STANDARD MONOMIALS AND INVARIANT THEORY FOR ARC
SPACES I: GENERAL LINEAR GROUP

ANDREW R. LINSHAW AND BAILIN SONG

ABSTRACT. This is the first in a series of papers on standard monomial
theory and invariant theory of arc spaces. For any algebraically closed
field K, we construct a standard monomial basis for the arc space of the
determinantal variety over K. As an application, we prove the arc space
analogue of the first and second fundamental theorems of invariant the-
ory for the general linear group.

1. INTRODUCTION

Classical invariant theory. Classical invariant theory has a long history
that began in the 19th century in work of Cayley, Gordan, Klein, and Hilbert.
Given an algebraically closed field K, a reductive algebraic group G over
K, and and a finite-dimensional G-module W, the ring of invariant poly-
nomial functions K[W]“ is the main object of study. It is often useful to
consider invariant rings K[V]%, where V = W® @ W*®1 is the direct sum
of p copies of W and ¢ copies of the dual G-module W*. In the terminol-
ogy of Weyl, a first fundamental theorem of invariant theory (FFT) for the pair
(G, W) is a generating set for K[V, and a second fundamental theorem (SFT)
for (G, W) is a generating set for the ideal of relations among the genera-
tors of K[V]®. When char K = 0, if G is one of the classical groups and W
is the standard representation, the FFTs and SFTs are due to Weyl [36]. The
analogous results in arbitrary characteristic were proven by de Concini and
Procesi in [7]. Explicit FFTs and SFTs are in general difficult to obtain and
are known only in a few other cases, such as the adjoint representations of
the classical groups which is due to Procesi [29], the 7-dimensional repre-
sentation of G and the 8-dimensional representation of Spin,, which are
due to Schwarz [30].

The main example in this paper is the case where G is the general linear
group GLj,(K) over K, and W = K®" is its standard representation. For
V = W @ W*®1 as above, the affine coordinate ring is

K[V] =Kol b1 <i<p 1<j<q 1<I<h].

il

Theorem 1.1. (FFT and SFT for G = GLy(K) and W = K%h)
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(1) The ring of invariants K [V]“(K) is generated by

(XD =S albP1<i<p 1<j<q)
!
(2) The ideal of relations among the generators in (1) is generated by

Xi(t?)m Xl(t?)vz e Xi(gz)hﬂ
X1S(2))1)1 Xl(tg)vz e X'l(lg)vh-s-l
0‘ O. 0 '
Xl(th)+1vl Xi(th)Jr1v2 e X1(Lh)+1vh+1
fO?’ all UL, U,y ..., Up and V1,V2,...,Up with 1 < u; < Uir1 < P and

1< <wvigr <q.

Standard monomial theory. Standard monomial theory was initiated in
the 1970s by Seshadri, Musili and Lakshmibai [31, 17, 18, 19], generaliz-
ing earlier work of Hodge [12]. It involves nice combinatorial bases for
the affine coordinate rings of Schubert varieties inside quotients of classi-
cal groups by parabolic subgroups. In this paper, we only need the case of
determinantal varieties.

For positive integers p and g, let

(1.1) R=Ry =2zl 1<i<p 1<j<d,

be the ring of polynomial functions with integer coefficients on the space
of p x ¢ matrices. Consider the h-minor

(0) © (0)

BRI S
0 0 0
(1 2) B— Lugvy Lugvo tee $u2vh
° - . . . . )
0 0 0
«Tgh)vl :1:1(1,}3’1)2 e x’l(j,h)’uh

with u; < uiy1, v;i < viy1. Throughout this paper, we will represent B by
the pair of ordered h-tuples
(Upy ..., ug,utlvr, v, ..., vp).

There is a partial ordering on the set of these minors given by

(Why « oy ug, ur|v1, 02, oy vp) < (W oy by uy [0, Vhy o V),

if A <h, u < u;, v; < Ug.
R has a standard monomial basis (cf. [16]) with respect to this partially
ordered set of minors: the ordered products A; A, - - - Aj of minors A; with
A; < A;11, form a basis of R. Similarly, let R[h] be the ideal of R generated
by all ~-minors in the form of (1.2), and let
(1.3) Ry, = R/R[h +1].

Then Rj, has a basis consisting of ordered products A; Ay - - - Ay, of h;-minors
A; with h; < hand A4; < Ai+1-
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For an arbitrary algebraically closed field K, let M,, = M, ,(K) be
the space of p x ¢ matrices with entries in K. The affine coordinate ring
K[M, 4] is obtained from R by base change, that is, K[M,, ;| = R ®z K. Let
K[M, 4][h] be the ideal generated by all ~--minors. The determinantal vari-
ety Dy, = Dj,(K) is a closed subvariety of M, , with K[M), ,|[h] as the defin-
ing ideal. Then the affine coordinate ring K[Dj,| = K[M, ,|/K[M, 4|[h], has
a standard monomial basis: the ordered products A A, - - - Aj, of h;-minors
A; with h; < hand A4; < A,y form a basis of K[Dy]. With G = GL;,(K)
and V as in Theorem 1.1, we have V/G = Dy, and the proof of Theorem
1.1 in [7] makes use of this standard monomial basis. A uniform treatment
of the FFT and SFT for all the classical groups using standard monomial
theory can also be found in the book [16].

Arc spaces. For a scheme X of finite type over K, the arc space Jo(X) is
defined as the inverse limit of the finite jet schemes .J,,(X) [11]. By Corol-
lary 1.2 of [5], it is determined by its functor of points : for every K-algebra
A, we have a bijection

Hom(Spec A, Joo (X)) = Hom(Spec A[[t]], X).

If 7 : X — Y is a morphism of schemes, we get a morphism of schemes
oo+ Joo(X) = Joo(Y). Arc spaces were first studied by Nash in [28], and
carry important information about the singularities of X. The Nash prob-
lem asks whether there is a bijection between the irreducible components of
Joo(X) lying over the singular locus of X, and the essential divisors over
X. This has been answered affirmatively for many classes of varieties, al-
though counterexamples are known [13]. Arc spaces are also important in
Kontsevich'’s theory of motivic integration, which was used to prove that bi-
rationally equivalent Calabi-Yau manifolds have the same Hodge numbers
[15]. This theory has been developed by many authors including Batyrev,
Craw, Denef, Ein, Loeser, Looijenga, Mustata, and Veys; see for example
[4,6,8,9,11, 26,27, 35]. More recently, arc spaces have turned out to have
applications to the theory of vertex algebras, which in many cases can be
viewed as quantizations of arc spaces [1, 3, 2, 21, 32, 33, 34].

Standard monomials for arc spaces. Let
(1.4) R=9:R,,=Z" | 1<i<p 1<j<q k>0,
which has a derivation 0 characterized by 8$§f) = (k+ 1)x§f+1). It can be
regarded as the ring of polynomial functions with integer coefficients on
the arc space of p x ¢ matrices; in particular, K[Jo (M 4)] = R ®7 K.

Let %[h] be the ideal of SR generated by all h-minors B of the form (1.2)
and their normalized derivatives ;0" B. Let

(1.5) Ry, = R/R[A + 1]

Let 7, be the set of ~A-minors of the form (1.2) with A < r and their normal-
ized derivatives. Note that R and R}, are naturally subrings of R and R,
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respectively. In Section 2, we will define a notion of standard monomial on
M), that extends the above notion on Rj,, and we will prove the following
result.

Theorem 1.2. Ry, has a Z-basis given by the standard monomials of Jp,.

Let J(Dy,) be the arc space of the determinantal variety Dj,. Then the
affine coordinate ring K[Joo(Dp)] is Ry—1 ®z K, so we immediately have

Corollary 1.3. K[Joo(Dy)] has a K-basis given by the standard monomials of
Ih-1.

When K = C, the arc space Jo(D},), as well as the finite jet schemes
Jn(Dy), were also studied by Docampo in [10]. He gave an explicit descrip-
tion of the decomposition of J(D},) and J,, (D) as a union of orbits for the
action of Jo(GLy(C) x GLy(C)) and J,,(GL,(C) x GL4(C)), respectively.

Application in invariant theory. Given an algebraic group G over K, Jo(G)
is again an algebraic group. If V is a finite-dimensional G-module, there is
an induced action of J.,(G) on Joo(V), and the invariant ring K[ Jo (V)]7>(%)
was studied in our earlier paper [20] with Schwarz in the case K = C. The
quotient morphism V' — V//G induces a morphism J (V) = Jo(V/G),
so we have a morphism

(1.6) Joo(V)/ Joo(G) = Joo (V] G).

In particular, we have a ring homomorphism
(1.7) K[Jo(V) Q)] = K[Jo(V)]">(?.

If V//G is smooth or a complete intersection and K[V] has no nontrivial
one-dimensional G-invariant subspaces, it was shown in [20] that (1.7) is
an isomorphism, although in general it is neither injective nor surjective.

We specialize to the case G = GLy(K), W = K®" and V = W @ W*#1,
as above. Then

KlJoe(V)] = Klay) 00| 1< i<p, 1< <q L<U<h, k€ Zs),

Qs

which has an induced action of Jo.(GLy(K)) as above. We have the follow-
ing theorem, which is the arc space analogue of Theorem 1.1.

Theorem 1.4. Fix integers h > 1 and p,q > 0, and let W = K®" and V =
WP @ W+ be as above. Let 9% = L0 be the k™ normalized derivative.

(1) The ring of invariants K[ Joo(V)]7=(CLrlK)) is generated by
(1.8) (x = akZa(O) 1<i<p 1<j<q, k>0}
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(2) The ideal of relations among the generators (1.8) is generated by

R
0
(1.9) Pl Xugvy  Xugve o Xugupyy
0. 0. ' 0 '
X1(lh)+1vl XY(Ah)+1v2 X7(lh)-{—lvh+1
fOT all UL, U,y ..., Up and V1,V2,...,Up with 1 < u; < Uir1 < P and

1 <wv; < vip1 < q, and all integers k > 0.
(3) K[Joo(V)]/(CLr(K) has a K -basis given by standard monomials of .

Corollary 1.5. Forall h > 1 and p,q > 0, the map K[Joo(V)GLy(K))] —
K[Joo(V)]7(GLn(E)) ajven by (1.7) is an isomorphism. In particular, we have

Joo(V) [ Joo(GLn(K)) = Joo (V) GL(K)).-

Corollary 1.5 is a generalization of Theorem 4.6 of [20], which deals with

the following special cases for K = C.

(1) p< horgq < h,sothat V/GL;(C) is an affine space,

(2) p=h+1=gq,sothat V/GL;,(C) is a hypersurface.
In the second paper in this series [22], we will prove a similar theorem
for the symplectic group Spy,(K) for h an even integer: for W = K%" and
V = W®P,(1.7) is an isomorphism for all 2 and p. In the third paper [23], we
will study the case G = SL,(K), W = K®"and V = W® @ W*%4. This
case is more subtle since (1.7) is always surjective, but fails to be injective if
max(p, g) —2 > h. We will completely determine its kernel, which coincides
with the nilradical of K[J(V//G)] when char K = 0. Unfortunately we are
unable to prove similar results for the orthogonal and special orthogonal
groups using these methods.

Our results on the invariant theory of arc spaces have significant applica-
tions to vertex algebras which we will develop in separate papers [24, 25].
These include the structure of cosets of affine vertex algebras inside free
field algebras, classical freeness of the affine vertex algebras Ly (sp,,,) for all
positive integers n and k, new level-rank dualities involving affine vertex
superalgebras, and the complete description of the vertex algebra of global
sections of the chiral de Rham complex of an arbitrary compact Ricci-flat
Ké&hler manifold.

Acknowledgment: B. Song would like to thank Mao Sheng for discussions
and suggestions on algebraic geometry on this subject. A. Linshaw is sup-
ported by Simons Foundation Grant #635650 and NSF Grant DMS-2001484.
B. Song is supported by NSFC No. 11771416.

2. STANDARD MONOMIALS
Fix integers p, ¢ > 1, and recall the ring

K= =2V 1<i<p 1<j<q k>0,
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with derivation 0 defined on generators by 890873) = (k+ 1)x§f+1). As above,
this is an integral version of the coordinate ring of the arc space of the space
of p x ¢ matrices, that is, K[J (M, )] = R @z K, for any field K.

Normalized derivatives. For/ > 0, we define the ™ normalized derivative
o = %8l on R, which satisfies

5l%‘§f) = CLH%(-?H) SRUS
Here for k,n € Z>,

!
ck — k!(r?—k;)!’ 0<k<m,
" 0, otherwise.

The following propositions are easy to verify.

Proposition 2.1. For any a,b € R,

l
d'(ab) = Z d'a 0,
=0

and 0'a € R.
Proposition 2.2. For a minor B of the form (1.2),
(2.1) "B = Z Z sign(a)a:gﬁ)g(l)xqg’;%l(z) . xg;%)g(h)
nitetnp=n o
n;€~L>0

Generators. Recall that the minor B in (1.2) can be represented by the pair

of ordered h-tuples (up, ..., uz, ui|vi,ve,...,vp), where 1 < u; < ujp1 <p
and 1 <wv; < v;41 < g. Similarly, let
(2.2) J:5n(uh,...,UQ,U1|01,U2,...,’U}Z)

represent "B € R, the nM normalized derivative of the minor B. For
convenience, we shall call such expressions 0-lists throughout this paper.
We call wt(J) = n the weight of J and call sz(J) = h the size of J. Let J be
the set of these 9-lists, and
I =1J € J|sz(J) < h}

be the set of elements of 7 with size less than or equal to h. Let £ be the set
of pairs of ordered h-tuples of ordered pairs of the form
(2.3) E= ((uh, /ﬂh), ey (’LLQ, k‘Q), (ul, k1)|(’l)1, ll), (’1)2, ZQ), ceey (Uh, lh))
withl <wu; <p, 1 <wv; <gq,u #Uj ifi # j,v; #Uj ifz';éj,andk‘i,lj S ZZO.
For each E, there are unique permutations 0,0’ of {1,2,...,h} such that
Ug (i) < Ug(i+1) and Vo' (3) < Vg (34+1)- Let

LBl = 0™ (Uo(n)s - - - + Uo(2) Uo(1)| Vo (1), Vor(2)s - - 5 Vor(n) € T -
Heren =Y ki + >_l; and 0,0’ are the above permutations. Let

wt(E) = wi([[El]),  s2(E) = sz([|El]).
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Let

En={E € &| sz(E) < h}.
For J € J, let
(2.4) EJ)={E€cé&|||E|l=J}.

J is a set of generators of YR and we can use the elements in £(.J) to repre-
sent J.

Ordering. For any set S, let M(S) be the set of ordered products of ele-
ments of S. If S is an ordered set, we order M(S) lexicographically, that
is

S18y -+ S < 51} S

n

if S; = Sj,i < i, with S;; < S}, orig =m+1,n > m.

We order M(Z), the set of ordered product of integers, lexicographically.
There is an ordering on the set J:

k k' () AT /
O (Upy - -y u2, ut|v1,v2, ... vR) < O (Wpyy ..oy Uy, ULV, VY, .o, V)
if
e W <h;
eorh=hand k < k;
eorh =hk==FKanduy---uwpy---v1 < u)---ujvy - v). Here we
order the words of natural numbers lexicographically.

We order the pairs (u, h) € Z>¢ x Z>( by
(u,h) < (u',n'), ifh<h orh=handu </
There is a partial ordering on the set &:

((uhvkh)> SER) (ula kl)’(vhll), ) (Uhvlh)) < ((uﬁz’vka’)v ERE) (ulla ki)|(v£>l/1)v SERE) (U;z” ;L/))
if h/ S h and (uz,k‘z) S (u‘ k‘{), (Ui,li) S (U;,lg), for1 S ) S h/.

177

Finally, there is an ordering on &:

((why k), - - (ur, k) (01, 4)s -y (Vns ) < (s Ky )y - ooy (W, K01, 1) oy (U, )
if
e h>h;
eorh=~nrand ) (k +1;) <> (kl+1);
eorh="n,> (ki+1;)=> (ki +1)and
(uhv kh) T (u17 kl)(vhv lh) T (vl,ll) = (u;zﬁ k;z’) T (U’l, k/l)(v;z’v l;z’) T (vllvlll)
Here we order the words of Z>q x Z>q lexicographically.

Lemma 2.3. If E < E/, then ||E|| < ||E'||.

Proof. If sz(E') < sz(E) or sz(E) = sz(E') and wt(E) < wt(E’), then

|E|| < ||E'||. If s2(E) = sz(E') and wt(E) = wt(E’), we must have k; = k|

and l; = l3. So u; < uj and v; < v, we have [|E]| < [|E']]. O
7



Relations. Let
5k(uh,. .o ,u1|v1,. . .,’Uh) =0

if thereis 1 < i < j < h such that u; = u; or v; = v;. Fora O-list J € J of
the form (2.2), let

O (U (n)s - - - U (2) U (1)| Vo (1), Vo (2)s - - - » Vor(y) = sign(o) sign(a”) J.

Here 0,0’ are permutations of {1,2,...,h}, and sign(o), sign(o’) are the
signs of these permutations. We have the following relations, which we
will prove later in Section 6.

Lemma 2.4. For iy, i, j1, j2, h, B, ko,m € Zso with h > 1, i1, 51 < h, i2, jo <
R and kg < m, let ly = i1 + iz + j1 + jo — 2h — 1. Given any integers ay,
ko < k < ko + lo, there are integers ay, 0 < k < ko or ko + lop < k < m, such
that

(2.5) Z Z sign(o) sign(o’
e 21'22'31'32 () sign(o")
( 5’1”‘_"‘(%,...,uilﬂ,a(uil),...,a(ul) | o' (v1),...,0"(v,), V1415 VR) )
(.ol o(uly), . o(u)) o' (v1), s 0 (V5,), 00 gy )
is in R[h + 1]. Here the second summation is over all pairs of permutations
o of Uiy, ... UL, U, ..., uy and permutations o' of viy,...,v1,0,,. .., v, and

sign(o) and sign(o’) are the signs of the permutations.

For simplicity, we write Equation (2.5) in the following way,

(2.6)
Im—k
om (uh,...,ui1+1,ui1,...,u1 ‘ vl,...,vjl,vjl+1,...,vh)
E eag (7914( / / / / ‘ 7 A, / ) G%[h-i-l]-
Wpry ooy Wiy gy Uiy ooy UY Vlsee s Uy Vs gy Uy

Remark 2.5. Since the second summation in Equation (2.5) is over all permuta-
tions, each monomial in the equation will appear i1i2!j1!52! times, so the coefficient
of each monomial will be +ay,.

Standard monomials. Now we give a definition of the standard monomi-
als of J.

Definition 2.6. An ordered product E1Es - -- Ey, of elements of £ is said to be
standard if

(1) Eqo < Egr1,1 <a<m,

(2) Ej is the largest in E(||E1||) under the order <, where E(||En||) is defined
by (2.4),

(3) Eqy1 is the largest in E(||Eq41]|) such that E, < Eq41.

An ordered product Jy Jy - - - Jyy, of elements of J is said to be standard if there is a

standard ordered product E1Es - - - Ey, such that E; € £(J;).
8



Let SM(J) € M(J) be the set of standard monomials of .7;
let SM(E) € M(E) be the set of standard monomials of &;
let SM(Jp) = M(Jp) N SM(J) be the set of standard monomials of J3;
let SM(E) = M(E) N SM(E) be the set of standard monomials of &y,.

By Definition 2.6, if JiJs---Jy, is a standard monomial, the standard
monomial F - - - E,, € SM(E) corresponding to J; - - - Jp, is unique and F4
has the form

((Uh, wt(El)), (uh,l,O), ey (ul,O)\(vl, 0), ooy (’Uh, 0)) S 5
with u; < w41 and v; < vi41. So the map
Th: SM(EL) = SM(Th),  ErBs- - Em = [|E1]|||Bal| - - || Enl|

is a bijection.
We order M(J), the set of ordered products of elements of 7, lexico-
graphically. The following lemma will be proved later in Section 7.

Lemma 2.7. If Jy--- J, € M(J) is not standard, J can be written as a linear
combination of elements of M(J) preceding Ji - - - Jy_1 with integer coefficients.

Recall that 9i[h] denotes the ideal generated by J € J with sz(J) = h,
and R;, = R/R[h + 1], as in (1.5). If b > min{p,q}, then J,, = J and
A, = R. By the above lemma, we immediately have

Lemma 2.8. Any element of Ry, can be written as a linear combination of standard
monomials of Jp, with integer coefficients.

Proof. We only need to show that any element of fi can be written as a lin-
ear combination of standard monomials of 7 with integer coefficients. Re-
call that J generates R. If the lemma is not true, there must be a smallest
element J € M(J), which cannot be written as a linear combination of ele-
ments of SM(J) with integer coefficients. So J is not standard. By Lemma
27,J =%, +Jq with J, € M(J) and J, < J. Since J, can be written as
a linear combination of elements of SM(J) with integer coefficients, J can
also be written as such a linear combination, which is a contradiction. [

3. A CANONICAL BASIS
A ring homomorphism. Let
Sp={dP Pl 1<i<p 1<j<q 1<i<h keZs),
and let
3.1) B = Z[Sh),

the polynomial ring generated by Sj,. For later use, we mention that for a
field K, if W = K%, and V = W% @ W*®4, the affine coordinate ring
K[Js (V)] is obtained from B by base change, i.e., K[J (V)] = B ®z K.

9



(k+1) (k)
ij b

Let 0 be the derivation on B given by 6@8?) = (k4 1)a =

(k+ l)bl(-fﬂ). We have a homomorphism of rings
h
Q=3 a0 ae.
1=1

For any J € J with sz(J) > h, we have Qh(J) =0, so Qy, induces a ring
homomorphism

(3.2) Qh : Ry — B.

Double tableaux. Let S,=S), U {*}. We define an ordering on the set Sj:

for XZ»(]{C), stfll) € Sy,

X < xand X[ > v if
X=aY =9
orX=Y,k>k;
or X =Y, k=F,i>7;
or X =Y, k=Fk,i=4,5>7j.
We use double tableaux to represent the monomials of 8. Let 7 be the
set of the following double tableaux:

yl,h» T 7y1,2> l/l,l ‘ Zl,la 21727 e 7Z1,h
(3-3) . . .
Ym,hs " s Ym 2, Ym,1 ‘ Zm,152m,25 """ s Zm,h
k k
Here y,; are some agl) or x and z,; are some bg.l) or x; every row of the
tableau has elements in S,; and

Ysg S Ystljs  Zsj S Zstlje
We use the tableau (3.3) to represent a monomial in B, which is the product

/ /
of az(.f) s and bl(-f) s in the tableau. It is easy to see that the representation is a
one-to-one correspondence between 7 and the set of monomials of 8. We
associate to the tableau (3.3) the word:

Yi,p - Y1128 R1L1Y2, " " Y2,122,h " " 221 " " Emb T Am,l

and order these words lexicographically. For a polynomial f € ‘B, let Ld( f)
be its leading monomial in f under the order we definedon7.

For E; = ((uj,,, Kk}, ), - - -, (uh, k), (ug, kD[ (01, 11), (05, 15), - -+, (v, 1) €
€,1 < i <'m,we use a double tableau to represent E; - - - E,;, € SM(E),

(3.4)
(u§17ké1)7 e a(ué7ké)7 (uivki) ’ (Uiali)a (Uévl%)a e 7(“};1’[};1)
(uh27kh2)7'” 7(“27k2)7(u17k1) ’ (Ulvll)v(UQaZQ)a”' 7(Uh27lh2)
(R ), (g R, (k) | o, O, (o ), (o T )

10



LetT : SM(J,) — T with

b mam) D )
’ » Ty u}b hy’ ’ u%l v%l’ 9 ,U}lL hy? ™ ’
2
oo g e )
T(El . -Em> — ) ) ) uh2h27 ) “11 ,Ull’ ) vh2h27 ) )
) s Ty “Zl hn? ) u71”1 v{”l’ ) vzﬂ hm? ) )
m m

Obviously, T is an injective map and 7'(E;) < T'(E») if Eq < Es.

Lemma 3.1. Let J;---J, € SM(Jp) and Ey --- E,, € SM(E,) be its asso-
ciated standard monomial. Assume the double tableau representing E, - - - E, is
(3.4). Then the leading monomial of Qp(J1 - - - Jy,) is represented by the double
tableau T'(E©\Esy - - - Ey,). Thus

LdOQh:TOﬂ'}:l SM(Tn) =T

is injective. Moreover, the coefficient of the leading monomial of Qp(J1 - - Jp,) is
£1.

Proof. Let W,,, be the monomial corresponding to the tableau T'(E; - - - Ey,).
Let
Em my (gm m
My = aggiry) o alGfB0E) - byh,
be the monomial corresponding to the double tableau T'(E,;,). Then W,,, =
Wm—1M,,. We prove the lemma by induction on m. If m = 1, the lemma is
obviously true. Assume the lemma is true for Ji - - - Jy,—1, then its leading
monoimal Ld(Qp(J1 - Jm-1)) = Wy,—1, the monomial corresponding to
T(E; -+ Epy—1), and the coefficient of W,,_1 in Qp(J1 - - - Jyp—1) is 1.
Qntm) = 3+l alt), o) ) )l
The summation is over all [;, k; > 0 with > (I; + k;) = wt(E),), all s; with
1 < s1,82,-++,8h, < h and they are different from each other, and all
t1,-- ,tp,,, which are permutations of si,s2,--,sp,,. M, is one of the
monomials in @, (J,) with coefficient £1. All of the monomials in the poly-
nomial Qp(J; - - - Jm—1) except W, are less than W,,_, so any monomial
in Qp(J1 -+ Jm—1) except W, _; times any monomial in Q,(.J,,), is less than
Wp—1. Since W,,,_1 < W,,, the coefficient of W,, in Qp(J1 - Jy,) is not
zero. Now
Win—1 < Wp, < Ld(Qh(Jl s Jm))
The leading monomial Ld(Qn(J1 - - - Jp,)) must have the form

W:Wmfla(kl) a®2) ) (L) p(l2) ()

m m m m m * m .
uyts1uy' s Upe  Shm V1 t1 vyt vhmthm

If some s; or t; greater than h,,_1, then W < W,_;. If there is some

hm—1 > 8;i > hy, thereis 1 < j < hy,, with j ¢ {s1,..., sp,, }, if we replace

s; by jin W, we get a larger monomial in Q(J1 - - - J,,). So we can assume
11
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Sz

S1,...,5n,, is a permutation of 1,2, ..., h,,. We must have aflk )S >a,
m 1
and bf} ) > b(m 1t), otherwise W < W,,—_1. These kind of monomials
in Qn(J,,) are in one-to-one correspondence with E/ € £(J,,) such that
E,,—1 < E),. Finally, E,, is the largest in £(J,,,) w1th E,_1 < E,, since £
is standard, so W, is the leading term of Qy(J; - - - Jp,)). The coefficient of
W in Qp(Jy - - - Jin) is £1 since the coefficients of Wy, 1 in Qp(J1 - -+ Jpp—1)
and M,, in Qp(Jp,) are 1. O

gz

Proof of Theorem 1.2. By Lemma 3.1, Ld(Qp(SM(J1))) are linearly indepen-
dent, so SM(J;,) is a linearly independent set. By Lemma 2.8, SM(J})
generates Ry,. So SM(J},) is a Z-basis of Ry, O

Theorem 3.2. Q, : Ry, — B is injective. So we may identify Ry, with the image
Im(Qp), which is the subring of B generated by 9*>"'_, a flo)bg(l)). In particular,
Qn(SM(Jy)) is a Z-basis of Im(Qp,).

Proof. By Lemma 3.1, Ld(Qn(SM(J))) are linearly independent. Since
SM(Jy,) is a Z-basis of Ry, Qp, : Ry, — B is injective. O

Since @)y, is injective and ‘B is an integral domain, we obtain

Corollary 3.3. Ry, is an integral domain.

4. APPLICATION

In this section, we give the main application of the standard monomial
basis we have constructed, which is the arc space analogue of Theorem 1.1.

Arc spaces. Suppose that X is a scheme of finite type over K. Its arc space
(cf.[11]) Joo(X) is determined by its functor of points. For every K-algebra
A, we have a bijection

Hom(Spec A, Jo (X)) = Hom(Spec A[[t]], X).

If i : X — Y is a morphism of schemes, we get a morphism of schemes
oo ¢ Joo(X) = Joo(Y). If 7 is a closed immersion, then i, is also a closed
immersion.

If X = Spec K|z1,...,x,), then Jo(X) = SpecK[:z:l(k)H <i<nke€
Z>¢). The identification is made as follows: for a K-algebra A, a mor-
phism ¢ : K[z1,...,z,] — A[[t]] determined by ¢(z;) = > 72, agk)tk corre-
sponds to a morphism K [:rfk)] — A determined by :L'Ek) — agk). Note that
Klz1,...,z,] cannaturally be identified with the subalgebra K [xgo), e x,(lo)]
(0)

of K [xgk)], and from now on we use z, ’ instead of z;.

The polynomial ring K [:cgk)] has a derivation 0 defined on generators by

4.1) 0z = (k + 1)zF.
12



It is more convenient to work with the normalized k-derivation %8’“, but

this is a priori not well-defined on K [a:fk)] if char K is positive. However,

0 is well-defined on Z[acgk)] and 9% = £0* maps Z[xgk)] to itself, so for any
K, there is an induced K-linear map

(4.2) o K[zM] = K2,
obtained by tensoring with K.

Proposition 4.1. If X is the affine space Spec K[azgo), e ,x%o)]/(fl, ces fr),
then Joo(X) is an affine space

Spec K[\, 2@ 2™ /(AL 0f, O ).

Proof. Let 9% : A[[t]] — A[[t]] be a morphism of A-modules with 9*¢" =
Ckt"=k_ Then for any a(t), b(t) € A[[t]], we have

Z 0%a(t)0""b(t)
and the coefficient of t* in a(t) is 9% a(t)|;=o . Any morphism
¢: K[z, ..., 20 - A[l)]
determined by d)(:cl(o)) =0 agk)t’c induces a morphism
¢: Kz = Al[t)), givenby 2 s 5 (z(").
Then $9* = 8¢ and ¢(z\")]—o = a{*.
Forevery f € K[z (0)}

O $(f)li=o = (" f))li=o = (3" )((=\"), ..., 3= im0 = D* F)(al”, ...

we have
= Zékf(ago), ... ,aglk)) k.
k=0

It follows that ¢ induces a morphism K [ © ]/ (fis.--, fr) — A[[t]] if and
only if
£\, ay =0, foralli=1,...,r, k> 0.
]

If Y is the affine scheme Spec K[ygo), e yﬁg)]/(gl, ...,gs), a morphism
P : X — Y induces a ring homomorphism P* : K[Y| — K[X]. Then
the induced morphism of arc spaces Py : Joo(X) — Joo(Y) is given by
P;O(yl(k)) = 5"3P*(y§0)) ; in particular, P}, commutes with 0¥ for all k > 0.

13



Arc space of the determinantal variety. Recall that the space M), , of p x ¢
matrices over K has affine coordinate ring

0 . .
K[Mpg) = K[a\)| 1 <i<p, 1< j<d],

which is just R ®z K, where R is given by (1.1). The determinantal variety
Dy, is the subvariety of M, , determined by the ideal K[M,, ,|[h] generated
by all h-minors, so K[Dy,| = K[M, 4|/ K[Mp4][h] = Rr—1 ®z K, where R;_
is given by (1.3). Similarly, recall that

K[Joe(Mpg)] = K[zP|1<i<p 1<j<q kels) =Rz K,
where R is given by (1.4). Then
K[Joo(Dp)] = K[Joo(Mp,g)l/ K[ oo (Mp,g)][R],

where K[Jx (M, 4)][R] is the ideal generated by the elements 0".J, where .J
is an h-minor. Note that K[J(Dp)] = Rp,—1 ®z K, where Ry,_; is given by
(1.5).

Proof of Corollary 1.3. By Theorem 1.2, SM(J;,—1) is a Z-basis of 9i;,_;. So it
is a K-basis of K[J(Dp)]. O

Invariant theory for Jo.(GL,(K)). Let G = GL,(K) be the general linear
group of degree h over K. The group structure G x G — G induces the
group structure on its arc space

Joo(G) X Jxo(G) = Joo(G),

50 Joo(@) is an algebraic group. Recall the G-modules W = K% and V =
W P W*%4. Recall that V has affine coordinate ring

K[V =Ko b 0<i<p 1<j<p 1<I<h).

il o

The action G x V' — V induces the action of J(G) on J(V),
Joo(G) X Joo(V) = Joo (V).

This induces an action of J.(G) on the affine coordinate ring

K[Joo(V)] = Klal) 0| 0<i <p, 1< <p, 1 <U<h, k€ Zsl,
which is identified with is 8 ®7z K where B is given by (3.1).
Recall the map Q) : R, — B given by (3.2). It extends naturally to a
map

(4.3) QK K[Joo(Dps1)] = K[Jo(V))],

where K [Js(Dp1)] and K[ Js (V)] are identified with R, @7z K and B®z K,
respectively, and QF = @), ® Id.

Theorem 4.2. Q¥ is injective, so we may identify K [Jo(Dp+1)] with the subring
Im(QX) of K[Joo(V)]. In particular, K [Joo(Dp1)) is integral.
14



Proof. By Lemma 3.1, Ld(Qp(SM(J}))) are linearly independent. By Corol-
lary 1.3, SM(J,) is a K-basis of Ry, so QX is injective. Since K|[J (V)] is
integral, 5o is K[Joo(Dp+1)]- O

Remark 4.3. In general, if char K = 0, the arc space of an integral scheme is irre-
ducible [14], but it may not be reduced. The determinantal varieties are examples
whose arc spaces are integral.

Ifp,g>h,letA = QhK((h, o110 k). Let K[Joo (V)] A andIm(Q{f)A
be the localizations of K|[Jx (V)] and Im(QF) at A, respectively.

Lemma4.4. Ifp,q > h,
Joo (GL (K
K[Joo (V)55 = Im(Qf ).

Proof. Let K[V]a be the localization of K[V] at A and Va = Spec K[V]a.
Let H be the subvariety of VA given by the ideal generated by a; — ¢! with
1 <4,1 < h. The composition of the imbedding ¢ : H — V and the affine
quotient g : VA — Va//G = (V//G)a gives the isomorphism go ¢ : H —
(V/JG)a. So as morphisms of their arc spaces,

Goo © loo : Joo(H) = Joo(V)G)A) = Jo(V)JG)A.

The map ¢ induces a morphism Goo : Joo(VA) [ Jo(G) = Joo(VJG)A.
The action of G on V' gives a G-equivariant isomorphism

Gx H — Va.
So we have a Jo(G)-equivariant isomorphism
Joo(G) X Joo(H) = Joo(VA) = Joo(V)A.
and an isomorphism of their affine quotients
i:Joo(H) = Joo(G) X Joo(H) )G = Joo (V) | Joo (G).

Joo © 1 = (oo © Lo 1S an isomorphism, so G« is an isomorphism since 7 is an
isomorphism, which is equivalent to the lemma. O

Theorem 4.5. K [Joo(V)]7=(CLn(K)) = [m(QF).
Proof. Ifp,q > h, weregard K [J (V)] and Im(Q¥) A as subrings of K [Joo(V)]a.

By Lemma 4.4, we have
K[Joo(V)]>@ = K[Joo(V)] N Im(QF ) -
Now for any f € K[Joo(V)]NIM(QF ), f = £ with A" f = g € Im(QF).
The leading monomial of g is
Ld(g) = (@} - ajp by - bj) " Ld(f)
with coefficient Cy # 0. Since g € Im(QX), there is a standard monomial
J € SM(TJy), with Ld(Qr(J)) = Ld(g). Since J has the factor (h, ..., 1|1,..., k)",

QI (J) has the factor A", Thus f — o) € K[J.o(V)]NIm(QK) 4 witha
15




lower leading monomial and Q{f,({]) € Im(QX). By induction on the leading

monomial of f, f € Im(QX). So
K[Jw(V)]NIm(QF)a = Im(Qy),

and K[Joo (V)]7=(@) = Im(QF).
More generally, let V! = WP+h (W *)®4+h where W = K®" as before.
Its arc space has affine coordinate ring

KlJo (V)] = Kla{) 0| 1 <i < pt+h, 1<j<q+h, ke Zs,

which contains K[.J (V)] as a subalgebra, and has an action of J.(G). By
the above argument, K[J..(V’)]’>=(%) is generated by XZ-(;-C ) = o > airhji.
Let 7 be the ideal of K[J.(V’)] generated by al(lk), bg.];) withi > p,j > ¢.
Then
KlJo(V)] = K[Jo(V)] D L.
Note that K[J (V)] and Z are J(G)-invariant subspaces of K[J(V")],
and
K[Joo (V)= = K[ (V)] /(@) g T7(6),

Ifi>porj>g, Xi(f) € I6=. So
K[JOO(V)]JOO(G) ~ K[JOO(V/)]JOO(G)/IJOO(G)

is generated by Xi(f), 1<i<p, 1< j<q.lItfollows that K[JOO(V)]J“’(G)

Im(QX), as claimed.

O

Proof of Theorem 1.4. By Theorem 4.5 and Theorem 4.2, K [Joo (V)] /o (GLr(K)) —
Im(QF) = K[Joo(Disr ) O

Proof of Corollary 1.5. This is immediate from Theorem 1.4 because V /G L (K)
is isomorphic to the determinantal variety Dy, 1. O

5. SOME PROPERTIES OF STANDARD MONOMIALS

By the definition of standard monomials, if E1E; - -- E,, € SM(E), then
E; 1 is the largest element in ||£(E;1)|| such that E; < E; ;. In this section,
we study the properties of ||£(E;11)|| and E;; that need to be satisfied to
make E4 Es - -+ E,, a standard monomial.

Let

E = ((un, kn), ..., (w1, k)| (v, 1), ., (vn, In)) € €,

/ an' (1 (o /
J =0" (ups,...,up|vy, ..., o) € J.
16



L(E,J') and R(E,J'). For k' < h, let o1, and op be the permutations of
{1,2,..., 0’} such that u,, () < Uy, (i41) AN Vg (5) < Vop(it1)- Let L(E, J)
and R(FE, J') be the smallest non-negative integers i and jo such that u; >

U ), d0 <@ < k' and v} > Vg (j—jo)r Jo < J < ', respectively. Let

(5.1) E(h/) = ((uh/, kh/), ey (ul, ]ﬁ)’(vl, ll), ey (Uh/, lh/)).

Then L(E, J') = L(E(I'), J') and R(E, J') = R(E(K), J).
The following lemma is obvious.

or(i—io

Lemma 5.1. For J" = 9*(u},,...,uj|vy,...,v},) € J, if there are at least s
elementsin {u},,...,u}} fromtheset {u},,...,u}}, then L(E,J") > L(E,J)—
h' + s; if there are at least s elements in {v},, ..., v} from the set {v},,...,v}},

then R(E,J") > R(E,J') — I + s.

A criterion for J' to be greater than E. We say J' is greater than F if there
is an element E’ € £(J') with E < E’. Then J' is greater than FE if and only
if J' is greater than E(h’). The following lemma is a criterion for J' to be
greater than F.

Lemma 5.2. .J' is greater than E if and only if wt(E(h')) —wt(J') > L(E, J') +
R(E,J').

Proof. Letio = L(E,J’) and jo = R(E,J’). Let o and ¢’ be permutations of
{1,2,...,h'} such that Ug (i) < Ugy (i+1) and Vop(i) < Vop(it1):
If wt(E(K)) — wt(J') > L(E, J') + R(E, J'), let

~ { Ui, 0(i) +ig <A k/()_{ ko(iy, — i4io <P, iF N
, 7 N =

Ug(i) = Ui o p,e i >R ko@y+1, i4id9>h,i#h >’
. :{ ,”§‘+jo’ _]:—i-j:oghj 7 I, :{ Lo () J:JFJ:OSh: :
o'(7) Vi oy JFJo>h () lorjy +1, G+jo>h
h—1
/ /
Koy = wit(J Z K — Zz
Then

;(h’) = wt(J/) — wt(E(h’)) — 19 — jo + ka(h’) +1-— (5?0 > kcr(h’) +1-— 5?0,

(@) kotiy) 2 (ot Ko@) (Toryy b)) 2 (o) Lovtay)-
So
E' = (@, k)« (W, k), (a4, KD (01, 10), (95,15), -« o, (T Uy))

is an element in £(.J') with £/ > E. 3 .
On the other hand, suppose that £’ € £(J’) with E’ > E. Assume

E, = ((a;ﬁv ;7,/)’ ) (ﬂévké)v (ﬂll’ki”(f)ivl/l)v (6é7l/2)7 ) (5;1” ;’L/))
17



We have (@}, k) > (u;, ki) i.e. k) > k; or k, = k;, @, > w; and (0},1}) > (vi,v;)

forl1 <i<h'ie.l,>lorl, =10, >v.So
h/
> (K — k)t > il << WY > W,
i=1
h/
S =1+ {0 = v il <i < b= B
=1

Let i) = b — #{@}, > us,i|]l <i<W}andj)=h — {0 > vi,i]l <i<h'}.
Then

10+30<Zk—k +Zz’—z wt(J') — wt(E(R)).

Here 4}, ..., 4}, is a permutation of v, ..., u}, and 9/,..., 9}, is a permu-
tation of v/,...,v;,. By the definition of i; and jy, it is easy to see that
U; > u(,(i_%), 26 <1 < k' and ’U;- > UU’(j—j(’))f j6 < j < K. So ’L{) > L(E, J/)
and j, < R(E,J'). Thus

wt(B()) — wt(J') > il + jb > L(E, J') + R(E, J').

O

Corollary 5.3. J' is greater than E if and only if ||E(h')||J’ is standard.

Proof. By Lemma 5.2, J' is greater than E if and only if wt(E(h')) —wt(J') >
L(E,J) + R(E,J') and ||E(R')||J" is standard if and only if wt(E(h")) —
wt(J') > L(E(W),J')+ R(E(W),J')=L(E,J)+ R(E,J). O

The property “largest”. Let
We(E,J") = {J ="l ,... ul |v

Ui, ) 21|]17-'

i1 <, 51 < B, Jis greater than E}.

Lemma 5.4. If E' is the largest element in E(J') such that E < E’, then for
s < W, ||E'(s)|| is the smallest element in W4(E, J').

Proof. Assume

E = ((u;ﬂ, kh’)? AR (ul27 k2)7 (u/17 k1)|(vi, lll)? (Ué, 1/2)7 R (U;“ l;z))
For s < I/, let J; be the smallest element in W, (E, J'). Let

Es = (( Usg s ks)v . ( Usy s kQ) ( 117k1)|( ]1711) ( ;‘27l2)7 SRR (Ug'svls))
be the largest element in £(.J5) such that E(s) < Ej. )
Assume [ is the largest number such that (u}, k}) = (u; u; kj) forj <1 <
s+ 1.

(1) Ifl < s, then4d; > land (u;,, k) # (u}, k). If i; = I, by the maximality
of £ and the minimality of J;, we must have (u; , k) = (u;, k7). This
is a contradiction, so i; > [.

18



If (uf k) < (uj,k]), then (uj, k] + K} — ki) > (u] k] ). Let E” be
the element in £(J’) obtained by replacing (u;, k}) and (u; , k7 ) in £’
by (v}, k;) and (u), k) + ki, — k1), respectively. We have E' < E” and
E(h') < E".But E' # E" is the largest element in £(|| E’||) such that
E < E', which is a contradiction.

Assume (u;l,l}l) > (up, k). If 1 ¢ {i1,...,is}, replacing (ugl,fcl)
in E; by (u}, k), we get E/ with E(s) < E. and ||E}|| < Js. This
is impossible since Js # ||EL|| is the smallest element in Wy (E, E).
1 =ij € {ir,....is}, (uj,, ki + kj — k) > (uj,,k;). Let E} be the
element in £(J;) obtained by replacing (v, k;) and (ugj,l%j) in £
by (uj, k;) and (ugl,l;:l + k; — k), respectively. We have F; < E!
and E < E.. But E # Ej is the largest element in £(J;) such that
E < E!, a contradiction.

(2) If I = s + 1, then the left part of E; is equal to the left part of E'(s).
Assume m is the largest number such that (v}, ;) = (v}, k;) for i <
m < s+ 1. By the same argument of (1), we can show that m = s+1.

So Es = E'(s) and ||E’(s)|| is the smallest element in W, (E, J'). O

Corollary 5.5. If E' is the largest element in E(||E’||) such that E < E', then for
s <k,

L(E, [|E"(s)]]) + R(E, ||E'(s)|]) = wt(E'(s)) — wt(E(s)).

Proof. Since E < E', E < E'(s). By Lemma 5.4, ||E’(s)|| is the smallest
element in W,(E,J'). By Lemma 5.2, L(E,||E'(s)||) + R(E,||E'(s)||) =
wt(E'(s)) — wt(E(s)). O

Corollary 5.6. If E' is the largest element in E(||E'||) such that E < E’, then for
s < h'andany J € Ws(E, E'),

L(E,||E'(s)]]) < L(E,J), R(E,||E'(s)])) < R(E, J).
Proof. Assume

J =0 (us, ..., urlvr,...,vs), ||E'(s)|| = ' (ul,... ujlvs,. .. 0).

rYs

Ifm=L(E,J)—L(E,||E'(s)|]) <0,let J” = 0" (us,...,u1lv},...,v.). By
Lemma 5.2, J” € Wy(E, J'). By Lemma 5.4, ||E’(s)|| is the smallest element
in Wy(E,||E'||). But wt(||E’(s)|]) > wt(J"), a contradiction. Similarly, we
can show R(E, ||E'(s)|]) < R(E, J). O

Lemma 5.7. Let E; = ((u}“, k}bl), co (Wb ED (081, . (v}'“, l%i)), 1= a,b.
Suppose that Ey, < E, and that E, is the largest element in E(||E,||) such that
Ey < E,. Let1 < h < hq and a,»,‘a; be permutations of {1, ..., h}, such that

i i i i ) 7 / /
Uy 1y < Ugoy) <00 < Ug and V(1) < Ugr(2) < e < Vgt (h)- Let vy,... v},
be a permutation of v{, ..., v} such that vy < vy < --- < v . Let uy,...,u
be a permutation of u, ..., uj, such that uj < ufy < --- <.
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(1) Assume uj, = ug(il) with iy > iy, then for any

_ Ak / /
K=90 (Uh,~--,Us+1,Uts,---,Ut1|U17---,Uh),

witht) <to < -+ <ty < 9, L(Eb,K) > L(Eb, HEa(h)H) +s—11.
(2) Assumev = () with jo > j1, then for any

K= 8k(uh, .. .,ullvtl, . ,Uts7vs+17...,'l)h),
witht) <ty < -+ < tg < Ja, R(Eb,K) > R(Eb, HEa(h)”) + s —j1.
Proof. We prove (2). The proof for (1) is similar.
Let n = wt(Eq(h)).
Let jo = R(Ep, K), then vt > Ua'b(] o)’ for s > j > jo.
Let jj = R(Ey, ||Eq(h)|]), then v2 o) > b WG—ib) for h > j > j.
We have j; > j. Otherwise, j; < Jo- Replacmg Vg, (jr) I [|E“(h)|| by some
v < vga(ﬁ) with j > h, (such v§ exists since jo > ]1) we get

J = 5n(u§a(h), o .. ,ug’_a(l)|f(]g‘_{1(1), o .. ’U?, ey Ugg(h))
with R(Ey, J) < j,. By Lemma 5.2, J is greater than E;. This is impossible
by Lemma 5.4 since J < ||E,(h)|| and E, is the largest element in (|| E,||)
such that £, < E,.
If s > j1, let

! __ an(,,a a / !/ . .a a
J —8 (uoa(h)7’"7u0'a(1)|vt57j1+1""7vt5v0a(j1+1)7"’7v0a(h))'

IfR(E(,,K) S R(Eb, HE H) + s —jl,

vt>v for j <s.

outi=io) = Vop(i-if-s+in)
We have R(Ejp, J') < ji. By Lemma 5.2, J' is greater than Ej,. By Lemma
5.4, this is impossible since J' < ||E,(h)|| and E, is the largest element in
E(||E,]|) such that E, < E,. So when s > j3,

R(Ey, K) > R(Ep, ||Eal]) + 5 — J1-

Ifs<jilett] <ty <. <t <jowith{ts,... ,ts} C{t},...,t; }. Let
K = 5k(uh,...,u1|vg/1,...,z;£}1,vj1+1,...,Uh).
By Lemma 5.1, we have
R(Ey, K) > E(Ey, K') + 5 — j1 > R(Ep, || Eo|]) + 5 — j1-
So for any s > 0, we have R(Ey, K) > R(Ey, || E,||) + s — J1- O
The following lemmas are obvious.
Lemma 5.8. If J1 < Jy < -+ < Jyp, and o is a permutation of {1,--- ,n}, then

Jida - In < Jo1y Jom)-
Lemma5.9. If K1Ky--- K, < Jy---J;, then

KKy - Kg JKg-- - Ky <J1--Js1JJs -+ J).
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6. PROOF OF LEMMA (2.4)

In this section we will prove Lemma (2.4). Since the relation in Lemma
(2.4) does not depend on p and ¢ if p,q > h + I/, we can assume p = g =
s=h+h.LetS=1{1,2,...,s}. Forasubset N C S, let |N| be the number
of elements of N. Let N = S\N. For [ € S, let §; and 9, be the differentials
on fR given by

oz (k’) —(5l(k+1) (k’+1) O ()7(51(1{74_1) (k‘f‘l)

ON=D) 0, On=) 0u

leN leN

Let

So 0 = Jg = O.g. Let
= 1 = 1
ol = ﬁag, oy = ﬁalN, Oy = fa

For a,b € R, we have 8} (ab) = Y_!_, dady b and da and (‘iéva € R.
IfI = {il,...,ik} C Sand J = {]1,,jk} C S with i, < Tat1 and
ja < ja+1, let

(0) (0) ( )
xilgl $i1§2 iy g
20 0 20
AT )= | T T T
o @ 0
xikjl xika e $Zk]k

be the determinant of the £ x k matrix with entries ngjq) foric Iandj € K.
For example,
0), (0 0
(1,2, {1,3}) = ool — aflaly).
Let €(I,J) = (—1)2zier F2jesd,

Lemma 6.1. For [, K,L C Swith L C I, |K| = |I| = kand |L| <n < |I|, if
I <2n—|L|,
> WAILK) € Rlk—n+1].
LCNCI,|N|=n

Proof. We say a ~ bif a — b € R[k — n + 1]. It is an equivalence relation on

R.
INALK) = > (J]dHAUI K

Sien li=l iEN
1;>0

We have the following properties.
Property 1: if there is some ig € N with l;; = 0, then ([[;cy INA(ILK) €
Rk —n +1].

Since
([[oHAac. )= > £A@\N)Uo}k (] 0 AN \{io}, K\J).
ieEN JCK,|J|=k—n+1 ieEN
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Property 2: it L C M C I with [M|=m <nand ) .,/ l; =1 —n+m, then
(6.1) > CIT oI AU K) € Rlk—n+1].
MCNCI|N|=n jeN\M  i€eM
Since on one hand by property 1,
(L oA~ > 1T o] oA, k)
€M MCNCI|N|=n jeN\M  i€M
and on the other hand,
oI oHAL Ky = > ([ 9)AMM, 7)o" AI\M, K\.J)

ieM JCK,|J|=|M| ieM
€ R[k —m)].
Now
Y. WALE)= Y > (ITamAu. k)
LCNCI,|N|=n LCNCLIN|=nY ey Li=l €N

(take out 5;7 withl; =1and j ¢ L.)

= > > > CII o] A,k

LCNCI,|N|=n LCMCN  [;#14ieM\L; JEN\M €M
ZieM li=l—n+|M]|

(switch the order of the summation)

= > > (I a(]8Au k)

LCMCLIM|<n  Li#14ieM\L; MCNCI,|N|=n jEN\M
> iear li=l—n+|M]|

(by property 2)

»
~ > > (AT, K)
LCMCI,|M|=nl;#13i€M\L;

sen Li=l

(by property 1, since [ < 2n — |L|, there must some [; = 0)
~ 0

Lemma 6.2. For T, J,K C Swith JNT =0,if0 < a <1, then

> eI, K)0"A(I, K)05 Al K) € R]s — |J| - |T| — a.
\11=IK]
JCICT

Proof. Let B(T, J, K) be the determinant of the s x s matrix with entries y;;,

where

yij = 23, if (i,5) € (TxK)U(JxK);  yi; =0, if (i,§) € (TxK)U(J xK).
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On one hand,

Op "0 BT, I K) = 3 el K)O"A(LL K)O “ATL K).
H|=|K]
JcIcT

On the other hand 99,5 B(T, J, K)

=5 ¥ S £9TAT DA, M)A AT N T, TN ).

b=0 ICK,|I|=|T| MCK,|M|=|J|

It is easy to see that

OIS AT NI, INM) € Rs— || — |T| - al.

So
> e(I,K)0"A(I, K)oy "A(I,K) € R]s — || - |T| — a].

[]=|K]
JCICT

O

Lemma 6.3. For L, K C Swith |L|,|K| <s—n,if0<1<2(s—n)—|L|—
|K| — 1, then

> > €N, AN, NIAN,J) € Rln +1].

NCL,|N|=n JCK,|J|=n

Proof. Let |K| = k. For N C Swith [N| = n,let D(N, K) be the determinant
of the s x s matrix with entries

yj=ay), ifi¢ Norj¢ K; yy;=0,ifi € Nandj€ K.

We have

and



By taking the summation of 'D(N, K) over N C L, we have

> > e(N,J)AN, AN, J)

NCL,|N|=n JCK,|J|=n

= Y  9yD(N,K)

NCL,|N|=n

= ¥ > Z (I, K)O"A(I, K)0'. - A(IL K)

NCL,|N|=n ICN,|I|=k a=0
(switching the order of the summation)

— Z S L K)FALE) Y 9 ALK).

a=0I1CS,|I|=k NCINL,|N|=n

Ifl—a<2(s—k—n)—|INL|letJ=NnNI. ByLemmabé.l,
> M ALK) = > OTCA(ILK) € Rn + 1].

NcCINL,|N|=n LnIcJcl,|J|=s—k—n

Ifl—a>2(s—k—n)—|INL|,letJ=INLT=NnNI. ByLemmaé6.2,

> dLK)PALLK) Y 05 GALK)

ICS,|I|=k NCINL,|N|=n

= > ) 0"AU,K)I AL K) € Rln + 1.

JCL,TCJ TCICJ,
I T|=s—n—k |T]=K|

This completes the proof. O

For Lo, L1, Ko, Ky C Swith LoNLy =0 = KogN Ky, |Lo| + |L1] < s—n
and |Ko| + | K| < s—mn,let

FF(Lo, L1, Ko, K1,n) = > > €N, J)IAN, J)FTLAN, ).
|N|=n |J|=n
LoCNCLi KoCJCK;

We have
(6.2)
B m
O FF(Lo, L1, Ko, K1,n) = > Cly CFL - R (Lo, Ly, Ko, K1, n).

Lemma 6.4. Ifl < 2(s —n) — |Lo| — |L1| — |Ko| — |K1| — 1, then
Fo(Lo, L1, Ko, K1,n) € R[n +1].

Proof. We can show this by induction on |Lg| + |Ko|. If |Lo| + |Ko| = 0,
Ly = Ky = (). By Lemma 6.3, the lemma is true.
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Suppose the lemma is true for |Lg| + |Ko| = m. For |Lo| + |Ko| =m +1,
assume Lo # () (similarly for Ky # (). Letig € Lo and L = Lo\ {i0},

Fi(Lo, L1, Ko, K1,n) = Fy(L, L1, Ko, K1,n)—F(L, L1U{io}, Ko, K1,n) € R[n+1]
by induction. O
Now we have the relations for the determinant of the matrix.

Lemma 6.5. For Ly, L1, Ky, K1 C S with LoNL; = 0= KonkKy, ‘L0|+’L1| <
s—nand |Ko|+|K1| < s—mn,letly = 2(s—n) — |Lo| — | L1]| — | Ko| — |K1| — 1.
Given a fixed integer 0 < ko < m — lg and integers ap, ,+1, 0 < 1 < lo, there are
integers Gy, 1, 0 < k < ko or ko + lo < k < m such that

m
Zam,kflzn(LoyLlaKmKhn) € Rn + 1].
k=0

Proof. For 0 <1 < Iy, by acting 9™ on the relations of Lemma 6.4, we get
O™ F (Lo, L1, Ko, K1,n Z W Fi (Lo, Ly, Ko, K1,n) € R[n +1].

Now the (lp + 1) x (lp + 1) integer matrix with entries ¢;; = C ki 0=
1,7 < lp is invertible since the determinant of this matrix is il Let b;;
be the entries of the inverse matrix; clearly b;; are integers. Let a1 =

Z J >0 Cr_icb1jOm ko+j- These integers satisfy the lemma. O

Proof of Lemma 2.4. We only need to show the lemma when v; = u; = 1,
v =u, = h+i. Let
Loz{il—i-l,...,h}, LQZ{h+i2+17...,S}7
Ko={ji+1,....h}, Ko={h+ja+1,. .. s}
By the definition of F, k

1 . .
Fon—i(Lo, L1, Ko, K1, h) = E INTRE AT sign(o) sign(o”)
— irligljilgo!

< 5”};’“(uh,...,uil+1,a(ui1),...,a(u1) | o' (v1),...,0"(v5,), Vjy 41, - -, Up) >
O (Wprs ooy s 0(ufy), o (uy) | o' (vy), 0" (V),), 00 g )
Let a;, = @ m—k, by Lemma 6.5, we have Equation (2.5) O

7. PROOF OF LEMMA 2.7

In this section we prove Lemma 2.7. By Lemma 5.8, we can assume the
monomials are expressed as an ordered product J;Js - - - J, with J, < Jg41.
For a € M(J), let

o) = {Zczﬂi € Rle; € Z, i € M(T), Bi < «, Bi # af,

be the space of linear combinations of elements preceding o in M(J) with
integer coefficients.
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Lemma 7.1. If J,J; is not standard, J,J2 € R(J1).

Proof. Assume J; = 9™ (uj, , ..., ub, uj|vi,v5,...,v} ), fori=1,2. Let B =
((up,,m1), ..., (ug,0)|(v],0),..., (v} ,0)). Letig = L(E1, J2), jo = R(E1, J2)
and lo = io + jo. If ig # 0, there is i < iy < hg, such that u? < uj _; ;. If

iop = 0,leti; = 0. If jo # 0, there is jo < j; < h, such that ”32‘1 < Uyl‘1—jo+1' If
7o =0, 1etj1 = 0. Let i, =191 — i, J« = J1 — Jo and m = nq + na. By Lemma
2.4, there are integers aj, with a,,,_; = 5? for0<I1<lp—1.

(7.1)

am—k(, 1 1 1 1 1 1,1 1
Z O (Upy sy U, s Uy e ey U] vl,...,vj*,vj*ﬂ,...,vhl)
€a 8k ()2 2 2 2 2 2 2 2
O%(upyy ooy UG gy UF ey u vl,...,vjl,vj1+1,...,vh2)

€ R[hy +1].

(1) If hy = hg, then ny < no. Since J;J; is not standard, J; is not greater
than F;. By Lemma 5.2, [y > ny —ny > 0. JiJo € R(J;) since in

Equation (7.1):
o All the terms with k = ny precede J; except J;J; itself;
e All the terms with k = ny — 1, ..., ny vanish since a;, = 0;

o All the terms with £ = no+1, ..., m precede J; since the weight
of the upper O-listis m — k < ny;

o All the terms with k¥ = 0,...,n; — 1 precede J; after exchang-
ing the upper 0-list and the lower 9-list since the weight of the
lower O-list is k < ny;

e The terms in $i[h; + 1] precede J; since they have bigger sizes.

(2) If hy > hg. Since JiJs is not standard, by Lemma 5.2, Iy > no.
J1J2 € R(J;) since in Equation (7.1):

o All the terms with k& = ny precede J; in the lexicographic order
except Ji Js itself;

e All the terms with k = ny — 1, ..., 0 vanish since a;, = 0;

o All the terms with £ = ng, ..., m precede .J; since the weight of
the upper O-listis m — k < ny;

e The terms in QR[h; + 1] precede J; since they have bigger sizes.

O

Proof of Lemma 2.7. We prove the lemma by induction on b.

If b =1, J; is standard.

If b = 2, by Lemma 7.1, the lemma is true.

For b > 3, assume the lemma is true for b — 1. We can assume Jp --- Jp_1 is

standard by induction and Lemma 5.9. Let E;--- Ep_; € SM(E) be the

standard order product of element of £ corresponding to Jy---J,—1. If

Ji - -+ Jp is not standard, then J, is not greater than Ej,_;. By Lemma 7.2 (be-

low), Jy_1Jy, = > K, f; with K; € J, f; € R such that Kj is either smaller

than J,_; or K; is not greater than Ej_,. If K; is smaller than J,_;, then

Ji-o Dy Kif € R(Jy -+ Jp—1). If K is not greater than Ey_o, Ji - -+ Jy_2K;
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is not standard, soitis in R(J; - - - Jp—2) by induction. Then J; - - - J,_o K; f €
%(Jl s Jb—l)- SoJi---Jp = Z Jy--o Jb_QKifZ' S SR(Jl cee Jb_1). O

Lemma 7.2. Let E € &, J, and Jy, in J with J, < Jp, and suppose that E, is
the largest element in E(J,) such that E < E,. If J, is not greater than E,, then
Jody = > K fi with K; € J, fi € R such that K; is either smaller than J,, or
K is not greater than E.

Proof. Assume
J _5na / AT / J _5% b b,.b b
a — (uha,...,u1|vl,...,vha), b — (th,...7ul|vl,...,vhb).

Ja =< Jb, 50 ha > hy. Assume ||Eq(hy)|| = 0™ (ufh ... uflof,... v ). Let
m = np + ng. Letig = L(Ea,Jb), Jjo = (Ea,Jb) and ly = ig + jo. If ig # O,
there is ig < i1 < hy, such that ui?l < U o4 Ifig=0,letiy =0.If jo #0,

there is jo < j1 < hy, such that v?l < i1 Ifjo =0, let j; = 0. Since J;
is not greater than F,, by Lemma 5.2,

(7.2) lo =10 + jo > np — Myg.

By definition, {uj, ,...,u{} is a subset of {uj, ,...,u;} with uj < u; , and
uf < wud, . If we assume uj, = uf _; ,;, wehaveiz > i; —ip + 1. Similarly,
{vh,: - vi}isasubsetof {v}, ,..., v} withv} <wvj ;and vff <vfy;if we

assume v;Q = v§ _j 11, then jo > j1 — jo + 1.

Now we prove the lemma. The proof is quite long and it is divided into
three cases.

Case 1: hq = hy. Let ap,—; = 49 for 0 < [ < [y — 1. By Lemma 2.4, there

are integers ay, such that

(7.3)
am—k(,,/ / / / / ! ! /
Zeak e (T N T U O 1 B T S N 1 N N PR /9
k(b b b b b b b b
0 (uhb""vui1+1vuz’p""u ] vy, "’Ujl’vj1+1”"’vhb)
€ R[hy +1].

JoJp € R(J,) since in the above equation,

o All the terms with k¥ = n;, precede J, in the lexicographic order
except J,Jp itself;

e All the terms with k = n, — 1, ..., n, vanish since n, = mg, a, = 0;

o All the terms with & = n, + 1,...,m precede J, since the weight of
the upper O-listis m — k < n,;

o All the terms with £ = 0,...,n, — 1 precede J, after exchanging the
upper 0-list and the lower 0-list since the weight of the lower 0-list
is k < ng;

e The terms in Y3 + 1] precede J, since they have bigger sizes.

Case 2: hy < hg and ny < my,.
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By Lemma 2.4,

1)i*J sign(o) sign(c”) i
Z Z z'hb—z i1(hy — 7)! ka

0<4,5<hy o,0’
i+j<2hy
(7.4)
5m_k(u;la,...,u;+1,ug(i)...,ug(Q),ul;(l) ] ,(1), (2),...,vg(j),vg-ﬂ,...,v;m)
( 5k(ug(hb),...,ug(iﬂ),ug...,u’l ] VY, UG 2/(j+1)""’vg’(hb)) )
€ R[hg +1].
Here a;‘c’j are integers and aizz _, = 0p, for 0 <1 < 2hy — (i + j). The second
summation is over all pairs of permutations o and ¢’ of {1, ..., h}. In the

above equation:

e The terms in %i[h, + 1] precede J, since they have bigger sizes.

o All the terms with k = n;, ..., m precede J, since the weight of the
upper O-listis m — k < ng.

e The terms with k = ny, are J,.J, and the terms with the lower 0-lists

= 0" (u, .. ugy,ug UG,V )eJ.

Zh ’ 1 Vg ’ Jhb
All the other terms cancel. By Corollary 5.5 and 5.6,
L(Ey—2, Ko) + R(Ey—2, Ko) > L(Ep—2, Eo(hy)) + R(Ep—2, Ea(hp))
= Mg — Mp—9 > Np — Mp_9.
By Lemma 5.2, K is not greater than Ej,_.
e The terms with £ < n;, vanish unless 2h;, — (i + j) < np — k. In this
case, the lower 0-lists of the terms are
K, = 5k(ug(hb), o ,ug(iﬂ),u;i ... ,u;1|v£1, e ,vzj,vg(jJrl), e v”g'(hb))'
By Lemma 5.1,
L(Ey_9, K1) > L(Ep—2, Ko)—(hy—i), R(Ep—2, K1) > R(Ep—2, Ko)—(hp—j).
So
L(Ey—2, K1) + R(Ep—2, K1) > ny — mp_g — (2hy —i — j) > k — my_s.
By Lemma 5.2, K is not greater than E}_».
Case 3: hg > hy and ny > my,.
(1) If ip = 0, then jo > 0. Since if jo = 0, then J, is greater than E, and

Jp -+ Jp is standard.
By Equation (2.4),

1)+ sign(o) sign(o”) <
(7.5) Z Z Zz'hb—z't' 2_1_t)k

0<i<hy J1>t o0’ 0
Ja>t
J1+hyAi+t
am—k(, 1 / b b b b b ./ 1 l !
0 (Uha, “voy ui+1,ug(i), . ,uU(Q),uo(l)\vl, coey Ut,vo_/(t+1), ey vO”(jQ—l)’ Ujg’ c. ,’Uh)
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ak(,b b / ! b b b
8 (uo_(hb),...,ug(i+1),ui,.. U]"U 1)7"'7val(t)7vt+l7"'7Uj17vj1+17"'
€ %[h +1].
Here ak are integers w1tha = 60l for0 <1l < hy—i+j1—t,oare
permutations of {1,...,hp} and o’ are permutations of {1,...,j2 —

1}. Next,
(7.6)
Z Z Z 1)+t sign (o) sign(o”) sign(o2) Zea it
il( hb—l (J = 3 (e — )12 — 1 = 1)!

0<i<hy Ji>t o,0',02
Nn<j<hy  Ja2>t
hp+j1#i+t

kg1 / b b b
8m (uha,...,ui+1,uo(i),...,u0(2)7u0(1)
/ ! b b b b b
[Uhy 15+ s Vs V15 - 5 Viys Vor(jy 1)+ = > Vot (j) - - ,vg,(hb))
Ak, b b / /
8 (Uo_(hb), - 7U0_(i+1),ui, e ,Ul
/ / / / / /
]1)02(1), 3 Uy () Voa(t41) -+ > Vorg (ja—1)7 Vja> - - - s Uhy+1)
€ Rlh, + 1].
Here aZ’]’ are integers and a;’ ’3’ = o for0 <1< hy—i+j—t, oare
permutations of {1,..., A}, a are permutations of {hy,...,ji1 + 1},
and o9 are permutations of {1,...,jo — 1}.

We use Equation (7.5) if j2 > j1 — jo + 1 and use Equation (7.6) if
J2 = j1 — jo + 1. In the above equations:

(a) The terms in $i[h, + 1] precede J, since they have bigger sizes;

(b) All the terms with & = ny+1,...,m precede J, since the weight
of upper O-listis m — k < n,.

(c) The terms with £ = ny, are J,Jp, the terms with upper O-list
preceding Jo (the upper O-lists are the O-lists given by replacing
some v ,J > j2 in J, by some uk, k < j1), and the terms with
the lower O-lists

Ak oy / b b
= 0" (u, Wiy, ,...,uil\vg(l),...,vg(jl),vjlﬂ,...,vhb).

All of the other terms cancel. If jo—1 < ji, the terms of the form
K do not appear in Equations (7.5), (7.6). Otherwise, jo — 1 >
J1. In this case j2 > ji1 + 1 > j1 — jo + 1. By Corollary 5.6,

@.7) LBy, | Ealh)l)) < L(Ey-2, Ko).
By Lemma 5.7,

(7.8) R(Ey—2, Ko) > R(Ep—2,||Ea(hs)) + 1 — (1 — jo + 1).
By Corollary 5.5,

(7.9) L(Eb—2; || Ea(hy)||)+R(Ep—2, [ Ea(ho)[]) = wt(Ea(hy)) —wt(Ep—2(hs)).
29
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So by Equations (7.7), (7.8), (7.9), and (7.2),
L(Ey_9, Ko) + R(Ep—2, Ko) > mg — mp—2 + jo > np — Mp—a.

By Lemma 5.2, K is not greater than Ej_.

(d) If jo > j1—jo+1, the terms with & < n; in Equation (7.5) vanish
unless hy — i + j1 — t < ny — k. The lower 9-lists of these terms
are

_ ak¢,b b / AN / b b b b
K =90 (ug(hb),...,uU(Hl),ui...,ul\vg,(l),...,vg,(t),vt+l,...,vjl,vj1+1,...,vhb)

Underlined v and v can be any underlined u and v in Equation
(7.5), respectively.
By Lemma 5.1 and Equation (7.7),

(7.10) L(Ey-2, K1) = L(Ep—2, Ko) = (hy—1) = L(Ep—2, || Ea(hs)l]) — (s —1).
Since jo > j1 — jo + 1, by Lemma 5.7,

(7.11) R(Ey—2; || Ea(ho)|]) +t = (j1 — jo + 1).
So by Equation (7.9), (7.10), (7.11), and (7.2),

L(Ey—2, K1)+ R(Ep—2, K1) > mgq—mp—o— (hy —1) +t — (j1 — Jo) > k —myp—o.

By Lemma 5.2, K is not greater than F;_».

(e) If j2 = j1—jo+1, the terms with k < n;, in Equation (7.6) vanish
unless hy — i 4+ j — t < ny — k. In this case, the lower O-lists of
the terms are

Kl = 5k(ug(hb)’ ey ug(i_‘_l),ué, PN ,’U/l
’U;,2(1), ooy 'U:Tz(t), vé’g(t-{-l)’ ey U;_2(j2_1), U}27 e 7U;7,b+1)
Underlined v and v can be any underlined v and v in Equation
(7.6).
Let
ak (b b
Ki = 8 (Uo,(hb), e ,Uo,(i_,'_l),u,/i, e ,U/1|U;_2(1), e 71)(/27'2(j2—1)7vl/j27 .o 7v2hb)
Here jo < I, < lj,4+1 < -+ < lp, < hg. By Lemma 5.1 and
Equation (7.7),

(7.12) L(Ep—2, K1) = L(Ep-2, Ko) — (hy—1) = L(Ep—2, || Ea(hs)|]) — (hp — ).
By Lemma 5.1, there is some K such that
(7.13) R(Ep—2,K1) > R(Ep 9, K1) = (j2 =1 —1t) = ( — j1)
since in K; the number of v? with v? > 02-2 is at most j — j1. By
Corollary 5.6,
(7.14) R(Ey o, K1) > R(Ey_2, ||Ea(hy)]|)-
So by Equations (7.12), (7.13), (7.14), (7.9), and (7.2),
L(Ey_9, K1)+ R(Ey—2, K1) > mq—mp—o— (hpy—1) —(jo—1—1t) = (§ — Jj1)

> k- wt(Eb_g(hb)).
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By Lemma 5.2, K is not greater than F}_».
(2) jo =0, then ig > 0. The proof is similar to the case of iy = 0.
(3) ip > 0 and jo > 0. By Lemma 2.4, we have

' sign(o) sig
(7.15) Z Z Z sl 12 -1 _515)11175!(];1_111 — t ! Z

11>8 ji>t o,0’
i2>8 Ja>t

Jj1ti1#s+t
am—k(, / ! / ! b b|,.b b ./ / / /
" (up,,y ... s Wig> U (1) - - - > Ug(sy1)> Ugs - - - s uglvg, ... S UL Vgr(41)5 -+ = > Vgt (ja—1)5 Vs - - -+ Uy
Ak b b b b / ' / ' b b b b
9 (uhb7 ceey Ui g1y Uy ey Ugy gy ua(s)? s 7ua(1)‘vo-’(1)> SRR Ug’(t)7vt+1> IO TR AC) TS PR avhb)
€ Rlhq + 1].

Here ai’t are integers and a::—z =g for0 <l <ig—s+j—t

o are permutations of {1,...,i2 — 1}, and ¢’ are permutations of

{1,.. g — 1},

(7.16)
Z Z Z 1)/ 5+t sign (o) sign(o”) sign(o2) Z s
(4 — ) hb_])‘S'(ZQ—1—5)|t|(j2_1_t )

eak
i1>s j>ji1>t 0,002
12>8 Ja>t

t1t+j1>s+t¢
an—k(,/ / / / b b
0" (up,, . .. ) Wiy Ug(ip—1)> - - - > Ug(s 1) Uy - - - » UL
/ / b b b b b
’th+1, c. ,Uha,’Ul, ey Ujl’vff’(j1+1)’ e ,Uo_/(j), e ,’Uo_/(hb))
ki, b b b b / /
O Uy - Uty 15 U5 - > U1 U (s) -+ > Ug(1)
/ / / / !/ /
’%2(1)’ U (t)r Vog(t41) 7 - -0 Vog (ja—1) 2 Vjas - - - a”hb+1>
€ Rlhg + 1.
585t ; 0,958t . .
Here a;;”" are integers and a,”*} = dg; for 0 < 1 < (i1 +j — s —

t), o’ are permutations of {hy,...,j1 + 1}, o are permutations of
{1,...,4i2 — 1}, and oy are permutations of {1,..., jo — 1}.

(7.17)
—1)"*s+ sign (o) sign(o’) sign(oy) i i
Z Z Z (i — i) (hy — 9)Isl(iag — 1 — s)lt!(jo — 1 — t)! k
i>i1>s 12t o0l o 1)y = 0)tsl(iy )1t )
12>5 Ja>t
i1+j1>s5+1
n—=k b b b b 7 !
o (ub o(hy)r -2 Yo (i) - - Uiy 1) Yiys - - -2 Uls Uhgs - -5 Upy 41
b b / / /
|v1,...,vt,vg,(tﬂ),...,vg,(h_l),vh,...,vh)
k. 1 / / / / /
0 (uhbH""7ui2’ual(i2—1)""7“01(5-1-1)’“:71(5)’"'?ual(l)
/ / b b b b
|UO_/(1),...77)0_/(t),vt+1,...,Uj17vjl+1,...7vhb)
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€ Rlhg + 1.

Here ai;s’t are integers and a;’jfl = dp,; for0 <1 < (i+j1—s—t), o are

permutations of {hy, . ..,i; + 1}, 01 are permutations of {1, ..., iz —
1}, and o’ are permutations of {1,...,j2 — 1}.
(7.18)
Z Z Z (—1)"+i+sttsign (o) sign(o”) sign(oy ) sign(o2) i
(=0l —01G — )}y — )iz — L — )G — 1 1)

i>i1>s  j>j1>t  o0,0',01,02
2>8 Ja>t

k=

11+j1>5+t
An—k(, b b b b b o1 /
0 (“a(hb)v e Uiy Uiy 1) Uiys - - ULy Upy s o5 Uy 41
' b b b b b
[Uhy 15+ s Vhgs V15 5 Vjys Vgr(jy41) -+ > Vor(j)r - - va,(hb))
k1 / / / / /
O (Upy 115+ -+ Usys Upry (i3—1)> -+ > Uy (541)» Yry (5) - -+ Uy (1)
/ / / / / /
]U@(l), 3 Uy () Vo (t41) -+ + > Vorg (ja—1)7 V> - - - >th+1)
€ Rlh, + 1.
i?jasat 1 i,j,S,t J— o ;
Here a; are integers and an ") = dogfor0 <l < (i4j—s—
t), o are permutations of {hy,...,i1 + 1}, ¢’ are permutations of
{h,...,j1 + 1}, o1 are permutations of {1,...,is — 1}, and oy are
permutations of {1,...,j2 — 1}.

e We use Equation (7.15) when iy > i1 —ig+1and j2 > ji —jo+1;

e We use Equation (7.16) when iy > i1 —ig+1and j» = j1 —jo+1;

e We use Equation (7.17) when iy = i1 —igp+1and j» > j1 —jo+1;

e We use Equation (7.18) when iy = i1 —ip+1 and j» = j1 —jo+1.
In the above relations:

(a) The terms in $[h, + 1] precede J, since they have bigger sizes.

(b) All the terms with k = ny+1,...,n precede J, since the weight
of the upper d-listis n — k < n,.

(c) The terms with k = ny, are J,J;, the terms with the upper 0-list
preceding J, (the upper d-lists are the O-lists given by replacing
some u}, i > iy in J, by some ui, k < i or v&,j > ja by UZ,
k < j1), and the terms with the lower 0-lists

__ Aanp(,,b b ! I ! / b b
KO — 8 (uhb7 “ . ’ui1+1,uo_l(il), “ . ’uo_l(l)"UO_Q(l), “ e ,1}02(]-1),1}]-1+1,. . .,uhb).

All of the other terms cancel. By Lemma 5.7,
L(Eb—Qa KO) > L(Eb—Qa ||Ea(h)”) +i — (Zl —10 + ]-),
R(Ey—2, Ko) > R(Ep—2,[|Eal|(h)) + j1 — (j1 — Jo + 1).
By the above two inequalities,
L(Ep—2, Ko) + R(Ey—2,Ko) = L(Ep—2,||Ea(hs)[]) + R(Ev—2, [|Ea(hs)|[) + 0 + jo
(by Corollary 5.5) = wt(Eq(hp)) — wt(Ep—2) + o + Jo

(by Equation (7.2) > wit(Ey) — wt(Ep—a(hy)).
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By Lemma 5.2, K is not greater than E}_».

(d) Whenis > i1 —ig+1and jo > j1 —jo+1; The terms with k& < ny
in Equation (7.15) vanishes unless i1 + j1 —s —t < n, — k. In
this case, the lower 0-lists of the terms are

__ Ak, b b b b l !
K,=90 (uhb""7ui1+17ui1""7u5+17uo'(s)""7ua(1)

/ / b b b b
|UUI(1)’ PN 7/00'/(15)”0154-1’ PN ,Ujl,’l)jl+1, . ,'th)

The underlined » and v in K; can be any underlined v and v in
Equation (7.15). By Lemma 5.7,

L(Eb_z, Kl) > L(Eb_g, Ea(hb)) + 5 — (il — 10+ 1);
R(Ey—2, K1) > R(Ep—2, Eqs(hy)) +t — (j1 — jo + 1);

L(Ey—2, K1) + R(Ep—2, K1) > L(Ep—2, Ea(hs)) + R(Ep—2, Ea(hs))
+k —ny+io+ J1
(by Corollary 5.5) = wt(Eq(hy)) — wt(Ep—a(hs)) + k — np + io + Jo
(by Equation (7.2) > k — wt(Ey_2(hs))
By Lemma 5.2, K is not greater than F}_».

(e) Whenio > i1 —ig+ 1 and jo = j1 — jo + 1, the terms with k < n
are the terms in Equation (7.16), such that i1 +j —s—t < n, — k.

_ kb b b b / /
Ky=90 (uhb,...,uilﬂ,uil,...,usﬂ,ug(s),... Ug(y)

» o

! / ! / / !
]1)02(1), o3 Uy () Voa(t41) -+ > Vorg (ja—1)7 V> - - - 7”hb+1>

The underlined © and v in K can be any underlined « and v in
Equation (7.15). By Lemma 5.7

(719)  L(By 2, K1) > L(Ey o, | Ea(h)|]) + 5 — (i1 — io + 1).
Let

! _ 3k, b b b b 1 !
K| =0 (uhb,...,uilJrl,uil,...,usﬂ,ug(s),... Uy (1)

» o

/ / / !/
\UUQ(l), s Uy (1) VL - ’Ulhb)

Here jo < lj, < lj,41 < -+ < lp, < hq. By Lemma 5.1, there is
some K/ such that

(7.20) R(Ey—2,K1) > R(Ep—9, K1) — (j2—1—1t) — (j — j1)

since in K7 the number of 1);? with fué? > 113-2 is at most j — j1. By
Corollary 5.6,

(7.21) R(Ey_3, K1) > R(Ey_a, ||Ea(h)|])-
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So by Equation (7.19), (7.20), and (7.21),

L(Ey o K2) + Ry, K1) > DBy, || Baly)|]) + R(Eya, | Ea(i)])
+s+t— (i1 —do0) — (J — Jo)
(by Corollary 5.5) > wt(Ey(hy)) — wt(Ep—2(hp)) + k — np + i0 + Jo
(by Equation (7.2)) > k — wt(Ep_2(hp)).

By Lemma 5.2, K is not greater than E}_».

(f) When ip = i1 —ip+ 1 and jo > j1 — jo + 1 and k < ny, the proof
is similar to the proof of case (3e).

(g) When iy =i —ip+1and jo = ji1 — jo+ 1, the terms with k < ny,
are the terms in Equation (7.18), such thati +j —s —t < n, — k.
In this case, the lower 0-lists of the terms are

_ k¢, ! / / / / /
Kl —0 (uhb+17"'7ui27u01(i2—1)""7UU1(S+1)7UU1(S)""’uUl(l)

/ / / / / /
]v@(l), 3 Uy () Vo (t41) -+ > Vorg (ja—1)1 Via> - - - s Uhy41)

The underlined u and v in K; can be any underlined v and v in
Equation (7.18). Let

/

! __ Akt / / / / ! /
K, =0 (ukhb, ey Uy s Uiy 1y ,u0(1)|v02(1), ce 3 Vg (a1) VL v Ulhb).

Here io < ki, < kijyy1 < -+ < k‘hb < hg and jp < lj2 < lj2+1 <
-++ <lp, < he. By Lemma 5.1, there is some K| such that

(722)  R(Ep—2,K1) > R(Ep—9,K|)—(jo—1—1t)—(j—j1);
(7.23)  L(Ey_2,K1) > L(Ep_2,K7])— (i2—1—5)— (i —1i1).

since in K the number of vlb with vf’ > v§-2 is at most j — j; and

the number of uf with u > u/, is at most i — i; . By Corollary
5.6,
(7.24)

R(Ey_9, K1) > R(Ey_2,||Ea(h)|]), L(Ep—2, K1) > L(Ey_2, || Eq(hs)|])-
By Equations (7.22), (7.23), and (7.24),
L(Ey2, K1) + R(Ep—2, K1) > L(Ep_2,||Ea(hy)|]) + R(Ep—2, [|Ea(hs)]])
+s+t—(i—1i0) — (§ — Jo)
(by Corollary 5.5) wt(Eq(hy)) — wt(Ep—a(hy)) + k — np + 10 + Jo
(by Equation7.2) > k — wt(Ep—_2(hp)).

A\

By Lemma 5.2, K is not greater than E}_».
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