

1

2

3

4

5

6

7

8 How we learn to ignore singleton distractors: Suppressing saliency signals or
9 specific features?

10

11 Isaac Savelson and Andrew B. Leber

12 The Ohio State University, Columbus, OH

13

14 Word Count: 11872

15

Author Note

17 Correspondence should be directed toward Isaac Savelson, Department of Psychology,

18 The Ohio State University, 1835 Neil Ave, Columbus, OH 43210. Email:

19 savelson.1@osu.edu

Abstract

1 Salient visual information can sometimes capture attention despite our goals, however,
2 there are several ways we can minimize or eliminate such distraction. One such way is
3 learned distractor rejection, in which we increasingly ignore salient, irrelevant distractors
4 across repeated exposures. Here we probe the mechanism underlying this learned
5 rejection. What must be learned about the distractor to promote effective ignoring?
6 Specifically, is feature rejection, alone, sufficient to learn rejection of salient distractors,
7 or do the items' saliency signals need to also be rejected? To test between these
8 possibilities, we used a modified version of the learned distraction rejection paradigm
9 (Vatterott & Vecera, 2012). Participants viewed training blocks containing either a
10 salient singleton distractor, or a set of three non-salient "tripleton" distractors, followed
11 by test blocks in which the distractor was always a salient color singleton. Critically, the
12 distractors in test blocks always shared a feature (color) with the corresponding training
13 blocks. By comparing attentional capture in the test blocks as a function of the
14 preceding training block we were able to observe whether experience with saliency was
15 necessary for learned distractor rejection. Results revealed unexpected difficulties in
16 replicating learned distractor rejection, suggesting the true effect size may be smaller
17 than initially reported. With respect to our main objective, we found no difference in the
18 rejection of test block distractors based on whether participants had viewed salient or
19 non-salient distractors during training. That is, we found similar attenuation of singleton
20 presence costs in the test blocks regardless of whether they followed singleton or
21 tripleton training blocks. These results show that experience in rejecting saliency signals
22 is not a requirement of learned distractor rejection.

1 **Keywords:** visual attention, attentional capture, distractor rejection, learning

Introduction

3 Successfully navigating the visual environment requires that we contend with a
4 seemingly limitless quantity of potentially distracting information. Sometimes, we
5 involuntarily select this information, or experience *attentional capture*, which interferes
6 with the processing of task-relevant information. Our behavioral goals demand that we
7 minimize attentional capture as much as possible; fortunately, the human mind is
8 equipped with mechanisms to avoid such distraction. While the exact nature of these
9 mechanisms is the subject of healthy debate, there is growing consensus that people
10 are highly adept at learning to ignore distractors that have some sort of consistent
11 property, such as feature or spatial location (see Luck et al., 2021, for recent
12 discussion). Here, we take a closer look at one such learning phenomenon, specifically
13 a situation where the distractors have repeated feature information, in what has been
14 referred to as *learned distractor rejection* (Vatterott & Vecera, 2012). Our present goal is
15 to better understand how such rejection is implemented.

16 To begin with some background, attentional capture is often investigated using
17 the *additional singleton paradigm* (Theeuwes, 1992). In this task participants perform a
18 visual search for a uniquely shaped item as the target. To elicit distraction, a color
19 singleton – an item unique in color – is presented on a subset of trials. Typically, the
20 inclusion of this color singleton in the search arrays results in a singleton presence cost,
21 that is, a slowing of response times to find the target when the distractor singleton was
22 presented compared to when it was absent from the display (Theeuwes, 1991, 1992,
23 2004). These singleton presence costs are often interpreted as attentional capture by

1 the color singleton distractor and have been argued via *stimulus-driven* accounts of
2 attentional capture to occur because of the distractor's salience (Theeuwes, 1991,
3 1992, 2004, 2010; Wang & Theeuwes, 2020).

4 However, alternative accounts posit a more *goal-driven* explanation for the
5 observed attentional capture. Bacon and Egeth (1994) argued that observers often
6 experience distraction because they adopt a *singleton detection mode*, a strategy that
7 prioritizes all salient search items (see also Pashler, 1988). In a seminal study, Bacon
8 and Egeth (1994) manipulated search displays to render singleton detection mode a
9 non-viable strategy; under these conditions, observers would presumably need to adopt
10 a *feature search mode*, prioritizing the specific target-defining feature. They
11 hypothesized that because the singleton distractor did not match sought after target
12 features it would no longer garner any attentional priority when participants used a
13 feature-based search strategy. Consistent with this prediction, singleton presence costs
14 were eliminated due to Bacon and Egeth's manipulations (see also Burra & Kerzel,
15 2013; Lamy & Egeth, 2003; Leber & Egeth, 2006).

16 As initially conceived by Bacon and Egeth (1994), adopting a feature search
17 strategy should be sufficient to allow observers to avoid distraction by salient, irrelevant
18 distractors. However, more recent research has questioned this assumption, proposing
19 that, as an additional requirement, observers must gain experience in ignoring the
20 specific distractor (De Tommaso & Turatto, 2019; Gaspelin & Luck, 2018b; Stilwell et
21 al., 2019; Vatterott et al., 2018; Vatterott & Vecera, 2012; Zehetleitner et al., 2012).

22 This point was illustrated by Vatterott and Vecera (2012), who introduced the
23 learned distractor rejection paradigm. Much like the additional singleton paradigm,

1 participants search for a consistent shape target, while the presence of a color singleton
2 distractor, appearing in a non-target location, is manipulated. Importantly,
3 heterogeneous distractor shapes are used to elicit a feature search mode for the target.
4 The critical modification of this paradigm is that the singleton distractor color is updated
5 at the start of every block. For example, across four consecutive blocks, a participant
6 might be presented with red, magenta, yellow, and orange distractor singletons,
7 respectively. This design allowed Vatterott and Vecera (2012) to observe the time
8 course of learned distractor rejection over the duration of each block, by comparing
9 singleton presence costs in the first half vs. the second half of each block. Results
10 showed an attenuation of singleton presence costs in each block. Importantly,
11 significant attentional capture was found at the beginning of blocks, indicating that
12 learned rejection does not transfer to novel distractor colors. This result may seem to
13 contradict the findings of Bacon and Egeth (1994), who should have observed
14 significant distractor presence effects at the beginning of the experiment. However,
15 averaging condition means across the entire experiment likely made it difficult to discern
16 the relatively short-lived capture effect in the earlier study.

17 Following Vatterott and Vecera's (2012) findings, several other studies on
18 learned rejection have provided ample evidence that individuals first experience
19 distraction but efficiently learn to reject salient distractors while their color remains
20 consistent (De Tommaso & Turatto, 2019; Gaspelin & Luck, 2018b; Stilwell et al., 2019;
21 Vatterott et al., 2018). Notably, most of these studies used only salient color singletons.
22 In these cases, while the rejection of the singleton distractors is clearly reliant on

1 specific color values, it may also be simultaneously reliant on the learning to handle the
2 salience of the distractors.

3 Here we ask if observers can learn to ignore salient distractors without
4 experiencing salience. One related line of research might appear to shed some light on
5 this question. Several studies have shown that learned distractor rejection can act on
6 non-salient distractors, presumably rejecting them based only on experience with
7 specific feature information (Lien et al., 2022; Stilwell & Vecera, 2019, 2022b, 2022a;
8 Won & Geng, 2018). For example, Stilwell & Vecera (2019) observed that, following a
9 sufficient learning period, participants were faster to locate a target in the presence of a
10 group of learned-to-be-irrelevant distractors. That is, when a set of the items in the
11 display (3 out of 8 in this case) were rendered in an irrelevant color, participants were
12 likely able to search through fewer total items, therefore, locating the target more
13 quickly. This benefit due to the presence of a specific color in the display was taken to
14 indicate that participants had learned to reject those items based on the irrelevance of
15 their color (i.e., the target was never this color).

16 We have, therefore, seen that learned distractor rejection can act on both salient
17 and non-salient distractors, and that feature information likely plays an important role in
18 both cases. That is, as shown by Vatterott and Vecera (2012), switching the specific
19 feature value (i.e., color) of the distractor resulted in a rebound of attentional capture
20 and required the subsequent re-learning of distractor rejection. On the other hand, work
21 with non-salient distractors has provided evidence for rejection of said distractors when
22 little else was consistent about them. Critically, however, the extant literature has yet to

- 1 examine whether training with non-salient feature distractors is sufficient for individuals
- 2 to subsequently reject salient feature distractors.

3 Whether individuals can learn to ignore salient distractors without experience
4 salience carries significant theoretical implications. Classic goal-driven accounts, such
5 as the contingent involuntary orienting hypothesis (Folk, Remington & Johnston, 1992;
6 Folk, Leber & Egeth, 2002), have held that attentional capture is determined primarily by
7 the match between a distracting stimulus and one's attentional control setting. It has
8 been further shown that non-salient distractors indeed capture attention when they
9 match one's attentional control setting, although increasing the salience of these
10 distractors does modulate capture effects (Lamy, Leber & Egeth, 2004). Stimulus-driven
11 accounts of attentional capture, as mentioned above, place much greater emphasis on
12 salience, arguing that that color singletons automatically capture attention strictly
13 because of their saliency (Theeuwes 1992, 2004; see also Theeuwes 2010). Sawaki
14 and Luck (2010) introduced an account that is neither strictly goal-driven nor salience-
15 driven, arguing that capture can be avoided, but doing so requires an act of
16 suppression. By this account, singletons automatically generate an "attend-to-me
17 signal," which can then be suppressed, as evidenced by examining electrophysiological
18 measures of attentional orienting (N2pc) and distractor suppression (Pd). Building on
19 this finding, the *signal suppression hypothesis* originally proposed that effective
20 rejection of a salient distractor relies on the suppression of said distractor's saliency
21 signal (Gaspelin et al., 2015; Sawaki & Luck, 2010). Despite recent updates to the
22 account, which put greater emphasis on knowledge of distractor features (Gaspelin &
23 Luck, 2018b, 2019), a theoretical process of suppressing saliency signals remains a

1 potential way in which individuals handle distractors. In short, many accounts of
2 attentional capture emphasize the importance of rejecting salient distractors (but see
3 Lien et al., 2022). However, it is still unclear how salient distractors come to be ignored.

4 One possibility is that, when the to-be-ignored distractor is salient, it may be
5 harder to ignore, potentially due to its purported attentional-capturing-capabilities, and it
6 therefore requires additional experience with, and subsequent rejection of, the
7 generated saliency signals. Alternatively, the rejection of salient distractors may be
8 purely based on consistent distractor features, similar to what occurs when observers
9 learn to reject a group of non-salient items sharing a color. To put it simply, in the case
10 of a salient distractor, it remains unclear what role the salience itself plays in learned
11 distractor rejection.

12 In the current study, we used the learned distractor rejection paradigm (Vatterott
13 & Vecera, 2012) to investigate whether experience with a salient distractor's simple
14 features is sufficient to learn to reject it. However, unlike the singleton distractors used
15 in previous studies, we instead used displays in which the salience of the target and
16 distractor colors were equated. We then tested how this rejection would hold up when
17 the distractors suddenly became more salient. If learning to reject saliency signals is
18 necessary when learning to ignore a salient distractor, then we should observe
19 attentional capture when the ignored distractors suddenly become salient. However, if
20 learned feature-based rejection alone is sufficient for rejection of salient distractors, then
21 said rejection should survive the introduction of salience.

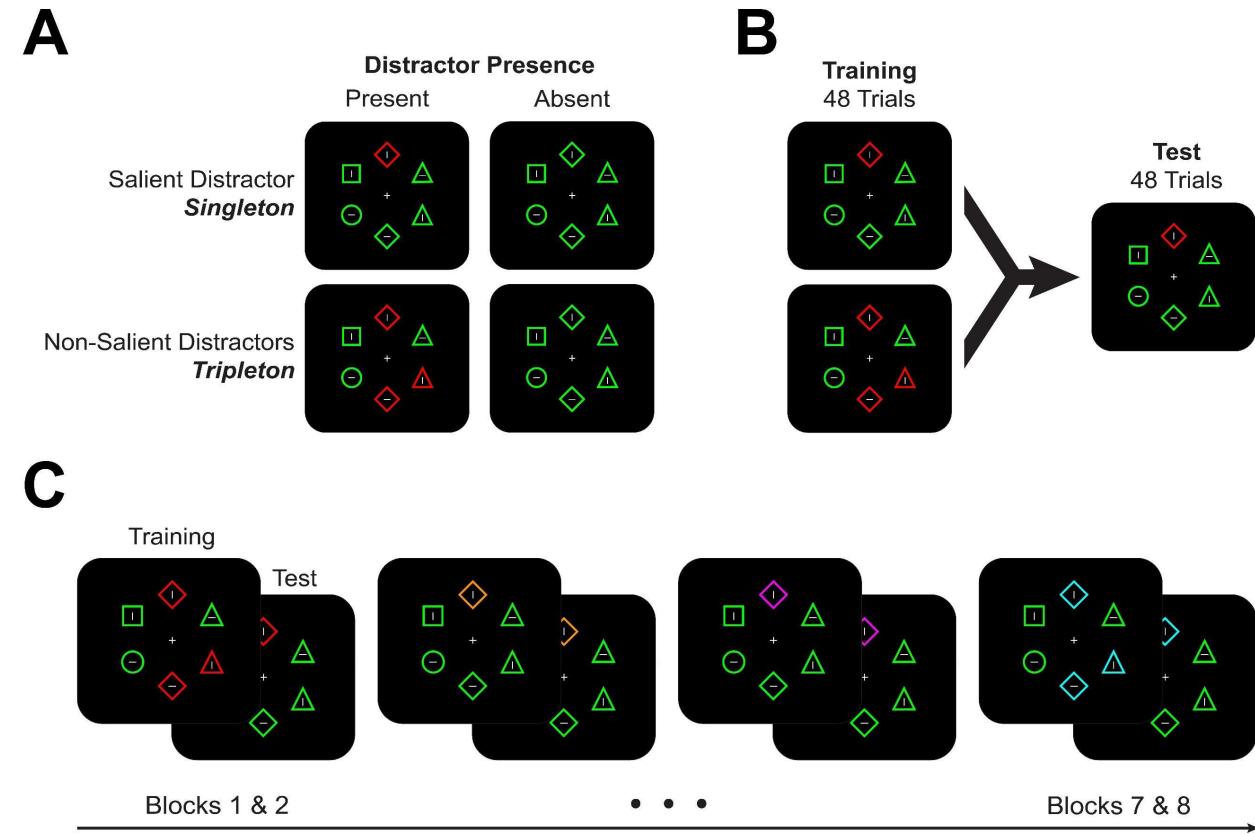
22 **Experiment 1**

1 In Experiment 1 we sought to test whether experience with consistent distractor
2 features (color) will allow for effective distractor rejection when the critical distractor
3 suddenly becomes salient. Our approach was to present pairs of training and test
4 blocks to participants while manipulating the salience of non-target-colored distractors in
5 the training blocks. Participants viewed either *singleton training blocks* in which a color
6 singleton was presented in a constant distractor color throughout the block, or *tripleton*
7 *training blocks* in which half of the distractor items were presented in the non-target-
8 color, rendering them non-salient (see Lien et al., 2022). After training, both groups
9 were exposed to the same exact test blocks, in which the distractor was always a
10 salient color singleton, which was always the same color as in the training blocks.

11 If effective rejection of a salient distractor requires learned rejection of saliency
12 signals, and therefore, experience with salience, then greater singleton presence costs
13 will be observed in test blocks following tripleton (non-salient) training blocks. This will
14 appear as notable slowing of RTs on singleton present, compared to singleton absent,
15 trials in these blocks as opposed to the minimal difference expected in test blocks
16 following singleton (salient) training (Vatterott and Vecera, 2012). If, however,
17 experience with the distractor feature is sufficient to learn rejection of a salient
18 distractor, singleton presence costs should be equal across training conditions. That is,
19 RT differences between singleton present and singleton absent trials in test blocks will
20 not differ as a function of the corresponding training block.

Method

22 *Participants*


1 50 participants were recruited via the Research Experience Program (REP) at The
2 Ohio State University (19 women, 30 men, 1 non-binary; mean age = 18.8 years).
3 Participants received course credit as compensation. All participants were required to
4 have normal color vision and normal or corrected to normal visual acuity. All
5 experimental procedures were approved by The Ohio State University's Institutional
6 Review Board.

7 ***Apparatus***

8 All stimuli were coded and presented using PsychToolbox 3 (Brainard, 1997;
9 Kleiner et al., 2007; Pelli, 1997). Participants completed the experiment in a dimly lit,
10 sound-attenuated room. Head position was not fixed, and we report stimulus sizes
11 based on a typical viewing distance of 70 cm. All stimuli were displayed on a 24" Dell
12 G2422HS monitor (1920 x 1080 resolution).

13 ***Stimuli***

14 All stimuli were presented on a black background. A white fixation cross (comprised
15 of two intersecting perpendicular lines, each .4° by .1° visual angle) was presented in
16 the center of the screen throughout the experiment. Search arrays consisted of six
17 shapes evenly spaced on an imaginary circle centered at fixation (each shape was
18 centered at an eccentricity of 3.7°). The target was always a green outline circle (RGB
19 0, 255, 0; .1° line thickness; 2.1° diameter), which appeared equally often at each of the
20 six locations, with presentation order randomized within each block. The remaining five
21 non-target shapes were made up of outline squares (1.8° by 1.8°), diamonds (1.8° by
22 1.8°), and triangles (2.5° on a side) which were randomly chosen with the constraint that
23 a maximum of two distractors could appear as the same shape.

Figure 1. (A) Types of search displays used in task. Singleton present trials contained a uniquely colored distractor item. On triplet present trials, three distractor items were rendered in the distractor color. (B) Training-test procedure. Participants viewed training blocks containing either singleton or triplet distractors. Test blocks contained only singleton distractors. (C) Example block procedure. Participants completed four training-test block pairs. At the start of each training block the distractor color was switched. Ordering of training block types and distractor color were counterbalanced across participants.

On distractor absent trials, all search items were rendered in the target color (e.g., all green). On distractor present trials one or three non-target shapes were presented in one of four distractor colors, red (RGB 255, 0, 0), orange (RGB 255, 150, 0), magenta (RGB 255, 0, 255), or cyan (RGB 0, 255, 255). The locations of these color distractors were randomly chosen on each trial, with the constraint that they could never appear at the target location (Figure 1A).

16 **Procedure**

1 Participants completed an initial practice block, followed eight experimental blocks.
2 The practice block consisted of 48 trials, in which all search stimuli were target colored.
3 The purpose of this block was to familiarize participants with the visual search task in
4 order to minimize errors during experimental blocks. The practice block was excluded
5 from all analyses. The following eight experimental blocks were divided into four pairs of
6 training and test blocks in which color distractors were presented on half of all trials.
7 Training blocks were either singleton- or tripleton- distractor blocks and were always
8 immediately followed by a singleton distractor test block. Each participant completed
9 two tripleton-training block pairs and two singleton-training block pairs (Figure 1C); with
10 ordering counterbalanced in an ABBA/BAAB pattern across participants. Color
11 distractors were presented on 50% of all trials during experimental blocks, 24 out of the
12 total 48 trials in each block.

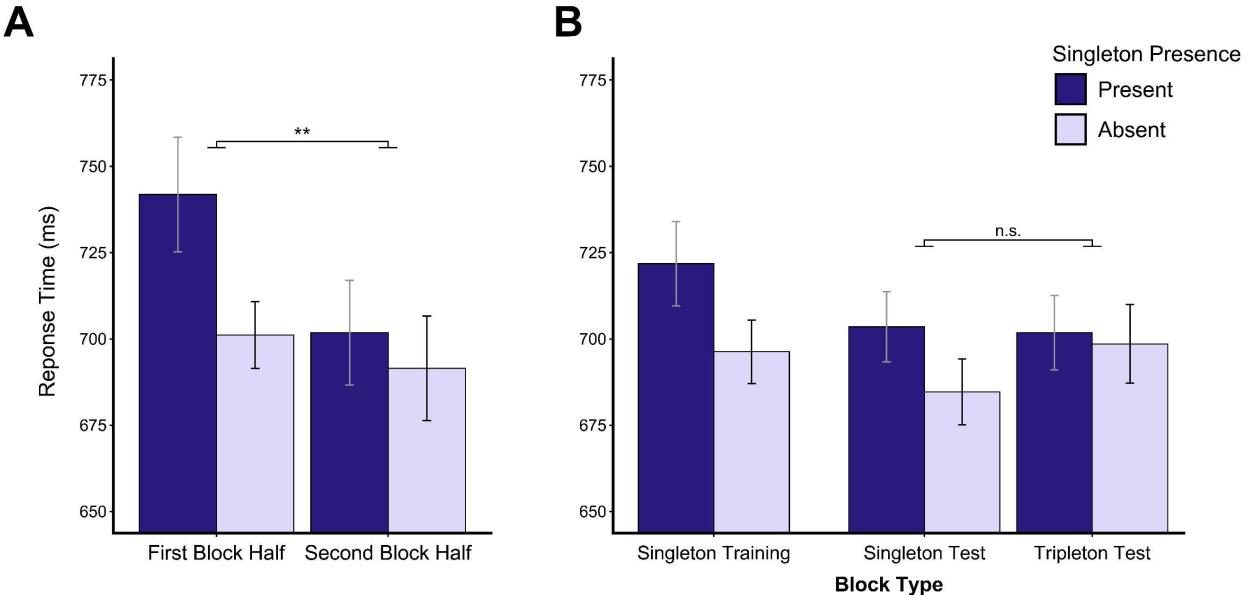
13 During singleton training blocks, distractor present trials were comprised of one
14 non-target shape rendered in the opposite color to the target, while all others appeared
15 in the target color, creating a color singleton. On distractor present trials during tripleton
16 training blocks, a tripleton color-distractor was presented. That is, three out of the five
17 non-target search items were rendered in the distractor color, resulting in an equal split
18 of target and distractor-colored items in the display. In other words, half of the search
19 items appeared in the target color (green), while the other half of items appeared in the
20 distractor color (e.g., red). Test blocks were always singleton-distractor blocks, identical
21 to the training blocks of the same name, described above, and shared a distractor color
22 with the corresponding training block (Figure 1B).

1 Distractor color was consistent throughout a training-test block pair but changed
2 at the beginning of each training block. The ordering of distractor color was
3 counterbalanced across participants using a balanced Latin square, such that each
4 color occurred once at each position (1-4) and each ordering of two colors occurred
5 once in the counterbalancing order.

6 Each trial began with a white fixation cross presented in the center of the screen
7 for 500 ms. The fixation display was followed by the onset of the search array.

8 Participants searched for the target shape and responded based on whether a white
9 line segment (.7° by .1° visual angle) presented at the center of the shape was
10 horizontal or vertical. After each search trial, auditory feedback was given in the form of
11 low tone to indicate an incorrect response. Following trials on which participants failed
12 to make a response the text “too slow” was presented in the center of the screen in
13 addition to the sounding of the low tone. Manual response times (RTs) and accuracy
14 were recorded for each trial. Additional feedback was on average response time and
15 accuracy was given following each block, and participants were instructed to take a
16 short break before continuing.

17 Prior to the start of the experiment participants were informed of the specific
18 features of the target, a green circle, and were instructed to do try to ignore any shapes
19 rendered in an alternate color. No instructions were given concerning the specific
20 distractor colors, or number of color-distractor items, therefore, throughout the
21 experiment participants were unaware of distractor color of an upcoming block, nor
22 whether they would view a triplet or singleton block.


23 **Results and Discussion**

1 2 out of the 50 participants collected were removed from all analyses due to accuracy or
2 response times outside the range of 3 standard deviations from overall participant
3 averages. One additional participant was removed for reporting non-normal or corrected
4 to normal visual acuity or color vision. Final analyses were conducted on the 47
5 remaining participants.

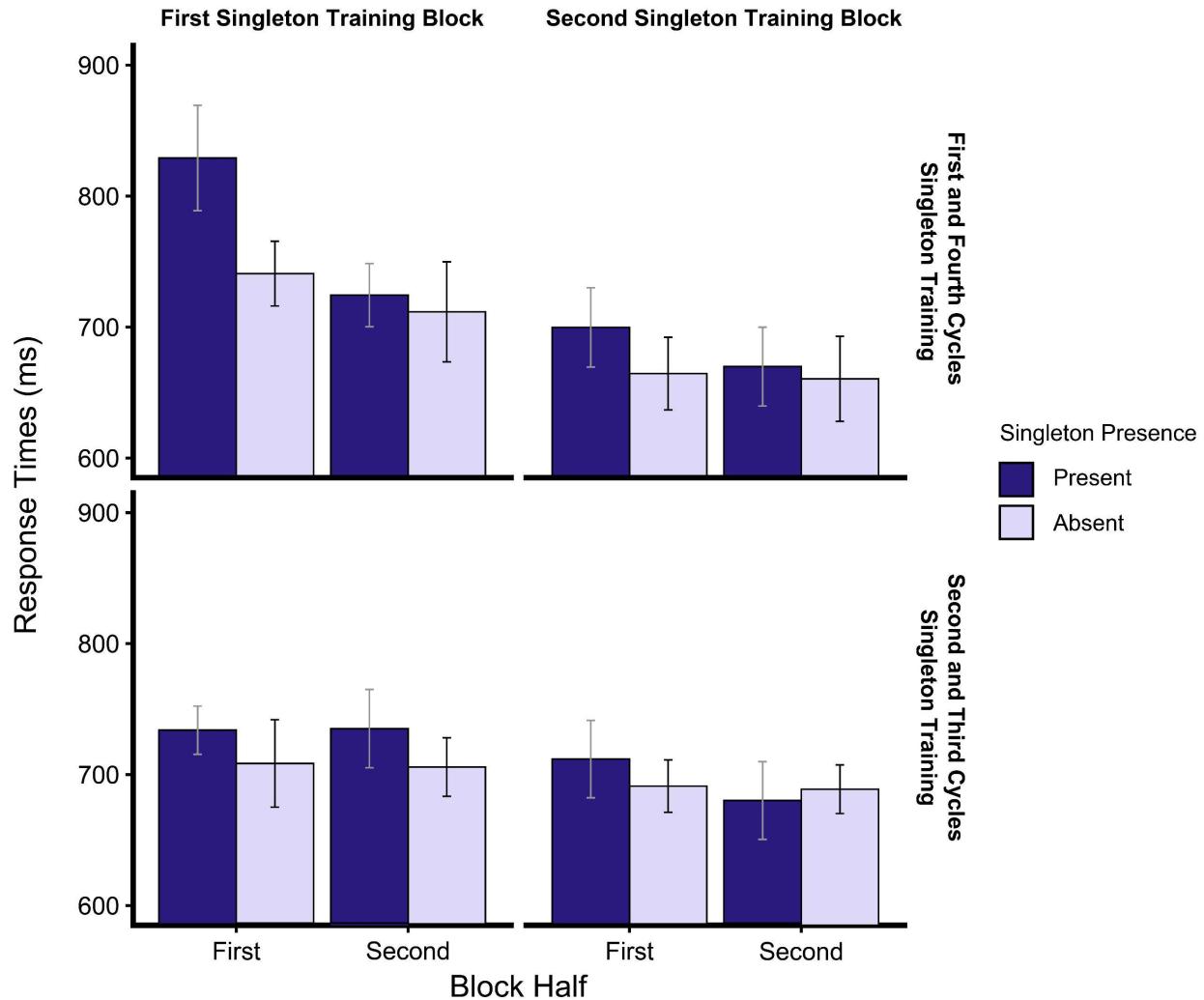
6 **Response Times**

7 Trials on which an error was made, or no response was given were excluded
8 from analyses. Additionally individual subject condition means and standard deviations
9 were calculated based on singleton presence (present vs. absent) and block type
10 (training vs. test). RTs outside the relevant three standard deviation range were
11 removed from all analyses. In total, 5.7% of trials were excluded based on these criteria.
12 Multiple comparisons were corrected for using the Holm-Bonferroni procedure (Holm,
13 1979), where appropriate.

14 **Training Blocks.** We first carried out a manipulation check of the learned distractor
15 rejection effect described by Vatterott and Vecera (2012). We focused on the singleton
16 training blocks, as they contained singleton distractor blocks following singleton
17 distractor blocks of a different color (i.e., the test block of the preceding block pair). To
18 verify an attenuation of attentional capture in these blocks, we collapsed across all
19 singleton training blocks, then performed a paired samples *t* test comparing singleton
20 presence effects (present – absent) in the first half of the blocks (41 ms) to those in the
21 second half (10 ms), $t(46) = 3.16$, $p = .003$, $d_z = .46$. The results indicated a successful
22 replication, with higher initial singleton presence costs, followed by an attenuation of
23 these costs later in the singleton training block, RTs shown in Figure 2A. We

Figure 2. (A) Mean RTs in collapsed across all singleton training blocks, displayed as a function of singleton presence and block half. (B) Mean RTs by block type and singleton presence. **Note that all data presented are from testing blocks and are labeled based on the preceding training block.** Error bars represent within-subjects 95% confidence intervals (Cousineau, 2005; Morey, 2008).

1 additionally conducted two planned comparisons, consisting of paired t tests on each
 2 block half separately, comparing RTs on singleton present and absent trials. A
 3 significant difference was observed in the first, $t(46) = 4.62$, $p < .001$, $d_z = .67$, but not
 4 the second block half, $t(46) = 1.31$, $p = .197$, $d_z = .19$, indicating that that attentional
 5 capture observed in the first half of the collapsed singleton training blocks was
 6 statistically negligible in the second half of the block. Singleton presence effects in this
 7 analysis were collapsed across all blocks, but an exploratory analysis of block-by-block
 8 effects is discussed later.


10 **Test Blocks.** We then proceeded to assess attentional capture in our critical blocks by
 11 comparing across all block types containing singleton distractors. In addition to our
 12 singleton and tripleton test block conditions, we included singleton training blocks as a
 13 control condition, serving as a baseline level of attentional capture expected without

1 learned rejection from the previous block. Note that, unlike the analysis described
2 above, RT means in the following analyses were computed across entire blocks, not
3 block halves. We conducted a 3 x 2 ANOVA with factors of block type (singleton training
4 vs. singleton test vs. tripleton test) and singleton presence (present vs. absent). A
5 significant main effect of singleton presence was observed, with slowed RTs on
6 distractor present (709 ms) compared to distractor absent (694 ms) trials, $F(1, 46) =$
7 12.76, $p < .001$, $\eta_p^2 = .22$. The main effect of block type approached, but did not reach,
8 significance, $F(2, 92) = 2.56$, $p = .083$, $\eta_p^2 = .05$. Critically, the interaction between
9 singleton presence and block type was significant, $F(2, 92) = 3.18$, $p = .046$, $\eta_p^2 = .07$,
10 Figure 2B.

11 To further investigate the significant block type by singleton presence interaction
12 we conducted follow up simple 2 (block type) x 2 (singleton presence) ANOVAs
13 examining the main effects of singleton presence and the interaction within each block
14 type pairing. When data from singleton and tripleton test block conditions were entered
15 into the 2 x 2 ANOVA, we found a significant main effect of singleton presence, $F(1, 46)$
16 = 5.17, $p_{hb} = .028$, $\eta_p^2 = .10$., but no significant interaction, $F(1, 46) = 2.87$, $p_{hb} = .194$,
17 $\eta_p^2 = .06$. A second ANOVA was conducted on singleton training and test blocks. We
18 again found a significant singleton presence main effect, $F(1, 46) = 21.18$, $p_{hb} < .001$,
19 $\eta_p^2 = .32$, but, surprisingly, no significant interaction, $F(1, 46) = 0.46$, $p_{hb} = .503$, $\eta_p^2 =$
20 .01. Finally, we conducted a 2 x 2 ANOVA using data from singleton training and
21 tripleton test blocks; both the main effect of singleton presence, $F(1, 46) = 6.60$, $p_{hb} =$
22 .027, $\eta_p^2 = .13$, and the interaction effect, $F(1, 46) = 7.23$, $p_{hb} = .030$, $\eta_p^2 = .14$, were
23 significant.

1 The results of our simple interactions show that we did not observe a significant
2 difference in singleton presence costs between test blocks based on whether
3 experience with salience was provided or not. Further, singleton presence costs were
4 reduced when participants had previous experience with said distractor's color. Taken
5 together, these results provide evidence for rejection of a salient distractor based on
6 first-order features, without the need for rejection of salience.

7 However, one critical limitation of this experiment was the lack of a reduction in
8 singleton presence effects between singleton training and singleton test blocks,
9 revealed by the non-significant simple interaction test. Thus, our replication of Vatterott
10 and Vecera (2012) may not have been as robust as we had originally assumed. This
11 prompted us to more closely inspect the learned distractor rejection effect separately in
12 each of the singleton training blocks. On such inspection, it appears that the attenuation
13 of singleton presence effects only occurs in the first block and not for blocks 2-4. To
14 evaluate this statistically, we performed an exploratory $2 \times 2 \times 2$ ANOVA with Singleton
15 Training Order (first vs. second singleton training block) and Block Half (first vs. second
16 half of block) as within subjects' factors, and a between subjects' factor of Block
17 Ordering (ABBA vs. BAAB), see Figure 3. This comparison was designed to mirror the 2
18 $\times 4$ ANOVA used by Vatterott and Vecera (2012) to test the same question, albeit with
19 some changes due to design differences. The main effects of block half, $F(1, 45) =$
20 $11.25, p = .002, \eta_p^2 = .2$, and singleton training order, $F(1, 45) = 5.68, p = .021, \eta_p^2 =$
21 $.11$, were both significant. Marginal effects were found in the interaction between block
22 half and block ordering, $F(1, 45) = 4.05, p = .0501, \eta_p^2 = .08$, as well as the interaction
23 between all three variables, $F(1, 45) = 3.21, p = .080, \eta_p^2 = .07$. All other comparisons

Figure 3. Mean RTs by block half and singleton presence in singleton training blocks. Columns represent the order of blocks, each participant completed two singleton training blocks. Rows distinguish between counterbalancing groups. For half of participants the first experimental block was a singleton training block, while the second was the 7th experimental block (the 4th training-test pair; upper row). The other half of participants viewed singleton training blocks during the 2nd and 3rd training-test cycles (lower row). Error bars represent within-subject 95% confidence intervals.

were non-significant, $F_s < 2.12$, $ps > .153$. Although these statistics do not conclusively support a successful replication – or conversely a failure to replicate – the learned distractor rejection effect across all blocks, it is important to note that our experiment was not designed to test this comparison. Nevertheless, the numerical pattern of

1 attentional capture across blocks, paired with the marginal significance of the three-way
2 interaction seem inconsistent with the original results of Vatterott and Vecera (2012).

3 Our main result from this experiment was the lack of any difference in singleton
4 presence effects for blocks following singleton training vs. tripleton training. However,
5 these results are difficult to interpret in light of the failure to robustly reproduce the
6 learned distractor rejection results of Vatterott and Vecera (2012). There are many
7 plausible reasons for our replication difficulties, including our choice of stimuli and more
8 complex task conditions (including tripleton training blocks). While it is essential to
9 investigate these and other possible reasons, we wish to keep the present work focused
10 on our initial question: is experience with salience necessary for the learned rejection of
11 salient distractors? Given that the first block of Experiment 1 showed clear attenuation
12 of the distractor effect, we set out to focus on only one training-test block pair in
13 Experiment 2, in order to provide a satisfactory test of our critical hypotheses.

14 **Error Rates**

15 The same 3 x 2 ANOVA, as described above was conducted on error rates. Only
16 a significant effect of block type was observed, $F(2, 92) = 3.80, p = .026, \eta_p^2 = .08$, all
17 other F s < 1.1 , $ps > .337$. pairwise comparisons revealed that the significant main effect
18 of block type was driven by higher error rates in tripleton test blocks (4.37%) than
19 singleton test blocks (3.29%), $t(46) = 3.03, p = 0.009, d_z = 0.46$.

20 **Experiment 2**

21 As mentioned above, in Experiment 1 we did replicate the initial capture, then rejection
22 of a salient color singleton in the first block of the experiment. In order to continue our
23 investigation of the role that salience plays in rejecting a salient distractor, Experiment 2

1 includes just one training-test block pair. This change also required a switch to a
2 between-subjects manipulation of training block type. Further, in addition to the
3 singleton and tripleton training conditions from Experiment 1, we added a third group in
4 which the training block consisted of only distractor-absent trials. This no-distractor
5 group should therefore have no experience with the distracting feature at the start of the
6 test block, providing a baseline level of expected attentional capture during the test
7 block that would be expected without any form of prior distractor rejection experience.
8 Therefore, in addition to our previous hypothesis, if experiencing a color distractor in
9 training blocks leads to a reduction of capture, regardless of salience, then attentional
10 capture will be the greatest in test blocks following a training block without any color
11 distractors.

12 Note one potential concern with the no-distractor control group involves previous
13 work showing that distractor interference is increased when distractors have not been
14 previously presented; and that this may occur independently of the learned feature
15 ignoring effect that we are investigating (Müller et al., 2009; Zehetleitner et al., 2012).
16 Thus, our interpretation will focus primarily on the similarity of capture effects in the
17 singleton and tripleton test blocks, with the test block of the no-distractor group simply
18 serving to show that there was an attenuation of capture in both other cases.

19 **Method**

20 Experimental procedures and statistical analyses were preregistered prior to data
21 collection. The preregistration document is posted at
22 <https://doi.org/10.17605/OSF.IO/65RXH>. Any deviations from our preregistration are
23 declared as such.

1 ***Participants***

2 161 participants, in total, were recruited via the Research Experience Program
3 (REP) at The Ohio State University (51 women, 16 men, 1 non-binary, 1 unlabeled;
4 mean age = 19.9 years) and through an online paid subject recruitment platform,
5 Prolific.co (34 women, 46 men, 2 non-binary; mean age = 30.2 years)¹. In the absence
6 of an informative power analysis, we determined that a large sample of 50 participants
7 per group should provide sufficient power. REP participants received course credit as
8 compensation. Prolific.co participants were paid \$5 for completion of the experiment
9 which took 7.4 min on average. All participants completed the experiment online.
10 Prolific.co participants were required to be aged 18-40, be located in the United States,
11 have an approval rating of at least 96% and have completed at least 50 prior approved
12 submissions. All participants were required to have normal color vision and normal or
13 corrected to normal visual acuity, though this was difficult to ensure using the online
14 format. All experimental procedures were approved by the Institutional Review Board at
15 The Ohio State University.

16 ***Apparatus***

17 Stimuli for this experiment were drawn using HTML Canvas Graphics and were
18 presented using the jsPsych plugin via JavaScript (Leeuw et al., 2023). Experiment 2
19 was conducted online, so we did not have control over features of the visual
20 environment such as lighting, viewing distance and computer/monitor specifications. All
21 visual angles are reported assuming a 24" monitor with a 1920 x 1080 resolution (i.e.,

¹ Gender distributions and mean age are reported for participants retained in final analyses. See results section for more information on participant removal.

1 35.8 px/cm) at a viewing distance of approximately 70 cm (see Experiment 1 for visual
2 angles).

3 ***Stimuli***

4 Stimuli were coded to be identical to those described in experiment one with a
5 few exceptions. Target color was consistent throughout the experiment as either green
6 (RGB 0, 255, 0) or red (RGB 255, 0, 0) and was counterbalanced across participants
7 within each training group assignment. On distractor absent trials all search items were
8 rendered in the target color (e.g., all green). On distractor present trials one or three
9 non-target shapes were presented in the opposing color – i.e., red if the target color was
10 green, or vice versa.

11 ***Procedure***

12 The procedure of Experiment 2 was similar to that of Experiment 1, with a few
13 key differences. A minor change was made to the practice block, increasing the number
14 of distractor-absent practice trials at the start of the experiment to 60, the same number
15 used in Vatterott and Vecera (2012). More importantly, we reduced the number of
16 experimental blocks from the eight presented in Experiment 1, to just two, a single
17 training-test block pair, in light of our incomplete replication of Vatterott and Vecera
18 (2012), particularly in the 2nd through 4th blocks. As Experiment 2 employed a between-
19 subjects training manipulation, participants were evenly divided between three distinct
20 training groups, creating singleton-, tripleton-, or no-distractor training groups, as
21 follows.

22 Singleton and tripleton training blocks were identical to those of Experiment 1. The
23 third type of training block, a no-distractor block consisted of only distractor absent

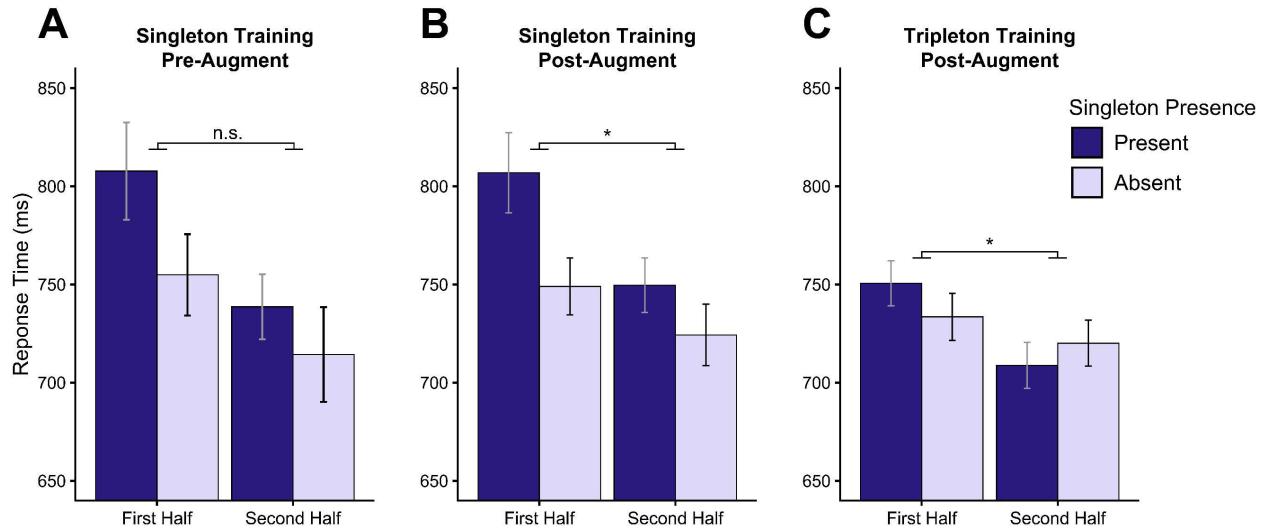
1 trials. As in the other two groups, the no-distractor group's test block was a singleton
2 distractor block, presenting a salient color singleton. Each experimental block consisted
3 of 48 trials.

4 Feedback in Experiment 2 was visual, given in the form of onscreen messages
5 declaring the response "CORRECT", "INCORRECT", or "TOO SLOW." Prior to the start
6 of the experiment participants informed of the specific features of the target (e.g., green
7 circle) and were instructed to do try to ignore the distractor color. Experimental
8 instructions were identical across training group assignments; therefore, participants
9 were unaware of whether they would see singleton, tripleton, or no distractors during
10 the experimental blocks.

11 Results and Discussion

12 We reported in our preregistration that participants whose overall mean RT or
13 accuracy fell outside of a three standard deviation range from participants within the
14 same group would be removed and replaced. However, we opted to add an additional
15 step prior to the removal of these participants, which cut all participants with mean
16 accuracy below 60%. We made this change because more participants than expected
17 showed near-chance level accuracy. We determined that 60% was a sensible threshold
18 to assume that participants did not reasonably complete the task. The threshold was
19 decided upon independently of the critical inferential statistics. In total, 11 participants
20 were removed from final analyses because they failed to meet the above criteria. A final
21 sample size of 150 participants (50 participants per group) was used in all analyses.

22 **Response Times**


1 Trials on which an error was made, or no response was given, were excluded
2 from analyses. Individual subject condition means and standard deviations were
3 calculated based on singleton presence (present vs. absent) and block type (training vs.
4 test). RTs outside the relevant three standard deviation range were removed from all
5 analyses. In total, 6.7% of trials were excluded based on these criteria. Multiple
6 comparisons were corrected for using the Holm-Bonferroni procedure, where
7 appropriate.

8 Following the null effect in the critical comparison from Experiment 1 we planned
9 to perform Bayesian analyses alongside all frequentist tests. In the absence of a
10 justification for the use of an informed prior, we used a uniform prior, assuming all
11 models were equally likely (i.e., prior probability equals 1 divided by the number of
12 models), for all Bayesian analyses. For Bayesian ANOVAs, main effect and interaction
13 Bayes factors (BF_{incl}) are reported (van den Bergh et al., 2020). Interaction Bayes
14 factors were calculated by comparing a null model, containing only main effects, to an
15 alternative one which contained both main effects and the interaction term.

16 As in Experiment 1, we first assessed the attenuation of attentional capture in the
17 singleton training blocks, using a paired samples t test comparing singleton presence
18 costs (present-absent) by block half. Singleton presence costs in the first half of the
19 block (53 ms) did not significantly differ from those in the second half (24 ms), $t(49) =$
20 1.47 , $p = .148$, $d_z = .21$, $BF_{10} = 0.42$, Figure 4A. This result seemed to indicate a failure
21 to replicate the attenuation of attentional capture between the first and second halves of
22 a singleton distractor block, originally reported by Vatterott & Vecera (2012).

1 We next conducted a 3×2 mixed measures ANOVA on the test phase data,
2 with training condition (singleton vs. triplet vs. no-distractor) and singleton presence
3 (present vs. absent) as factors. A significant main effect of singleton presence was
4 found with slower mean RTs on singleton present trials (735 ms) than singleton absent
5 trials (708 ms), $F(1, 147) = 22.94, p < .001, \eta_p^2 = .14, BF_{incl} = 2.10 \times 10^3$. The main effect
6 of training condition was not significant, $F(2, 147) = 0.16, p = .856, \eta_p^2 = .002, BF_{incl} =$
7 0.30. The interaction between training condition and singleton presence was marginally
8 significant, $F(2, 147) = 2.94, p = .056, \eta_p^2 = .04, BF_{incl} = 0.65$. Mean RTs are depicted in
9 Figure 5A.

10 The non-significance in our replication of the learned distractor rejection effect
11 (Vatterott and Vecera, 2012), along with the marginal significance of our 3×2 interaction
12 indicated to us that we may have been underpowered for the strength of the effect
13 under investigation. This likely occurred due to an overestimation of the size of these
14 effects based on previously reported figures, as well as the results we obtained in
15 Experiment 1. We therefore decided to perform a post-hoc sample size augmentation
16 according to the procedure from Sagarin et al. (2014). All further analyses with
17 statistically significant results will report an additional $p_{augmented}$ statistic, which provides
18 the inflation of Type I error for the comparison due to the addition of participants into our
19 sample. To avoid further increases to the false positive rate, we recruited an additional
20 set of 150 participants before re-analyzing the data, which was declared as an
21 addendum to our preregistration prior to the augmentation. All the following analyses
22 were conducted after the sample size augmentation.

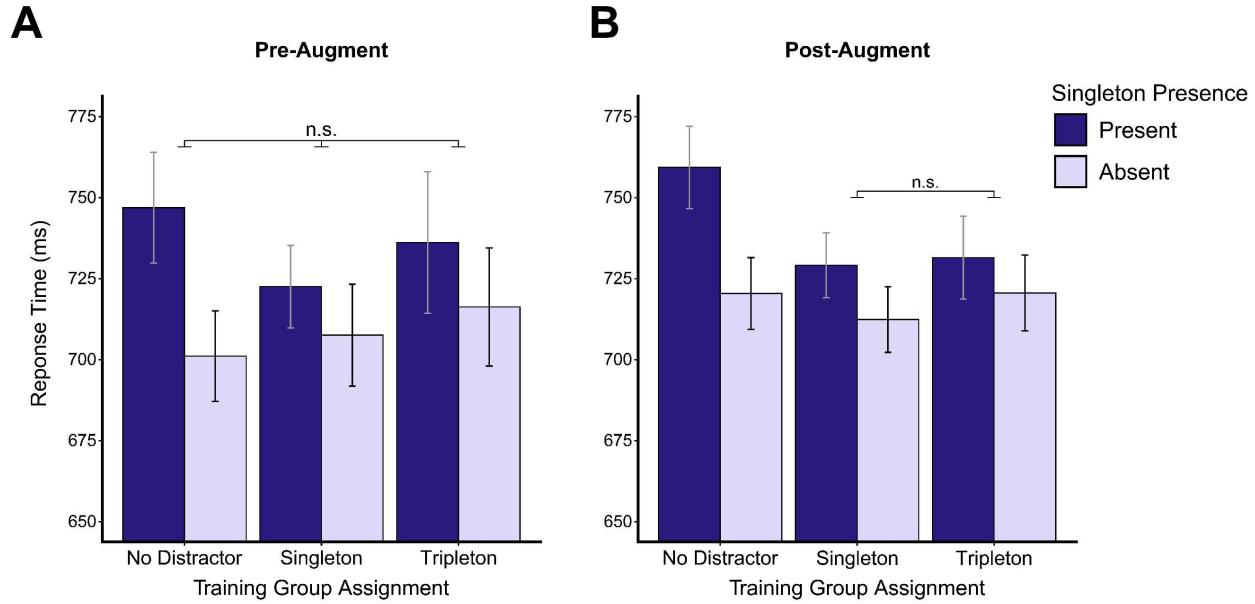
Figure 4. Mean RTs from singleton-group training blocks as a function of singleton presence and block half (A) before ($n = 50$) and (B) after ($n = 100$) sample size augmentation. (B) Mean RTs graphed in the same way from tripleton training blocks. Error bars represent within-subject 95% confidence intervals.

A total of 156 additional participants (60 women, 86 men, 3 non-binary, 1 prefer not to answer; mean age = 31.7) were recruited on Prolific.co. Six participants were removed from all analyses due to response times or accuracy outside of a 3 standard deviation range from the mean of participants within the same group. The removal of participants in the augmented sample was independent of the original sample of 150 participants. Therefore, no additional participants from the original sample were removed in this way. The same within-participant trimming procedure, as discussed above, was performed on the combined sample, a total of 6.4% of all trials were discarded due to this procedure.

Training Blocks. With the addition of 150 participants, we achieved a significant result when comparing singleton presence costs in the first half of the singleton training block (58 ms) to those in the second half of the same block (25 ms), $t(99) = 2.34$, $p = .021$, $d_z = .23$, $p_{augmented} = [.056, .062]$, $BF_{10} = 1.49$, shown in Figure 4B. Following Vatterott and Vecera (2012) and Experiment 1 we conducted two additional exploratory paired-

1 samples t tests on present and absent trials in each block half individually. These
2 comparisons revealed that response times were significantly slower on distractor
3 present trials in both the first, $t(99) = 4.67$, $p < .001$, $d_z = .47$, $p_{augmented} = [.05, .050]$,
4 $BF_{10} = 1.65*10^3$, and second, $t(99) = 2.80$, $p = .006$, $d_z = .28$, $p_{augmented} = [.051, .052]$,
5 $BF_{10} = 4.34$ halves of singleton training blocks.

6 These results indicate that an attenuation of capture occurred from the first to
7 second halves of the singleton training block. The reason for the replication failure is still
8 unclear; however, the present results, along with some more recent related experiments
9 (Ramgir & Lamy, 2023; Ruthruff et al., 2022), suggest that the true effect size for
10 learned distractor rejection is smaller than initially estimated by Vatterott and Vecera
11 (2012). We will further discuss differences in the designs and results in the General
12 Discussion.


13 At the suggestion of reviewers, we performed additional analyses on tripleton
14 training blocks. These analyses were not preregistered. Note that we do not include
15 $p_{augmented}$ values for the following analyses as we conducted them after our sample
16 augmentation.

17 Our goal was to assess how the presence of tripletons impacted behavior, much
18 in the same fashion that we examined how singletons impacted behavior in the
19 singleton training blocks. Thus, we carried out the same analyses as described for the
20 singleton training blocks. We started with a paired samples t-test comparing tripleton
21 presence vs absence across block halves. Note that we refer to the tripletons as
22 “distractors” here, although we acknowledge they may not be considered distractors in
23 the same way as singleton items. We found significantly greater distractor presence

1 costs in the first half of the block (17 ms) compared to the second (-11 ms), $t(99) = 2.58$,
2 $p = .011$, $d_z = .26$, $BF_{10} = 2.55$. We performed two additional paired samples t-tests,
3 separately comparing RTs on singleton present and absent trials in the first and second
4 halves of tripleton training blocks. We observed a significant RT difference in first half of
5 the block, $t(99) = 2.32$, $p = .022$, $d_z = .23$, $BF_{10} = 1.43$, with slower response times when
6 the distractors were present compared to absent. No significant difference was found in
7 the second half of tripleton training blocks, $t(99) = 1.54$, $p = .127$, $d_z = .15$, $BF_{10} = 0.35$,
8 though a numerical benefit was observed on distractor present trials. It is important to
9 note that the lack of a significant benefit could simply reflect the fact that we have few
10 trials in which this benefit is likely to be observed. Perhaps with a longer training block
11 we would find this benefit to be robust.

12 **Test Blocks.** A 3×2 ANOVA, as described above, was conducted on the full sample.
13 We again observed a significant main effect of singleton presence with slower RTs on
14 singleton present (740 ms) compared to singleton absent (718 ms) trials throughout
15 testing blocks, $F(1, 297) = 35.81$, $p < .001$, $\eta_p^2 = .11$, $p_{augmented} = [.05, 0.050]$, $BF_{incl} =$
16 9.40×10^5 . The main effect of training group was still non-significant, $F(2, 297) = 0.55$, p
17 $= .577$, $\eta_p^2 = .004$, $BF_{incl} = 0.26$. Critically, the interaction between training group and
18 singleton presence was now significant, $F(2, 297) = 4.65$, $p = .010$, $\eta_p^2 = .03$, $p_{augmented} =$
19 $[.050, .055]$, $BF_{incl} = 2.72$, see Figure 5B.

20 With the now-significant training condition by singleton presence interaction in
21 the test phase data, we conducted three follow-up simple 2 (training group) \times 2
22 (singleton presence) ANOVAs. We began with our critical comparison (singleton and
23 tripleton training groups); similar to Experiment 1, we found a significant main effect of

Figure 5. Mean RTs from Experiment 2 graphed as a function of singleton presence training group assignment. (A) RTs taken from original sample of 150 participants and (B) the full sample of 300 participants. Error bars are within-subject 95% confidence intervals calculated within each group, chosen for ease of comparing the effect of singleton presence within training group assignment.

singleton presence when comparing between the two test groups, $F(1, 198) = 9.86, p_{hb} = .002, \eta_p^2 = .05, p_{augmented} = [.050, .051], BF_{incl} = 11.36$, but no significant interaction effect, $F(1, 198) = 0.72, p_{hb} = .399, \eta_p^2 = .004$. This lack of an interaction shows that there was no meaningful difference in singleton presence costs between these groups. To assess support for the null hypothesis, we conducted a Bayesian ANOVA, which indeed supported the null, $BF_{incl} = 0.24$.

For the second 2 x 2 ANOVA, we included singleton and no-distractor training groups. We found a significant main effect of singleton presence, $F(1, 198) = 41.35, p_{hb} < .001, \eta_p^2 = .17, p_{augmented} = [.05, .050], BF_{incl} = 6.57*10^6$, and a marginally significant interaction, $F(1, 198) = 4.82, p_{hb} = .058, \eta_p^2 = .02, p_{augmented} = [.05, .067], BF_{incl} = 1.57$.

Finally, for the last 2x2 ANOVA, we included tripleton and no-distractor training groups. We found both a significant main effect of singleton presence, $F(1, 198) =$

1 26.89, $p_{hb} < .001$, $\eta_p^2 = .12$, $p_{augmented} = [.05, .050]$, $BF_{incl} = 1.45*10^4$, and a significant
2 interaction effect, $F(1, 198) = 8.41$, $p_{hb} = .012$, $\eta_p^2 = .04$, $p_{augmented} = [.050, .051]$, BF_{incl}
3 = 8.28.

4 These results mirror those of our first experiment, while overcoming some of its
5 limitations. In our critical comparison between singleton and tripleton test blocks, we
6 found that there were no differences in singleton presence costs as a function of
7 whether participants had experience with the distractor's salience or not. Surprisingly,
8 but consistent with Experiment 1, the numerical pattern of greater attentional capture in
9 no-distractor test blocks relative to singleton test blocks was not statistically reliable
10 after correcting for multiple comparisons (uncorrected p-value = .029). Unfortunately, it
11 is no more clear here, than in Experiment 1, why we do not observe a more robust
12 attenuation of singleton presence costs in this specific comparison, especially
13 considering the learned distractor rejection observed in the singleton training block.
14 However, as stated above, we were primarily focused on comparing capture between
15 the singleton and tripleton test blocks. Therefore, despite this puzzling result, the robust
16 learned distractor rejection we found in the tripleton training group provides convincing
17 evidence for the relative unimportance of salience when learning to reject distractors.

18 **Error Rates**

19 The same 3 x 2 ANOVA as described above was performed on error rates. We
20 found a significant main effect of singleton presence, $F(1, 297) = 11.49$, $p < .001$, $\eta_p^2 =$
21 $.04$, $p_{augmented} = [.050, .050]$, $BF_{incl} = 22.07$, however, this difference was not the result of
22 a speed-accuracy tradeoff, instead participants had higher error rates in the singleton
23 present condition, where response times slower. The main effect of condition, $F(2, 297)$

1 = 1.48, $p = .229$, $\eta_p^2 = .01$, $BF_{incl} = 0.12$, and the interaction between training group and
2 singleton presence, $F(2, 297) = 3.01$, $p = .051$, $\eta_p^2 = .02$, $BF_{incl} = 0.55$, were not
3 significant.

4 **General Discussion**

5 The goal of the current experiments was to investigate the role that experience
6 with salience plays in rejecting a distractor that is, itself, salient. To do this we used a
7 training-test procedure contained within a modification of the learned distractor rejection
8 paradigm (Vatterott and Vecera, 2012). More specifically, we presented participants
9 with pairs of training and test blocks while a) manipulating the salience of the color
10 distractors in the training block and b) presenting a salient color singleton in the test
11 block.

12 In Experiment 1 we observed no difference in attentional capture between test
13 blocks as a function of whether these blocks followed singleton or triplet training
14 blocks. However, we lacked confidence in our replication of the learned distractor
15 rejection effect, which limited our ability to interpret the test block data. Experiment 2
16 focused on the parts of Experiment 1 in which we successfully observed learned
17 distractor rejection (specifically, the first block of trials). Here, after taking steps to obtain
18 substantial power – following a post-hoc sample size augmentation – we were able to
19 observe a reasonably robust learned distractor rejection effect. Upon successfully
20 producing this effect, we obtained novel evidence that experience with distractor
21 features in the absence of saliency signals provides the learning needed for effective
22 rejection of a salient distractor.

23 ***Implications for mechanisms of suppression***

1 Our results seem to fall in line with more recent versions of the signal suppression
2 hypothesis (Gaspelin & Luck, 2019, 2018c, 2018b). As mentioned earlier, the initial
3 formulation placed an emphasis on distractor salience, holding that effective rejection of
4 a distractor relies on suppressing the distractor's saliency signal (Gaspelin et al., 2015;
5 Sawaki & Luck, 2010). Accordingly, salient search items have been theorized to
6 generate an attention capturing signal, but this very signal is proposed to allow
7 suppression of the item (Sawaki & Luck, 2010). Recent work, however, has highlighted
8 the importance of experience with the basic properties of the distractor (i.e., first order
9 features), arguing that saliency signals alone are not sufficient for effective distractor
10 suppression; rather, knowledge of first order distractor features is integral to this
11 suppressive mechanism (Gaspelin & Luck, 2018b; see also Gaspelin & Luck 2019; Luck
12 et al., 2021). Our current findings support this shift towards a feature-based, rather than
13 a saliency-based, model of distractor rejection. However, unlike much of the support for
14 the signal suppression hypothesis (Chang & Egeth, 2019; Gaspelin et al., 2015, 2017;
15 Gaspelin & Luck, 2018a; Stilwell & Gaspelin, 2021), our experiment was designed only
16 to test distractor ignoring, or rejection, without a specific measure of distractor
17 suppression, *per se*. Additionally, we do not find a complete elimination of attentional
18 capture in test blocks, indicating that the distractor rejection we observe may reflect an
19 incomplete suppression of distractors. This leaves open some possibility of a
20 contribution of salience-rejection in the case of suppression below baseline-distractor
21 levels.

22 While we did not include a direct measurement of suppression, a recent
23 investigation of the suppression of non-salient distractors (Lien et al., 2022) lends

1 support to the possibility that experiencing non-salient, irrelevant features may
2 successfully translate to robust suppression of singletons sharing the same feature.
3 When presenting tripletons in a capture-probe paradigm (see Gaspelin et al. 2015), Lien
4 et al. (2022) found probe accuracy for non-salient, distractor colored, items to be lower
5 than that of target-colored distractors. Further, this suppression was nearly identical to
6 that of salient singleton distractors and occurred regardless of whether salient distractor
7 trials were included in the experiment. Based on these results, Lien et al. (2022)
8 concluded that participants engaged in feature-based suppression (referred to as
9 “distractor-based suppression” by the authors) in order to de-prioritize distractor-colored
10 search items below baseline levels of non-critical target-colored items.

11 In addition, other research has provided further evidence that more salient
12 distractors do not necessarily receive greater suppression (Hauck et al., 2023; but see
13 Stilwell et al., 2023). Despite not including a suppression metric in this study, it is clear
14 that if participants were, in fact, using salience information in the singleton training
15 condition, it provided minimal, if any, benefit to the eventual rejection of salient
16 distractors in the test blocks compared to solely-feature-based rejection. Therefore, our
17 results add to previous findings, providing evidence that the feature-based suppression
18 of non-salient distractors may employ the same suppressive mechanism as is used
19 when suppressing a salient distractor. Still, where salient distractors are concerned, it
20 remains possible that an additional rejection of saliency signals is necessary to observe
21 suppression of salient distractors, despite providing little benefit beyond that.

22 One might argue that we did not completely eliminate salience in our triplet
23 blocks. That is, local variations in salience are inevitable, such as when one red object

1 is placed in between two green objects (which would contain more color contrast than a
2 red object between, say, another red object and one green object). However, we must
3 emphasize that, due to the constraints of matching 3 green and 3 red items in each
4 display, the local contrast of each triplet item is necessarily paired with the local
5 contrast of one of the target-colored items. Therefore, while variation in salience does
6 inevitably occur between items, this variation is matched between triplet and target-
7 colored items. As a result, it is improbable that a rejection strategy targeting – or even
8 incorporating – the salience of an item would have formed during the triplet training
9 blocks.

10 We would also like to note that, without a direct measure of suppression it is
11 possible that what we refer to here as “distractor rejection” could be attributed to a
12 mechanism that acts through enhancement of the target items features, with no regard
13 of distractor items whatsoever (Oxner et al., 2023), although previous work has argued
14 that rejection can include both components of target enhancement and distractor
15 (Chang & Egeth, 2019). Importantly, our conclusions about the role of salience in
16 learned distractor rejection are independent of the mechanism by which the
17 aforementioned reduction is achieved.

18 What is the theoretical mechanism underlying our learned rejection results? One
19 possibility, the *habituation* account of distractor rejection, holds that as experience with
20 a salient distractor is gained, the *orienting response* (OR) to the search item habituates
21 (Turatto & Pascucci, 2016; see also Turatto, 2023). This habituation could result in an
22 attenuation of capture that is not due to any active or strategic process, but rather a
23 passive accumulation of evidence enforcing the distractor’s irrelevance (De Tommaso &

1 Turatto, 2019; Pascucci & Turatto, 2015; Turatto, Bonetti, & Pascucci, 2018; Turatto,
2 Bonetti, Pascucci, et al., 2018; Turatto & Pascucci, 2016). Though much of the evidence
3 for habituation comes from onset distractors (Pascucci & Turatto, 2015; Turatto, Bonetti,
4 & Pascucci, 2018; Turatto, Bonetti, Pascucci, et al., 2018; Turatto & Pascucci, 2016),
5 Won and Geng (2020) found colored distractors that had been presented passively (i.e.,
6 with no task) were less distracting in the context of a visual search compared to novel
7 distractors. For our purposes, their results indicate that attentional capture by color
8 singletons may also be subject to a habituation mechanism (see also De Tommaso &
9 Turatto, 2019).

10 For the present results, in the singleton training blocks, habituation of the orienting
11 response to the salient color singleton is plausible. However, how habituation might
12 have acted during tripleton training blocks is somewhat less clear. Results from our
13 tripleton training blocks may provide critical insight here in that response times were
14 initially slower when tripletons were presented. There are multiple potential explanations
15 for this slowing of RTs that are unrelated to a shift of attention to the tripleton items,
16 such as filtering costs (Folk & Remington, 1998). However, In the case that there was
17 an initial orienting response to the tripletons – despite their non-salience – then this
18 response could have habituated over time; eventually leading to a reduction in the
19 capture by singletons sharing the habituated color. Importantly, if it was simply the
20 orienting response that habituated, one might expect some rebound of this response
21 when suddenly increasing the salience of color distractor (see characteristic 8 from
22 Turatto, 2023). However, we did not observe a rebound. One alternative possibility is
23 that habituation during tripleton training may have acted on the feature representation of

1 the triplet color. In other words, the relevance of the distractor color became
2 habituated through experience with triplet distractors. It is relevant here to consider
3 that the amount of distractor experience was greater in triplet compared to singleton
4 training blocks. That is, whereas there was only one distractor color item in singleton
5 displays, triplet displays presented three, such that participants viewing triplet
6 displays had three times as much experience with the distractor color. Future research
7 could attempt to manipulate physical distractor exposure between salience levels to
8 determine whether an increased number of distractor items per display bolsters the
9 habituation process. The current design does not extensively explore how habituation
10 mechanisms may behave differently across salience levels, and therefore cannot
11 distinguish whether different mechanisms were at work in our experimental groupings.
12 Despite this, the current findings leave open the possibility that the diminishment of
13 attentional capture observed over time resulted from habituation of distractor-related
14 processing.

15 ***Implications for theories of attentional capture***

16 Our findings seem inconsistent with stimulus-driven accounts of attentional capture
17 that place great emphasis on the importance of distractor salience (Theeuwes, 1992,
18 2004, 2010; Wang & Theeuwes, 2020). Continuing along this line of reasoning, one
19 potential interpretation of our results is that we find no attentional capture in the test
20 block following triplet training simply because salient color singletons are not
21 especially distracting (Ruthruff et al., 2021).

22 Ruthruff et al. claimed that color singletons lack the power to capture attention, even
23 when they are salient. In some respects, this account is consistent with our findings. For

1 example, if color singletons are not especially distracting, then experience with rejecting
2 salience should not be necessary. We do of course find robust distraction in the
3 singleton training and no-distractor test blocks, but based on the arguments of Ruthruff
4 et al. (2022), one might consider these results as being due to a *surprise capture effect*
5 (Ernst et al., 2020; Horstmann, 2002, 2015). That is, novelty of the color distractor item
6 rather than its salience drives the distraction. Nevertheless, we do find some evidence
7 for attentional capture by color singletons in cases where a distractor novelty effect is
8 unlikely; when we examined only singleton and tripleton test blocks, (i.e., test blocks
9 following training blocks which contained distractors), we still observed an overall
10 attentional capture effect. It could be assumed that singletons following the tripleton
11 training blocks were “novel,” driving an overall attentional capture effect, but this claim is
12 inconsistent with the lack of a difference between singleton and tripleton testing blocks.
13 Therefore, it is unlikely that the evidence we provide here for feature rejection without
14 the need for salience is due to a baseline ineffectiveness of color singleton distractors.
15 Instead, we propose that, as mentioned above, the salience of the distractor means little
16 if observers have already implemented robust rejection of its first-order features, and
17 that this vulnerability to learned feature rejection is what causes the apparent inability to
18 capture attention in many cases.

19 ***Learned Distractor Rejection***

20 When it came to obtaining the learned distractor rejection effect in our current design
21 (De Tommaso & Turatto, 2019; Ramgir & Lamy, 2023; Vatterott & Vecera, 2012), we
22 unfortunately encountered difficulty. In Experiment 1 our replication appeared
23 successful when collapsing across blocks, and we did observe a robust attenuation of

1 attentional capture when a singleton training block was the first experimental block (i.e.,
2 the first block containing color distractors). However, we observed a minimal rebound of
3 attentional capture in singleton training blocks following the first one. Further,
4 participants who viewed a tripleton training block during the first training-test cycle
5 showed little evidence of needing to re-learn distractor rejection in the subsequent
6 singleton training blocks. In Experiment 2, we failed to observe robust learned distractor
7 rejection in training blocks prior to our sample size augmentation.

8 It is important to note that, despite closely modeling our study on Vatterott and
9 Vecera's (2012) design parameters, our design was not identical to theirs. It therefore
10 remains possible that our replication difficulties in Experiment 1 stemmed from these
11 differences, principle among them the inclusion of tripleton distractors. Because of the
12 ordering of tripleton and singleton training-test pairs across participants, our lessened
13 learned distractor rejection effect is perfectly confounded with participants having
14 previously completed a tripleton distractor block. However, it is not clear what, if any,
15 theoretical accounts would posit that experience with tripletons should enable an
16 observer to bypass the need for learned rejection. Further, it is important to note that the
17 confound of having viewed a tripleton block aligns perfectly with completing a block
18 containing singleton distractors (i.e., in the singleton test block that followed every
19 tripleton training block).

20 One plausible explanation for the lack of attentional capture rebound at the
21 beginning of singleton training blocks in Experiment 1 is the rejection of second-order
22 distractor salience. That is, participants may have employed a rejection mechanism
23 focused on the distractor's saliency signal itself, regardless of basic first-order distractor

1 features. Recent research has found that purely salience-based distractor rejection is
2 possible in certain situations (Ma & Abrams, 2022; Vatterott et al., 2018; Won et al.,
3 2019), though this finding is somewhat contested (Gaspelin & Luck, 2018b). To test a
4 second-order suppression account of the present results, we inspected – in exploratory
5 fashion – the time-course of distractor rejection throughout singleton training blocks,
6 using a more fine-grained approach. We sorted singleton training blocks from
7 Experiment 1 into 6 bins containing 8 trials each. What we saw was that – for the
8 singleton training blocks following the first one – the singleton presence cost in the first
9 bin was numerically greater than in subsequent bins, suggesting that capture did initially
10 occur, and rejection was learned extremely rapidly (see Ruthruff et al., 2022 for a similar
11 analysis). These results argue against a strong version of a second-order suppression
12 account of our data; that is, if second-order rejection of saliency signals occurred, it did
13 not completely eliminate the requirement of re-learning rejection. That said, it may have
14 contributed to the increased learning speed in the second through fourth singleton
15 training blocks compared to the first.

16 A second possibility comes in the form of selective dimension-weighting (Found &
17 Müller, 1996; Müller et al., 1995). The dimension-weighting account (DWA) proposes
18 that stimulus dimensions can be selectively up- and down-weighted as their relevance
19 to the current task is learned. For example, once distractor-colored items started to
20 appear in our displays, participants may have started to down-weight the color
21 dimension. The lack of an observable attentional capture rebound may have result from
22 an inability of salient color singletons to attract attention with color in a down-weighted
23 priority state.

1 Taken together, the current findings indicate that learning to reject salient color
2 singletons does not require an additional component of learning to reject the distractor's
3 saliency signal. However, the current experiment was designed only to test the
4 requirement of rejecting saliency, therefore, further investigation is required to
5 determine if experience with salience provides any additional contribution or benefit
6 when learning to ignore salient distractors, despite not being required for eventual
7 rejection.

Acknowledgements

9 This study was supported by NSF BCS-2021038 to ABL. We thank Max Pesto for help
10 with data collection.

Declaration of Interests

12 The authors report no potential conflicts of interest.

13

14

15

16

17

18

19

References

21 Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. *Perception*
22 & *Psychophysics*, 55(5), 485–496. <https://doi.org/10.3758/BF03205306>

1 Brainard, D. H. (1997). The Psychophysics Toolbox. *Spatial Vision*, 10(4), 433–436.

2 <https://doi.org/10.1163/156856897X00357>

3 Burra, N., & Kerzel, D. (2013). Attentional capture during visual search is attenuated by target
4 predictability: Evidence from the N2pc, Pd, and topographic segmentation.

5 *Psychophysiology*, 50(5), 422–430. <https://doi.org/10.1111/psyp.12019>

6 Chang, S., & Egeth, H. E. (2019). Enhancement and Suppression Flexibly Guide Attention.

7 *Psychological Science*, 30(12), 1724–1732. <https://doi.org/10.1177/0956797619878813>

8 Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to
9 Loftus and Masson's method. *Tutorials in Quantitative Methods for Psychology*, 1(1),
10 42–45. <https://doi.org/10.20982/tqmp.01.1.p042>

11 De Tommaso, M., & Turatto, M. (2019). Learning to ignore salient distractors: Attentional set
12 and habituation. *Visual Cognition*, 27(3–4), 214–226.

13 <https://doi.org/10.1080/13506285.2019.1583298>

14 Ernst, D., Becker, S., & Horstmann, G. (2020). Novelty competes with saliency for attention.

15 *Vision Research*, 168, 42–52. <https://doi.org/10.1016/j.visres.2020.01.004>

16 Folk, C. L., Leber, A. B., & Egeth, H. E. (2002). Made you blink! Contingent attentional capture
17 produces a spatial blink. *Perception & Psychophysics*, 64(5), 741–753.

18 <https://doi.org/10.3758/bf03194741>

19 Folk, C. L., & Remington, R. (n.d.). *Selectivity in Distraction by Irrelevant Featural Singletons: Evidence for Two Forms of Attentional Capture*. 12.

21 Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is
22 contingent on attentional control settings. *Journal of Experimental Psychology: Human*

1 *Perception and Performance*, 18(4), 1030–1044. <https://doi.org/10.1037/0096-1523.18.4.1030>

2 Found, A., & Müller, H. J. (1996). Searching for unknown feature targets on more than one dimension: Investigating a “dimension-weighting” account. *Perception & Psychophysics*, 58(1), 88–101. <https://doi.org/10.3758/BF03205479>

3 Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct Evidence for Active Suppression of

4 Salient-but-Irrelevant Sensory Inputs. *Psychological Science*, 26(11), 1740–1750.

5 <https://doi.org/10.1177/0956797615597913>

6 Gaspelin, N., Leonard, C. J., & Luck, S. J. (2017). Suppression of overt attentional capture by

7 salient-but-irrelevant color singletons. *Attention, Perception, & Psychophysics*, 79(1),

8 45–62. <https://doi.org/10.3758/s13414-016-1209-1>

9 Gaspelin, N., & Luck, S. (2018a). Combined electrophysiological and behavioral evidence for

10 the suppression of salient distractors. *Journal of Cognitive Neuroscience*, 30, 1265–1280.

11 Gaspelin, N., & Luck, S. (2019). Inhibition as a Potential Resolution to the Attentional Capture

12 Debate. *Current Opinion in Psychology*, 29, 12–28.

13 <https://doi.org/10.1016/j.copsyc.2018.10.013>

14 Gaspelin, N., & Luck, S. J. (2018b). Distinguishing among potential mechanisms of singleton

15 suppression. *Journal of Experimental Psychology: Human Perception and Performance*,

16 44(4), 626–644. <https://doi.org/10.1037/xhp0000484>

17 Gaspelin, N., & Luck, S. J. (2018c). The Role of Inhibition in Avoiding Distraction by Salient

18 Stimuli. *Trends in Cognitive Sciences*, 22(1), 79–92.

19 <https://doi.org/10.1016/j.tics.2017.11.001>

1 Hauck, C., Ruthruff, E., & Lien, M.-C. (2023). On preventing capture: Does greater salience
2 cause greater suppression? *Attention, Perception, & Psychophysics*.
3 <https://doi.org/10.3758/s13414-023-02694-5>

4 Holm, S. (1979). A simple sequentially rejective multiple test procedure. *Scandinavian Journal*
5 *of Statistics. Theory and Applications*, 6(2), 65–70.

6 Horstmann, G. (2002). Evidence for Attentional Capture by a Surprising Color Singleton in
7 Visual Search. *Psychological Science*, 13(6), 499–505. <https://doi.org/10.1111/1467-9280.00488>

9 Horstmann, G. (2015). The surprise-attention link: A review: The surprise-attention link. *Annals*
10 *of the New York Academy of Sciences*, 1339(1), 106–115.
11 <https://doi.org/10.1111/nyas.12679>

12 Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What's new
13 in psychtoolbox-3. *Perception*, 36(14), 1–16.

14 Lamy, D., & Egeth, H. E. (2003). Attentional capture in singleton-detection and feature-search
15 modes. *Journal of Experimental Psychology: Human Perception and Performance*,
16 29(5), 1003–1020. <https://doi.org/10.1037/0096-1523.29.5.1003>

17 Lamy, D., Leber, A., & Egeth, H. E. (2004). Effects of Task Relevance and Stimulus-Driven
18 Salience in Feature-Search Mode. *Journal of Experimental Psychology: Human*
19 *Perception and Performance*, 30(6), 1019–1031. <https://doi.org/10.1037/0096-1523.30.6.1019>

21 Leber, A. B., & Egeth, H. E. (2006). It's under control: Top-down search strategies can override
22 attentional capture. *Psychonomic Bulletin & Review*, 13(1), 132–138.
23 <https://doi.org/10.3758/BF03193824>

1 Leeuw, J. R. de, Gilbert, R. A., & Luchterhandt, B. (2023). jsPsych: Enabling an Open-Source
2 Collaborative Ecosystem of Behavioral Experiments. *Journal of Open Source Software*,
3 8(85), 5351. <https://doi.org/10.21105/joss.05351>

4 Lien, M.-C., Ruthruff, E., & Hauck, C. (2022). On preventing attention capture: Is singleton
5 suppression actually singleton suppression? *Psychological Research*, 86(6), 1958–1971.
6 <https://doi.org/10.1007/s00426-021-01599-y>

7 Luck, S. J., Gaspelin, N., Folk, C. L., Remington, R. W., & Theeuwes, J. (2021). Progress
8 toward resolving the attentional capture debate. *Visual Cognition*, 29(1), 1–21.
9 <https://doi.org/10.1080/13506285.2020.1848949>

10 Ma, X., & Abrams, R. A. (2022). Ignoring the unknown: Attentional suppression of
11 unpredictable visual distraction. *Journal of Experimental Psychology: Human Perception
and Performance*. <https://doi.org/10.1037/xhp0001067>

13 Morey, R. D. (2008). Confidence Intervals from Normalized Data: A correction to Cousineau
14 (2005). *Tutorials in Quantitative Methods for Psychology*, 4(2), 61–64.
15 <https://doi.org/10.20982/tqmp.04.2.p061>

16 Müller, H. J., Geyer, T., Zehetleitner, M., & Krummenacher, J. (2009). Attentional capture by
17 salient color singleton distractors is modulated by top-down dimensional set. *Journal of
18 Experimental Psychology: Human Perception and Performance*, 35(1), 1–16.
19 <https://doi.org/10.1037/0096-1523.35.1.1>

20 Müller, H. J., Heller, D., & Ziegler, J. (1995). Visual search for singleton feature targets within
21 and across feature dimensions. *Perception & Psychophysics*, 57(1), 1–17.
22 <https://doi.org/10.3758/BF03211845>

1 Oxner, M., Martinovic, J., Forschack, N., Lempe, R., Gundlach, C., & Müller, M. (2023). Global
2 enhancement of target color—Not proactive suppression—Explains attentional
3 deployment during visual search. *Journal of Experimental Psychology: General*, 152(6),
4 1705–1722. <https://doi.org/10.1037/xge0001350>

5 Pascucci, D., & Turatto, M. (2015). The distracting impact of repeated visible and invisible
6 onsets on focused attention. *Journal of Experimental Psychology: Human Perception and*
7 *Performance*, 41(3), 879–892. <https://doi.org/10.1037/xhp0000025>

8 Pashler, H. (1988). Familiarity and visual change detection. *Perception & Psychophysics*, 44(4),
9 369–378. <https://doi.org/10.3758/BF03210419>

10 Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming
11 numbers into movies. *Spatial Vision*, 10(4), 437–442.

12 Ramgir, A., & Lamy, D. (2023). Distractor's salience does not determine feature suppression: A
13 commentary on Wang and Theeuwes (2020). *Journal of Experimental Psychology:*
14 *Human Perception and Performance*, 49(6), 852–861.
15 <https://doi.org/10.1037/xhp0001119>

16 Ruthruff, E., Hauck, C., & Lien, M.-C. (2021). What do we know about suppression of attention
17 capture? *Visual Cognition*, 29(9), 604–607.
18 <https://doi.org/10.1080/13506285.2021.1928805>

19 Ruthruff, E., Lien, M.-C., & Hauck, C. (2022, November 17-20). *Are color singletons powerful*
20 *or powerless? Assessing attention capture in the absence of suppression* [conference
21 presentation]. Psychonomics Society 63rd Annual Meeting. Boston, MA, USA &
22 Online. Sagarin, B. J., Ambler, J. K., & Lee, E. M. (2014). An Ethical Approach to

1 Peeking at Data. *Perspectives on Psychological Science*, 9(3), 293–304.

2 <https://doi.org/10.1177/1745691614528214>

3 Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons:

4 Electrophysiological evidence for an automatic attend-to-me signal. *Attention,*

5 *Perception, & Psychophysics*, 72(6), 1455–1470. <https://doi.org/10.3758/APP.72.6.1455>

6 Stilwell, B. T., Adams, O. J., Egeth, H. E., & Gaspelin, N. (2023). The role of salience in the

7 suppression of distracting stimuli. *Psychonomic Bulletin & Review*.

8 <https://doi.org/10.3758/s13423-023-02302-5>

9 Stilwell, B. T., Bahle, B., & Vecera, S. P. (2019). Feature-based statistical regularities of

10 distractors modulate attentional capture. *Journal of Experimental Psychology: Human*

11 *Perception and Performance*, 45(3), 419–433. <https://doi.org/10.1037/xhp0000613>

12 Stilwell, B. T., & Gaspelin, N. (2021). Attentional suppression of highly salient color singletons.

13 *Journal of Experimental Psychology: Human Perception and Performance*, 47(10),

14 1313–1328. <https://doi.org/10.1037/xhp0000948>

15 Stilwell, B. T., & Vecera, S. P. (2019). Learned and cued distractor rejection for multiple

16 features in visual search. *Attention, Perception, & Psychophysics*, 81(2), 359–376.

17 <https://doi.org/10.3758/s13414-018-1622-8>

18 Stilwell, B. T., & Vecera, S. P. (2022a). Learned distractor rejection persists across target search

19 in a different dimension. *Attention, Perception, & Psychophysics*.

20 <https://doi.org/10.3758/s13414-022-02559-3>

21 Stilwell, B. T., & Vecera, S. P. (2022b). Testing the underlying processes leading to learned

22 distractor rejection: Learned oculomotor avoidance. *Attention, Perception, &*

23 *Psychophysics*, 84(6), 1964–1981. <https://doi.org/10.3758/s13414-022-02483-6>

1 Theeuwes, J. (1991). Cross-dimensional perceptual selectivity. *Perception & Psychophysics*,
2 50(2), 184–193. <https://doi.org/10.3758/BF03212219>

3 Theeuwes, J. (1992). Perceptual selectivity for color and form. *Perception & Psychophysics*,
4 51(6), 599–606. <https://doi.org/10.3758/BF03211656>

5 Theeuwes, J. (2004). Top-down search strategies cannot override attentional capture.
6 *Psychonomic Bulletin & Review*, 11(1), 65–70. <https://doi.org/10.3758/BF03206462>

7 Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. *Acta Psychologica*,
8 135(2), 77–99. <https://doi.org/10.1016/j.actpsy.2010.02.006>

9 Turatto, M. (2023). Habituation (of attentional capture) is not what you think it is. *Journal of*
10 *Experimental Psychology: Human Perception and Performance*.
11 <https://doi.org/10.1037/xhp0001139>

12 Turatto, M., Bonetti, F., & Pascucci, D. (2018). Filtering visual onsets via habituation: A
13 context-specific long-term memory of irrelevant stimuli. *Psychonomic Bulletin &*
14 *Review*, 25(3), 1028–1034. <https://doi.org/10.3758/s13423-017-1320-x>

15 Turatto, M., Bonetti, F., Pascucci, D., & Chelazzi, L. (2018). Desensitizing the attention system
16 to distraction while idling: A new latent learning phenomenon in the visual attention
17 domain. *Journal of Experimental Psychology: General*, 147(12), 1827–1850.
18 <https://doi.org/10.1037/xge0000503>

19 Turatto, M., & Pascucci, D. (2016). Short-term and long-term plasticity in the visual-attention
20 system: Evidence from habituation of attentional capture. *Neurobiology of Learning and*
21 *Memory*, 130, 159–169. <https://doi.org/10.1016/j.nlm.2016.02.010>

22 van den Bergh, D., van Doorn, J., Marsman, M., Draws, T., van Kesteren, E.-J., Derkx, K.,
23 Dablander, F., Gronau, Q. F., Kucharský, Š., Gupta, A. R. K. N., Sarafoglou, A., Voelkel,

1 J. G., Stefan, A., Ly, A., Hinne, M., Matzke, D., & Wagenmakers, E.-J. (2020). A
2 Tutorial on Conducting and Interpreting a Bayesian ANOVA in JASP: *L'Année
3 Psychologique*, Vol. 120(1), 73–96. <https://doi.org/10.3917/anpsy1.201.0073>

4 Vatterott, D. B., Mozer, M. C., & Vecera, S. P. (2018). Rejecting salient distractors:
5 Generalization from experience. *Attention, Perception, & Psychophysics*, 80(2), 485–499.
6 <https://doi.org/10.3758/s13414-017-1465-8>

7 Vatterott, D. B., & Vecera, S. P. (2012). Experience-dependent attentional tuning of distractor
8 rejection. *Psychonomic Bulletin & Review*, 19(5), 871–878.
9 <https://doi.org/10.3758/s13423-012-0280-4>

10 Wang, B., & Theeuwes, J. (2020). Salience determines attentional orienting in visual selection.
11 *Journal of Experimental Psychology: Human Perception and Performance*, 46(10),
12 1051–1057. <https://doi.org/10.1037/xhp0000796>

13 Won, B.-Y., & Geng, J. J. (2018). Learned suppression for multiple distractors in visual search.
14 *Journal of Experimental Psychology: Human Perception and Performance*, 44(7), 1128–
15 1141. <https://doi.org/10.1037/xhp0000521>

16 Won, B.-Y., & Geng, J. J. (2020). Passive exposure attenuates distraction during visual search.
17 *Journal of Experimental Psychology: General*, 149(10), 1987–1995.
18 <https://doi.org/10.1037/xge0000760>

19 Won, B.-Y., Kosoyan, M., & Geng, J. J. (2019). Evidence for second-order singleton suppression
20 based on probabilistic expectations. *Journal of Experimental Psychology: Human
21 Perception and Performance*, 45(1), 125–138. <https://doi.org/10.1037/xhp0000594>

- 1 Zehetleitner, M., Goschy, H., & Müller, H. J. (2012). Top-down control of attention: It's gradual,
- 2 practice-dependent, and hierarchically organized. *Journal of Experimental Psychology.*
- 3 *Human Perception and Performance*, 38(4), 941–957. <https://doi.org/10.1037/a0027629>