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ABSTRACT
Serendipity means an unexpected but valuable discovery. Its elusive
nature makes it susceptible to modeling. In this paper, we address
the challenge of modeling serendipity in recommender systems
using Large Language Models (LLMs), a recent breakthrough in
AI technologies. We leveraged LLMs’ prompting mechanisms to
convert a problem of serendipity recommendations into a problem
of formulating a prompt to elicit serendipity recommendations. The
formulated prompt is called SerenPrompt. We designed three types
of SerenPrompt: discrete with natural words, continuous with train-
able tokens, and hybrid that combines the previous two types. In
the meanwhile, for each type of SerenPrompt, we also designed two
styles: direct and indirect, to investigate whether it is feasible to di-
rectly ask an LLM a question on whether an item is a serendipity, or
we should breakdown the question into several sub-questions. Ex-
tensive experiments have demonstrated the e�ectiveness of Seren-
Prompt in generating serendipity recommendations, compared to
the state-of-the-art models. The combination of the hybrid type
and the indirect style achieves the best performance, with relatively
low sacri�ce to computational e�ciency. The results demonstrate
that natural words and virtual tokens, as building blocks of LLM
prompts, each have their own advantages. The better performance
of the indirect style speaks to the e�ectiveness of decomposing the
direct question on serendipity.
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1 INTRODUCTION
Serendipity means an unexpected but valuable discovery. As early
as 1997, Gup [12] expressed his concern about the “end of serendip-
ity" in the digital world, recalling with the fondness his childhood
experiences coming across interesting tidbits of information while
�ipping encyclopedia pages. Gup’s concerns are echoed by others
in more recent studies (e.g., [26, 31, 33]). The sense that the online
environment is increasingly determined promotes a widespread
feeling that serendipity is threatened.

Even with today’s deep learning models, modeling serendipity
is di�cult due to the elusive nature of serendipity. The element of
unexpectedness in serendipity means surprise and accident, which
are susceptible to modeling and prediction. The recent rise of Large
Language Models (LLMs), especially ChatGPT, has brought global
excitement about what AI could do for humans. LLMs begin taking
on surprising emergent abilities when they reach a certain size. In
line with Anderson’s well-known suggestion that “more is di�er-
ent” [3], LLMs appear to go through a form of phase transition,
bringing about new capacities for which they were not explicitly
trained. In this paper, we investigated whether LLMs have such
emergent capacities that are helpful for serendipity recommenda-
tions, a long-standing research challenge in recommender systems
research community.

Since last year, initial e�orts have been made to explore the po-
tential of LLMs as a promising technique for the next generation
recommender systems, due to the fact that recommender systems
could be regarded as question answering (QA) systems: given a
question of a user’s previous preferences, the system generates an
answer about this user’s future preferences. In addition, recom-
mender systems typically contain a large amount of text informa-
tion, such as user reviews, item descriptions, which aligns with
the data format of an LLM. Speci�cally, we will leverage LLMs’
prompting mechanism, the new paradigm compared to the
pre-training and �ne-tuning paradigm for a language model,
to convert the problems of serendipity recommendations
into problems of formulating prompts, to elicit serendipity
recommendations. The resulting prompts are called SerenPrompt.
We experimented with discrete prompts with manually selected
natural words, continuous prompts with trainable tokens during
a lightweight model training, and hybrid prompts that combine
natural words and trainable tokens.

Equally importantly, serendipity is a di�cult concept to study
due to its elusive and subjective nature. Most studies on serendip-
ity have decomposed the concept into a few more tangible sub-
concepts, such as diversity, novelty, coverage, unexpectedness, sur-
prise, interestingness, value, and relevance. Very few studies have
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studied serendipity as a whole concept. Since LLMs are believed
to be an "encyclopedia", containing comprehensive knowledge of
human society through extensive pre-training, we would like to in-
vestigate whether it is feasible to directly ask an LLM a question on
whether an item is a serendipity, or we should decompose the ques-
tion into several sub-questions on the sub-concepts of serendipity.
The major contribution of this paper is three-fold:

• the design of SerenPrompt with three types and two styles, as
the �rst work exploring how to prompt LLMs for serendipity
recommendations

• the decomposition of the task of recommending serendip-
ity into two sub-tasks: recommending the unexpected and
recommending the relevant

• a computational approach to "calculate" the ground truth of
unexpectedness for the core pre-training task, avoiding a
tedious human labeling process

2 RELATEDWORK
This project draws on several research lines. We will review these
areas in the following subsections.

2.1 The Concept of Serendipity and Its
Distinction with Diversity and Novelty

The word "serendipity" is used to describe the process of making
unexpected discoveries by accident. In the early 2000s, serendipity
was �rst introduced to the context of recommender systems to
broaden users’ selections and increase their satisfaction [13, 28].
While perceived as valuable, serendipity is also seen as elusive,
unpredictable, and hard to control to be used [5, 6, 8]. Although
there is some disagreement as to the precise nature of serendip-
ity, all accounts agree that the following two aspects are central:
an unexpected chance and a relevant discovery. These two
aspects have informed us on the design of SerenPrompt.

It is worth distinguishing between serendipity, diversity, and
novelty because they share some common characteristics. We be-
lieve diversity increases the chance of serendipity, but not every
diversi�ed piece is serendipitous: only those unexpected and rele-
vant items are serendipity. As to novelty, it means being new and
unknown, not necessarily unexpecting or surprising. In contrast,
serendipity suggests how strongly an item violates an expectation.
Therefore, it is worth clarifying that, di�erent from many other
studies (e.g., [1, 4, 7, 16, 37]), we do not use diversity and novelty
as the sub-concepts of serendipity. In this paper, we interpret and
operationalize the concept of serendipity using two sub-concepts:
unexpectedness and relevance.

2.2 Deep Learning Models for Serendipity
Recommendations

Deep learning techniques have dramatically change the landscape
of recommendation research [10, 18, 19, 29]. Since 2018, a few infor-
mation retrieval researchers have attempted to build deep learning
models for serendipity recommendations. Examples are SerRec [30],
HAES [21], DESR [37], NSR [37], PURS [20], and SNPR [38]. These
conventional deep learning e�orts collectively demonstrate the po-
tential of neural networks in representing users’ serendipity needs.

However, these studies’ serendipity de�nitions varied in order to
leverage various existing recommendation datasets and avoid col-
lecting the direct ground truth on serendipity, making both the mod-
els and the results not su�ciently systematic or generalizable. In
addition, the conventional deep learning models’ limited sequence
representation capacity and limited natural language understand-
ing capability make their performance as a recommendation model
not ideal, especially for those complex and multi-step recommen-
dation tasks including serendipity recommendations. Therefore, in
this paper, we investigated the potential of LLMs as recommenda-
tion models for this long-standing challenging task of serendipity
recommendations.

2.3 LLMs for Recommendation Models
Technically, there are three main ways to leverage LLMs for recom-
mendation tasks: pre-training, �ne-tuning, and prompting. Practi-
cally, both pre-training and �ne-tuning an LLM need heavy compu-
tational resources, usually not immediately available in academia.
Prompting therefore becomes the popular access to LLMs, to adapt
a recommendation task into a question answering task or a lan-
guage generation task, instead of the other way around during the
pre-training and �ne-tuning process.

Prompting is the new paradigm for adapting LLMs to speci�c
downstream tasks. A prompt refers to a text template that serves
as the input of LLMs. Prompting enables LLMs to unify di�erent
downstream tasks into language generation tasks [11]. Generally,
the types of prompts can be categorized as discrete and continu-
ous [24]. Discrete prompts consist of natural words, relying heavily
on human experiences to craft. Although discrete prompts have
succeeded in many tasks, handcrafted prompts may be with costs
and not globally optimal. Continuous prompts introduce learn-
able prompt tokens to automatically search for the best prompt
templates. In the following paragraph, we will brie�y review the
recent e�orts of using the prompting techniques (both discrete and
continuous) for recommendation tasks.

A straightforward prompting approach is discrete prompting.
For instance, Liu et al. [23] employ ChatGPT and propose separate
task descriptions with a few demonstrations (examples) tailored to
di�erent types of recommendation tasks, such as top-K recommen-
dations, rating predictions, and explanation generation. In contrast
to discrete prompts, continuous prompting employs learnable to-
kens (vectors or text embeddings) as a prompt. For instance, Wu et
al. [36] apply contrastive learning to capture user representations
and apply them into prompt tokens. In addition to directly using
pre-calculated embeddings, continuous prompts can also be learned
using the current task-speci�c loss function. For example, Zhang et
al. [39] adopt randomly initialized continuous prompts and optimize
them with respect to a recommendation loss function. Compared to
discrete prompts, continuous prompts are more �exible for tuning
on a continuous space but at the cost of explainability [14].

Those e�orts mentioned above demonstrate the promising po-
tential of prompting LLMs for recommendation tasks. All of those
e�orts are for the conventional accuracy-oriented recommenda-
tions. In this paper, we would like to investigate the feasibility of
LLMs for serendipity-oriented recommendations, a more complex
and challenging task. We believe LLMs have a huge potential for
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Figure 1: Three types of prompting an LLM for serendipity recommendations

this task because of their stronger sequence representation capacity
and language understanding ability.

3 SERENPROMPT: PROMPTING AN LLM FOR
SERENDIPITY RECOMMENDATIONS

We believe a serendipity recommendation problem, like any other
recommendation problem, is amatching problem. Let (� = {81, 82, . . . ,
8 |(� | } represents the set of items, and �D = {8D1 , 8D2 , . . . , 8D= } repre-
sents a history of interacted items for the user D. The goal is to �nd
a model<0C2⌘8=6(·) to predict a matching probability score ~̂D,8
that the item 8 (8 2 (� ) is a serendipity to the user D with a history
�D . The process could be represented as:

~̂D,8 =<0C2⌘8=6 (�D , 8 ) (1)

To convert the serendipity recommendation problem to a prompt
to an LLM, we need to include the user information�D and the item
information 8 in the prompt. Commonly, a well-designed prompt
for an LLM contains three parts: a task description, a few demon-
strations (examples), and an input question. The task description
de�nes a task and introduces the related concepts. The demon-
strations provide some task and solution examples for the LLM to
better understand the task. The input question directly asks the
question. In our case, given a task description � , a demonstration set
⇡ = {(31,32, ...,3: }, and the input question & , which includes the
current user D’s history �D and item 8’s information, the prediction
~̂D,8 generated from LLMs can be formulated as follows:

~̂D,8 = !!" (� ,⇡,& (�D , 8)) (2)

We are interested to knowwhat kind of prompt templates bene�t
the performance of serendipity recommendations. To this end, we
designed three types of templates, as shown in Figure 1: 1)
discrete with natural words, 2) continuous with vector tokens
to search for the best prompt, and 3) hybrid that combines
the discrete and continuous templates.

3.1 Prompting LLMs via Discrete Templates
As the most common type of prompts, discrete templates formulate
the prompts using natural language. We designed two styles of
discrete templates. One style is direct: directly asking whether an
item is a serendipity. The second style is indirect, asking whether

an item is unexpected and relevant, and then inferring whether it
is a serendipity.

3.1.1 Discrete Style 1: Direct. This is the direct way to ask an LLM
whether a candidate item is a serendipity to a user. As in Table 1 for
this Style, the task description � contains the de�nition of serendip-
ity and the task requirement. In the demonstration set ⇡ , we expect
the LLM learns from the representative examples to better un-
derstand the task, similar to the idea of providing some additional
task-speci�c training instances in a supervised machine learning ap-
proach. We provide both serendipity (positive) and non-serendipity
(negative) examples. For the input question & , we include the user
information �D and the candidate item information 8 . Speci�cally,
�D is a series of item names that have been interacted by the user
D. 8 is just the candidate item name. In addition to �D and 8 , & also
limits the answer format to be binary: "Yes" or "No" on whether the
candidate item is a serendipity to this user, in order to prevent the
LLM from being verbose or digressing.

3.1.2 Discrete Style 2: Indirect. This style prompts an LLM to break-
down the task of serendipity recommendations into two sub-tasks:
judging whether an item is unexpected and then whether the item is
relevant. Therefore, as in Table 1 for this Style, the task description � ,
in addition to de�ning serendipity, further provides the de�nitions
of being unexpected and being relevant in the recommendation
context. Accordingly, the demonstration set ⇡ contains examples
of serendipity items satisfying both conditions: being unexpected
and being relevant. The input question & is similar to that of Dis-
crete Style 1, but with an extra requirement to consider those two
conditions when answering the question. Through this way, the
serendipity recommendation task is converted into two question
answering tasks.

The two styles above are to exploit both the direct and the indi-
rect knowledge contained in an encyclopedia-like LLM through a
series of prede�ned natural language prompts and the pre-speci�ed
possible answer words (yes or no). This is the core philosophy of the
prompt learning paradigm, i.e., predicting an answer word from the
LLM’s vocabulary, as if the task-speci�c prompts had been inserted
into the large corpus for training the LLM.

On the other hand, these manually designed templates, though
with well-crafted statements, are obviously not exhaustive for all
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Table 1: Discrete prompt templates for serendipity recommendations

LLM Input

Task Description �
Serendipity means an unexpected but relevant discovery to a user. Given a user’s history, please answer “Yes” or “No”
on whether a candidate item is a serendipity to the user.

Demonstration Set ⇡

Here are some demonstrations:
Discrete Demo 1: Given a user D1 with a history �D1 (a series of item names), 820=3 is a serendipity to this user D1.
Style 1: ...
Direct Demo k: Given a user D: with a history �D: , 8

0
20=3 is not a serendipity to this user D: .

Input Question& Given a user D with a history �D , could you answer whether the candidate item 8 is a serendipity to this user D?
Expected LLM Output

"Yes" or "No"
LLM Input

Task Description �

Serendipity means an unexpected but relevant discovery to a user. Being serendipity means being both unexpected
and relevant. In recommendation tasks, being unexpected means the items are unlikely to be recommended to a
user given this user’s history. Meanwhile, being relevant means the items are closely related to a user’s history.
Given a user’s history, please answer "Yes" or "No" on whether a candidate item is a serendipity to the user. You need
to consider both the unexpectedness and relevance aspects.

Discrete

Demonstration Set ⇡

Here are some demonstrations:
Style 2: Demo 1: Given a user D1 with a history �D1 , 820=3 is both unexpected and relevant to this user D1.
Indirect Therefore, it is a serendipity to this user D1.

Demo 2: Given a user D2 with a history �D2 , 8
0
20=3 is relevant but not unexpected to this user D2.

Therefore, it is not a serendipity to this user D2.
...
Demo k: Given a user D: with a history �D: , 8

00
20=3 is neither unexpected nor relevant to this user D: .

Therefore, it is not a serendipity to this user D: .

Input Question&
Given a user D with a history �D , could you answer whether the candidate item 8 is a serendipity to this user D?
You need to consider both the unexpectedness and relevance aspects.

Expected LLM Output
"Yes" or "No"

possible designs. Therefore we will use some virtual tokens to
search for a few more template designs using the the continuous
prompting approach.

3.2 Prompting LLMs via Continuous Templates
Di�erent from the discrete prompts, continuous prompts use learn-
able tokens (vectors) in the task description � and the input question
& . The two sets of learnable tokens can be generated by inputting
the original natural words of � and & through neural network
layer(s) added in front of the LLM. The token generation process
could be described as follows:

5 (� ,&) ! [% �1] ...[% �=1 ]; [%
&
1 ] ...[%&=2 ] (3)

where � and & are the natural words of the task description and
the input question. 5 (·) is the added neural network layer(s), to
map the natural words into two sets of tokens of [% �1]...[%

�
=1 ] and

[%&1 ] ...[%&=2 ] respectively. =1 and =2 are their numbers of tokens.
Compared with the discrete prompts, the demonstration set ⇡ is
not included since 5 (·) can be trained by training instances, which
essentially play the role of providing additional demonstrations
to the LLM. Therefore the continuous prompts are all tokens, as
in Table 2. Previous research shows that Transformers [35] are
e�ective in mapping or encoding text into vectors. Therefore, in
this paper, we selected the Transformers as 5 (·).

This way, the continuous prompts provide more freedom
by adding learnable tokens in search of the best prompts,

Table 2: Continuous prompt templates for serendipity rec-
ommendations

LLM Input
Task Description � [% �

1 ] [% �
2 ] ...[% �

=1 ]
Input Question& [%&

1 ][%&
2 ]...[%&

=2 ]
Expected LLM Output

"Yes" or "No"

although it may introduce some uncertainties and cost some
explainability. Similar to the discrete prompts, we designed two
styles: direct and indirect, corresponding to the direct question
on serendipity and the indirect questions on unexpectedness and
relevance.

3.2.1 Continuous Style 1: Direct. This Style trains 5 (·) to learn the
tokens for the direct question on serendipity. The input of 5 (·), � ,
and & , will be the same as Discrete Style 1 as in Table 1. During
the learning process, the LLM is frozen, and only the parameters
of 5 (·) are updated through the loss values between the model
answers and the ground truths. We adopted the commonly used
cross-entropy loss function to train 5 (·).

!B4A4= (⇥) = � 1
|S |

’
(D,8 )2S

~D,8 ;>6 (~̂D,8 ) (4)

where ⇥ is the set of the learnable parameters of 5 (·). S denotes
the set of training instances for serendipity. |S| denotes the size of
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training instances. ~̂D,8 is the predicted probability on "Yes" or "No".
~D,8 is the ground truth value.

3.2.2 Continuous Style 2: Indirect. In this Style, we did not directly
learn 5 (·) for the prompt tokens for the question of serendipity.
Instead, we �rst pre-trained 5 (·) with two pre-training tasks, and
then �ne-tuned it for the question on serendipity. The pre-train and
�ne-tune process is expected to learn better token representations
of LLM prompts for serendipity recommendations. The two pre-
training tasks are: learning a prompt representation to ask whether
a candidate item is unexpected to a user; and learning a prompt
representation to ask whether a candidate item is relevant to a user.
Speci�cally, the � and & for the �rst pre-training task are:

� : "Unexpectedness means something that surprises somebody
because the person is not expecting it. In recommendation tasks, being
unexpected means the items are unlikely to be recommended to a user
given this user’s preferences. Given a user’s history, please answer
"Yes" or "No" on whether the candidate item is unexpected to the user."

& : "Given a user with a history �D , could you answer whether the
candidate item 8 is unexpected to this user D?"

Similar to Continuous Style 1, during the pre-training process
for this �rst pre-training task, the LLM is frozen, and only the
parameters of 5 (·) are updated through the loss values between
the model answers and the ground truths on unexpectedness. We
adopted the commonly used cross-entropy loss function similar to
Continuous Style 1. The � and & for the second pre-training task
are similar to the �rst pre-training task. The only change is from
about unexpectedness to about relevance.

To pre-train 5 (·) with the two di�erent pre-training tasks, a com-
monly used approach is sequentially training it with the two tasks.
It may cause 5 (·) to "remember" only the second task and "forget"
the �rst task [17, 34]. Therefore, we constructed a mixed two-task
dataset to pre-train 5 (·) simultaneously. The mixed dataset sampled
the training instances for the two pre-training tasks respectively
and then mixed them in one dataset. That way, the pre-training pro-
cess is able to strike a balance between the two tasks. Considering
that two pre-training tasks may not contribute equally to the �nal
vector representation, a sampling ratio 4

; between unexpectedness
and relevance was experimented to control the proportion of the
two tasks in the mixed two-task dataset.

After being pre-trained, 5 (·) is expected to obtain some "prior
knowledge" on serendipity. We further �ne-tuned 5 (·) using the
direct training instances on serendipity. The process is the same
with the training task in Continuous Style 1.

Although continuous templates are more �exible compared to
discrete ones, the quality of the generated tokens highly relies on
the selection of 5 (·) and the training instances. More importantly,
these tokens are randomly initialized, which may introduce some
uncertainties and noises [39]. Therefore we further propose a hybrid
prompt, which is a mixture of natural words and virtual tokens.
We expect this type of prompt is able to provide stable input to the
LLMs while controlling the level of uncertainties and noises.

3.3 Prompting LLMs via Hybrid Templates
In a hybrid prompt with both natural words and virtual tokens, we
need to decide on what part(s) of the prompt should use natural
words and what part(s) should use virtual tokens. One principle

we used is that if a part is information-rich, and natural
words for it may not be su�ciently expressive, we will use
virtual tokens. If a part needs to provide precise knowledge
to the LLM without introducing any uncertainty, we will go
with natural words. Therefore, we selected the �D and 8 elements
in the input question & to be the virtual tokens, because they (a
series of names) may not contain the rich information needed by
the LLM to recommend serendipity. In contrast, the task descrip-
tion � and the remaining part of & used natural words, since they
reduce uncertainty and provide useful background knowledge. For
the virtual tokens parts, we learned a mapping function <(·) to
project the natural words of �D and 8 to two sets of virtual tokens
[%�D

1 ] ...[%�D
=3 ] and [%81] ...[%8=4 ]:

<(�D , 8) ! [%�D
1 ] ...[%�D

=3 ]; [%81] ...[%8=4 ] (5)

Similar to the continuous prompts, we do not have the demon-
stration set ⇡ in the prompts since the training instances for<(·)
play the role of providing additional demonstrations. Similar to the
discrete and continuous prompts, we also designed two styles for
the hybrid prompt templates.

3.3.1 Hybrid Style 1: Direct. This style trains <(·) to generate
token representations for a direct question of serendipity. As in
Table 3 for this Style, the task description � is the same with Discrete
Style 1. The input question & is also the same with Discrete Style 1
except that we replaced �D and 8 with virtual tokens.

To learn the optimal virtual tokens, we froze the LLM’s parame-
ters and only optimized<(·) by calculating the loss values between
the model answers and the ground truths on serendipity. We used
the cross-entropy loss function.

3.3.2 Hybrid Style 2: Indirect. Similar to Continuous Style 2, in this
Style as in Table 3, we do not directly learn the tokens for the direct
question of serendipity. Instead, we �rst pre-trained the tokens
with those two pre-training tasks, and then �ne-tuned them for the
question of serendipity.

4 EXPERIMENTS
4.1 Construction of Ground Truths
In this paper, for continuous and hybrid prompts, we need the
ground truth data to train, pre-train, or �ne-tune the Transformer
encoders added to the LLMs. For discrete prompts, we need the
ground truth data to provide various positive and negative demon-
strations. Speci�cally, we need three types of ground truth: serendip-
ity, unexpectedness, and relevance.

For serendipity, we used SerenLens [9], an existing large-scale
ground truth dataset on serendipity books, as the base dataset.
We further converted this base into an instruction format that is
compatible with the LLM prompt and output formats, in order to
serve as the training instances for the Transformer encoders as well
as demonstrations in discrete prompts. In total, we obtained 5,114
training instances.

For unexpectedness, we did not have any existing base dataset to
convert. Therefore, we propose a computational approach to "cal-
culate" the ground truth of unexpectedness, avoiding the tedious
human labeling process. In Psychology, unexpectedness is de�ned
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Table 3: Hybrid prompt templates for serendipity recommendations

LLM Input

Task Description �
Serendipity means an unexpected but relevant discovery to a user. Given a user’s history,

Hybrid Direct Serendipity Task please answer “Yes” or “No” on whether a candidate item is a serendipity to the user.
Style 1: Prompt Input Question&

Given a user D with a history [%�D
1 ] ...[%�D

=3 ], could you answer whether the candidate
item [%8

1 ] ...[%8
=4 ] is a serendipity to this user D?

Expected LLM Output
"Yes" or "No"
LLM Input

Task Description �

Unexpectedness means something that surprises somebody because the person is not expecting
it. In recommendation tasks, being unexpected means the items are unlikely to be
recommended to a user given this user’s preferences, usually represented by the user’s history.

Pre-Training Task 1 Given a user’s history, please answer "Yes" or "No" on whether the candidate item is unexpected
(Unexpectedness) to the user.

Prompt Input Question&
Given a user D with a history [%�D

1 ] ...[%�D
=3 ], could you answer whether the candidate

item [%8
1 ] ...[%8

=4 ] is unexpected to this user D?
Expected LLM Output

"Yes" or "No"
LLM Input

Task Description �

Relevance means something being closely connected or related to the current topic of interest.
In recommendation tasks, being relevant means the items are closely related to a user’s

Hybrid Pre-Training Task 2 preferences, usually represented by the user’s history. Given a user’s history, please answer "Yes"
Style 2: (Relevance) or "No" on whether the candidate item is relevant to the user.
Indirect Prompt Input Question&

Given a user D with a history [%�D
1 ] ...[%�D

=3 ], could you answer whether the candidate
item [%8

1 ] ...[%8
=4 ] is relevant to this user D?

Expected LLM Output
"Yes" or "No"
LLM Input

Task Description �
Serendipity means an unexpected but relevant discovery to a user. Given a user’s history,

Fine-Tuning Task please answer “Yes” or “No” on whether a candidate item is a serendipity to the user.
(Serendipity) Input Question&

Given a user D with a history [%�D
1 ] ...[%�D

=3 ], could you answer whether the candidate
Prompt item [%8

1 ] ...[%8
=4 ] is a serendipity to this user D?

Expected LLM Output
"Yes" or "No"

as violation of expectation [27]. We propose a computational op-
erationalization of this de�nition. Speci�cally, we �rst calculated
the conditional likelihood of seeing an item given a user’s history
of interacted items. We then used a low level of such conditional
likelihood as a high level of unexpectedness. Therefore, the level of
unexpectedness of an item 8 to a user with a history�D is calculated
as:

D=4G? (D,8 ) = �;>6 ? (8 |�D ) (6)
where the negative sign is to indicate the opposite relationship
between the cognitional likelihood and the level of unexpectedness.
The logarithm function is to smooth the larger values. Using the
Law of Total Probability, the conditional probability in Equation 6
could be rewritten as:

D=4G? (D,8 ) = �;>6 ? (8 |�D ) = �;>6
’

8D 2�D

? (8 |8D )? (8D |�D ) (7)

where 8D is a user’s historically interacted item in�D , ? (8D |�D ) is
the occurring probability of 8D in�D , and ? (8 |8D ) could be calculated
as:

? (8 |8D ) = = (8, 8D )Õ
82(� = (8, 8D )

(8)

where the numerator =(8, 8D ) is the co-occurrence count for an item
8 and 8D in all users’ histories. The denominator is the sum of such
co-occurrence count over each item 8 in the item set (� . All of the
components on the right side of this Equation 7 could be calculated
from a dataset. After calculating all the items’ D=4G? (D,8 ) values for
the user D with the history �D , we selected the items with the top
values as the user’s unexpected items (positive cases) and the items
with the bottom values as the expected items (negative cases). We
applied this approach to the Amazon Review Data [25] to calculate
the level of unexpectedness between a book and a user. In total, we
obtained 46,920 user-book pairs (the positive and negative pairs
combined) and used them as the base to reformat according to
the LLM prompt and output requirements to serve as the training
instances or demonstrations.

For relevance, we used the Amazon Review Data [25] again and
followed the common practice in the recommendation research
community: the observed interaction between a user and a book
establishes a relevance label for this user-book pair. Other user-
book pairs with no observed interactions are deemed as irrelevance.
We obtained more than 100 million cases (user-book pairs). We
sampled them according to the sampling ratio (4; ) (mentioned in
Section 3.2.2) with respect to the unexpectedness dataset. We then
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reformatted the sampled cases into training instances or demon-
strations.

4.2 Backbone LLMs
We chose two open-source LLMs for the implementation of Seren-
Prompt: Flan-T5 (the 11B version) and Llama 2 (the 13B version).
They are two di�erent representative open-source LLMswith strong
performance on various tasks. Flan-T5 (the 11B version) is an en-
hanced version of T5 that has been �ne-tuned in a series of tasks.
It has comparable performance in many language tasks to much
larger models, such as PaLM (the 62B version). Structurally, it has
both Transformer encoders and decoders. On the other hand, Llama
2 (the 13B version) is an enhanced version of Llama 1 developed by
Meta, with stronger performance. Structurally, it only has Trans-
former decoders. These two models are the two representative LLM
structures.

4.3 Evaluation Metrics and Baseline Models
Since serendipity is relatively rare compared to non-serendipity
in the ground truth datasets, we adopted a recall-based metric,
Hit Ratio (HR). HRseren@k measures the proportion of times the
serendipity item is retrieved in the top-k position (1 for yes and 0
otherwise). In order to take the rank information into consideration
and assign higher weights on higher ranks, we propose another
metric called Serendipity-Based Normalized Discounted Cumula-
tive Gain (NDCGseren) based on the well-known metric Normalized
Discounted Cumulative Gain (NDCG). NDCGseren@k is calculated
as:

#⇡⇠⌧B4A4=@: =
:’
8=1

B4A4=38?8C~ B2>A4 (1 >A 0)
;>62 (8 + 1) (9)

For bothHRseren@k andNDCGseren@k, a higher value indicates
a better performance.

To evaluate the performance of the series of SerenPrompt, we
selected the following two groups of representative baseline rec-
ommendation models. The �rst group consists of one randomness-
based method and four well-known deep learning recommendation
models for serendipity: RAND, DESR [22], PURS [20], SNPR [38],
and SerenEnhance [9].

The second group is two well-known deep learning recommen-
dation models for relevance tasks: SASRec [15] and BERT4Rec
[32]. Both of the two groups of models are state-of-the-art deep
learning models published in top venues in recent years.

4.4 Experiment Setups
For the continuous and hybrid prompts, 80% of the data in SerenLens
was used for training 5 (·) or<(·) and the rest 20% was for testing.
Since discrete prompts do not have a training process, we directly
used the testing set for evaluations. For all discrete prompts, we
use 10 demonstrations with 5 positive ones and 5 negative ones.
For Continuous Style 2 and Hybrid Style 2 prompts, we pre-trained
the virtual tokens on the mixed two-task dataset sampled from the
UnexpectedBooks and the RelevantBooks datasets. For all prompts,
for each user in the test set, we held one serendipity item as the
testing positive sample, and then paired it with 99 non-serendipity
items that were randomly sampled from the dataset as the negative
samples. We compared the LLM prompted by SerenPrompt with the

baseline models using the metrics (HRseren@k and NDCGseren@k).
For all models, we adopted 5-fold cross-validation to evaluate the
performance. We trained our models using the Adam optimizer. We
set the learning rate 0.001, the hidden dimension 128, the dropout
rate 0.2, and the regularizer decay 0.001 for all the models. Other
model-speci�c hyper-parameters either followed their original stud-
ies or were adjusted for the training performance in this study. We
reported the results using the optimal hyper-parameter settings. In
addition, for fair comparisons, we set the head number of the multi-
head attention 2 for the models involving Transformers: SASRec,
BERT4Rec, SNPR, SerenEnhance, and LLMs with SerenPrompt.

5 EXPERIMENT RESULTS
5.1 Hyperparameter Analysis
The core hyperparameters of SerenPrompt are the numbers of the
virtual tokens (i.e., =1, =2, =3, and =4) and the sampling ratio (4; ) be-
tween the unexpectedness and relevance tasks in the mixed dataset
in the pre-training stage for both the continuous and the hybrid
prompts. We investigated the e�ects of changing these hyperpa-
rameters on the recommendation performance.
Numbers of the virtual tokens. Following the study of [39], we
adopted a coarse hyperparameter training strategy, which makes
=1 = =2 and =3 = =4. We chose =1, =2, =3, and =4 from the set of
values {1,2,3,4,5} and explored the optimal settings with the best
HRseren@10. As shown in Figure 2a, for the continuous prompts, as
=1 or =2 increases, the performance of SerenPrompt increases �rst
and decreases then. When =1 = =2 = 2, HRseren@10 reaches the
highest values for both Flan-T5 and Llama 2. The results indicate
that both too few and too many tokens will result in ine�ective
prompts. Too few tokens may lack su�cient task information, while
too many tokens may su�er from noisy and ambiguous information.

(a) Continuous templates (b) Hybrid templates

Figure 2: The recommendation performances of SerenPrompt
using di�erent numbers of virtual tokens

For the hybrid prompts, as shown in Figure 2b, when=3 = =4 = 1,
HRseren@10 reaches the highest value for both Flan-T5 and Llama
2. That means only one token is su�cient to represent the user or
the candidate item. We also observe that as the number of virtual
tokens increases, the performance of the LLMs with SerenPrompt
keeps decreasing. Compared with the continuous prompts, the
hybrid ones require fewer virtual tokens. Therefore, in the following
subsections, we will only report the results of SerenPrompt with
=1 = =2 = 2 and =3 = =4 = 1 where applicable.
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Table 4: The performance comparison of di�erent SerenPrompts and baseline models on the serendipity recommendation
task. The reported number is the average of 5 folds. The best results in each column are bolded and the second best results are
underlined. ⇤ denotes that our proposed model has statistically signi�cant di�erences with all of the seven baseline models
under a two-tailed t-test with p < 0.05.

HRseren@1 HRseren@5 HRseren@10 NDCGseren@5 NDCGseren@10

Serendipity

RAND 1.15% 4.51% 9.16% 0.028 0.043
DESR 6.25% 23.02% 36.67% 0.144 0.178
PURS 5.76% 22.60% 32.20% 0.139 0.170
SNPR 7.46% 24.09% 38.81% 0.149 0.192
SerenEnhance 9.81% 30.49% 45.63% 0.329 0.364

Relevance SASRec 6.13% 25.33% 41.37% 0.157 0.209
BERT4Rec 8.03% 27.02% 41.79% 0.166 0.214

Flan-T5

Discrete Style 1 4.65% 17.83% 31.17% 0.105 0.142
Discrete Style 2 5.19% 18.88% 32.51% 0.111 0.148
Continuous Style 1 6.03% 28.96% 34.48% 0.159 0.186
Continuous Style 2 8.32% 31.29% 41.94% 0.262 0.273
Hybrid Style 1 5.91% 23.34% 39.66% 0.145 0.178
Hybrid Style 2 13.65%⇤ 34.60%⇤ 47.31%⇤ 0.354⇤ 0.398⇤

Llama 2

Discrete Style 1 3.85% 15.38% 33.36% 0.101 0.135
Discrete Style 2 4.16% 16.18% 34.46% 0.107 0.145
Continuous Style 1 5.13% 23.67% 35.53% 0.127 0.164
Continuous Style 2 8.64% 26.43% 37.50% 0.188 0.218
Hybrid Style 1 5.68% 17.69% 34.54% 0.115 0.152
Hybrid Style 2 11.38%⇤ 33.85%⇤ 46.15%⇤ 0.332⇤ 0.374⇤

Sampling ratio of the two-task dataset. Using the optimal num-
bers of virtual tokens, we further investigated the e�ects of di�erent
sampling ratio 4

; between the unexpectedness and relevance tasks.

(a) Continuous templates (b) Hybrid templates

Figure 3: The recommendation performances of SerenPrompt
using the two-task dataset with di�erent sampling ratios

As illustrated in Figure 3, Flan-T5 and Llama 2 have similar
trends for either continuous or hybrid prompts. When 4

; = 50
50 ,

HRseren@10 reaches the highest performance for both the prompts.
The results indicate that a two-task dataset with an equal amount
of training instances for the unexpectedness and relevance tasks is
most e�ective to provide balanced "prior knowledge" on serendipity.
In the following subsections, we will only report the results using
4
; = 50

50 where applicable.

5.2 Overall Performance Comparison
From Table 4, we know that the hybrid template with the pre-
training and �ne-tuning process (Hybrid Style 2: Indirect) achieves
the best performance among all the baseline models and the other

types of SerenPrompt. In general, the LLMs prompted by the con-
tinuous templates and hybrid templates obtain a better perfor-
mance than discrete templates. It suggests that compared to natural
words, virtual tokens are more powerful in expressing a prompt for
serendipity recommendations.

In addition, no matter which type of SerenPrompt, Style 2’s per-
formance is better than Style 1. The results prove the e�ectiveness
of the decomposition of serendipity. Breaking down the direct ques-
tion on serendipity into two sub-questions on unexpectedness and
relevance is more helpful for the LLM to recommend serendipity.

It is interesting to note that prompting LLMs via discrete tem-
plates, which do not involve any model training, obtain a perfor-
mance close to the other serendipity-oriented deep recommenda-
tion models (e.g., DESR, PURS, and SNPR). The results demonstrate
the power of LLMs. They only need a task description and a few
demonstrations to be on a par with the state-of-the-art baseline
models. They are able to get around of the need of massive ground
truth data. The potential o�ers many avenues for not only serendip-
ity recommendations, but all kinds of recommendations in general.

5.3 Template E�ciency
Since the LLMs contain billions of parameters, the e�ciency of
prompting LLMs via SerenPrompt is another critical evaluation for
serendipity recommendations. To compare the e�ciency among
di�erent prompt templates, we calculated the average inference
time of the LLM on 1 instance. We tested all the templates on the
testing set of SerenLens dataset with 8 NVIDIA Tesla V100S GPUs.
We kept all the hyperparameter settings the same for each template.
The results are shown in Table 5.

We observe that the continuous templates for both Flan-T5 and
Llama 2 have the least inference time while the discrete templates
have the most. The results indicate that templates with more virtual
tokens and fewer natural words improve the LLM’s e�ciency. In
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Figure 4: Top-5 recommendation lists generated by di�erent types and styles of prompts

Table 5: Prompt e�ciency comparison

HRseren@10 Inference Time
in seconds

Flan-T5

Discrete Style 1 31.17% 5.57s
Discrete Style 2 32.51% 8.90s
Continuous Style 1 34.48% 0.38s
Continuous Style 2 41.94% 0.40s
Hybrid Style 1 39.66% 1.09s
Hybrid Style 2 47.31% 2.85s

Llama 2

Discrete Style 1 33.36% 20.14s
Discrete Style 2 34.46% 21.68s
Continuous Style 1 35.53% 4.16s
Continuous Style 2 37.50% 3.63s
Hybrid Style 1 34.54% 17.66s
Hybrid Style 2 46.15% 21.51s

addition, the hybrid templates obtain the best recommendation per-
formance onHRseren@10with relatively lower sacri�ce to inference
time, achieving a good compromise between the two con�icting
goals: performance and e�ciency.

5.4 A Case Study
Case studies are commonly used in social studies. However, they
are proven to be helpful to explain computational results [2]. To
have an intuitive understanding of the model results, we selected
an example user to showcase the recommendation results using
di�erent types and styles of prompts. As shown in Figure 4, there
is a user interested in the books with topics of women, urban life,
and romance according to her or his history. We also �nd that
this user had a serendipity experience on �nding a book titled The
Awakening: A Vampire Huntress Legend as in his or her written
review:

"I haven’t picked up a good vampire novel in quite a while...I really
didn’t have high expectations for this novel or any others in this genre.

What a surprise to discover that a Philadelphia Sistah has written a
bona �de, nail-biting vampire novel that is equal if not better than
Anne Rice, et al."

This book is a fantasy book with the romance and horror ele-
ments in it. It is not the usual type of this user. As shown in Figure 4,
only the hybrid prompts with both styles and the Continuous Style
2 prompts were able to recommend this book in their top-5 recom-
mendation list (as highlighted in the red box). The discrete prompts
with both styles tend to recommend books more closely following
this user’s history, such as romance and health books. The contin-
uous and the hybrid prompts are bolder and more deviating from
the user’s usual type.

6 CONCLUSIONS
In this paper, we investigated the potential of prompting LLMs to
obtain serendipity recommendations. We designed three types of
prompts: discrete, continuous, and hybrid, to investigate the expres-
siveness or e�ectiveness of natural words and virtual tokens used
in prompts for serendipity recommendations. Meanwhile, for each
type, we also designed two styles: direct and indirect, to investigate
whether it is feasible to ask a direct question on serendipity or it is
better to breakdown the direct question into two sub-questions. Ex-
tensive experiments have shown that the combination of the hybrid
type and the indirect style achieves the best performance with rela-
tively low sacri�ce to computational e�ciency, and outperforms
all of the state-of-the-art baseline models.
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