List of Symbols

Oij local stress tensor

o maximum local normal stress
O critical local normal stress

Y;;  global stress tensor

si;  global deviatoric stress tensor
by global maximum tensile stress

Y critical global tensile stress
¥*M  global von Mises stress

»H  global hydrostatic stress

T triaxiality

L Lode parameter

k geometric factor depending on the particle shape

E, tangent modulus of the plastically deforming matrix

€ij strain tensor

€ij strain rate tensor

€ elastic strain tensor

efj plastic strain tensor

€eP equivalent plastic strain

P equivalent plastic strain rate

Sijkl  compliance tensor

K stress concentration factor

KP plastic stress concentration factor

K elastic stress concentration factor

fg rate of void volume fraction increase due to growth

fn rate of void volume fraction increase due to nucleation of voids
fn  volume fraction of particles at which voids can nucleate
v driving force for nucleation

wij  strain angle with respect to ¢ and j components
¢i;  stress angle with respect to ¢ and j components
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Abstract

The critical conditions for void nucleation by particle debonding at a 6-
particle in an aluminum matrix are identified through a comprehensive set of
molecular dynamics simulations spanning a range of stress triaxialities and
Lode parameter values. Specifically, it is determined that nucleation occurs
when the local normal stress at the matrix-particle interface reaches a critical
value of 8.14 GPa. When plasticity occurs in the matrix prior to nucleation,
an additional plastic stress concentration is observed as a result of the plastic
strain build up around the particle. Our results indicate that this plastic
stress concentration factor increases roughly linearly with equivalent plastic
strain, independent of triaxiality and Lode parameter. Comparing our results
with the literature, we observe a much stronger influence of plastic strain than
is predicted by continuum plasticity theory. We argue that this difference
derives from the fact that nucleation is fundamentally driven by local stress
hot spots resulting from the heterogeneity of plastic strain, while continuum
theory is based on homogenized plastic strain fields. These results provide
guidance for development of ductile fracture engineering models, while giving
a warning regarding the use of continuum theory to predict damage initiation
phenomena in metals.
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1. Introduction

Ductile fracture of metals results from the nucleation, growth, and co-
alescence of voids [1]. Void nucleation—the first step which initiates this
process—commonly occurs at second phase particles, either via cracking or
debonding of the particles (although nucleation at other sites such as grain
boundaries is also observed) [2]. Our focus here is on void nucleation by par-
ticle debonding. The void nucleation process has been studied thoroughly
using continuum models, such as elastic-plastic and cohesive surface finite
element modeling [3, 4, 5, 6]. A major focus of this research has been on the
critical conditions associated with nucleation. Nucleation models have been
developed assuming that nucleation occurs when either a critical energy [7],
stress state [8], or strain state [9] is reached. Recently, Noell et al. [2] argued
that of these approaches the most appropriate is a model based on reaching
a local critical stress state, subject to the constraint that nucleation must be
energetically favorable (e.g., free energy decreases as a result of nucleation).
However, to our knowledge, no prior research has evaluated the critical condi-
tions of nucleation using a model which accounts for the influence of discrete
defects (e.g., dislocations) and discrete plastic slip events, since most prior
work is based on continuum models. The goal of this work is to use molecu-
lar dynamics (MD) simulations to determine the critical conditions for void
nucleation via particle debonding, so that the influence of local defects and
slip events can be captured and understood.

For stress-based nucleation criteria, which are the focus here, the main
challenge is to establish a condition relating the globally applied (volume-
averaged) stress state, X;;, to the local stress state at the particle interface,
0i;, at the onset of void nucleation. Noell et al. argue that the local tensile
stress normal to the particle interface, o, is the main driving force for void
nucleation by particle debonding. Hence, we may write a stress-based nu-
cleation criterion in the form: o, = f(¥;;,...), where o, is the critical local
normal stress and ... denotes other possible factors affecting void nucleation
such as plastic strain and particle shape. In this framing, Argon et al. [§]
proposed a criterion of the form:

o.=x"M 4 nH (1)

where XM and Y are the global von Mises and hydrostratic stresses, re-
spectively. According to Eq. (1), both the shear (von Mises) and hydro-
static stresses act to drive crack nucleation in equal proportion. However by



performing and analyzing cohesive zone simulations of interfacial fracture,
Needleman [3] found that the hydrostatic stress contributed less significantly
to nucleation. Needleman proposed extending the condition of Argon et al.
to the form:

o.=3"M 4 2 (2)

with ¢ = 0.35 was obtained for a periodic arrangement of spherical particles
debonding axisymmetrically [3]. Subsequently, Shabrov and Needleman [4]
considered the case of random particle distributions using square cylinder
particles, finding that the constant ¢ was sensitive to particle shape and the
degree of particle clustering. Simulations of void nucleation in random parti-
cle distributions have since been extended to 3D by Segurado and Llorca [10],
Williams et al. [11], and Shakoor et al. [6].

Notably, both of the nucleation criteria given above are independent of
the state of plastic strain (although plastic strain is implicitly captured since
the flow stress X" depends on it), whereas plastic strain is expected to affect
the local stress state surrounding each particle. Beremin [12, 2] derived an
approximate solution using Eshelby theory for the stress around an elastic
particle embedded in a plastically deforming matrix, obtaining the condition
for nucleation:

o, =X+ kE,e (3)

where ¥ is the global maximum tensile stress (1st principal stress), k is a
geometric factor depending on the particle shape, E, is the tangent modulus
of the plastically deforming matrix, and €’ is the equivalent plastic strain
around the particle. Hence, Eq. (3) predicts that the driving force for crack
nucleation is linearly dependent on the plastic strain. While Beremin’s anal-
ysis was approximate, Lee and Mear [13] performed a comprehensive set
of numerical calculations to determine the stress state surrounding an elas-
tic spheroidal particle in an elastic-plastic matrix, assessing the influence of
stress triaxiality, particle shape (aspect ratio), modulus mismatch between
matrix and particle, and the matrix hardening exponent. Their results are
framed in terms of the stress concentration factor x relating the global max-
imum tensile stress Y to the maximum local normal stress o:

K = T (4)

Their results indicate that the stress concentration factor evolves with plastic
strain, typically increasing up to a saturation value attained around e’ ~ 5%.



According to these results, we may write the condition for nucleation as
0. = K(e,...)% (5)

where k(€P,...) is sensitive to €’ and other parameters considered by Lee
and Mear [2]. In a similar vein, Charles et al. [14] extended the approach
of Needleman [3] by employing a cohesive zone model for interfacial fracture
with an interfacial strength that decreased upon accumulation of local plastic
strain. The arguments underlying their model were that (1) energy stored in
the dislocation structure would be released as a result of interfacial fracture
and (2) local dislocation pile ups would concentrate stress at the interface.
While powerful, we show below that the results of Lee and Mear are prob-
lematic because they are derived from continuum theory where the plastic
strain distribution is spatially homogenized. Finally, we note that while the
influence of stress triaxiality on void nucleation has been explored in numer-
ous works [3, 13, 4, 15], the influence of the Lode parameter (defined below)
has not been considered much [2].

A primary motivator for understanding the criterion for void nucleation
is the need to model ductile fracture at the continuum scale [5]. The most
widespread model for ductile fracture via void nucleation and coalescence
is that of Gurson, Tvergaard, and Needleman (GTN) [16, 17], which treats
plasticity in a porous solid with void volume fraction f. The void volume
fraction evolves according to the ordinary differential equation

where fg and f, account for the rate of void volume fraction increase due
to growth and nucleation of voids, respectively. The void growth term fol-
lows straightforwardly from the fact that plastic deformation is isochoric in
nature [2]. Void growth in elastic-plastic solids has been studied using finite
element simulations and shown to compare well with predictions of the GTN
model [18, 19]. However, the void nucleation term f, is on much less firm
theoretical footing. The most commonly employed models take the form [5, 2]

Jo = An(0)& (7)

where éP is the equivalent plastic strain rate and A, (v) is the nucleation rate
factor with nucleation driving force v. While both stress and strain driving
forces have been proposed, the most common approach by far is to assume



that plastic strain drives void nucleation: v = €” [5, 2]. This is at odds with
the idea that void nucleation is fundamentally stress driven [2]. Furthermore,
these nucleation rate formulations are not derived from the atomic mecha-
nisms of void nucleation, but rather are phenomenological in nature. A more
solid understanding of the atomic mechanisms of void nucleation could help
to resolve these issue, and lead towards more micromechanistic continuum
models for void nucleation.

The goal of this study is to determine a void nucleation criterion on the
basis of MD simulations where discrete defects and slip events are naturally
captured. This study builds on our prior work on void nucleation via particle
debonding where we employed pure hydrostatic loading [20]. In that study
the main focus was on the rate of crack growth after a crack had nucleated at
the particle interface. In contrast, our goal here is to determine the conditions
at which an interface crack nucleates—thereby initiating void nucleation—
under a wide range of stress states. Our findings demonstrate the value
of Eq. (5) as a void nucleation criterion, while also showing the dangers of
using continuum theory to study damage initiation in plastically deforming
solids where deformation mechanisms (dislocation slip) are fundamentally
heterogeneous.

2. Materials and methods

2.1. Simulation setup

The present study is focused on void nucleation by delamination of spher-
ical 6 particles (Al;Cu) in a face-centered cubic (FCC) Al matrix. Al,Cu is
the stable intermetallic phase of the Al-Cu system that is commonly found
in Al-Cu alloys (e.g., 2xxx series) [21]. It has a body-centered tetragonal
C16 crystal structure which is incoherent with the Al matrix. Note that in
real alloys, these precipitates typically adopt a plate-like geometry, but for
simplicity here we use spherical particles. Hence, our results here are likely
not quantitatively accurate for Al-Cu alloys, but are expected to be correct
within a numerical factor that is dependent on particle shape (which should
be explored in future work). We choose this system because of the engineer-
ing significance of Al-Cu alloys, and because 0 particles have been associated
with void nucleation [22]. Other than the inserted 6 precipitate, no other de-
fects were initially present in the system (e.g., no dislocations and/or point
defects).
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Figure 1: Simulation details. (a) Snapshot showing periodic simulation cell with a spherical
¢-particle with strain rates applied. (b) Time-history of hydrostatic stress % from a
sample with strain angles wy, = w., = 1° and with simulation stages marked.

We studied void nucleation using MD simulations [23] in LAMMPS [24].
In MD, classical equations of motion (e.g., Newton’s 2nd law) are time in-
tegrated to evolve a collection of atoms in time. Forces between the atoms
are dictated by the chosen interatomic potential function, which is material-
dependent. We utilized the Al-Cu angular-dependent interatomic potential
of Apostol and Mishin [25] because of its ability to accurately reproduce the
crystal structures and elastic constants of Al and Al,Cu. When employing an
“NVT ensemble”, a thermostat controls the temperature of the atoms by ad-
justing their kinetic energies while the strain state in the system is controlled
by adjusting the size and shape of the simulation cell. In our simulations,
periodic boundary conditions are employed in all directions by translation-
ally replicating the simulation cell. The initial simulation geometry is shown
in Figure 1(a), comprised of a 202.75 A cubic simulation cell containing a
spherical 6 particle of radius R = 50 A. All simulations were performed at
a temperature of 1 K to avoid thermal activation. In this way, our study
here is an assessment of the critical conditions for nucleation without any
aid from thermal activation.

Our goal here is to assess the micromechanics of void nucleation under
a range of loading conditions. To accomplish this, we employed an NVT
ensemble while applying fixed normal strain rates é,, €,,, and €., along each



respective coordinate direction. By varying the relative values of the strain
rates, a broad range of stress states can be attained. To systematically probe
loading space, we introduce two strain angles as

€ €
Wey = tan ™ (:—m) , W,y = tan ! (eﬁ) (8)
vy xrx

which quantify the relative loading rates (similar to Needleman’s boundary
conditions [3]). We then sampled the full strain angle space by performing
simulations in 15° increments from 1 to 360° for both angles, as shown in
Figure 2 where “x” markers denote simulation conditions. These strain angles
specify the relative strain rates but not the absolute strain rates. To specify
the strain rate values, we enforce that the largest strain rate magnitude
AMONgG €54, €yy, and €, is 5 X 10'% s~!: this strain rate was chosen to minimize
artifacts due to a high loading rate, while keeping computational time within
reason. The other strain rates are then implied by the associated strain
angles. Figure 2 shows the set of strain rate conditions across strain angle
space. Note that not all strain angle combinations are permissible, since
some require inconsistent signs (e.g., w,, = 0 means é,, > 0 so that only
0 < wyy < 180° is admissible). This results in a total of 312 MD simulations
which are reported in this study. Each simulation contained about 500,000
atoms and ran for about 4 days using 10 CPUs.
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Figure 2: Strain rate loading conditions used in this work, showing color map of strain
rates in units of s~! as a function of strain angles Wzy and w,, with “x” markers denoting
conditions where simulations were performed.

Figure 1(b) shows an example hydrostatic stress-time history from a sim-
ulation with w,, = 1° and w,, = 1°. Prior to loading, the system is relaxed
with an NPT ensemble under zero-stress for 2 ps. Loading is then applied
with an NVT ensemble. The stress peaks around the time where the particle



completely debonds from the matrix. All the simulations used a thermostat
damping parameter value of 0.01 ps, a barostat damping parameter value
of 1 ps, and a time step size of 0.001 ps. Each simulation had a maximum
duration of 0.25 ns.

2.2. Analysis methods

Simulations were analyzed in numerous ways using LAMMPS, OVITO
Pro [26], and MATLAB. In our simulations we observed both crack and dis-
location nucleation events. To detect those events, we used common neighbor
analysis (CNA) [27] and Voronoi tessellation as follows. Shockley partial dis-
locations in FCC metals result in the formation of stacking faults, and atoms
in these stacking faults exhibit local hexagonal close-packed (HCP) structure.
Hence, when dislocations nucleate the number of atoms with HCP structure
increases precipitously. In other words, by monitoring the number of HCP
atoms we can detect dislocation nucleation events. Specifically, we use a
threshold value of 40 HCP atoms to determine when dislocation nucleation
occurs, since some spurious identification of HCP atoms occurs throughout
the simulation (CNA sometimes assigns incorrect structure type). To de-
tect crack nucleation, we use the local atomic volume determined through
Voronoi analysis. At a temperature of 1 K, the atomic volume of FCC Al is
around 23 A3. When a crack nucleates, the atomic volume begins increasing
for atoms adjacent to the crack. Again, by checking when the maximum
atomic volume in the simulation cell exceeds a threshold value, we can deter-
mine when crack nucleation occurs. Based on trial and error, we determined
a suitable threshold value is 28 A3. Crack nucleation is deemed to occur at
the simulation time where this threshold is exceeded for the remainder of the
simulation (in some cases the volume briefly increases but then drops back
below the threshold). However, we noticed that in some cases vacancy-like
defects with volumes greater than 28 A can form in the bulk away from
the particle’s surface as a result of dislocation activity. These defects do
not lead to crack nucleation, and hence should be ignored in our analysis.
In all simulations, void nucleation by particle debonding was observed (no
particle cracking). Accordingly, we only check atoms within 10 A of the par-
ticle’s surface (all cracks were observed to nucleate at the particle surface).
Finally, in some cases we also quantified the total dislocation density. This
was done by extracting all dislocation lines using the dislocation extraction
algorithm [28] in OVITO, and then summing the total line length.



To quantify the conditions at which crack and dislocation nucleation oc-
curred, we analyzed the stress and strain state of the system. We primarily
focused on the global stresses in our atomistic systems. Local stresses in
atomic systems are not thermodynamically well-defined, and hence cannot be
quantified unambiguously [29]. The global stresses can be easily determined
using the virial stress, as computed by LAMMPS [30]. Given the global stress
state X;;, we computed the hydrostatic stress and and von Mises stresses as

/3
ZH = Ekk/3, EUM = §$ij8ija

where s;; = X;; — EHéij is the deviatoric strain tensor, d;; is the Kronecker
delta, and repeated indices imply summation. Given these stresses, the tri-
axiality T" and Lode parameter L are computed as:

XA I = 27 Js
- EvM’ - 2 (EUM)?)
where J; = det(s;;) is the third invariant of the deviatoric stress tensor

and det(-) is the determinant operator. 7" and L are commonly utilized to
characterize the stress state in continuum damage models [2]. T' quantifies
the significance of hydrostatic loading in comparison to shear loading, with
T — oo meaning purely hydrostatic tensile loading. L is bounded between -1
and 1, and provides a measure of the nature of the stress state. For example,
L =1, 0, and -1 denote, respectively, axisymmetric (biaxial) tension (e.g.,
Ypr < Xy = Y., > 0), pure shear (e.g., ¥, = —%,,, X, = 0), and
axisymmetric (biaxial) compression (e.g., X, > 2,, = 2., < 0). Note that
under our stain-rate-based loading conditions here, T" and L may vary during
loading if there is any plastic strain accumulation. Below we focus on the
values of T" and L at the moment of void nucleation.

To investigate the global state of plastic strain in each simulation, we first
assumed a linear superposition between elastic and plastic strain, i.e., ¢; =
€+ efj. The total strain ¢;; is easily determined using the dimensions of the
periodic simulation cell (computed by LAMMPS). To determine the elastic
strain, we used Hooke’s law €;; = Sijr Xk where Sijr is the compliance tensor
of the composite matrix-particle system. The components of the compliance
tensor were computed at 0 K by LAMMPS using standard methods [23];
the results are given in Table 1. Finally, the plastic strain tensor can be
estimated as

EZ-)- = Eij — Sijklzkl- (9)

v
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Al 0 Composite
St | 0.014 | 0.007 0.0135
Soo | 0.014 | 0.007 0.0135
Ss3 | 0.014 | 0.008 0.0137
Sy | 0.032 | 0.034 0.0293
Sss | 0.032 | 0.034 0.0290
See | 0.032 | 0.021 0.0314
St2 | -0.005 | -0.002 0.0135
Si3 | -0.005 | -0.002 -0.005
Saz | -0.005 | -0.002 -0.005

Table 1: Elastic constants (units of 1/GPa) for the utilized interatomic potential with
pure Al [31], pure 6 [25], and the composite Al matrix with f-particle (computed by the
authors). Only showing values with magnitudes greater than 1073.

We find with this approach that small, non-zero plastic strains of 1% or
less may result prior to dislocation nucleation because of nonlinear elastic
deformations. Again, since our goal is to compare our results with commonly
utilized damage mechanics models, we focus on the equivalent plastic strain,
computed as
e = g%%. (10)
Finally, for a qualitative analysis, it is useful to also look at the local
stress and strain fields. To estimate the local stress, we compute the com-
pute the per-atom Virial stresses in LAMMPS using the Voronoi volume for
each atom. These stresses vary significantly from atom to atom, and need
to be spatially averaged to yield interpretable results. To determine each
atom’s local stress state, we average over the stresses for all atoms within a
10 A radius. To estimate the local plastic strains, we compute the total and
elastic strains for each atom using the Atomic strain and FElastic strain cal-
culation modifiers in OVITO, and then take the difference to get the plastic
strain (as in Eq. (9)). These strains are also averaged within a 10 A neighbor-
hood for each atom to yield smooth fields. Bear in mind that the methods
provide semi-quantitative estimates which cannot be interpreted in precise
quantitative terms (i.e., the averaging radius is an arbitrary choice).
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2.8. Finite element calculations

In order to understand the local stresses around the particle in our simu-
lations, we computed the elastic stress concentration factor associated with
each void nucleation event using finite element calculations in Abaqus. For
each MD simulation with a void nucleation event, we determined the time
of nucleation and then extracted the strain state of the simulation cell 2 ps
before nucleation. This strain state was then imposed on a linear elastic fi-
nite element system with the same geometry as MD. We used full anisotropic
elasticity for the Al and Al,Cu, using the elastic constants given in Table 1.
The elastic stress concentration factor was then found using the following
equation:

maxy (o)

kS = — (11)

where maxy (o) is the maximum local normal stress at the particle’s sur-
face. We also performed a mesh convergence study to determine that our
uncertainties for these calculations are less than 2%.

3. Results

3.1. Crack vs. dislocation nucleation process

In our simulations, two distinct defect nucleation events were observed.
Crack nucleation, which initiates the void nucleation process, was always ob-
served to occur at the matrix-particle interface (although crack nucleation
did not occur in all simulations). This indicates void nucleation via the clas-
sical particle debonding mechanism. After nucleating, this crack grew along
the interface until total delamination or fracture of the system. This same
behavior was observed in our prior work where we utilized pure hydrostatic
loading [20], and here is generalized to a broad range of loading conditions.
Dislocation nucleation was also observed to occur at the matrix-particle in-
terface with the formation of a Shockley-Read partial dislocations.

Similar to our prior work, in some simulations crack nucleation preceded
dislocation nucleation. In these cases, dislocation nucleation subsequently
occurred at the tips of the growing interface crack. However, in many sim-
ulations dislocation nucleation preceded crack nucleation, which means that
the Al matrix deformed plastically prior to crack nucleation. An example of
this process is given in Figure 3, where atoms in the #-particle are colored
blue and the remainder of the (empty) box is filled with Al atoms. Atoms

12



(a) (b) (c)

Figure 3: Simulation snapshots showing behavior when dislocation nucleation precedes
crack nucleation, with w,, = 45° and w,, = 105°. (a) Nucleation of a Shockley-Read
partial dislocation (green line at particle bottom). (b) After considerable dislocation
activity and the appearance of crack nuclei (marked by yellow arrow). (c) After cracks
grow in size. Blue atoms are part of the 6 particle. Red atoms are associated with cracks.
Lines are dislocations (green = Shockley-Read, purple = stair-rod)

associated with cracks (i.e., with atomic volume greater than 28 A?) are col-
ored red. Figure 3(a) shows the moment when the first Shockley-Read partial
dislocation (green line) nucleates at the particle surface. Over time, the dis-
location density increases as more dislocations nucleate and as dislocations
bow out and multiply, leading to the dislocation configuration shown in Fig-
ure 3(b). Also shown in Figure 3(b) are the crack nucleation sites, denoted
by clusters of red atoms marked with a yellow arrow. Figure 3(c) shows the
state after the interface crack has grown.

To help clarify the conditions under which these nucleation processes
occur, we plot in Figure 4(a) markers to denote different behaviors over the
strain angle (w,, vs. wyy,) space as follows: O = crack nucleation occurs
first, () = dislocation nucleation occurs first, * = no cracking was observed
(but dislocation nucleation was observed). While clear patterns are observed,
they are somewhat difficult to interpret due to the fact that the stress state
is not easily deduced from the strain state (e.g., strain angle combination).
Accordingly, we also define stress angles based on the stress state at which
each respective nucleation event occurred as

y nuc y nuc
(bmy = tan~! (%) ) ¢zm = tan™! <%uc> (12>
Eyy 2:1::)3

where X1¢ (no sum) denotes the normal stresses at which nucleation occurs.
In the case where no cracking was observed, we used the stress at the last
time step. In Figure 4(b) we replot the data from Figure 4(a) in stress

13
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Figure 4: (a) Strain angle conditions where crack nucleation occurs first (red squares),
dislocation nucleation occurs first (blue circles), or no void nucleation occurs (black as-
terisks). (b) Same results as (a) but using stress angles associated with nucleation. (c)
Triaxiality, T, and (d) Lode parameter, L, values as a function of stress angles.

angle space (¢., vs. ¢g,). For reference, we also plot in Figures 4(c)-(d)
the triaxiality 7" and Lode parameter L associated with these stress angles
(these figures assume that shear stresses ¥,,, ¥,., ¥,, are zero, analysis of
our MD stress states confirms that these stress components are negligible in
90% of cases with void nucleation). In Figure 4(b), we now clearly see a
meaningful pattern. Crack nucleation occurs first when the system is close
to pure hydrostatic tensile loading 0,, = o0,y = 0., > 0 and T" — oo,
which is around stress angles of 45°. This is consistent with our prior work,
where we found under pure hydrostatic tensile loading that crack nucleation
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always preceded dislocation nucleation [20]. On the other hand, when the
system is loaded in compression in all directions, meaning ¢, > 180° and
¢, > 180°, no cracking is observed. Under loading conditions between these
cases, dislocation nucleation is observed to occur first. There is no clear
influence of the Lode parameter L.

To further assess the states of stress associated with crack nucleation
events, we replot in Figure 5 the triaxiality 7" and Lode parameter L values
associated with each data point in Figure 4. Figure 5 only shows the triax-
iality T" and Lode Parameter L at the time of void nucleation. This figure
demonstrates that our loading scheme yielded stress states spanning the full
range of Lode parameters (-1 to 1) and triaxialities ranging from about 0.5 to
10. Figure 5 also clearly shows that the triaxiality and Lode parameter alone
cannot explain the propensity for crack vs. dislocation nucleation. At very
high triaxialities 7" > 4, it is clear that crack nucleation is favorable. While
it is clear that dislocation nucleation is favored at low triaxialities, there are
still many cases with T" < 4 where crack nucleation occurs first. The propen-
sity for dislocation nucleation seems to slightly increase with increasing Lode
parameter.
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Figure 5: Relationship between triaxiality, 7', and Lode parameter, L, from all of our
simulations at the time of crack nucleation.

3.2. Chritical stress for nucleation

Next, we further analyze our simulation results to better understand the
critical conditions for void nucleation. An important feature of our simula-
tions is that in many cases we observed void nucleation in the absence of
plasticity (crack nucleation before dislocation nucleation). This enables us
to first examine conditions for nucleation in the absence of plasticity, and
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then assess the influence of plasticity. Towards these goals, we compute the
following global stress quantities at the time of crack nucleation, which define
the critical conditions for nucleation: critical hydrostatic stress ¥ critical
von Mises stress XM critical maximum tensile stress ., and critical maxi-
mum shear stress 7.. The maximum tensile and shear stresses were obtained
using the principle stresses. An example showing how the critical hydrostatic
stress was obtained is given in Figure 6(a). We also extracted the critical
equivalent plastic strain €£, defined as the accumulated equivalent plastic
strain between the time of dislocation nucleation and crack nucleation, as
shown in Figure 6(b). Below, we report the most important features of these
data (rather than reporting all of the data) in terms of explaining the critical
conditions associated with void nucleation.
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Figure 6: Example results for w;y, = w,, = 1° showing how the critical values of (a)
hydrostatic stress ¥ and (b) equivalent plastic strain €? are obtained at the time of crack
nucleation.

Since nearly all implementations of the GTN model use plastic strain as
the driving force for nucleation, we begin by analyzing the critical plastic
strain. Figure 7 shows how the critical plastic strain varies with (a) 7" and
(b) L. Of course these results only include cases with plasticity prior to
crack nucleation (dislocation nucleation and subsequent motion). The figure
shows that the critical plastic strain varies widely from 0 up to about 0.25.
Furthermore, there is essentially no correlation between the critical plastic
strain and 1" or L. These results bring into question the notion of plastic
strain as a driving force for nucleation. For example, based on existing models
one might expect the critical plastic strain to take on a well-defined value at
a particular 7" and L condition [15]. Our results are not consistent with this
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Figure 7: Critical plastic strain as a function of (a) triaxiality 7" and (b) Lode parameter
L.

Next, we consider how the critical stresses ©2 and Y. depend on the
triaxiality 7" and Lode parameter L, as shown in Figure 8. Again, in these
figures we distinguish cases where plasticity occurs prior to void nucleation
(blue circles) from cases where there is no plasticity prior to nucleation (red
squares). Based on the discussion in the Introduction, we may expect that
void nucleation occurs when a critical stress level is reached. Figure 8(a),
shows how the critical hydrostatic stress varies with triaxiality. At very high
triaxialities T" > 5, void nucleation in the absence of plasticity seems to
occur when a critical hydrostatic stress of 7 GPa is reached. However, at
lower triaxialities the critical hydrostatic stress decreases below this value.
Furthermore, there is no trend between the critical hydrostatic stress and the
Lode parameter, as shown in Fig. 8(c). This indicates that the hydrostatic
stress alone is not what drives void nucleation in the absence of plasticity.

On the other hand, the critical maximum tensile stress without plasticity
shown in Figure 8(b) is relatively constant around 7 GPa for 7" > 2. This
indicates that the critical tensile stress may be a good predictor for the onset
of nucleation without plasticity. However, for low triaxialities the critical
normal stress decreases below 7 GPa. The Lode parameter does not seem
to be related to this behavior, since Figure 8(d) shows no relationship to
L. To explain this behavior, we must account for the fact that the local
normal stress ¢ is higher than the global stress ¥ due to the elastic stress
concentration at the particle’s surface. Fig. 9(a) shows how the elastic stress
concentration factor, as computed using finite element calculations, varies
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with triaxiality. A fit line of the form

_ 0.2584
- 777°0.4469

/{:6

+1; (13)
is shown to capture all stress states quite accurately, demonstrating that the
local normal stress increases as 1" decreases. Using these stress concentration
factors, we can obtain the local critical normal stress values o, = k%, for
cases without plasticity, and this is shown in Fig. 9(b). In this case, all sim-
ulation results collapse together quite well around an average critical local
normal stress of 0. = 8.14 GPa. This indicates that in the absence of plas-
ticity it is the local maximum normal stress which controls void nucleation.
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Figure 8: Critical global hydrostatic stress X (a,c) and (b,d) tensile stress ¥ as a function
of (a,b) triaxiality T and (c,d) Lode parameter L.

3.3. Influence of plasticity
While the analysis above explicates the nature of void nucleation without
plasticity, when plasticity occurs prior to void nucleation the story is not so

18



c
o
o

H@’E@@»@g?ﬂi o

Stress concentration factor, x®
N
Critical local tensile stress,o (GPa)
6 - N ® & o © N ® ©

Triaxiality, T Triaxiality, T
(a) (b)
Figure 9: (a) Elastic stress concentration factors obtained from finite element calculations

for all simulations without plasticity. (b) Critical local tensile stress o, obtained from these
stress concentration factors (only showing results where crack nucleation occurs first).

simple. Fig. 8(b) shows that in cases where dislocation nucleation precedes
void nucleation (blue circles), the critical stresses can be significantly lower,
as low as 2 GPa tensile stress. There is considerable scatter among the data
with plasticity when plotting the critical stresses as a function of both 7" and
L. This indicates that the applied stress state by itself cannot predict void
nucleation in the presence of plasticity.

To investigate what gives rise to this behavior, we have analyzed the
atomic plastic strains and stresses; example results of this analysis are shown
in Fig. 10, with each row of images corresponding to a different simulation.
These examples span triaxialities from 7" = 0.2 to 4 and Lode parameters
from L = —0.9 to 0.9. The leftmost column of images shows where void nu-
cleation occurs in each case, as indicated by the clusters of red atoms. The
middle and rightmost columns show the states of equivalent plastic strain
and radial normal stress, respectively, just before crack nucleation. In both
cases, the fields are highly nonuniform; this non-uniformity derives from the
plastic strain and dislocation distributions surrounding the particle. In all
cases, the crack nucleation site is associated with a local hot spot of normal
stress, whereas equivalent plastic strain does not always correlate with the
nucleation site. Through manual analysis of our simulation results, we have
confirmed that in the vast majority of cases the void nucleation site is asso-
ciated with a region of local elevated normal stress. This analysis indicates
that the sensitivity of the critical maximum tensile stress to plasticity is due
to elevated local stresses at the particle interface, resulting from dislocation
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content and heterogeneous plastic strain.
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Figure 10: Example simulation snapshots showing (left) location of crack nucleation (red
atoms), (middle) atomic equivalent plastic strain, and (right) atomic radial normal stress.
Each row corresponds to a different simulation with nucleation conditions 7', L, and €
given to the left.

As mentioned in the Introduction, two possible effects can contribute
to the build up of local stresses at the particle interface: dislocation stress
fields and plastic deformation. Even without any plastic deformation (i.e.,
no dislocation motion), the stress fields produced by dislocation lines near
the interface will act on the interface, possibly elevated the stresses there.
Furthermore, when dislocations intersect the particle interface, the disorder
of the dislocation core may act to weaken the interface. Of note, however, is
that none of the nucleation sites/normal stress hot spots in Fig. 10 are asso-
ciated with a locally elevated density of dislocations. Again, through manual
analysis we conclude that this is a general trend. To gain further insight into
the potential role of dislocation content, we have extracted the total dislo-
cation density at crack nucleation, p.. Fig. 11(a) plots the critical tensile
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stress as a function of p.; no clear trend is exhibited. These results lead us
to conclude that the dislocation lines themselves are not strong contributors
to void nucleation.

Once dislocations begin moving, they generate bands of local plastic strain
in the Al matrix. However the particle, being incoherent and intermetallic,
does not plastically deform. As a result, incompatibility stresses build up,
as the matrix tries to change its shape but the particle resists this change.
This idea is shown schematically in Fig. 12. To estimate the magnitude of
this effect, we invoke the concept of a plastic stress concentration factor kP,
which captures the stress amplification resulting from plastic deformation.
Accordingly, we may write the nucleation criterion as

0. = K'Y, (14)

To estimate P on the basis of our results, we assume that the true local
critical normal stress for all simulations (including those with plasticity) is
o. = 8.14 GPa. Accordingly, we can compute kP for each simulation as
k! = (8.14 GPa)/k{X.; where k¢ and X.; and the elastic stress concentra-
tion factor and critical tensile stress for simulation 7. The results are shown in
Fig. 11(b). The plastic stress concentration factor is show to increase mono-
tonically with plastic strain up to a value of about 2 when €’ ~ 0.1, albeit
with a fair amount of scatter. This scatter is likely a direct consequence of the
stochastic nature of plastic flow; the slip distribution from each simulation

is a manifestation of random dislocation nucleation and glide events.
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Figure 11: Effect of plasticity on critical stress for crack nucleation. (a) Critical maximum
global tensile stress as a function of total dislocation density. (b) Plastic stress concentra-
tion factor as a function of equivalent plastic strain.
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4. Discussion

A major finding of this work is that void nucleation by particle debonding
is fundamentally a stress-driven phenomenon. For the Al-Cu system studied
here, in the absence of plasticity a single critical local normal stress value
8.14 GPa is sufficient to predict void nucleation over a range of loading con-
ditions (combinations of 7" and L). As far as we can tell, this critical stress is
a property of the interface and not dictated by weak spots or defects in the
interface (in our prior work we found no preferential nucleation sites under
hydrostatic loading [20]). Introduction of additional defects such as vacancies
may affect the critical stress, however. Hence, to predict nucleation all one
needs to do is understand how stress is concentrated at the particle’s surface,
quantified by the elastic stress concentration factor x°. Interestingly, when
we apply Argon et al.’s criterion Eq. (1) to our data we find that it also
predicts nucleation with similar accuracy (e.g., the data collapse together
around a single critical stress value, as in Fig. 9(b)). Of course this means
that Needleman’s criterion Eq. (2) is not consistent with our data. Note that
to our knowledge, this is the first evidence that a stress-based nucleation
criterion is valid all the way down to the nanoscale; previously it had been
argued that stress-based criteria would only be valid for particles larger than
about 1 wm [2], compared to our 10 nm particles here.

This local critical stress of approximately 8.14 GPa may appear exceed-
ingly high from a macroscale perspective, since aluminum alloys typically
have ultimate strengths around 500 MPa. However, two important factors
make this number and its meaning more reasonable. Firstly, we show that
plastic deformation can greatly reduce the critical global stress at which the
critical local stress is reached. For example, Fig. 8 shows critical global
stresses as low as 2 GPa. And secondly, the critical local stress is the stress
that must be reached to nucleate an interface crack in the absence of thermal
activation. Previous research [32, 33] and our own study in a companion
paper [34] has shown that crack nucleation is a thermally activated process,
meaning that at finite temperature cracks are able to nucleate at stresses
below the critical stress. Our preliminary analysis for the same system used
here indicates that at stresses around 500 MPa, cracks could nucleate on sec-
ond timescales at room temperature; we plan to further detail this analysis
in a future study.

When the matrix deforms plastically, the picture is rendered more com-
plex but still largely explicable in terms of an additional stress concentration
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resulting from the plastic deformation, which we call x” here. This picture
is, of course, completely consistent with the work of Lee and Mear [13], who
showed that the stress concentration factor was plastic strain dependent.
However our results here differ significantly from those of Lee and Mear in
that our stress concentration factors are significantly larger. To compare
with their results, we must estimate the modulus mismatch for our system,
defined in terms of the ratio E'/E where E’ is the Young’s modulus of the
particle and E is the modulus of the matrix. If we take the inverse of ele-
ments of the compliance tensor S;;', Sy, and Sy;' as the effective Young’s
moduli for our anisotropic system here, we obtain modulus ratios between 6
and Al in the range 1.8-2.7. Hence, we compare with results from Lee and
Mear with a modulus ratio of F'/E = 2.

For spherical particles under uniaxial loading with E'/E = 2, Lee and
Mear obtained a stress concentration at zero plastic strain of k¢ = k(e =
0) = 1.32. At a plastic strain of €? = 0.05, the stress concentration asymp-
totes to a value of Kk = 1.42, giving a plastic stress concentration of kP =
k/k® = 1.08. Comparing with our results here in Fig. 11(b) where we obtain
kP =~ 1.5 on average when ¢’ = (.05, we conclude that our plastic stress
concentrations are significantly larger. Furthermore, kP continues increasing
out to a value of about 2 at a strain of ¢ = 0.1. Beyond this strain level
there is some evidence of an asymptote, but the data are sparse so it is dif-
ficult to judge. In addition, for load cases with higher triaxialities, Lee and
Mear obtained that the stress concentration decreases with plastic strain,
meaning P < 1. This is in manifest disagreement with our results, where
we observe that x increases with plastic strain for all simulations. Hence
we find significant qualitative and quantitative disagreement with Lee and
Mear. Ironically, the approximate analysis of Beremin leading to Eq. (3) is in
stronger agreement with our results, concluding that the stress concentration
should roughly increase linearly with plastic strain. We see a similar trend
in our data in Fig. 11, albeit with considerable scatter.

Why do our results disagree so significantly with the work of Lee and
Mear? We believe the cause is the local homogenization of stress and strain
fields in continuum theory. At the scale of crystal plasticity, discrete dislo-
cation slip events impinge on the particle’s interface. This leads to a highly
fluctuating plastic strain field at the surface of the particle, thereby inducing
a highly fluctuating stress field. When treated at the continuum scale, these
fluctuations are completely suppressed because the local spatial averages of
stress and plastic strain are the focus. Fig. 12 shows this idea qualitatively.
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But crack nucleation is driven by the maximum value of the local stress, not
the average value. In other words, continuum theory homogenizes away the
most critical piece of information for understanding the propensity for void
nucleation. This is thus an example where continuum theory is not an ideal
tool for studying behaviors of materials.

Homogenized plasticity

Matrix with a void — ﬁ

/
Plastically Insert t_elastic
Q deform particle

\

—/ K

Unhomogenized plasticity

Figure 12: Schematic showing the stress field at the matrix-particle interface (top) with
homogenized plasticity (continuum theory) and (bottom) with unhomogenized plasticity
(MD). Unhomogenized plasticity leads to localized hot spots of stress.

Of course we must take care in our analysis here since our simulation
strain rates are significantly elevated relative to quasi-static loading. How-
ever, we believe that these elevated strain rates do not influence our results
too significantly. The major effects of dynamic loading are (1) formation and
propagation of transient stress waves that induce local stress fluctuations and
(2) rate-dependent evolution of the dislocation structure. In regards to (1),
we did not see evidence that transient stress waves had much effect on the
stress states. For example, we observed consistent evolution of local stress
states over time without strong fluctuations expected if transient waves were
dominant. None-the-less, future efforts should more carefully determine the
sensitivity to strain rate. In regards to (2), there is likely some influence
of strain rate on the plastic-strain-dependence of void nucleation. However,
this sensitivity is difficult to assess via MD simulations alone, since the range
of accessible strain rates is rather narrow. Additional modeling techniques
such as discrete dislocation dynamics [35] likely need to be employed to un-
derstand this rate effect over a broader, and more relevant, strain rate range.
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One subtle aspect of our analysis here is the definition of “void nucle-
ation”. We have focused on the moment at which an interface crack appears.
However in order for a “void” to nucleate, this interface crack must propa-
gate along the interface some amount until the void is able to start growing
plastically rather than via further debonding. Needleman [3] instead defined
nucleation as the point at which the particle has sufficiently debonded to
behave asymptotically like a void (i.e., at large strains), and this definition is
the basis for Eq. (2). This may explain differences between Needleman’s anal-
ysis and ours here. In our prior work we quantified the rate of debonding in
detail and found that dislocation activity significantly accelerates the rate of
interfacial crack growth [20]. Additional research is necessary to identify the
best definition of “void nucleation” in terms of most clearly understanding
ductile fracture.

We conclude by commenting on the implications of our results for ductile
fracture modeling. The most popular approach uses GTN with plastic defor-
mation as the driving force v for the nucleation. As emphasized by Noell et
al., this approach is not consistent with the physics of void nucleation, and
our results here are in agreement with this point. While plastic deforma-
tion has a strong effect on nucleation, it is not predictive by itself. Instead,
one must consider both the stress state and the state of plastic strain. An
important question related to this problem is: what feature of the plastic
strain state is most informative for predicting nucleation? While Fig. 11(b)
has a fair amount of scatter, the overall trend is strong and clear. This gives
evidence that equivalent plastic strain €? is a sufficient quantitative metric of
plastic deformation for void nucleation models. Furthermore, our simulations
here spanned a large range of triaxialities and Lode parameters (perhaps the
most expansive study to date). Of course, we have only considered one mate-
rial system and one particle geometry, so the story may be more complicated
in other circumstances. None-the-less, our results here suggest that future
research efforts should be aimed at re-integrating stress in conjunction with
plastic strain into the nucleation term for ductile fracture models, such as
was originally developed by Needleman, Tvergaard, and colleagues [36, 37].

5. Conclusion

We have employed MD simulations to identify the critical conditions for
the initiation of void nucleation via particle delamination in Al containing a
f-particle. With this objective, we performed hundreds of MD simulations
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with varying stress states, as quantitifed by the stress triaxiality and Lode
parameter. For high triaxiality simulations, we observed that an interface
crack nucleated before any dislocations nucleated, making void nucleation
an entirely elastic phenomenon. Through analysis of these simulations we
demonstrated that, to a good approximation, nucleation occurs when a crit-
ical local normal stress of 8.14 GPa is reached at the particle surface. With
lower triaxialities, dislocation nucleation preceded crack nucleation, causing
plastic strain to be produced prior to void nucleation. In these simulations,
the equivalent plastic strain by itself could not predict when nucleation would
occur. Instead, by leveraging our results without dislocation nucleation we
were able to infer a plastic stress concentration factor kP, which resulted from
the plastic strain distribution surrounding the particle. When analyzed in
this way, a linear trend was recovered between the plastic stress concentration
factor and the equivalent plastic strain. The influence of plastic strain im-
plied by our results was found to be significantly greater than that obtained
by Lee and Mear with continuum plasticity calculations. We interpret this
difference in terms of the influence of plastic strain homogenization on the
local stress field at the matrix-particle interface. Such homogenization elim-
inates hot spots of stress which drive nucleation.

To our knowledge this work provides the first atomistic study of void
nucleation which critically assesses the conditions associated with void nu-
cleation. Of course given the length and time scale constraints of MD, our
simulation conditions are significantly different from those observed in exper-
imental observations of ductile fracture (e.g., micron-scale particles loaded
to 100s of MPa). None-the-less, we believe that our results here provide in-
sights which extend beyond the limitations of the simulations, enabling an
understanding of void nucleation which can inform experimental contexts.
Additional research is needed to asses the influence of other key variables on
nucleation, such as particle size, shape, matrix crystal structure, and tem-
perature.
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