. This amounts to satisfying the MLE equations in (32) for
the three-way Barvinok margin (34). By symmetry, without loss of generality we can assume

o= (0],02,...,00) =B =y. (35)

Slices can be cut from Z in each of three directions, however due to (35), Z is symmetric and hence it
is sufficient to choose just one direction, as the plane sums of slices cut in the other two directions will
be the same. Therefore it will suffice to compute the plane sums Z4 ¢, for k € [rn]. Observe that for
each k, the slice of Z corresponding to the sum Z, ;4 can be decomposed into four blocks of entries: a
1 x 1 block, an (n — 1) x (n — 1) block, and two blocks with dimensions 1 x (n — 1) and (n — 1) x 1.
Due to (35), all entries in a block have the same value. Using this observation, it follows that the MLE
equation (32) in this case reduces to 0

Zisi = Zig+200= DZig+ (1= 1) Zony = {i’;z e (36)
Letting
P:=¢*" and Q :=e%,
we have
Zin =;, Z121 =2112=;, Zn) =lez=;, Zzzz=# (37)
P3—1 P2Q—1 0P -1 Q3 —
Since Z;j; > 0, we must have P, Q > 1. Also, this change of variables rewrites (36) as
2
ﬁ—l—Z(n—l)Ple_l + (anl)l_)i — B, "
g T2 Vg + G =,

Since all terms involved are nonnegative, dropping the first two terms in the second equation in (38), it
follows that (n — 1)3/(Q* — 1) <n?, so

PENE 1/3
0> <<nj) +1) =2+0@m™"). (39)

Thus Q3 > % for all sufficiently large n. It follows that Z;;x = O (1) whenever (i, j, k) # (1, 1, 1). Reusing
the second equation in (38) with this fact, we have

(n—1)°

o1 n*— 0, (40)

so we deduce
0}’=24+0@m". (41)

Thus, for all values of the ratio parameter B, Q ~ 213 On the contrary, as we will see shortly, the
asymptotic of P will depend on B critically.
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4.3.5. Sharp phase transition in the maximum-likelihood expected table. Below is the result on sharp
phase transition in the expected table under the MLE model with three-dimensional Barvinok margin
(Bn?%,n?,...,n?%). This result is a three-way extension of [17, Lemma 5.1], which partially addresses
Problem 5.

Theorem 8. Let Z = Z"° =L, g, [Y], where Y ~ 4, and (o, B, y) is an MLE for the rank-1 model
for the plane-sum margin (a, b, c) witha =b=c = (Bn%,n?,...,n%) e R". For B, := 1/(22/3 — 1), the
Jfollowing hold:

(1) (subcritical regime) Suppose B < B.. Then

1 1
Zin 274-0(’1_1), Zinn=Zin= —+0@nH, 42
<37 -H) 1 21/3<Bfl+l> _1
1 —1
B 141 B 141
1
Ipi=Zin= = +omn™, Zoy=1+0@™"). (43)
22/3(3 —I—l)_
B '+1
(1) (supercritical regime) Suppose B > B.. Then
1
Zin=(B—B)n*—0(n), Z =an=m+0(n_l), (44)
1
Zypy=Zin= m—i-O(n_l), Zm=1+0@"). (45)

Sketch of proof. First assume B < B.. Dropping the first two terms in the first equation in (38) and using
the asymptotic of Q in (40),
(n—1)>°

— < Bn% 46
QQP -1~ n ( )
Solving for P and using B < B, we get
-1\° B +1
PzQ_2<B_1(n ) +1>~2—2/3(B—1+1): 1+ > 1. (47)
n B: +1
It follows that :
Zin=——=0().
=53 ey
Hence the first two terms in the first equation in (38) are of order O (n), so we get
—1)2
—(n ) = Bn® — O(n). (48)
0P —1
Consequently, we deduce the following asymptotic of P in the subcritical regime:
B71+1
P==—T"4om) (49)
B +1

Now using (37) and the asymptotic of Q in (40), we conclude the asymptotics of the entries of Z stated
in (i).
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Next, assume B > B,. Recall that taking P N\ 1, the largest n> asymptotic that the third term in the
first equation in (38) is at most B.n?. Also recall that the second term in the first equation in (38) is of
order O(n). Therefore, since B > B,, it follows that the first term 1/ (P3 — 1) must have contributions in
the (B — B.)n?. We can obtain more precise asymptotics as follows. Using the first equation in (38) and
that Z151 = O(1),

L 0=D  pe o (50)
= DbDn — n).
P3—1 Q?P-—1
Since Q*=2+0m™"), PP=14+0n"?),s0
1
Zin =gy =B =Bon’ = 0. (51)
From this, we get
3 n~? 3
Pi=1 o). 52
t o TO0T) (52)

c

Then using (37) and the asymptotic of Q in (40), we can also conclude the asymptotics of the entries
of Z stated in (ii). O

We add a remark on the practical implications of the phase transition behavior stated in Theorem 8.
The phase transition in Theorem 8 tells us that the shape of the set of all contingency tables with a given
margin is very “elongated” in the supercritical phase. Thus, sampling uniformly from this set and counting
all elements in this set will likely be quite difficult.

In the two-way case, the fact that the counting problem is, in some sense, “easy” in the subcritical
phase is established by Barvinok and Hartigan for the class of “§-tame” margins [8]. These are the class
of margins for which the corresponding typical table has entries uniformly bounded between & and 6.
Specializing to the Barvinok margin, such a “§-tame phase” resides in the subcritical phase. A more
precise result is known for this case [35]: The independence heuristic [23] provides a good approximation
of the number of contingency tables in the subcritical phase, but it results in a significant undercounting
in the supercritical phase.

4.3.6. Algebraic statistics and phase transitions. We propose to connect the phase transition phenomena
to Markov bases for sampling fibers and also to the geometry of marginal polytopes.

First, phase transitions in two-way tables happen for so-called tame fibers, that is, two m x n margins
that are §-tame, a concept introduced at the end of the previous section. From the point of view of discrete
exponential families, this means that the MLE is away from the boundary of the marginal polytope, which
is defined as the convex hull of all possible sufficient statistics for the exponential family. This implies
that the phase transition can be also interpreted on an infinite sequence of polytopes: for small table sizes,
the MLE is well in the relative interior of the polytope, but as the size grows, there is a threshold when
the MLE comes too close (within §) to the face of the polytope. It would be of great interest to perform
some initial simulations in this direction.

Second, the moves used to connect the fiber in the 2-way table case provide a basis for a modified
Markov chain to sample from the fiber uniformly, until the phase transition occurs with the mass blowup
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on the corner (1, 1) cell of the cube. Naturally, we expect that this phenomenon generalizes to the 3-way
independence model when the mass concentrates on the (1, 1, 1) cell. To this end, we close with an
explicit description of Markov basis moves for the 3-way model of independence. These are the moves
analogous to the moves in the 2-way table model that can be used to explore the fiber uniformly, under
the “tame” regime before the phase transition occurs.

The Markov moves m = (m; ;) for the independence model on the ny x ny x n3 table Y = (¥;;x) have
entries m;, j,k, = 1 and m;, j,x, = 1 with one of

{miljzkz =1, {miljzkz =-L {minlkz =-1,

Miyjik, = =1, Miyjoky = =1, Miyjoky = =1,

where all other entries are zero, for each iy, iy € [n1], j1, j2 € [n2], and ki, ky € [n3], where i| # iy,
J1 # Jjo, and ki # kp. There are a total of %nlnzng(nl — 1) (np — 1)(n3 — 1) of these moves. Fixing
irjiky = (1,1, 1) leaves 3(n; — 1)(no, — 1)(n3 — 1) moves that apply to the entry Y;;; in the table. Then,
the ratio of applicable moves to nonapplicable moves is

— 0 asny,ny ng— 0.
ninans

Simply the number of available moves does not reveal directly any phase transition phenomena, but this
is likely the case because Markov moves connect all possible fibers. In forthcoming work we will study
what moves are necessary and/or inapplicable for the particular margins are of the form (Bn?, n?, n?).
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