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Serendipity means unexpected discoveries that are valuable, with positive outcomes ranging from personal bene!ts to
scienti!c breakthroughs. This study proposes a cross-domain recommendation model, called SerenCDR, to model serendipity.
SerenCDR leverages the knowledge beyond one domain as well as mitigates the inherent data sparsity problem in serendipity
recommendations. The novelty of SerenCDR lies in the fact that it is the !rst deep learning-based cross-domain model for a
serendipity task. More importantly, it does not rely on any overlapping users or overlapping items across di"erent domains,
which especially !ts for the task of recommending serendipity, because serendipity in a single domain tends to be sparse;
!nding overlapping users or overlapping items in other domains are nearly impossible. To train and test SerenCDR, we
have collected a two-domain ground truth dataset on serendipity, called SerenCDRLens. In addition, since we found that
serendipity is sparse in SerenCDRLens, we designed an auxiliary loss function to supplement the main loss function to enhance
serendipity learning. Through a series of experiments, we have harvested positive performance in recommending serendipity,
empowering users with increased chances of bumping into unexpected but valuable discoveries.
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1 Introduction

In the recent decade, the notion of serendipity has been advocated by many recommender researchers. Current
deep learning-based recommendation models, like many machine learning models, tend to overly focus on
recommendation accuracy [2, 9, 10, 46]. However, many people have expressed their hope that recommender
systems could play a role in facilitating incidental exposure to serendipitous information, whereby individuals
“stumble upon” unexpected but valuable items that they did not actively seek. As early as 1997, Gup [15] expressed
his concern about the “end of serendipity" in the digital world, recalling with fondness his childhood experiences
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coming across interesting tidbits of information while #ipping encyclopedia pages. In his article, Gup stated
that the "vastly more e$cient" pursuit of information supported by computers would rob us of the "random
epiphanies" and ’accidental discoveries’ that are limited in an information environment tailored to our needs
and where "nothing will come unless summoned." Gup’s concerns are echoed by others in more recent studies
(e.g., [39, 51, 54]). The sense that the online environment is increasingly determined promotes a widespread
feeling that serendipity is threatened.
The word serendipity was created in 1754 to describe unexpected but valuable discoveries [49]. In the early

2000s, serendipity was !rst introduced to the context of recommender systems [21] in order to improve users’
engagement and satisfaction. Although currently there is no consensus on the de!nition of serendipity in the
context of recommender systems, most researchers interpret and operationalize this notion with two facets:
unexpectedness and relevance (e.g., [22, 31, 42, 43, 45, 61]). In this study, these two facets were used to guide the
collection of the serendipity ground truth data SerenCDRLens as well as to guide the design of the auxiliary loss
function.
Modeling the serendipity relationship is di$cult due to the elusive nature of serendipity. The element of

unexpectedness in serendipity means surprise and accident [44, 47], which are susceptible to modeling and
prediction. In addition, collecting ground truth data is di$cult due to the sparse nature of serendipity. Serendipity
does not occur frequently in a natural environment. Serendipity by nature will have a data sparsity problem
in the collected ground truth dataset. To address this challenge, we leveraged extra data from other domains
as supplements to enhance the serendipity “signals”. In addition, multi-domains nourish richer associations,
increasing the potential for the happening of serendipity.
Compared to the existing cross-domain deep learning recommendation models, our model does not rely on

overlapping users or overlapping items as the “bridge” across di"erent domains. Instead, we proposed an approach
to extracting the “essence” of users and items in terms of their serendipity relationship. The extracted “essence”
can be shared in di"erent domains without the same users or the same items in these domains. This is especially
important for serendipity recommenders, because serendipity in a single domain has a data sparsity problem;
!nding overlapping users or overlapping items in other domains are nearly impossible. In order to train and test
SerenCDR, we collected a two-domain (books and movies) serendipity ground truth dataset called SerenCDRLens
using the URCW (User Reviews plus Crowd Wisdom) approach in [12], a scalable ground truth collection approach
by using both existing user generated reviews and a crowd sourcing method. In addition, in order to "strengthen"
the sparse serendipity in each domain in SerenCDRLens, we designed an auxiliary loss function, leveraging the
two facets of serendipity, to supplement the regular main loss function, Speci!cally, the auxiliary function pulls
a user away from the expected items, but not too far away from relevant ones. The ground truth for both the
expected items and the relevant items can be calculated or observed from the data itself, rather than relying on a
human labeling process. The experiment results demonstrated better performance of SerenCDR on identifying
serendipitous items than the state-of-the-art baseline models.

The main contributions of this paper are summarized as three-fold:

• The SerenCDRmodel: The !rst cross-domain deep learning model for serendipity recommendations, without
relying on any overlapping users or items across domains.

• The auxiliary loss function: A supplement to the main loss function in order to strengthen the serendipity
learning in each domain.

• The SerenCDRLens dataset: The two-domain serendipity ground truth data. The naming follows the naming
convention of the well-known dataset for recommendation models, MovieLens [17].
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2 Related Work

This project draws on research into serendipity, deep learning recommendation models for serendipity, and
cross-domain recommendations. We will review the related work in these areas in the following sections.

2.1 The Concept of Serendipity and Its Distinction with Diversity and Novelty

First coined by Harold Walpole in 1754 [40], the word “serendipity” is used to describe the process of making
discoveries by accident, but it received little attention until the mid-1900s when it was used as a descriptor of
accidental or unplanned discovery in the scienti!c context [40].
Serendipity, diversity, and novelty are all “beyond-accuracy” goals proposed for recommender systems in

recent years [1, 8, 11, 23]. It is worth distinguishing between them since there is signi!cant overlap and potential
for confusion. Diversity has been studied in the IR !eld since 1998 when Carbonell and Goldstein investigated
the relationship between diversity and retrieval accuracy [4]. In the past decade, there is a growing consensus
that user satisfaction and engagement have been improved with such diversi!cation, even at the cost of some
retrieval accuracy [52, 55]. Sometimes, the concept of diversity is also introduced to mitigate the frequency bias
in observed user behavior and recommendations [35]. We believe diversity increases the chance of serendipity,
but not every diversi!ed result is serendipitous because they are not necessarily unexpected. As to novelty, it
means how new, di"erent, or unknown an item is to a user [14, 21], not necessarily unexpected as well. Therefore
not all novel items are serendipitous. In contrast, serendipity means how unexpected but relevant an item is.
Therefore, the element of unexpectedness is the main distinction between serendipity, diversity, and novelty.

2.2 Deep Learning Recommendation Models for Serendipity

Recently deep learning has been changing recommender systems research dramatically and bringing more
opportunities to improve the recommendation accuracy (or relevance in this context). Since 2018, a few information
retrieval (IR) researchers have attempted to build deep learning models for serendipity recommendations. We
believe Pandey et al. [48] is the !rst e"ort to build a deep learning model to predict serendipity. The model, called
SerRec, used a pre-training and !ne-tuning mechanism to !rstly train a deep neural network for relevance scores
using a large MovieLens dataset and then !ne-tune the model for serendipity scores using the smaller dataset
Serendipity 2018 [25]. Their pre-training and !ne-tuning approachmitigated the issue of a small serendipity dataset
and achieved reasonable NDCG (Normalized Discounted Cumulative Gain) scores in predicting serendipity.
However, the dataset Serendipity 2018 [25] was collected using a small-scale survey with 481 participants. In
addition, the controlled environment that relied on participants’ instant recall is not ideal for collecting serendipity
experiences. A period of “incubation” is sometimes necessary before serendipity is recognized [38].

With the lack of large-scale ground truth data for serendipity, other researchers are working to de!ne serendipity
in ways to leverage various existing relevance-oriented datasets. For example, Li et al. [33] de!ned serendipity as
content di"erence and genre accuracy for a movie recommender, and then developed an algorithm called HAES
(Hybrid Approach for movie recommendations with Elastic Serendipity), to achieve the two aspects. In their
follow-up study, Li et al. [34] adjusted the de!nition of serendipity as an item with a direction pointing from the
short-term demand to the long-term preference as well as a suitable distance to the short-term demand. They
developed a deep learning algorithm called DESR (Directional and Explainable Serendipity Recommendation),
to achieve the computational de!nition. Also, Xu et al. [58] de!ned serendipity as high satisfaction and low
initial interest, and achieved both by using a neural network, called NSR (Neural Serendipity Recommendation).
Li et al. [31] presented a novel PURS (Personalized Unexpected Recommender System) model, the !rst deep
learning model to incorporate the notion of unexpectedness into the recommendations. They de!ned the item’s
unexpectedness level as the item’s average distance to each cluster center of a user’s interests. The study pre-
calculated the level of unexpectedness without putting the unexpectedness module into the model training
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process. In the most recent study, Zhang et al. [61] "engineered" the ground truth data on serendipity by de!ning a
way to calculate the level of serendipity. The core part is how to calculate an item’s level of unexpectedness. They
calculated it as the sum of item di"erence and the category di"erence. With the engineered ground truth data
available, they then trained and tested a model called SNPR (Serendipity-oriented Next POI Recommendation
model), which is based on the state-of-the-art Transformers [56].
In summary, these deep learning e"orts mentioned above collectively demonstrate the e"ectiveness of deep

learning in representing users’ preferences. However, those serendipity de!nitions, model designs, and those
self-de!ned evaluation metrics were designed to leverage existing data and avoid collecting the direct ground
truth on serendipity, making both the models and the results not comparable or generalizable.

2.3 Cross-Domain Recommendations

Cross-domain recommender systems enhance recommendations in a target domain using the knowledge learned
from one or multiple source domains. In literature, there are distinct de!nitions of the domain. The study [27]
de!ned three types of domains: a system, a time period, and a type of data. The study [3] de!ned four types
of domains: an item attribute, an item type, an item, and a system. We believe there is some confusion in this
study [3] in the distinction between an item type and an item. We grouped both as an item category. We found
the item category (such as movies, books, toys, electronics, etc) as the domain is widely used by other researchers
(e.g., [26, 30, 59, 62]). Therefore, in this paper, we de!ne a domain as an item category.

According to Cremonesi et al. [7], cross-domain recommendation research can be formulated as three di"erent
types of tasks: 1) linked-domain recommendations: items of the target domain are recommended to target users
based on knowledge learned from the source domain; 2) cross-domain recommendations: items in the source
domain are recommended to users of the target domain or vice versa; and 3) multi-domain recommendations:
items of both domains are recommended to users of both or one domain. In this paper, technically, SerenCDR is
able to accomplish all three types of tasks. Practically, our collected ground truth dataset SerenCDRLens does not
have overlapping users or items in di"erent domains. It is not possible to evaluate SerenCDR’s performance on
the second type (cross-domain) and the third type (multi-domain) recommendation tasks. Therefore, we will
focus on the !rst type (linked-domain) task in this paper.
Cremonesi et al. [7] also identi!ed four user-item overlap scenarios in cross-domain recommendations as

shown in Figure 1: 1) both users and items have some overlaps in the two domains (U-I); 2) only users have
overlaps but not items (U-NI); 3) only items have overlaps but not users (NU-I); and 4) neither users nor items
have overlaps (NU-NI). Most studies on cross-domain recommendations focus on Scenario 2 and 3, for example,
the studies of [5, 16, 32] for the U-NI scenarios, the research of [13, 63] for the NU-I scenarios. However, very
few studies have worked on the NU-NI scenario due to the challenge of no overlapping information across the
domains. In the following paragraph, we will review the few state-of-the-art cross-domain studies for the NU-NI
scenarios.

Fig. 1. User-item overlap scenarios
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The most classical NU-NI study is the Codebook Transfer (CBT) [28]. It learned the “codebook” (i.e., cluster-
level preference pattern) from a source domain. Then, the “codebook” was transferred to the target domain to
learn the membership of its users and items to the corresponding clusters. Later on, there are some extensions
of CBT, such as RMGM (Rating Matrix Generative Model, Li et al., [29]), TALMUD (TrAnsfer Learning for
MUltiple Domains, Moreno et al. [41]), LKT-FM (Low-rank Knowledge Transfer via Factorization Machines,
Zang & Hu [60]), MINDTL (Multiple Rating Pattern Transfer Learning, He et al. [18]), ACTL (Adaptive Codebook
Transfer Learning, He et al. [19]), and MMMF (Maximum Margin Matrix Factorization, Veeramachaneni et
al. [57]). All the methods mentioned above learned the shared cluster-level preference pattern from source
domains without relying on overlapping users or items. However, these approaches transferred the shared pattern
without considering any domain alignment.

Some other studies attempted to incorporate a domain factor to align the source domain(s) and the target domain
before transferring any knowledge. For example, CIT (Consistent Information Transfer, Zhang et al. [62]) de!ned
how two rating matrices in two domains were consistently tri-factorized and how the consistent knowledge
could be extracted. MHF (Mixed Heterogeneous Factorization, Yu et al. [59]) introduced domain-shareable and
domain-speci!c factors in a matrix factorization method. In addition, they de!ned a domain weighting coe$cient
to quantify a source domain’s consistency with the target domain, and then used the coe$cient as the source
domain’s importance weight in the model objective function.

Those methods demonstrate the feasibility of cross-domain recommendations without having any overlapping
users or items in di"erent domains. They have shown the existence of the “essence” knowledge for domains even
if the users and items are completely di"erent. However, all of those studies are for the recommendation accuracy
task, and all are based on the classical matrix factorization (MF) techniques. With the rapid advances in deep
learning techniques, we would like to propose a !rst deep learning approach for cross-domain recommendations
under the NU-NI scenario. And importantly, our prediction task is beyond recommendation relevance and is a
serendipity-oriented task.

3 The Proposed SerenCDR Model

We propose the SerenCDR model for two domains: one is the source domain and the other is the target domain.
The model can be extended to multi-domain recommendations where the !rst (! − 1) domains are the source
domains and the last !!ℎ domain is the target domain. The mathematical notations used in SerenCDR are listed in
Table 1. Details of SerenCDR will be introduced in the following subsections.

3.1 Problem Formulation

Serendipity recommendations, like any other information retrieval problems, are essentially a matching problem.
Given a user " and an item # , the degree of matching is typically measured as a matching score produced by a
matching function based on the representations of the user " and the item #:

$%&'ℎ(", #) = ) (u, i), (1)

where u and i are the representations of " and # respectively. ) is the matching function based on the interactions
between the two representations. The * items with the highest matching scores will make the !nal recommenda-
tion list. In cross-domain serendipity recommendations, there are typically two domains: +# (the source domain)
and +! (the target domain). In a more practical setting for a serendipity recommendation problem, the two
domains do not have any overlapping users or items. Our goal is to recommend for each user in the target domain
the most likely serendipitous items in the same target domain with the help of the knowledge from the source
domain. Computationally, our goal for the cross-domain serendipity recommendations can be written as learning
the matching function in the target domain with the help of the learning process of the matching function in the
source domain, equivalent to learning two matching functions simultaneously:
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Table 1. Mathematical notations

Symbol Description

+! the target domain
+# the source domain
,$! , ,$# a user embedding for the target/source domain
,%! , ,%# an item embedding for the target/source domain
Ut, Us shareable user knowledge for the target/source domain
It, Is shareable item knowledge for the target/source domain
TU, TI a domain alignment matrix for a user/item
p′t , p

′
s a user’s latent cluster membership in the target/source domain

q′t , q
′
s an item’s latent cluster membership in the target/source domain

u′t , u
′
s a user domain-shareable vector for the target/source domain

i′t , i
′
s an item domain-shareable vector for the target/source domain

u′′t , u
′′
s a user domain-speci!c vector for the target/source domain

i′′t , i
′′
s an item domain-speci!c vector for the target/source domain

-̂!_$% , -̂#_$% the predicted serendipity score for the target/source domain
.$ , .% the number of latent user/item clusters
/ the dimension size of latent serendipity features

irelt , irels an item that is relevant to the user in the target/source domain
i
exp
t , i

exp
s an item that is expected by the user in the target/source domain

-̂!_$% = )! (ut, it), (2)

-̂#_$% = )# (us, is), (3)

where -̂!_$% and -̂#_$% denote the predicted serendipity score in the target domain +! and the source domain +#

respectively. In order to learn the two matching functions at the same time, there should be a “bridge” element
that connects and restricts the two matching functions. We will talk about the “bridge” element in the following
paragraphs.

We believe each domain possesses some “essence” or latent clusters of its users and items. The “essence” could
be shared among domains even though there are no overlapping users or items. In the meantime, each domain
may have its own characteristics that belong to this domain only. For example, for the book domain and the
movie domain, users in the two domains may have some common attributes that matter in their preferences, such
as their age, gender, and cultural background. Users also have domain-speci!c attributes that are unique to that
speci!c domain. Some book readers like annotating while reading. Some movie watchers prefer to watch movies
with family and friends instead of on their own. On the item side, books and movies have common attributes
such as genres and story plots. They also have their domain unique attributes. Books have publishers, authors,
and writing styles. Movies have producers, directors, actors, etc.

Therefore, we could separate a user or an item of each domain into two independent parts: the domain-shareable
part and the domain-speci!c part. The domain-shareable part captures the essence of the user or the item. The
essence is the “bridge” knowledge transferable between di"erent domains even without overlapping users or
items in these domains. In contrast, domain-speci!c knowledge represents a user or an item’s characteristics
unique to that domain. The separation of the domain-shareable and domain-speci!c knowledge is expected to
help transfer only useful information to assist in serendipity learning. To re#ect the idea of the separation, a
user’s vector representation u will contain two parts: the domain-shareable vector u′ and the domain-speci!c
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vector u′′. Similarly, an item’s vector representation i has two parts: i′ and i′′. Then the goal of the cross-domain
serendipity recommendations becomes learning these two matching functions simultaneously:

-̂!_$% = )! ((u
′
t, u

′′
t ), (i

′
t, i

′′
t )), (4)

-̂#_$% = )# ((u
′
s, u

′′
s ), (i

′
s, i

′′
s )), (5)

To represent the idea of “essence” in the domain-shareable part, for u′t , i
′
t , u

′′
s , and i′′s , they can be written as:

u′t = p′tUt, i
′
t = q′tIt, (6)

u′s = p′sUs, i
′
s = q′sIs, (7)

Ut = UsT
U, (8)

It = IsT
I, (9)

Ut and Us represent the shareable user “essence” knowledge in the two domains, which could be computationally
interpreted as a set of latent user clusters in each domain respectively. Each latent user cluster is a vector
representing a series of latent features (aspects) of serendipity. Therefore both Ut and Us are a two-dimensional
matrix. Through a domain alignment matrix TU, the latent clusters in the source domain could be mapped to those
in the target domain. Similarly, It and Is represent the shareable item “essence” knowledge in the two domains
with a domain alignment matrix TI. Therefore, p′t represents a speci!c user "! ’s latent user cluster membership,
and q′t represents a speci!c item #! ’s latent item cluster membership in the target domain. Similarly, p′s and q′s
represent their respective latent cluster membership in the source domain.
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Fig. 2. Examples to describe why we need domain alignment

The domain alignment matrices TU and TI are used to adjust the users and items “essence” in the source domain
to be consistent with the target domain. Why do we need such domain alignment? Figure 2 serves as an example
for describing the importance of domain alignment. Consider a book domain as the source domain +# and a
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Fig. 3. The structure of the SerenCDR model

movie domain as a target domain +!1. Figure 1(a) and Figure 1(b) illustrate the rating matrix for each of them.
Users 1-4 in Figure 1(a) and Users 7-10 in Figure 1(b) have similar tastes for various genres, although the items
are completely di"erent (one set of items is books and the other is movies). Therefore, in this case, the latent user
and item clusters (through knowledge extraction) contain consistent information in the +# and +!1. Transferring
the latent cluster knowledge of +# directly into +!1 is helpful without any need for domain alignment. However,
Users 5-6 in Figure 2(a) and Users 11-12 in Figure 2(b) have opposite preferences in these genres. In this case,
directly transferring the knowledge from +# to +!1 will hurt the recommendation performance of +!1.
Let us take a look at another rating matrix still in the movie domain as the target domain +!2, as shown in

Figure 2(c). The genres are completely di"erent as +# . On the user side, book readers in +# and movie watchers
in +!2 have di"erent genre preferences. As a result, directly using knowledge from +# for +!2 may hurt the
recommendation performance even more. Therefore, we need a learnable domain alignment TU to convert Us to
Ut, and TI to convert Is to It in order to get consistent knowledge from the source domain to assist the target
domain.
To sum up, the key challenge for the cross-domain recommendation problem becomes how to represent u′,

u′′, i′, and i′′ in both source and target domains, how to identify the essence matrices Ut, Us, It and Is, and the
alignment matrices TU and TI, as well as how to model the matching function )! and )# . The proposed SerenCDR
model is to address all of these challenges.

3.2 The SerenCDR Model

As in Figure 3, the structure of the proposed SerenCDR model has two identical structures, one for the target
domain and the other for the source domain. The two structures are connected through the shared knowledge on
users (U) and items (I) with domain alignment mapping.
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3.2.1 User and Item Representations for the Domain-Shareable and Domain-Specific Knowledge. SerenCDR converts
a user "! and an item #! ’s pre-calculated representations eut and eit in the target domain to the domain-shareable
and domain-speci!c parts:

p′t = P′teut, q
′
t = Q′

teit, (10)

u′′t = P′′t eut, i
′′
t = Q′′

t eit, (11)

where P′t , Q
′
t , P

′′
t , Q

′′
t are the learnable matrices. Similarly, we could obtain the user "# and an item ## ’s represen-

tations in the source domain: p′s, q
′
s, u

′′
s , i

′′
s . It is worth noting that the obtained representations for the domain

shareable part of users or items are only the latent cluster membership representations. In order to recover the
representation of the domain shareable users or items, we need to multiply the latent cluster information:

u′t = p′tUt, i
′
t = q′tIt, (12)

u′s = p′sUs, i
′
s = q′sIs, (13)

3.2.2 Fusion of Domain-Shareable and Domain-Specific Knowledge. There are many ways to fuse the domain-
shareable and the domain-speci!c knowledge. One example is the method of making the concatenation of the
two parts at the last hidden layer of the matching function ) . That way, in the target domain, we have two
sub-matching functions ) ′! and ) ′′! for the domain-shareable and domain-speci!c parts respectively, and then
combine them by concatenating their last hidden layers. The same method will be applied in the source domain.
We tried di"erent fusion approaches, and found the best approach is concatenating the two parts before the
matching function ) as shown in Figure 3. Speci!cally, in the target domain, we concatenated u′t and u′′t as the
!nal representation of the user ut. We also concatenated i′t and i

′′
t as the !nal representation of the item it. In the

source domain, we made the same concatenations. The recommendation problem returns to learning the two
matching functions simultaneously as in Equation 2 and 3.
For the matching function )! or )# , we could use any deep learning structure that calculates the interactions

between ut and it, or us and is. It could be a dot product operation, multiple MLP layers, or multiple CNN layers.
We used dot product for its good performance and simplicity in this study.

4 The Main Loss Function and the Auxiliary Loss Function

To train SerenCDR, we used a main loss function applied on SerenCDRLens, the direct ground truth of serendipity.
We also designed an auxiliary loss function to supplement the sparsity of serendipity in SerenCDRLens and to
strengthen the serendipity learning process.

4.1 The Main Loss Function: Pairwise Learning from the Serendipity Ground Truth

Since our serendipity recommendation task is a personalized ranking task according to the predicted serendipity
score, it is reasonable to assume that the observed serendipity should be ranked higher than the unobserved
ones. To implement this idea, we adapted the well-established pairwise loss function: the Bayesian Personalized
Ranking (BPR) [50] objective function, into our cross-domain recommendation tasks:

0&'%(! (Θ! ) =
∑

($! ,%! , )! )∈D!

−.!1 (-̂!_$% − -̂!_$ ) ) + 2! | |Θ! | |
2, (14)

0&'%(" (Θ# ) =
∑

($" ,%" , )" )∈D"

−.!1 (-̂#_$% − -̂#_$ ) ) + 2# | |Θ# | |
2, (15)

0&'%( (Θ! ,Θ# ) = 0&'%(! (Θ! ) + 0&'%(" (Θ# ), (16)
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where Θ! and Θ# are the sets of model parameters of the target domain and the source domain respectively.
2! and 2# are the parameter-speci!c regulation hyper-parameters to prevent over!tting. D! denotes the set of
training instances in the target domain: D! := {("! , #! , 3! ) |#! ∈ Y+

!_$ ∧ 3! ∈ Y−
!_$}, where Y

+
!_$ and Y−

!_$ denotes
the set of items that has been regarded by the user "! as serendipitous (positive samples) or non-serendipitous
(negative samples) respectively. Similarly, D# denotes the set of training instances in the source domain.

By minimizing the BPR loss, we tailored the model for correctly predicting the relative orders between items
rather than their absolute serendipity scores as optimized in pointwise loss. This can be more bene!cial for
addressing the serendipity recommendation task where serendipity positive cases are relatively rare.

4.2 The Auxiliary Loss Function: Strengthen Serendipity Learning

Since we observed that serendipity is sparse in SerenCDRLens, as expected due to the fact that serendipity rarely
happens in real life. In order to strengthen the ability of SerenCDR model to learn the serendipity "signal", we
further designed an auxiliary loss function to supplement the main loss function. As discussed in the Introduction
section, the two facets of serendipity are unexpectedness and relevance. Therefore, the auxiliary loss function
aims at providing additional serendipity "signals" from these two facets. Speci!cally, 0'$* tries to pull a user
away from the expected items and meanwhile makes sure he or she is not too far away from the relevant items.
Computationally, 0'$* is to learn a user representation that minimizes its similarity with the user’s expected
items, as well as maintains the similarity with the relevant items:

0'$*! (Δ! ) =
∑

(ut,i
rel
t ,i

exp
t )∈D′

!

−.!
1 (ut

+ irelt )

1 (ut+ i
exp
t )

, (17)

0'$*" (Δ# ) =
∑

(us,i
rel
s ,i

exp
s )∈D′

"

−.!
1 (us

+ irels )

1 (us+ i
exp
s )

, (18)

0'$* (Δ! ,Δ# ) = 0'$*! (Δ! ) + 0'$*" (Δ# ), (19)

where Δ! and Δ# are the sets of model parameters of the target domain and the source domain respectively. D′
!

denotes the set of training instances in the target domain: D′
! := {(ut, i

exp
t , irelt ) |i

exp
t ∈ E!_$ ∧ irelt ∈ R!_$}, where

E!_$ denotes the items that are expected by the user ut and R!_$ is the set of items that are relevant to the user
ut. Similarly, D′

# denotes the set of training instances in the source domain.
The key problem becomes how to obtain the ground truth for the expected items and the relevant items. Rather

than relying on a human labeling process, we leveraged the calculated or observed labels from the data itself. For
the expected items, we computationally de!ne it as the high conditional likelihood of seeing an item given the
user’s history. Let 4 = {#1, #2, . . . , # |, | } denotes the set of items in the data, and 5$ = {#$1 , #

$
2 , . . . , #

$
( } denotes the user

"’s history, equivalent to a sequence of interacted items by the user ". The level of expectedness for an item is
calculated as:

,67 ($,% ) = .89 7 (# |5$), (20)

The logarithm function is to smooth the larger values. Using the Law of Total Probability, we could rewrite the
conditional probability in Equation 20 as:

,67 ($,% ) = .89 7 (# |5$) = .89
∑

%#
ℎ
∈+#

7 (# |#$ℎ )7 (#
$
ℎ ), (21)

ACM Trans. Recomm. Syst.



where #$
ℎ
is a user’s historically interacted item, and 7 (# |#$

ℎ
) could be calculated as:

7 (# |#$ℎ ) =
!(#, #$

ℎ
)

∑
%∈, !(#, #

$
ℎ
)
, (22)

!(#, #$
ℎ
) is the count of co-occurrences for an item # and #$

ℎ
in the dataset. The denominator is the sum of the

co-occurrence counts for each item in the item set with #$
ℎ
.

Therefore, the level of expectedness ,67 ($,% ) is calculated as:

,67 ($,% ) = .89 7 (# |5$) = .89
∑

%#
ℎ
∈+#

!(#, #$
ℎ
)

∑
%∈, !(#, #

$
ℎ
)
7 (#$ℎ ), (23)

All of the components on the right side of this Equation 23 could be pre-calculated from the dataset before the
model training. After calculating all the items’ ,67 ($,% ) values for a user ", we selected the items with the top
values as the user’s expected items and used in the auxiliary loss functions.

For relevant items, we followed the common practice and de!ned them as the items interacted by the user in
the past history.

At last, we jointly trained the proposed SerenCDR model with the two loss functions in each domain simulta-
neously.

0 = 0&'%( (Θ! ,Θ# ) + 0'$* (Δ! ,Δ# ), (24)

4.3 Convergence Analysis

In classical matrix factorization (MF) approach, several existing studies (e.g., Zhang et al. [62]; Yu et al. [59])
have proved that there exist non-negative matrices that simultaneously minimize two or multiple rating matrix
reconstruction loss. In this study, we essentially propose a neural network-based MF approach. It remains unclear
if the convergence will happen to the proposed model. Our hypothesis is that SerenCDR will experience similar
convergence process guaranteed in the classical MF cases. We tested the convergence empirically. Speci!cally, we
trained the model iteratively for ! epochs until the change of loss function was less than a threshold. We plotted
the training loss over the number of epochs. We observed whether SerenCDR was able to stabilize eventually and
was able to outperform the baseline models after a certain number of epochs.

5 Experiments

5.1 SerenCDRLens: the Two-Domain Ground Truth Data on Serendipity

Currently, there are only two publicly available serendipity ground truth datasets. One is Serendipity 2018 [25],
which was collected using a small-scale survey with 481 participants in the movie domain. The other one is
SerenLens [12], which provides a relatively reasonable scale of ground truth data in the book domain. However,
currently there is not any multi-domain serendipity ground truth dataset. Therefore, in this study, we collected
a two-domain serendipity ground truth dataset, using the URCW (User Reviews plus Crowd Wisdom) approach
in [12], a scalable approach by using both user generated reviews and a crowd sourcing method. It is originally
for collecting serendipity ground truth in a single domain. We applied URCW in two domains.
The two chosen domains are books and movies. Both book-reading behavior and movie-watching behavior

are highly driven by a personal taste [46], and the experiences are highly subjective, laying a rich ground for
serendipity occurrences. In addition, both book and movies reviews datasets are largely available. The scale
and richness of the dataset warrant the high quality of the ground truth dataset. We used the Amazon Review
Data [37] as the review corpus used in the !rst stage of URCW. In the second stage, we used Amazon Mechanical
Turk (MTurk) to reach crowd workers to conduct our human intelligence tasks (HITs). The !nal two-domain

ACM Trans. Recomm. Syst.



serendipity ground truth data is called SerenCDRLens, as compared to the well-known dataset for recommendation
models, MovieLens [17]. The SerenCDRLens dataset is publicaly available at https://github.com/zhefu2/SerenCDR.
Table 2 shows the key statistics of the data collection process and the SerenCDRLens dataset. In the book domain,
2,557 reviews were labeled as serendipity experiences, which were written by 2,346 users (review writers) on
2,227 books. In the movie domain, 714 reviews were labeled as serendipity experiences, which were written by
619 users on 634 movies.

Table 2. Key statistics of SerenCDRLens

Books Movies & TV

HITs (Tasks)
Total HIT tasks assigned in MTurk 8,268 4,427
Total HIT tasks accepted in MTurk 4,396 2,342

Total worker judgements collected 41,340 22,135
Total worker judgements accepted 21,980 11,710

Worker Judgements with initial agreement 16,040 10,985
Judgements Judgements need a third opinion 3,960 725

Degree of initial agreement 72.98% 93.81%
Reviews with judgements 10,000 5,000
Reviews of serendipity 2,557 714
Reviews of non-serendipity 7,443 4,286

Users involved in the reviews of serendipity 2,346 619
SerenCDRLens Total reviews involved 265,037 74,967
Dataset Items involved in the reviews of serendipity 2,227 634

Total items involved 113,876 23,950

5.2 Evaluation Metrics and Baseline Models

Since serendipity is sparse (2, 557/265, 037 ≈ 1.0% in books and 634/74, 967 ≈ 0.8% in movies) in SerenCDRLens,
we adopted a recall-based metric, Hit Ratio (HR). HRseren@k measures the proportion of times a serendipity item
is retrieved in the top-k position (each time 1 for yes and 0 otherwise). In order to take the rank information into
consideration and assign higher weights on higher ranks, we propose another metric called Serendipity-Based
Normalized Discounted Cumulative Gain (NDCGseren) based on the well-known metric Normalized Discounted
Cumulative Gain (NDCG). NDCGseren@k is calculated as:

:+;<#-.-(@* =

/∑

%=1

=,>,!?#7#&- ='8>, (1 8> 0)

.892 (# + 1)
(25)

In addition to evaluating serendipity, we conducted a second set of experiments to evaluate how much sacri!ce
on relevance SerenCDR was making (if there was) in order to accommodate serendipity. Therefore, we used the
two standard metrics for relevance evaluation: HR@k (the “hit” here means hitting a relevant item in the top-k
position) and NDCG. For all of the metrics above, a higher value indicates a better performance.
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To evaluate the performance of the proposed models, we selected the following three groups of representative
baseline recommendation models. The !rst group consists of the well-known deep learning models for single-
domain recommendations: NCF [20], BERT4Rec [53]. We trained them on SerenCDRLens in the target domain
only and compared their performances with SerenCDR. The second group is the recent single-domain serendipity
deep learning recommendation models: SerRec [48], PURS [31], and SNPR [61]), both of which were also
trained on SerenCDRLens in the target domain only and were compared with SerenCDR. The third group is
the state-of-the-art cross-domain models that accommodate the scenarios of non-overlapping users and non-
overlapping items: CIT [62],MHF [59], and CFAA [36]. All of the three groups of models are the state-of-the-art
recommendation models published in top venues in recent years.

5.3 SerenCDR Se!ings

SerenCDR is a general framework and we may use many base recommendation models for the “encoding” purpose
to represent a user and an item into vector representations, as the input of SerenCDR. We chose two classic
recommendation models to generate user and item’s pre-calculated representations ,$ and ,% : matrix factorization
(MF) [6] and BERT [24]. For MF, we pre-calculated the user and item representations by decomposing the rating
matrix. For BERT, we pre-calculated the user and item representations by encoding the user comments and item
comments (texts). Therefore, SerenCDR has two variants: SerenCDR-BERT and SerenCDR-MF.

We trained the proposed model, both variants of SerenCDR, and the baseline models on the SerenCDRLens data.
The codes of the models are available at https://github.com/zhefu2/SerenCDR. We compared the two variants of
SerenCDR and the baseline models using the HR@k and NDCGseren@k. Since the amount of reviews collected
on the books is larger than that on movies, we de!ne the movie domain as the target domain and the books
as the source domain in this study. We keep our minds open to using books as the target domain and movies
as the source domain in future studies. For SerenCDR and other cross-domain baseline models, 80% of the data
in SerenCDRLens-Movies (the target domain) and all of the data in SerenCDRLens-Books (the source domain)
were used for training, and the rest 20% of the SerenCDRLens-Movies was for testing. For those single-domain
baseline models, we did not use the books data (the source domain). 80% of the data in SerenCDRLens-Movies (the
target domain) was used for training and the rest 20% was for testing. For the second set of relevance-oriented
experiments, we used the same training dataset to train the models, as the !rst set of serendipity-oriented
experiments, but for the testing set, the ground truth was changed to relevance, available in the original Amazon
Review Data [37].
For all models, we adopted 5-fold cross-validation approach to evaluate the performance and reported the

average value across these 5 folds. We trained our models using the Adam optimizer. We set the learning rate
0.0001, the dimension 128 for the pre-trained user and item representations (eut, eit, eus, and eis), the dropout rate
0.2, and the regularizer decay 0.001 for all the models. Other model-speci!c hyper-parameters were set either
following their original studies or adjusting for the training performance in this study. For all of the baseline
models, we reported the results using the optimal hyper-parameter settings. For the proposed SerenCDR model,
the optimal values of the number of latent user clusters .$ (equivalent to the number of rows in Ut or Us), the
number of latent item clusters .% (equivalent to the number of rows in It or Is), and the dimension size of the
latent serendipity features / (equivalent to the number of columns in Ut or Us or It or Is) will be investigated and
discussed in the experiments.

6 Results

6.1 Convergence Results

We !rst conducted a convergence analysis on our proposed model. Figure 4 presents three models’ training loss
over the number of epochs. The three models are BERT4Rec, CIT, and SerenCDR-BERT. SerenCDR-MF
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has a very similar curve with SerenCDR-BERT, and therefore is omitted here. Importantly, our proposed
SerenCDR-BERT is able to converge after around 40 epochs of training, although BERT4Rec (a single-domain
model) and CIT (a cross-domain model)’s convergence curves are smoother, suggesting better convergences
due to their relatively less complex structures. SerenCDR-BERT has two objectives in the training process.
One is the main loss for the direct serendipity knowledge learning and the other one is the auxiliary loss for the
decomposed serendipity knowledge learning. Optimizing the two objectives simultaneously on two domains
needs more e"ort and time to converge compared with single-domain or single-objective models.

(a) SerenCDR-BERT and BERT4Rec (b) SerenCDR-BERT and CIT

Fig. 4. The training epoch loss of SerenCDR-BERT and two baseline models

6.2 E"ects of Hyper-Parameters

We investigated the impact of the number of latent user clusters (.$ ), the number of latent item clusters (.% ), and
the dimension size of the latent serendipity features / on the recommendation performance. Since SerenCDR-
BERT and SerenCDR-MF have similar performance trends for these di"erent hyper-parameters, we reported
SerenCDR-BERT performance in terms of NDCGseren@10 in Figure 5. If / is relatively small (e.g., 16), setting
a large value for .$ and .% (e.g. 128) dramatically decreases the model performance. On the other side, if / is
relatively large (e.g., 128), setting a small value for .$ and .% (e.g. 16) hurts the model performance too. From each
of the four heat maps with a !xed / value, we know making the values of .$ and .% the same with / has achieved
the best performance. Those observations mean the granularity of latent user or item clusters should be aligned
with the granularity of the serendipity features during the knowledge transferring process. The best performance
is achieved when Ut, Us, It, and Is are all square matrices with the dimension of 64. In the following sections, we
only reported the experiment results of both SerenCDR-MF and SerenCDR-BERT with .$=64, .%=64, and / =64.

6.3 Overall Performance Comparison

The SerenCDR-MF and SerenCDR-BERT performances and the comparison with other baseline models on the
serendipity recommendation task are presented in Table 3. SerenCDR-BERT achieves the best performance
for both @A#-.-(@* and NDCGseren@k at varying k levels, comparing with the single-domain models, either
the relevance-oriented models (NCF and BERT4Rec) or the serendipity-oriented models (SerRec, PURS and
SNPR). The result suggests the e"ectiveness of the transferred knowledge from the source domain. Compared
with the cross-domain models (CIT, MHF, and CFAA) that are based on the classical matrix factorization (MF)
or content-based !ltering method, the dramatic performance improvement of SerenCDR-BERT speaks to the
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(a) f=16 (b) f=32

(c) f=64 (d) f=128

Fig. 5. Heat maps of NDCGseren@10 for di"erent numbers of latent user clusters (.$ ), numbers of latent item clusters (.% ),
and di"erent dimension sizes of latent serendipity features (/ ) for SerenCDR

power of the deep learning techniques in transferring the knowledge across domains without any overlapping
users or overlapping items.
It is worth pointing out that both BERT4Rec and SNPR are single-domain recommendation models but

both perform better than the three cross-domain baseline models (CIT,MHF, and CFAA) in serendipity task,
suggesting the deep learning models’ stronger capacity to e"ectively identify serendipity in a single domain than
the MF-based cross-domain methods.
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Table 3. The performance comparison of di"erent models on the serendipity recommendation task. The reported number is
the average of 5 folds. The best results in each column are bolded and the second best results are underlined. ∗ denotes that
our proposed model has statistically significant di"erences with all of the six baseline models under a two-tailed t-test with
p < 0.05.

Serendipity-based metrics
HRseren@1 HRseren@5 HRseren@10 NDCGseren@5 NDCGseren@10

Single-domain

NCF 1.46% 5.04% 9.59% 0.032 0.046
BERT4Rec 5.37% 15.28% 20.65% 0.106 0.129
SerRec 3.41% 10.57% 18.21% 0.085 0.105
PURS 2.44% 6.67% 11.54% 0.044 0.057
SNPR 4.27% 16.59% 23.90% 0.096 0.112

Cross-domain
CIT 2.28% 11.22% 19.67% 0.067 0.094
MHF 2.42% 10.18% 13.09% 0.062 0.071
CFAA 3.25% 12.89% 17.64% 0.095 0.111
SerenCDR - MF 7.32%∗ 17.07%∗ 31.71%∗ 0.148∗ 0.162∗

SerenCDR - BERT 8.07%∗ 18.82%∗ 35.89%∗ 0.157∗ 0.182∗

Table 4. The performance comparison of di"erent models on the relevance recommendation task. The reported number is
the average of 5 folds. The best results in each column are bolded and the second best results are underlined. ∗ denotes that
our proposed model has statistically significant di"erences with all of the six baseline models under a two-tailed t-test with
p < 0.05.

Relevance-based metrics
HR@1 HR@5 HR@10 NDCG@5 NDCG@10

Single-domain

NCF 2.12% 6.23% 11.49% 0.034 0.053
BERT4Rec 2.47% 6.52% 12.75% 0.036 0.055
SerRec 1.38% 5.56% 10.42% 0.027 0.043
PURS 1.68% 5.23% 9.70% 0.024 0.043
SNPR 1.92% 5.82% 10.51% 0.029 0.051

Cross-domain
CIT 2.54% 6.64% 11.32% 0.032 0.051
MHF 3.29% 6.25% 12.25% 0.035 0.056
CFAA 1.63% 5.45% 12.83% 0.022 0.052
SerenCDR - MF 3.25% 8.13%∗ 13.01%∗ 0.046∗ 0.070∗

SerenCDR - BERT 4.07%∗ 9.76%∗ 12.20% 0.051∗ 0.071∗

As to relevance, the comparison results with other baseline models are presented in Table 4. Surprisingly,
either SerenCDR-BERT or SerenCDR-MF performs better than the baseline models, including those relevance-
oriented models (i.e. NCF, BERT4Rec, CIT, MHF, and CFAA). This indicates that the process of predicting
serendipity, with the cross-domain knowledge transfer and the auxiliary loss functions, can in fact boost the
process of predicting relevance, a traditional task for recommender systems.

6.4 An Ablation Study

To evaluate the e"ectiveness of the key components of our proposed models, we further conducted a series of
ablation analyses. The key components to be evaluated are the Domain-Speci!c Part, the Domain-Shareable Part,
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the Domain Alignment Matrices (TU and TI), the 0&'%( loss function, and the 0'$* loss function. Please refer to
Figure 3 and Section 4 for these components. The evaluations were conducted by removing each component
at one time to test the model performance change. Please note that removing the Domain-Speci!c Part makes
the cross-domain mechanism share the entire knowledge from one domain to another without preserving the
domains’ unique knowledge. Removing the Domain-Shareable Part downgrades the model to a single-domain
recommendation model, only relying on the domain-speci!c knowledge in the target domain. Removing the
Domain Alignment Matrices (TU and TI) ends up with transferring domain-shareable knowledge directly from
the source domain to the target domain without considering any domain alignment. Removing the 0&'%( loss
function results in SerenCDR model merely being trained on the relevant items and expected items without using
the direct serendipity ground truth data in SerenCDRLens. Removing the 0'$* loss function makes the model
only trained on SerenCDRLens. The results of the ablation analyses for SerenCDR-BERT, the better performed
variant, are presented in Table 5.

As in Table 5, without either the Domain-Shareable Part or the 0&'%( loss function, the model performance drops
dramatically (more than 30%) for both HRseren@k and NDCGseren@k. The result demonstrates the e"ectiveness of
sharing knowledge across di"erent domains and directly learning knowledge from serendipity ground truth data
in SerenCDRLens. In addition, it can be observed that without the Domain-Speci!c Part or the alignment matrices
(TU and TI), the performance also drops around 25% for both HRseren@k and NDCGseren@k metrics, suggesting
the positive role of domain-speci!c attributes and domain alignment. Furthermore, without the 0'$* objective
function, the performance also drops around 20% for both HRseren@k and NDCGseren@k metrics, indicating our
proposed auxiliary loss function helps enhance the serendipity learning process.

Table 5. The ablation study results on di"erent model variants. The reported number is the average of 5 folds. The best results
in each column are bolded. "↓" indicates a performance drop more than 30% relative to that of the original SerenCDR-BERT
model.

HRseren@1 HRseren@5 HRseren@10 NDCGseren@5 NDCGseren@10

SerenCDR-BERT 8.07% 18.82% 35.89% 0.157 0.182

W/O Domain-Speci!c Part 4.88%↓ 14.63% 26.02% 0.103↓ 0.124↓
W/O Domain-Shareable Part 3.85%↓ 12.38%↓ 23.58%↓ 0.089↓ 0.113↓
W/O TU & TI 6.07%↓ 15.31% 27.34% 0.112 0.130
W/O 0&'%( 2.43%↓ 8.94%↓ 13.82%↓ 0.041↓ 0.062↓
W/O 0'$* 6.67% 17.72% 31.38% 0.136 0.157

6.5 A Case Study

To have an intuitive understanding of the model results, we selected an example user to showcase the SerenCDR-
BERT recommendation results compared to those generated by SNPR, one of the best baseline models. As shown
in Figure 6, a user in the movie domain is interested in comedy, children’s, romance, and action movies as shown
in his or her pro!le record. We also !nd that this user had a serendipity experience on !nding a movie titled The
Dresden Files, a fantasy movie, as in his or her written review:
"I came across this by accident - I had never heard of the show nor the books. . . After viewing the movie, I am

interested in reading the books."
As shown in Figure 6, the top-5 recommended movies by SNPR are of the genres of horror, action, romance,

and history. SNPR failed to hit the serendipity movie, The Dresden Files. These recommendations generally
followed the user’s pro!le record but also deviated a bit with horror and history movies, making attempts for
serendipitous recommendations.
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Fig. 6. Top-5 recommendations generated by SNPR (a single-domain model) and SerenCDR-BERT (our proposed cross-
domain model)

In contrast, our proposed SerenCDR-BERT successfully hit The Dresden Files as the top recommendation.
Looking into the data beyond the movie domain, in the book domain, we found another user who had a similar
taste with the user in the movie domain. They both like comedy, children’s, and romance genres. We also found
this book user’s two pieces of reviews, each describing his or her serendipity experience in !nding a fantasy book.
This book domain knowledge may have inspired SerenCDR-BERT to look for serendipity in the fantasy movies
for the other user. This way, the proposed SerenCDR-BERT, mitigates the imitations of one single domain and
extends the knowledge using another domain without relying on the same user or the same item.

In addition, the ending part of the movie user’s review, "After viewing the movie, I am interested in reading the
books." con!rms that in real life, people consciously or unconsciously transfer their likes and dislikes between
books and movies, or other medium types. Our SerenCDR-BERT was modeling that aspect of reality.
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7 Conclusion

This paper contributes a novel cross-domain recommendation model for serendipity called SerenCDR, with main
and auxiliary loss functions for serendipity learning. In addition, we also collected a new ground truth dataset for
serendipity in two domains, called SerenCDRLens. Both serendipity-based and relevance-based experiments were
conducted. Three groups of the state-of-the-art baseline models were implemented to compare with SerenCDR.
Extensive experimental results show that SerenCDR, without relying on overlapping users or items in di"erent
domains, outperforms the state-of-the-art baseline models in predicting serendipity. We analyzed the e"ectiveness
of di"erent model components and also used a case study to demonstrate how our proposed SerenCDR works for
serendipity recommendations.

For future works, we are interested in extending this study in three ways. First, this study collected serendipity
data from books and movies. In the rich Amazon Review Data [37], many other domains are available, such
as music, electronics, clothing, etc. It would be interesting to explore how SerenCDR is extended to other two
domain pairs (e.g., music and electronics) or a multi-domain (more than two domains) scenario. Second, with the
recent development of AI and advent of large language models (LLMs), we are planning to make use of LLMs to
address the challenges for both serendipity ground truth generation and recommendation model development.
Third, this study did not consider the impact of item temporal order in serendipity recommendations. In the

future, we will further investigate the potential order e"ect on the performance of cross-domain serendipity
recommendations.
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