
Probabilistic Planning with Prioritized Preferences over
Temporal Logic Objectives

Lening Li1 , Hazhar Rahmani2 , Jie Fu2

1Lening Li is with the Department of Robotics Engineering, Worcester Polytechnic Institute, Worcester,

MA 01609, USA.
2Hazhar Rahmani and Jie Fu are with the Department of Electrical and Computer Engineering,

University of Florida, Gainesville, FL 32605, USA.
lli4@wpi.edu, {h.rahmani, fujie}@ufl.edu ∗

Abstract

This paper studies temporal planning in probabilis-
tic environments, modeled as labeled Markov de-
cision processes (MDPs), with user preferences
over multiple temporal goals. Existing works re-
flect such preferences as a prioritized list of goals.
This paper introduces a new specification language,
termed prioritized qualitative choice linear tempo-
ral logic on finite traces, which augments linear
temporal logic on finite traces with prioritized con-
junction and ordered disjunction from prioritized
qualitative choice logic. This language allows for
succinctly specifying temporal objectives with cor-
responding preferences accomplishing each tempo-
ral task. The finite traces that describe the system’s
behaviors are ranked based on their dissatisfaction
scores with respect to the formula. We propose a
systematic translation from the new language to a
weighted deterministic finite automaton. Utilizing
this computational model, we formulate and solve a
problem of computing an optimal policy that min-
imizes the expected score of dissatisfaction given
user preferences. We demonstrate the efficacy and
applicability of the logic and the algorithm on sev-
eral case studies with detailed analyses for each.

1 Introduction

In this work, we study preference-based planning given a
preference order over temporal goals, i.e. , ordered goals
specified in temporal logics . Temporal logics are expres-
sive and rigorous languages for specifying complex tasks
and mission objectives. Planning with temporal logic goals
[Pnueli, 1981] has seen studied for robotic systems [Kan-
taros et al., 2022; Bradley et al., 2021; He et al., 2020;
Vasile et al., 2020; Yang et al., 2020; Wang et al., 2020;
Hekmatnejad and Fainekos, 2018; He et al., 2015; Li et al.,
2021] and other intelligent systems [Kasenberg et al., 2020;
De Giacomo and Vardi, 2015; Camacho et al., 2017; Mallett
et al., 2021; Zhou et al., 2022; Zhao et al., 2022].

∗This material is based upon work supported by Air Force Office
of Scientific Research under award number FA9550-21-1-0085 and
by NSF under Grant No. 2024802 and Grant No.2144113.

Specifying preferences over temporal goals gives the
decision maker some flexibility to revise the task and
achieve the most preferred outcomes when not all con-
straints/subtasks can be satisfied. Early works consider de-
terministic systems—modeled as finite, discrete systems or
system with deterministic dynamics. Several works [Tu-
mova et al., 2013b; Tumova et al., 2013a; Wongpirom-
sarn et al., 2021; Vasile et al., 2017] proposed minimum-
violation planning methods, that decide which low-priority
constraints should be violated. [Mehdipour et al., 2021] asso-
ciate weights with Boolean and temporal operators in signal
temporal logic to specify the importance of satisfying the sub-
formula and priority in the timing of satisfaction. They de-
velop algorithms to maximize the weighted satisfaction in de-
terministic dynamical systems. [Rahmani and O’Kane, 2019;
Rahmani and O’Kane, 2020] studied temporal planning given
both hard and soft specifications of the goal, using linear tem-
poral logic (LTL) and linear dynamic logic on finite traces
(LDLf). [Cai et al., 2020] consider minimizing the devi-
ations from infeasible LTL specifications while maximizing
the total rewards.

Several recent works study preference-based probabilistic
planning with temporal logic goals. [Li et al., 2020] con-
sider preference-based planning for Markov decision pro-
cess (MDP) subject to an ordered list of probabilistic tem-
poral logic formula. The algorithm enumerates the tasks one
by one in a prioritized order until a policy that satisfies the
most preferred task is found. [Lahijanian and Kwiatkowska,
2016] studied syntactically co-safe LTL planning with infea-
sible specifications in environments modeled by MDPs. They
compute a policy that maximizes the probability of satisfying
a revised formula and minimizes the cost of revision. [Lac-
erda et al., 2015] considered a similar problem where the aim
is to synthesize a policy that, in decreasing order of priority,
maximizes the probability of completing the task, maximizes
the probability of progressing toward completion, and mini-
mizes the expected cost.

Despite the existing work on probabilistic preference-
based planning, the connection between preference specifi-
cation in AI and preferences over temporal goals is yet to be
established. We propose a new language that extends tem-
poral logic with fuzzy logic representation of preferences.
Specifically, we consider qualitative choice logic (QCL) pro-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

189

posed by [Brewka et al., 2004] and its extension prioritized
qualitative choice logic (PQCL) [Benferhat and Sedki, 2007;
Benferhat and Sedki, 2008]. QCL extends propositional logic
with a new logical connective called ordered disjunction, de-

noted
→
×. Formula A

→
× B means if possible then A, but if

A is not possible then at least B. PQCL introduced prior-
itized conjunction/disjunction to QCL by allowing the user
to express priorities in a user’s preference. Combined, if

(A
→
× B)&(C

→
× D) where & is the prioritized conjunction,

then the preference ofA
→
×B is more important to be satisfied

than the preference C
→
×D.

The preference language proposed herein, called
prioritized qualitative choice linear temporal logic on
finite traces (PQCLTLf), integrates PQCL with a subclass of
LTL over finite traces. In particular, we introduce LTL for-
mulas for atomic preference and employ PQCL to represent
a preference over the temporal goals. We assign a dissatisfac-
tion score for each outcome (temporal sequence of states) in
light of semantics for PQCL. This scoring function enables
us to formulate a preference-based probabilistic planning
objective, that is, to minimize the expected dissatisfaction
score in a stochastic system, modeled as a labeled MDP.

However, this compact, logical representation of prefer-
ences alone is not sufficient for probabilistic planning, which
generally requires a computational model. Based on the re-
lation between LTL and automata, we develop a procedure
that translates a PQCLTLf formula into a weighted determin-
istic finite automaton. This weighted automaton ensures for
each path that satisfies the preference to a degree k, the sum
of weights of the corresponding induced run on the weighted
automaton is exactly k. Augmenting the planning state space
with the state set of the weighted automata using a prod-
uct operation, we show that the most preferred policy in the
stochastic system can be obtained by solving a product MDP.
The correctness of the solution hinges upon the definition of
a reward function based on the weights on transitions in the
weighted automaton. We formally prove that the reward-
maximizing policy in the product MDP minimizes the ex-
pected degree of dissatisfaction in the original MDP given the
PQCLTLf formula. In our experiments, we employ several
robotic motion planning examples to demonstrate the efficacy
and applicability of the method and provide a detailed com-
parison of preference-based planning and traditional planning
with a monolithic temporal logic formula.

2 Preliminaries

Notations. The set of all probability distributions over a fi-
nite set X is denoted D(X).

We introduce necessary preliminaries and notations next.

System model. We model the interaction between the plan-
ning agent (a robot) and its stochastic environment as a vari-
ant of MDP.

Definition 1 (Labeled Markov Decision Process with a ter-
minating state). A labeled Markov decision process with
a teminating state (TLMDP) is a tuple M = 〈S,A :=
∪s∈SAs, P, s0, s⊥,AP , L〉 where S is a finite set of states; A

is a finite set of actions, where for each state s ∈ S, As is the
set of available actions at s; A includes a special terminating
action a⊥ and for any s ∈ S, a⊥ ∈ As. P : S × A → D(S)
is the transition probability function, where for each s, s′ ∈ S
and a ∈ A, P (s′ | s, a) is the probability that the MDP tran-
sitions to s′ after taking action a at s; s0 ∈ S is the initial
state; s⊥ ∈ S is the terminating state, which is a unique sink
state. For any s ∈ S, P (s, a⊥, s⊥) = 1. That is, if an agent
selects the terminating action a⊥, then a terminating state s⊥
can be reached surely. The set AP is a finite set of atomic
propositions; and L : S → 2AP ∪ {n} is a labeling function
that assigns to each state s ∈ S \ {s⊥}, the set of atomic
propositions L(s) ⊆ AP that hold in s. Only the terminating
state is labeled the “ending” symbol n, i.e., L(s⊥) = n.

A finite run in this MDP is a sequence % =
s0a0s1a1 · · · sk−1ak−1sk, in which, s0 is the initial state
and for each 0 ≤ i ≤ k − 1, P (si+1 | si, ai) > 0.
The path associated with this run is the sequence ρ =
s0s1 · · · sk ∈ S∗ an the trace of this path is defined as
trace(ρ) = L(s0)L(s1)L(s2) · · ·L(sk) ∈ (2AP)∗. A path
which ends at s⊥ is called terminating.

A finite-memory, randomized policy in the MDP is a func-
tion π : S∗ → D(A) that maps a state sequence into a distri-
bution over actions. A Markovian, or memoryless, random-
ized policy in the MDP is a function π : S → D(A) that maps
the current state into a distribution over actions. We denote
the set of all randomized policies as Π.

A finite-memory, randomized policy π : S∗ → D(A) in-
duces a Markov chain Mπ = 〈S∗, Pπ〉 over S∗ as follows:
For any ρ ∈ S∗, s ∈ S,

Pπ(ρs|ρ) =
∑

a∈A

P (s|Last(ρ), a) · π(ρ, a), (1)

where Last(ρ) is the last state given the sequence ρ, and
π(ρ, a) denotes the probability of selecting action a under the
path ρ given the policy π.

The stochastic process induced by a Markov policy is a
Markov chain Mπ = 〈S∗, Pπ〉, where Pπ can be obtained
as a special case of (1). The probability of a path ρ in the
Markov chain Mπ is denoted by Pr(ρ;Mπ).

Planning objectives. We are interested in probabilistic
planning subject to a preference over a set of goals expressed
using linear temporal logic on finite traces (LTLf) formulas.

Definition 2 (LTLf Syntax [De Giacomo and Vardi, 2013]).
Given a finite set AP of atomic propositions, the syntax of
LTLf formulas is defined as follows:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | ©ϕ | ϕUϕ,

where p ∈ AP , negation (¬) and conjunction (∧) are stan-
dard Boolean operators, and “Next” (©) and “Until” (U)
are temporal operators.

Informally, formula ©ϕ states thatϕ holds at the next time
instant, and ϕ1 Uϕ2 means there is a future time instant at
which ϕ2 holds and for all time instants from the current time
until that future time, ϕ1 holds true. The temporal operator
“Eventually” (♦) is defined using “Until” as ♦ϕ := trueUϕ.
The dual of this operator is “Always” (�), which is defined

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

190

as �ϕ := ¬♦¬ϕ. Formula ♦ϕ means there is some future
time instant at which ϕ holds, while �ϕ is interpreted that
ϕ is true at the current instant and all future instants. The
semantics of LTLf is given as interpretations over finite traces
and can be found in [De Giacomo and Vardi, 2013].

The language of an LTLf formula ϕ, denoted L(ϕ), is the

set of words over the alphabet 2AP that satisfy ϕ. For nota-
tion simplicity, let Σ := 2AP in the following context. The
set of all finite words over a finite alphabet Σ is denoted by
Σ∗. The language of LTLf formula ϕ can be represented by
the set of words accepted by a deterministic finite automa-
ton (DFA) Aϕ = 〈Q,Σ, δ, q0, F 〉, where Q is a finite set of

states; Σ = 2AP is the alphabet; δ : Q×Σ → Q is a transition
function such that δ(q, σ) = q′ is the state reached upon read-
ing input σ from state q; q0 ∈ Q is an initial state; and F ⊆ Q
is a set of accepting/final states. A transition function is recur-
sively extended in the general way: δ(q, σw) = δ(δ(q, σ), w)
for a given σ ∈ Σ and w ∈ Σ∗. A word w is accepting if and
only if δ(q, w) ∈ F . The DFA Aϕ accepts the exact set of
words satisfying ϕ given the semantics of LTLf .

3 Preference Language: Integration of

Prioritized Qualitative Choice Logic and

Temporal Logic

In this section, we present a new task specification language
to describe a subset of preferences over temporal goals. We
call this language PQCLTLf , which combines LTLf with
PQCL [Benferhat and Sedki, 2007]—a propositional logic for
representing ranked objectives.

PQCL augments propositional logic with a connective
→
×,

called ordered disjunction: A formula φ1
→
× φ2 means that if

possible then φ1, and if φ1 is not possible then φ2. The oper-

ator
→
× is left-associative, and therefore φ1

→
×φ2

→
× . . .

→
×φn =

φ1
→
× (φ2

→
× (. . .

→
×φn) . . .). In addition to ordered disjunction,

PQCL introduces prioritized conjunction: A formula φ1&φ2
defines the lexicographical ordering between individual satis-
faction of φ1 and φ2.

Definition 3 (Prioritized Qualitative Choice Linear Temporal
Logic on Finite Traces). Let Φ be a set of LTLf formulas
over a set AP of atomic propositions. A PQCLTLf fragment
over AP (without negation) is defined by

ϕ := ψ | ϕ
→
× ϕ | ϕ&ϕ,

in which ψ ∈ Φ.

In comparison to PQCL, we do not include negation opera-
tion and thereby exclude the prioritized disjunction. Negation
is only allowed in the construction of LTLf formulas. The
reason of not including negation is mainly due to ambiguity:

A negation of flight
→
×train can mean the two options are indif-

ferent, incomparable, or train is preferred to flights. To avoid
confusion, the indifference between “flight” and “train” can
be expressed as regular disjunction in LTLf and the prefer-

ence of “train” to “flight” can be expressed as train
→
× flight.

The PQCLTLf does not consider incomparable options.

The optionality [Benferhat and Sedki, 2007] of a PQCL
formula defines how many ways the formula can be satisfied.
Likewise, we have the following definition of optionality of a
PQCLTLf formula.

Definition 4 (Optionality, extended from [Benferhat and
Sedki, 2007]). Given an PQCLTLf formula ϕ, the option-
ality of ϕ, denoted opt(ψ), is the number of ways ϕ can be
satisfied, and is computed recursively as follows:

• If ϕ is an LTLf formula, then opt(ϕ) = 1;

• If ϕ = ϕ1

→
× ϕ2, then opt(ϕ) = opt(ϕ1) + opt(ϕ2);

• If ϕ = ϕ1&ϕ2, then opt(ϕ) = opt(ϕ1) · opt(ϕ2).

Associated with this definition of optionality, for each word
w ∈ Σ∗ and a PQCLTLf formula ϕ, w satisfies ϕ to a certain
degree.

Definition 5 (Satisfaction Degree, extended from [Benferhat
and Sedki, 2007]). Let ϕ be a PQCLTLf formula over AP
and w ∈ Σ∗ (recall Σ = 2AP) be a finite word. We write
w |=k ϕ for some positive integer k > 0 to denote that the
satisfaction degree ofw with respect to ϕ is k, and usew 6|= ϕ
to denote that w does not satisfy ϕ.

The satisfaction degree of w with respect to ϕ is computed
as follows:

• If ϕ is an LTLf formula, then w |=1 ϕ if w ∈ L(ϕ), and
w 6|= ϕ if w 6∈ L(ϕ).

• If ϕ = ϕ1

→
× ϕ2, then w |=k ϕ1

→
× ϕ2 if

– either w |=k ϕ1; or

– w |=n ϕ2, w 6|= ϕ1, and k = n+ opt(ϕ1).

Otherwise, if w 6|= ϕ1 and w 6|= ϕ2, then w 6|= ϕ1

→
× ϕ2.

• If ϕ = ϕ1&ϕ2, then w |=k ϕ1&ϕ2 if there exist i, j > 0
such that w |=i ϕ1, w |=j ϕ2, and k = opt(ϕ2) ×
(i − 1) + j; otherwise, if w 6|= ϕ1 or w 6|= ϕ2, then
w 6|= ϕ1&ϕ2.

The definition of satisfaction degree induces a total order
only on the set of all the words that satisfy the PQCLTLf

formula, but it does not rank those words who do not satisfy
the formula. For planning purposes, we introduce a metric
whose range of values is circumscribed between 0 and 1.

Definition 6 (Dissatisfaction Score). The dissatisfaction
score function is a function d : Σ∗ × Φ → (0, 1] that as-
signs to each word w ∈ Σ∗ and PQCLTLf formula ϕ ∈ Φ, a
positive real value in (0, 1], called the dissatisfaction score of
w with respect to ϕ, which is computed as follows:

• If w 6|= ϕ, then d(w,ϕ) = 1;

• If w |=k ϕ for k > 0, then d(w,ϕ) = k
opt(ϕ)+1 .

The lower the score, the more satisfied is the word. Note
that the score is always greater than 0. In the following con-
text, when the formula ϕ is clear from the context, we simply
write d(w) for the dissatisfaction score of w w.r.t. ϕ.

Each PQCLTLf formula ϕ over a set of atomic proposi-
tions AP induces a preference model �ϕ over Σ∗ such that
for any two words w,w′ ∈ Σ∗, w is preferred to w′ with re-
spect to ϕ, i.e. , w �ϕ w′, if and only if d(w,ϕ) ≤ d(w′, ϕ).

It is easy to prove the following property.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

191

Lemma 1. If w �ϕ w′, then one of the following conditions
holds: 1. w |=k ϕ and w′ 6|= ϕ; or 2. w |=n ϕ, w′ |=m ϕ, and
n ≥ m.

The preference model over Σ∗ directly translates to a pref-
erence model over S∗—the set of finite paths in a labeled
MDP—such that path ρ ∈ S∗ is preferred to ρ′ ∈ S∗ if and
only if d(L(ρ), ϕ) ≤ d(L(ρ′), ϕ). Thus, given a policy in a
labeled MDP, we introduce the following measure to evaluate
how preferred a policy is with respect to a PQCLTLf formula.

Definition 7 (Expected Dissatisfaction Score). Let π be a
finite-memory, randomized policy for a given MDP, Mπ =
〈S∗, Pπ〉 be its induced Markov chain, and ϕ be a PQCLTLf

formula. The expected dissatisfaction score of π with respect
to ϕ, denoted by d(π, ϕ), is defined

d(π, ϕ) =
∑

ρ∈S∗

Pr(ρ;Mπ) · d(L(ρ), ϕ). (2)

We now formally state the probabilistic planning problem:

Problem [Probabilistic Planning with Prioritized Prefer-
ences over Temporal Logic Objectives (PrefTL-MDP)]:

Given a labeled MDP M = 〈S,A :=
∪s∈SAs, P, s0, s⊥,AP , L〉 and a PQCLTLf formula ϕ,
compute a policy π : S∗ → D(A) that minimizes the
expected dissatisfaction score of ϕ .

4 Optimal Planning for PQCLTLf Formulas

We now present a planning algorithm to solve the PrefTL-
MDP problem. Our approach consists of two steps: In
the first step, we construct an automata-theoretic model for
PQCLTLf formula. In the second step, we show that the op-
timal policy that minimizes the expected dissatisfaction score
of the given formula can be computed by solving a reward-
maximizing MDP with augmented states.

4.1 Automata-Theoretic Modeling of PQCLTLf

Formulas

In this section, we focus on constructing a computational
model for a given prioritized qualitative choice temporal logic
(PQCTL) formula ϕ. The choice of such a computational
model for representing the subclass of PQCLTLf formulas is
a weighted deterministic finite automaton.

Definition 8 (Weighted Deterministic Finite Automa-
ton [Droste and Gastin, 2009]). A weighted deterministic fi-
nite automaton is a tuple A = 〈Q,Σ, δ, q0,w〉, where Q is a
finite set of states; Σ ∪ {n} is a finite set of symbols (alpha-
bet); and n is a unique symbol representing the end of a string
1; δ : Q× (Σ ∪ {n}) → Q is a deterministic transition func-
tion; q0 is the initial state; and w : Q× (Σ∪ {n})×Q→ R

is a weight function that assigns each transition (q, σ, q′) to a
real value, called the weight of this transition.

1In general, one can include o as the beginning of a finite string
and n as the ending of a finite string. The beginning symbol o is
omitted as it is clear from the context.

Consider a finite word w = σ0σ1 . . . σn−1n, let w[i] be
the i-th symbol of this word. The run ρ generated by word
w is ρ := q0σ0q1 . . . σn−1qn that satisfies qi+1 = δ(qi, w[i]),
for i = 0, . . . , n − 1. We write Word(ρ) = w to denote the
word associated with the run ρ. The total weight is w(ρ) =
∑n−1

i=0 w(qi, w[i], qi+1).
First, we show how to construct the weighted deterministic

finite automaton (WDFA) for a LTLf formula ϕ.

Definition 9 (WDFA for an LTLf Formula ϕ). Let Aϕ =
〈Q,Σ, δ, q0, F 〉 be a DFA encoding ϕ. A WDFA for encoding
ϕ is constructed from Aϕ as a tuple

A = 〈Q ∪ {sink},Σ ∪ {n}, δ′, q0,w〉

in which for each q ∈ Q ∪ {sink} and σ ∈ Σ ∪ {n},

δ′(q, σ) =

{

δ(q, σ) if q 6= sink and σ 6= n,

sink otherwise,
(3)

and for each q, q′ ∈ Q ∪ {sink} and σ ∈ Σ ∪ {n},

w(q, σ, q′) =

{

1 if q ∈ F and σ = n and q′ = sink,

0 otherwise.
(4)

Intuitively, the WDFA A extends the DFA Aϕ with a sink
state sink. For any state s ∈ S of the original DFA Aϕ, a
transition to sink is made with an input symbol n. A weight
one is received only if the transition is from an accepting state
to the sink state upon reading the ending symbol n.

Lemma 2. Given a WDFA A for an LTLf formula ϕ and
a finite run ρ = q0σ0q1 . . . σn−1qn, if w(ρ) = 1 then
Word(ρ) |=1 ϕ.

The proofs of Lemmas 2, 3 4, and 5 can be found in Ap-
pendix A.1. Next, we define the construction process of
WDFAs for ordered disjunction and prioritized conjunction
of PQCLTLf formulas.

Definition 10 (WDFA for Ordered Disjunction of PQCLTLf

Formulas). Let Ai = 〈Qi ∪ {sinki},Σ ∪ {n}, δi, q0i,wi〉
for i = 1, 2 be two WDFA’s that respectively encode two
PQCLTLf formulas ϕ1, ϕ2. One can constrcut from them, a

WDFA for ϕ1

→
× ϕ2 as a tuple A = 〈Q1 ×Q2 ∪ {sink},Σ ∪

{n}, δ, (q01, q02),w〉, in which, the transition function is de-
fined as, for any (q1, q2) ∈ Q1 ×Q2 and σ ∈ Σ ∪ {n},

δ((q1, q2), σ) =

{

(δ1(q1, σ), δ2(q2, σ)) if σ 6= n,

sink otherwise,

and the weight function is defined as,

• For any (q1, q2) ∈ Q1 ×Q2, input σ ∈ Σ,

w((q1, q2), σ, (δ1(q1, σ), δ2(q2, σ))) = 0

• For any (q1, q2) ∈ Q1 ×Q2, input n,

w((q1, q2),n, sink) =














w1(q1,n, sink) if w1(q1,n, sink) > 0,

w2(q2,n, sink)+ if w1(q1,n, sink) = 0

opt(ϕ1) and w2(q2,n, sink) > 0,

0 otherwise,

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

192

Lemma 3. Given a WDFA A for ϕ = ϕ1

→
× ϕ2 and a finite

run ρ = q0σ0q1 . . .qn−1σn−1qn, if w(ρ) = k for a k > 0,
then Word(ρ) |=k ϕ, else Word(ρ) 6|= ϕ.

Definition 11 (WDFA for Prioritized Conjunction of
PQCLTLf Formulas). Let Ai = 〈Qi ∪ {sinki},Σ ∪
{n}, δi, q0i,wi〉 for i = 1, 2 be two WDFA’s that respec-
tively encode two PQCLTLf formulas ϕ1, ϕ2. One can con-
struct from them, a WDFA for ϕ1&ϕ2 as a tuple A =
〈Q1 ×Q2 ∪ {sink},Σ ∪ {n}, δ, (q01, q02),w〉, in which, the
transition function is defined as, for any (q1, q2) ∈ Q1 × Q2

and σ ∈ Σ ∪ {n},

δ((q1, q2), σ) =

{

(δ1(q1, σ), δ2(q2, σ)) if σ 6= n,

sink otherwise.

and the weight function is defined as,

• For any (q1, q2) ∈ Q1 ×Q2, for σ ∈ Σ,

w((q1, q2), σ, (δ1(q1, σ), δ2(q2, σ))) = 0

• For any (q1, q2) ∈ Q1 × Q2, for input n, if
wi(qi,n, sink) > 0 for both i = 1, 2, then

w((q1, q2),n, sink) = w2(q2,n, sink)

+ opt(ϕ2) · (w1(q1,n, sink)− 1),

else w((q1, q2),n, sink) = 0.

Lemma 4. Given a WDFA A for ϕ = ϕ1&ϕ2, and a finite
run ρ = q0σ0q1 . . .qn−1σn−1qn, if w(ρ) = k for a k > 0,
then Word(ρ) |=k ϕ, else Word(ρ) 6|= ϕ.

Given the above construction methods of WDFAs for
PQCLTLf formulas, the WDFA for a more complex
PQCLTLf formulas can be constructed recursively.

Lemma 5. Given a PQCLTLf formula ϕ for which L(ϕ) 6=
∅ and the constructed WDFA A, the optionality of ϕ is the
maximal weight of all transitions in A. That is,

opt(ϕ) = max{w(q, a, q′) | δ(q, a, q′) is defined.}

An example to illustrate the construction of WDFAs is
given in the Appendix A.2.

5 Probabilistic Planning to Minimize the

Dissatisfaction Score

In this section, we show how to leverage the WDFA for solv-
ing Problem PrefTL-MDP. Similar to probabilistic planning
with linear temporal logic constraints, a product operation
between the labeled MDP and the WDFA allows us to keep
track of temporal objectives.

Definition 12 (The product between the labeled MDP and a
WDFA). The product of a given WDFA A = 〈Q∪{sink},Σ∪
{n}, δ, q0,w〉 and a terminating labeled MDPM = 〈S,A :=
∪s∈SAs, P, s0, s⊥,AP , L〉 is an MDP

M =M ⊗A = (V,A :=
⋃

v∈V

Av,P, v0, R)

in which

• V = S ×Q is the state space,

• A is the set of actions, and for each v = (s, q) ∈ V ,
Av = As is the set of available actions at state v,

• P is the probabilistic transition function, where for each
states (s, q), (s′, q′) ∈ V and action a ∈ A,

P((s, q), a, (s′, q′)) = P (s, a, s′) · 1(δ(q, L(s′)) = q′)

• v0 = (s0, δ(q0, L(s0))) is the initial state.

• R : V × A → R is the reward function, where for each
(s, q) ∈ V and a ∈ A, if a = a⊥ and w(q,n, sink) > 0,
then R((s, q), a⊥) = opt(ϕ) − w(q,n, sink) + 1, else
R((s, q), a) = 0.

Given a finite run h = v0a0v1a1 . . . vn in the product

MDP, the total reward is R(h) =
∑n−1

i=0 R(vi, ai). Since
a run h in the product MDP corresponds to a run ρ in the
original MDP except that each state in ρ is augmented with
an automaton state, we use ProjS(h) to compute the projec-
tion of the run h = (s0, q0)(s1, q1) . . . (sn, qn) ∈ V ∗ to a
run s0s1s2 . . . sn ∈ S∗, whose labeling is L(s0s1 . . . sn) =
L(s0)L(s1) . . . L(sn). We denote the set of finite runs in M
by Runs(M).

Based on the reward function, the expected total reward of
a nonstationary policy π : V ∗ → D(A) for an initial state
v ∈ V is defined as

Jπ(v) = lim sup
N→∞

Jπ,N (v),

with Jπ,N (v) being the expected N -stage reward of π for
state v:

Jπ,N (v) = E

[

N
∑

t=0

R(Vk, π(V0 . . . Vk)) | V0 = v

]

,

where Vk is the state at time k. The expectation is with respect
to the distribution of paths in the stochastic process Mπ .

Lemma 6. For any policy π : V ∗ → D(A) of the product
MDP M, for any v ∈ V , Jπ(v) <∞.

The proof is in Appendix A.1.
The optimal value function is defined to be

J∗(v) = argmax
π

Jπ(v).

For optimal planning to maximize the total reward, J∗(v) can
be attained by a Markovian policy [Puterman, 2014]. There-
fore, in the following, we only consider Markovian policies.
We also consider the Bellman operator T , defined by

TJ(v) =max
π∈Π

∑

a∈Av

π(a | v)[R(v, a) +
∑

v′∈V

P(v′|v, a)J(v′)],

and the optimal value function satisfies TJ∗ = J∗.
Among all the Markovian policies for the product MDP,

we consider only the proper ones.

Definition 13 (Extended from [Bertsekas and Yu, 2013]). A
policy π for the MDP M is proper if it guarantees that the
sink state (s⊥, sink) will be reached with probability one.

Lemma 7. The optimal value J∗(v) for any v ∈ V can be
obtained by a proper, Markovian policy of product MDP M.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

193

The proof is in Appendix A.1.
Thus, to search an optimal policy, we need to consider only

proper, Markovian policies. We now relate the reward maxi-
mizing problem in the product MDP to the planning objective
of minimizing the expected dissatisfaction score.

Lemma 8. For each path h = (s0, q0)(s1, q1) . . . (sn, qn) ∈
V ∗, it holds that,

d(L(ProjS(h)), ϕ) =

{

1− R(h)
opt(ϕ)+1 if R(h) > 0,

1 if R(h) = 0.

The proof is in Appendix A.1.

Theorem 1. Let π : V → D(A) be a policy for the prod-
uct MDP M. Construct from π, a policy π′ : S∗ → D(A)
for M such that for each ρ = s0s1 · · · sn ∈ S∗, π′(ρ) =
π((sn, δ(q0, L(ρ)))). If π is an optimal policy for M, then π′

is an optimal policy that minimizes the expected dissatisfac-
tion score, i.e. , the solution to PrefTL-MDP.

Proof. We establish a connection between the expected dis-
satisfication score of π′ and the value of π. First, we use (2)
to expand the expected dissatisfication score of π′:

d(π′, ϕ) =
∑

ρ∈S∗

Pr(ρ;Mπ′

) · d(L(ρ), ϕ) (5)

Next, we expand the value of π.

Jπ(v0) =
∑

h∈V ∗

Pr(h;Mπ) ·R(h)

=
∑

h∈V ∗:R(h)=0

Pr(h;Mπ) · 0

+
∑

h∈V ∗:R(h) 6=0

Pr(h;Mπ) ·R(h) (6)

Using the result of Lemma 8, we write this summation as:

Jπ(v0) =
∑

h∈V ∗:R(h) 6=0

Pr(h;Mπ) · (1− d(L(ProjS(h))))

· (opt(ϕ) + 1))

replacing (opt(ϕ) + 1) by K and Pr(h;Mπ) by Prπ(h),

Jπ(v0) =(K ·
∑

h∈V ∗:R(h) 6=0

Prπ(h)

−K ·
∑

h∈V ∗:R(h) 6=0

Prπ(h)d(L(ProjS(h)))

=K ·
∑

h∈V ∗

Prπ(h)−K ·
∑

h∈V ∗:R(h)=0

Prπ(h)

−K ·
∑

h∈V ∗:R(h) 6=0

Prπ(h)d(L(ProjS(h)) (7)

=(K −K ·
∑

h∈V ∗:R(h)=0

Prπ(h) · 1

−K ·
∑

h∈V ∗:R(h) 6=0

Prπ(h)d(L(ProjS(h)) (8)

=K −K ·
∑

h∈V ∗

Prπ(h) · d(L(ProjS(h))) (9)

From (7) to (8), we use the probability axiom that
∑

h∈V ∗ Pr(h;Mπ) = 1. From (8) to (9), we use Lemma 8

that ifR(h) = 0 then d(L(ProjS(h))) = 1. Thus, relating (9)
and (5), we have

Jπ(v0) = K −K · d(π′, ϕ), (10)

and therefore argmaxπ Jπ(v0) = argminπ′ d(π′, ϕ), that is,
a policy π that maximizes J yields a policy π′ that minimizes
the dissatisfaction score d.

6 Complexity Analysis

The first step of the algorithm constructs a WDFA that en-
codes ϕ. The constructed DFA from LTLf formulas is
double-exponential in the size of the formulas in the worst
case [Wolper, 2001; De Giacomo and Favorito, 2021]. How-
ever, in practice this translation is tractable for commonly
seen LTLf formulas in robotic planning. The construction

of automata for ordered disjunction ϕ1

→
× ϕ2 and prioritized

conjunction ϕ1&ϕ2 using Def. 10 and Def. 11 takes a polyno-
mial time to the sizes of the WDFA’s for sub-formulas ϕ1 and
ϕ2, following the same complexity of computing the intersec-
tion of two DFAs. Constructing the product MDP M takes a
polynomial time to the size of the WDFA and the MDP. And
computing an optimal policy for M takes a time polynomial
in the size of the product MDP M, with standard techniques
(value/policy iteration or linear programming).

7 Experiment

We show the efficacy of the proposed algorithm using several
examples of probabilistic robotic motion planning. 2

Consider a small stochastic gridworld g1 shown in Fig. 1.
For each state s ∈ S, the robot has four actions: “N”, “W”,
“S”, “E”. After taking an action from a state, the robot tran-
sits to the intended cell with probability 0.8 and slips to un-
intended cells with probability 0.1. If the robot takes an ac-
tion and reaches the boundary wall, then it stays in the origi-
nal cell. The initial state of the robot is (6, 6). The shaded
areas denote holes. Once the robot enters a hole, it gets
stuck. Regions of interest are labeled a, b, and c. Accord-
ingly, AP = {a, b, c}. Each of these atomic propositions
holds at a time instant when the robot is in the region labeled
by the corresponding atomic proposition. Given the set AP
of atomic propositions, we consider the following formula

(see Appendix A.2 for the WDFA.): ♦ b
→
× (♦ a ∨ ♦ c). We

computed the optimal policy π∗ that minimizes the expected
dissatisfaction score. To see the difference of ordered dis-
junction and regular disjunction, we also compute a optimal

2All experiments are executed on an Ubuntu 20.04 machine
with AMD Ryzen 9 5900X CPU and 32 GB RAM. We use the
Gurobi solver for planning in MDP. The computational times
of solving the optimal planning problem for any 8 × 8 grid-
worlds with different formulas are no more than 0.1 seconds.
The code can be found on github: https://github.com/leelening/
Plan-with-qualitative-choice-temporal-logic.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

194

https://github.com/leelening/Plan-with-qualitative-choice-temporal-logic
https://github.com/leelening/Plan-with-qualitative-choice-temporal-logic

Figure 1: A 8× 8 stochastic gridworld g1 (without the red star) and
the transition probabilities when an action “N” is taken. The red star
is an additional hole introduced in gridworld g2.

policy that maximizes the probability of satisfying formula
♦ b ∨ (♦ a ∨ ♦ c). We denote this policy as π∨. We plot
the optimal values for different initial states in Fig 2b. Then

(a) 〈π∗,♦ b
→

× (♦ a ∨ ♦ c)〉 (b) 〈π∨,♦ b ∨ (♦ a ∨ ♦ c)〉

(c) 〈π∗,♦ b〉 (d) 〈π∗,♦ a ∨ ♦ c〉

(e) 〈π∨,♦ b〉 (f) 〈π∨,♦ a ∨ ♦ c〉

Figure 2: Each subfigure with the subcaption 〈π, φ〉 is the value
J((·,q0); 〈π, φ〉) of policy evaluation of policy π given the formula
φ starting from different initial states in gridworld g1.

we perform policy evaluation of π∗ and π∨ against ♦ b and
♦ a ∨ ♦ c, separately. The probabilites of satisfying formula
φ for φ ∈ {♦ b,♦ a∨♦ c} for different initial states are shown
in Fig. 2c, 2d, 2e and 2f. Comparing Fig. 2c against Fig. 2e
for the formula ♦ b, π∗ achieves higher values in the most ar-
eas of the gridworld, especially at the top left corner. On the

other side, comparing Fig. 2d against Fig. 2f, we can see that
π∨ achieves higher probability of satisfying ♦ a ∨ ♦ c than
that of policy π∗ in most areas of the gridworld, especially at
the top right corner. This comparison indicates that when ♦ b
is preferred to ♦ a ∨ ♦ c, the preference-based policy gravi-
tates towards satisfying ♦ b. Next, we consider the following
formula that has prioritized conjunction and nested ordered

disjunctions: ϕ3 = ϕ1&ϕ2, where ϕ1 = ♦ b
→
× (♦ a ∨ ♦ c)

and ϕ2 = ♦ (a∧♦ (b∧♦ c))
→
×♦ (a∧♦ c)∨♦ (b∧♦ c). This

task formula describes that the system needs to satisfy ϕ1 and
ϕ2 both, with ϕ1 having a higher priority than ϕ2.

For this case, we consider an additional gridworld g2
which includes an additional hole at the position (2, 5), which
blocks the access to a. Given the formula ϕ3, we compute the
optimal policies π‡ when region a is accessible and π−

‡ when

region a is inaccessible. We plot the heatmaps of ϕ3 for these
two gridworlds in Fig. 3a and 3b. The following observation
is made: When a is accessible, starting from the upper left
corner, the agent receives higher values with the optimal pol-
icy. But if a is not accessible, the upper left corner states have
values zero. This is because the formulas ϕ2 cannot be satis-
fied as the agent cannot reach region c when starting from the
upper left corner. Therefore, ϕ3 is not satisfiable. The state
values under the optimal policy given a accessible are higher
than the state values when a is not accessible, indicating the
agent can achieve a more preferred outcome in the gridworld
g1.

8 Conclusion

In this paper, we introduced a specification language, termed
prioritized qualitative choice linear temporal logic on finite
traces (PQCLTLf), for compactly specifying a temporal goal
along with the user’s preferences on sub-goals. We presented
an automatic translation from this language to weighted de-
terministic finite automaton. We used this translation in solv-
ing the problem of computing a policy that minimizes the ex-
pected dissatisfaction score of a given PQCLTLf formula in a
stochastic environment modeled by an MDP. By bridging the
gap between preferences in AI and temporal logic planning,
this work enables future study that incorporates preference
elicitation and learning from positive/negative data and adap-
tive planning in sequential decision-making problems.

(a) (b)

Figure 3: (a) The value J((·,q0); 〈π‡, ϕ3〉) in gridworld g1. (b) The

value J((·,q0); 〈π
−
‡ , ϕ3〉) in gridworld g2.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

195

A Appendix

A.1 Proofs

Proof of Lemma 2

Proof. The run ρ has a weight 1 if and only if qn−1 ∈ F ,
σn−1 = n, and qn = sink. Due to the acceptance condition
for DFAs, the word Word(ρ) = σ0σ1 . . . σn−1 is accepted
and thus satisfies the LTLf formula ϕ.

Proof of Lemma 3

Proof. Given the penultimate state qn−1 = (q1, q2), if
w1(q1,n, sink) = w2(q2,n, sink) = 0, then Word(ρ) 6|= ϕ,
meaning it does not satisfy ϕ. If w1(q1,n, sink) = 0, but
w2(q2,n, sink) > 0, then Word(ρ) satisfies ϕ2 to a positive
degree but does not satisfy ϕ1. The satisfaction degree w.r.t.

ϕ1

→
× ϕ2 is the sum of the satisfaction degree w.r.t. ϕ2 and

the optionality of ϕ1. Else, if w1(q1,n, sink) > 0, then the

satisfaction degree w.r.t. ϕ1

→
× ϕ2 is the satisfaction degree

w.r.t. ϕ1.

Proof of Lemma 4

Proof. The proof is by construction and similar to the proof
of Lemma 3. Thus, it is omitted.

Proof of Lemma 5

Proof. The property can be shown based on the recursive
definition. First, it is clear that if the PQCLTLf formula
is an LTLf formula, then the optionality is one and the
maximal weight of all defined transitions is one. Consider
two PQCLTLf formulas ϕ1, ϕ2, and their corresponding
WDFAs A = 〈Qi∪{sink},Σ∪{n}, δi, q0i,wi〉 that satisfies
opt(ϕi) = max{wi(q, a, q

′) | δi(q, a, q
′) is defined.}.

In the WDFA of the ordered disjunction ϕ1

→
× ϕ2, the

maximal weight by construction is max{w2(q2,n, sink) +
opt(ϕ1)} = max{w2(q2,n, sink)} + opt(ϕ1) = opt(ϕ2) +
opt(ϕ1), which is consistent with Def. 4.

In the WDFA of the prioritized conjunction ϕ1&ϕ2, the
maximal weight by construction is maxi,j{opt(ϕ2) × (i −
1) + j} where 0 < i ≤ max{w1(q1,n, sink)} = opt(ϕ1)
and 0 < j ≤ max{w2(q2,n, sink)} = opt(ϕ2). Therefore,
maxi,j{opt(ϕ2)× (i−1)+ j} = opt(ϕ2)× (opt(ϕ1)−1)+
opt(ϕ1) = opt(ϕ2) × opt(ϕ1). This is again consistent with
Def. 4.

Proof of Lemma 6.

Proof. A finite run ρ = v0a0v1a1 . . . vn receives a nonzero
reward only if there exists 0 ≤ k ≤ n, vk = (s⊥, sink),
and for all j ≤ k, vj 6= (s⊥, sink). The total reward of ρ is
upper bounded by opt(ϕ). Therefore, for any policy π and
any state v, the limit of Jπ,N (v) as N → ∞ exists and is
upper bounded by opt(ϕ).

Proof of Lemma 7.

0start

1

sink

b : 0

n : 0

n : 1

¬b : 0

> : 0

(a)

0start

1

sink

a ∨ c : 0

n : 0

n : 1

¬a ∧ ¬c : 0

> : 0

(b)

0, 0start

1, 0

0, 1

1, 1 sink
b ∧ (a ∨ c) : 0

b ∧ ¬a ∧ ¬c : 0

¬b ∧ (a ∨ c) : 0

a ∨ c : 0

b : 0

¬b : 0

¬a ∧ ¬c : 0

> : 0

n : 1

n : 2

n : 0

n : 1

(c)

Figure 4: (a) The WDFA accepting the formula ♦ b. (b) The WDFA
accepting the formula ♦ a ∨ ♦ c. (c) The WDFA accepting the for-

mula ♦ b
→

× (♦ a ∨ ♦ c).

Proof. We show that for every improper, optimal Markovian
policy, there is a proper, Markovian policy that obtains the
same value. Consider an improper, optimal Markovian pol-
icy π† under which there is an infinite run. Since the reward is
only obtained by reaching state (s⊥, sink), the infinite run h
will have a reward of zero. Thus, a proper policy π∗ that has
the same value Jπ†(v) = Jπ∗(v) can be constructed by copy-
ing π† for all finite runs. For all infinite runs, π∗ is obtained
from π† by terminating at any state with a zero reward.

Proof of Lemma 8.

Proof. Prove by construction. For the first case, let us recall

R(h) =
∑n−1

i R(vi, ai). If L(ProjS(h)) |=k ϕ for some
k > 0, then R(h) = opt(ϕ) − w(qn,n, sink) + 1. Plug in

R(h), and we have d(L(ProjS(h)), ϕ) = 1 − R(h)
opt(ϕ)+1 =

w(qn,n,sink)
opt(ϕ)+1 , complying with Lemma 2, 3, and 4. For the

second case, if L(ProjS(h)) 6|= ϕ, then R(h = 0), then
d(L(ProjS(h)) = 1, complying with Def. 6.

A.2 Example of Weighted Automata Construction

We illustrate the construction of WDFA using an example.

Example 1. Given two LTLf formulas ♦ b and ♦ a∨♦ c and

a PQCLTLf formula ♦ b
→
× (♦ a ∨ ♦ c), reading “if possible,

eventually satisfy b, and if not possible, eventually satisfy a or

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

196

Words ♦ b ♦ a ∨ ♦ c ϕ d(w,ϕ)
w1 = {b}{a}n 1 1 1 1/3
w2 = ∅∅{a}n 6|= 1 2 2/3
w3 = ∅∅n 6|= 6|= 6|= 1

Table 1: Dissatisfaction Scores for Words w.r.t. ϕ := ♦ b
→

× (♦ a ∨
♦ c).

c.” The WDFAs for the LTLf formulas are shown in Fig. 4a
and 4b, and the WDFA is shown in Fig. 4c. For clarity, we use
propositional logic formulas instead of 2AP as the symbols
for the transitions. For example, b ∧ (a ∨ c) : 0 stands for
{b, a} : 0, {b, c} : 0, and {b, a, c} : 0. From Fig. 4c, we see
that the weight transits from (0, 1) to sink is 2, that is because
by triggering that transition the satisfied formula ♦ a ∨ ♦ c is
less preferred.

In Table 1 we list the satisfaction degrees given differ-
ent words. From the dissatisfaction scores, we have w1 �φ

w2 �φ w3, where φ = ♦ b
→
× (♦ a ∨ ♦ c).

References

[Benferhat and Sedki, 2007] Salem Benferhat and Karima
Sedki. A revised qualitative choice logic for handling
prioritized preferences. In European Conference on Sym-
bolic and Quantitative Approaches to Reasoning and Un-
certainty, pages 635–647. Springer, 2007.

[Benferhat and Sedki, 2008] Salem Benferhat and Karima
Sedki. Two alternatives for handling preferences in
qualitative choice logic. Fuzzy Sets and Systems,
159(15):1889–1912, August 2008.

[Bertsekas and Yu, 2013] Dimitri P Bertsekas and Huizhen
Yu. Stochastic shortest path problems under weak condi-
tions. Lab. for Information and Decision Systems Report
LIDS-P-2909, MIT, 2013.

[Bradley et al., 2021] Christopher Bradley, Adam Pacheck,
Gregory J Stein, Sebastian Castro, Hadas Kress-Gazit,
and Nicholas Roy. Learning and planning for tempo-
rally extended tasks in unknown environments. In 2021
IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 4830–4836. IEEE, 2021.

[Brewka et al., 2004] Gerhard Brewka, Salem Benferhat,
and Daniel Le Berre. Qualitative choice logic. Artificial
Intelligence, 157(1):203–237, August 2004.

[Cai et al., 2020] Mingyu Cai, Hao Peng, Zhijun Li, Hongbo
Gao, and Zhen Kan. Receding horizon control-based mo-
tion planning with partially infeasible ltl constraints. IEEE
Control Systems Letters, 5(4):1279–1284, 2020.

[Camacho et al., 2017] Alberto Camacho, Eleni Triantafil-
lou, Christian Muise, Jorge A Baier, and Sheila A McIl-
raith. Non-deterministic planning with temporally ex-
tended goals: Ltl over finite and infinite traces. In Thirty-
First AAAI Conference on Artificial Intelligence, 2017.

[De Giacomo and Favorito, 2021] Giuseppe De Giacomo
and Marco Favorito. Compositional approach to translate
ltlf/ldlf into deterministic finite automata. In Proceedings

of the International Conference on Automated Planning
and Scheduling, volume 31, pages 122–130, 2021.

[De Giacomo and Vardi, 2013] Giuseppe De Giacomo and
Moshe Y Vardi. Linear temporal logic and linear dynamic
logic on finite traces. In IJCAI’13 Proceedings of the
Twenty-Third international joint conference on Artificial
Intelligence, pages 854–860. Association for Computing
Machinery, 2013.

[De Giacomo and Vardi, 2015] Giuseppe De Giacomo and
Moshe Vardi. Synthesis for ltl and ldl on finite traces. In
Twenty-Fourth International Joint Conference on Artificial
Intelligence, 2015.

[Droste and Gastin, 2009] Manfred Droste and Paul Gastin.
Weighted automata and weighted logics. In Handbook of
weighted automata, pages 175–211. Springer, 2009.

[He et al., 2015] Keliang He, Morteza Lahijanian, Lydia E
Kavraki, and Moshe Y Vardi. Towards manipulation
planning with temporal logic specifications. In 2015
IEEE international conference on robotics and automation
(ICRA), pages 346–352. IEEE, 2015.

[He et al., 2020] Binghan He, Jaemin Lee, Ufuk Topcu, and
Luis Sentis. Bp-rrt: Barrier pair synthesis for temporal
logic motion planning. In 2020 59th IEEE Conference
on Decision and Control (CDC), pages 1404–1409. IEEE,
2020.

[Hekmatnejad and Fainekos, 2018] Mohammad Hekmatne-
jad and Georgios Fainekos. Optimal multi-valued ltl plan-
ning for systems with access right levels. In 2018 Annual
American Control Conference (ACC), pages 2363–2370.
IEEE, 2018.

[Kantaros et al., 2022] Yiannis Kantaros, Samarth Kallu-
raya, Qi Jin, and George J Pappas. Perception-based tem-
poral logic planning in uncertain semantic maps. IEEE
Transactions on Robotics, 2022.

[Kasenberg et al., 2020] Daniel Kasenberg, Ravenna Thiel-
strom, and Matthias Scheutz. Generating explanations
for temporal logic planner decisions. In Proceedings of
the International Conference on Automated Planning and
Scheduling, volume 30, pages 449–458, 2020.

[Lacerda et al., 2015] Bruno Lacerda, David Parker, and
Nick Hawes. Optimal policy generation for partially satis-
fiable co-safe ltl specifications. In Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence, 2015.

[Lahijanian and Kwiatkowska, 2016] Morteza Lahijanian
and Marta Kwiatkowska. Specification revision for
Markov decision processes with optimal trade-off.
In Proc. 55th Conference on Decision and Control
(CDC’16), pages 7411–7418, 2016.

[Li et al., 2020] Meilun Li, Andrea Turrini, Ernst Moritz
Hahn, Zhikun She, and Lijun Zhang. Probabilistic pref-
erence planning problem for markov decision processes.
IEEE transactions on software engineering, 2020.

[Li et al., 2021] Shen Li, Daehyung Park, Yoonchang Sung,
Julie A Shah, and Nicholas Roy. Reactive task and mo-
tion planning under temporal logic specifications. In 2021

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

197

IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 12618–12624. IEEE, 2021.

[Mallett et al., 2021] Ian Mallett, Sylvie Thiébaux, and Fe-
lipe Trevizan. Progression heuristics for planning with
probabilistic ltl constraints. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages
11870–11879, 2021.

[Mehdipour et al., 2021] Noushin Mehdipour, Cristian-Ioan
Vasile, and Calin Belta. Specifying User Preferences Us-
ing Weighted Signal Temporal Logic. IEEE Control Sys-
tems Letters, 5(6):2006–2011, December 2021.

[Pnueli, 1981] Amir Pnueli. The temporal semantics of
concurrent programs. Theoretical computer science,
13(1):45–60, 1981.

[Puterman, 2014] Martin L Puterman. Markov decision pro-
cesses: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

[Rahmani and O’Kane, 2019] Hazhar Rahmani and Jason M
O’Kane. Optimal temporal logic planning with cascad-
ing soft constraints. In 2019 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages
2524–2531. IEEE, 2019.

[Rahmani and O’Kane, 2020] Hazhar Rahmani and Jason M
O’Kane. What to do when you can’t do it all: Tem-
poral logic planning with soft temporal logic constraints.
In 2020 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 6619–6626. IEEE,
2020.

[Tumova et al., 2013a] Jana Tumova, Luis I Reyes Cas-
tro, Sertac Karaman, Emilio Frazzoli, and Daniela Rus.
Minimum-violation ltl planning with conflicting specifica-
tions. In American Control Conference, pages 200–205.
IEEE, 2013.

[Tumova et al., 2013b] Jana Tumova, Gavin C Hall, Ser-
tac Karaman, Emilio Frazzoli, and Daniela Rus. Least-
violating control strategy synthesis with safety rules. In
Proc. Int. Conf. on Hybrid systems: Computation and con-
trol, 2013.

[Vasile et al., 2017] Cristian-Ioan Vasile, Jana Tumova, Ser-
tac Karaman, Calin Belta, and Daniela Rus. Minimum-
violation scltl motion planning for mobility-on-demand.
pages 1481–1488. IEEE, 2017.

[Vasile et al., 2020] Cristian Ioan Vasile, Xiao Li, and Calin
Belta. Reactive sampling-based path planning with tem-
poral logic specifications. The International Journal of
Robotics Research, 39(8):1002–1028, 2020.

[Wang et al., 2020] Yu Wang, Siddhartha Nalluri, and
Miroslav Pajic. Hyperproperties for robotics: Planning
via hyperltl. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 8462–8468.
IEEE, 2020.

[Wolper, 2001] Pierre Wolper. Constructing Automata from
Temporal Logic Formulas: A Tutorial. In G. Goos,

J. Hartmanis, J. van Leeuwen, Ed Brinksma, Holger Her-
manns, and Joost-Pieter Katoen, editors, Lectures on For-
mal Methods and PerformanceAnalysis, volume 2090,
pages 261–277. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2001.

[Wongpiromsarn et al., 2021] Tichakorn Wongpiromsarn,
Konstantin Slutsky, Emilio Frazzoli, and Ufuk Topcu.
Minimum-violation planning for autonomous systems:
Theoretical and practical considerations. In 2021
American Control Conference, 2021.

[Yang et al., 2020] Yuanjiang Yang, Xiang Yin, and
Shaoyuan Li. A distributed framework for multi-robot
task planning with temporal logic specifications. In
2020 IEEE 16th International Conference on Control &
Automation (ICCA), pages 570–575. IEEE, 2020.

[Zhao et al., 2022] Jiawei Zhao, Xiang Yin, and Shaoyuan
Li. Temporal logic robot task planning with active acquisi-
tion of information. In 2022 IEEE 17th International Con-
ference on Control & Automation (ICCA), pages 1014–
1020. IEEE, 2022.

[Zhou et al., 2022] Xiaoyi Zhou, Tiange Yang, Yuanyuan
Zou, Shaoyuan Li, and Hao Fang. Multiple sub-formulae
cooperative control for multi-agent systems under conflict-
ing signal temporal logic tasks. IEEE Transactions on In-
dustrial Electronics, 2022.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

198

	Introduction
	Preliminaries
	Preference Language: Integration of Prioritized Qualitative Choice Logic and Temporal Logic
	Optimal Planning for PQCLTLf Formulas
	Automata-Theoretic Modeling of PQCLTLf Formulas

	Probabilistic Planning to Minimize the Dissatisfaction Score
	Complexity Analysis
	Experiment
	Conclusion
	Appendix
	Proofs
	Example of Weighted Automata Construction

