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A B S T R A C T

Automated platforms could enable the unprecedented pace required for modeling the countless proposed
alternative fuels relevant to future technologies, but existing platforms rely exclusively on automatically
generated computational data and lack experimental validation. Here, we introduce an experimental platform
for rapid kinetic model refinement that combines optimal experimental design, computer-controlled exper-
iments, and optimization—each of which are tailored in novel ways to form a cohesive platform together.
The optimal experimental design considers (1) realistic uncertainties in both experimental conditions and
measurements and (2) diverse reactant mixtures that can include ‘‘chemical sensitizers,’’ which are not
necessarily reactants in a specified Quantity of Interest (QoI) but sensitize kinetic information relevant to a
QoI. Similarly, our High-Throughput Jet-Stirred Reactor (HT-JSR) features (1) rapid multi-species diagnostics
that can measure dozens of species within minutes, (2) a flow delivery system that can prepare up to
∼10-component reactant mixtures, and (3) computer-controlled operation of all components. Finally, a post-
processing code automatically retrieves data from the instruments, quantifies uncertainties in both experimental
conditions and measurements, and produces self-contained files usable for optimization in our MultiScale
Informatics software. This platform is demonstrated for the rate constant for N2O + O ⇌ N2 + O2 as the
QoI where, unlike for N2O + O ⇌ NO + NO, proposed values at ∼1000 K span ∼5 orders of magnitude yet
give equally good agreement with previous experimental data—suggesting that previous experiments fail to
constrain the branching ratio of N2O + O. The results show that optimal conditions with more species as both
reactants and analytes—particularly NO2 as both a reactant and analyte—enable unambiguous discrimination
of the main products of N2O + O. Specifically, the data preclude N2 + O2 as the main products at ∼1000
K—contrary to most recently proposed values.

Novelty and significance statement
We introduce a novel experimental platform for rapid kinetic model refinement that combines optimal

design, computer-controlled experiments, and optimization—each uniquely tailored to form a cohesive plat-
form. It notably employs high levels of automation, high-throughput multi-species diagnostics, and uniquely
diverse reactant mixtures to accelerate scientific discovery. This platform is shown to achieve a goal that no
previous experiment has: decipher the main products of N2O + O. This success—attributable to the platform’s
unique design principles—demonstrates the effectiveness of this experimental platform as a tool for accelerating
scientific discovery and kinetic model development.
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1. Introduction

In the year 2021, approximately 85% of the world energy supply
originated from the combustion of fuels [1], and it is estimated that
combustion will remain a key part of the world energy mix well into
the 21st century [2,3]. However, to address pressing needs for the
future energy landscape, next-generation combustion technologies will
need to be more fuel-efficient, produce less emissions, and operate on
non-traditional (carbon-neutral) fuels [4,5]. Furthermore, these tech-
nological improvements must be accomplished on the rapid timescales
necessary to address these societal issues in an effective manner.

Predictive engine simulations provide a promising means of acceler-
ating engine development [6–10], but they depend on having accurate
kinetic models for fuel oxidation. Given the ever-expanding landscape
of potential 21st century fuels, such models are consequently required
for a wide range of potential fuels, many of which have been scarcely
characterized, on the rapid timescales necessary.

Such rapid timescales present a significant challenge to the current
paradigm for developing reliable kinetic models. Namely, the most
accurate and comprehensive models often result from the combined
efforts of modelers, theoreticians, and experimentalists spanning many
decades (e.g., for n-heptane [11–14]). Automated model construc-
tion [15–18] can conceivably speed up model development, but any
initial model (whether created by a human or a computer) generally
undergoes rigorous refinement to be sufficiently reliable for predictive
simulation.

That is, the model, once created, undergoes a repeated process of
selecting what data are useful, generating such data experimentally
or computationally, and integrating these data into improved models.
While each of these tasks has traditionally required time-intensive
effort, there are, or may soon be, techniques that automate these
tasks. For example, optimal experimental design [19–23] automates
data selection (to best inform predictions of some Quantity of Interest,
QoI), automated theoretical kinetics calculations [24–27] automates
computational data generation, and inverse uncertainty quantification
(UQ) [28–32] automates data integration into improved models. Link-
ing these existing tools together and with emerging automated exper-
imental apparatuses [33,34], in principle, would create an automated
platform for rapid kinetic model development and validation [32].

Two recent studies [35,36] take advantage of automated theoret-
ical kinetics calculations to create platforms for autonomous kinetic
model refinement based on optimally selected computational data.
While such computational platforms can accelerate model refinement,
experimental validation and training is instrumental to the develop-
ment of predictive models [31,37] and would likewise be an essential
component of any rapid model development pipeline.

To this end, we present a platform for rapid kinetic model refine-
ment and validation that involves selection, generation, and integration
of experimental data. Specifically, this platform consists of an algorithm
for optimal experimental design, a computer-controlled experimental
facility, a code to retrieve and post-process the experimental data, and
inverse UQ to integrate the experimental data into improved models.
Notably, each of the elements were designed in concert to form a
cohesive platform—motivating many novel aspects of each element.

For example, the optimal experimental design approach considers
realistic limitations and uncertainties for the experimental apparatus.
This approach uniquely considers uncertainties in the experimental
conditions to avoid selection of experiments whose interpretations are
heavily influenced by uncertainties in the nominal conditions. Addi-
tionally, the measurement uncertainties include both percent reading
(e.g., 10% of the measured value) and minimum (e.g., 10 ppm) error
contributions to avoid selection of experiments whose information
content relies on measurements near or below the instrument detection
2

limits. i
The experimental apparatus was designed with optimal design and
automation in mind, intended to achieve high information genera-
tion rate with minimal human intervention. It uses a jet-stirred re-
actor, which can operate continuously, change conditions relatively
quickly, measure many chemical species, and explore both low- and
high-temperature combustion regimes. Our high-throughput jet-stirred
reactor (HT-JSR) facility also has several key attributes.

First, the flow delivery system enables reactant mixture preparation
of up to ten reactants. These many-component reactants could then in-
clude both the reactants in a QoI (e.g., fuel and oxidizer) and ‘‘chemical
sensitizers’’—species that are not reactants in the QoI but may accentu-
ate kinetics important to predicting the QoI. This notion is inspired by
kinetic ‘‘perturbation’’ studies [38] where species, chosen by chemical
intuition/creativity and/or sensitivity analysis, were added to sensitize
specific reactions [38–42]. Here, the consideration of many-component
reactants enables the optimal design algorithm to be ‘‘creative’’ in
identifying effective chemical sensitizers. For example, earlier opti-
mal design results identified that adding CH4 to atmospheric-pressure
dimethyl ether oxidation experiments accentuates abstraction reactions
by CH3 important to predicting high-pressure ignition delays [43].
Altogether, the ability to choose and prepare complex many-component
mixtures allows for high information content per datum.

Second, the array of multi-species diagnostics can measure many
dozens of species within minutes. These fast, multi-species diagnostics
allow for high data generation rate, particularly when combined with
the following feature.

Third, all components of experimental operation and diagnostic
measurements are computer controlled (and automatable). Our new
post-processing code retrieves the data directly from the instruments
and produces structured data files for inverse UQ. This code thereby
enables (1) automation of the most time-consuming part of our exper-
imentation, (2) rigorous UQ in a tractable manner, and (3) complete
cataloging of meta-data and data analysis procedures. Furthermore,
the combination of automated pre- and post-experimental procedures
(i.e., optimal design and data post-processing) enables the real-time
coupling with computations widely envisioned as the next frontier of
science in the data age [44].

This platform for selection, generation, and integration of new
experimental data is demonstrated here for the N2O mechanism

N2O (+M) ⇌ N2 + O (+M) (R1)

N2O + O ⇌ N2 + O2 (R2)

N2O + O ⇌ NO + NO (R3)

whose characterization remains a significant challenge despite its ap-
parent simplicity and importance to many applications (e.g., NOx for-
mation [45,46], NH3/biomass combustion [47,48], energetic mate-
rials [49,50]). Of the N2O + O reactions (R2) and (R3), the rate
constant for (R3) is relatively well established [51,52]. However, the
rate constant of (R2) has been subject to more debate [53].

Unlike (R3) whose reverse rate constant can also be measured,
experimental determinations of 𝑘2 have generally relied on interpreta-
tions of N2O decomposition experiments. The original interpretations
of these experiments [54–56] yielded 𝑘2 that, at low to intermediate
temperatures, suggest N2 + O2 are the main products of N2O + O
(i.e., 𝑘2/𝑘3 ≫ 1). However, as shown in our companion paper [53],
he same experimental data can also be reproduced equally well using
uch lower 𝑘2 (∼104 times lower at 1000 K) and suggest NO + NO
re the main products (i.e., 𝑘2/𝑘3 ≪ 1). The fact that previous exper-
mental data therefore fail to constrain 𝑘2 (or even decipher the main
roducts of N2O + O) makes this system an interesting test case for the
xperimental platform introduced here.
In the sections below, we describe the key elements of our platform

or selection, generation, and integration of new experimental data. We
hen show that this platform can achieve a goal that no previous exper-

ment over the past several decades appears to have done: decipher the
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Fig. 1. The layout of the experimental equipment to be used in this platform. ‘‘Wireless’’ symbols indicate devices that are controllable via the networked computer and therefore
available for automation.
main products of N2O + O. Finally, we present analyses that indicate
hat this success can be attributed, in large part, to the present inclusion
f NO2 as a reactant and analyte—neither of which were included in
revious experimental studies and both of which are consistent with the
nique design principles of our platform (many-component reactants
nd many-species diagnostics)—altogether implying that this platform
s likely to be a key tool in accelerating scientific discovery and kinetic
odel development.

. Methods

The platform for selection, generation, and integration of exper-
mental data is presented below, beginning with the experimental
pparatus (for data generation), to which the optimal design (for data
election) and inverse UQ approach (for data integration), discussed
hereafter, are tailored. Then, the details of its implementation to
ecipher the main products of the N2O + O reaction are presented.

.1. Computer-controlled apparatus for experimental data generation

The HT-JSR facility at Columbia University (Fig. 1), first used
y Cornell et al. [57], was designed with automation and optimal
xperimental design in mind. This facility features: (1) a flow delivery
ystem that can prepare reactant mixtures of up to 10 components,
2) diagnostics that measure a diverse list of stable chemical species
n under five minutes, and (3) computer-controllable components.
The flow delivery system utilizes nine Bronkhorst thermal mass flow

ontrollers (MFCs) for metering gases and a Bronkhorst (CORI-FLOW)
oriolis mass flow controller (in conjunction with an evaporator) for
etering and vaporizing liquids. The gases are then combined in a
ixing manifold just upstream of the JSR to prepare the gaseous
eactant mixture.
The JSR, manufactured from fused silica, is based on the design by

erbinet et al. [58–60] following standard design rules [61,62]. This
eactor design, in particular, has been found to closely approximate
perfectly stirred reactor under its designed range of conditions [63,
4] and has been used extensively for kinetic studies [57–60,65,66].
rior to its entry to the JSR, the gaseous reactant mixture from the
ixing manifold flows through a thin, annular pre-heat zone with
ow residence time and large surface area where it is rapidly heated
3

to improve thermal homogeneity in the reactor [67]. Subsequently,
the pre-heated gaseous reactant mixture flows into the ∼56-mm-inner-
diameter spherical reactor (with internal volume of 82 ± 2 cm3 [57])
via four ∼0.25-mm-inner-diameter nozzles oriented in a crossed con-
figuration angled ∼45◦ from the equatorial plane to promote turbulent
mixing and high recycling rates. Overall, considering uncertainties in
the reactor volume and typical uncertainties in reactant flow rates,
nominal residence times in the reactor can generally be controlled to
within ±5% accuracy.

The reactor temperature is controlled with a Thermocoax heating
element coiled around the reactor and pre-heat zone, both of which are
wrapped in ceramic insulation. This insulated heater allows the system
to reach temperatures just above 1200 K, within an uncertainty of ±1%
(accounting for contributions due to both measurement uncertainty and
spatial non-homogeneity [57]). The system achieves steady-state after
a change in the temperature setpoint within ∼10 min—such that the
experimental temperature can be varied relatively quickly.

After the reactor, flow splits in two directions: (1) an exhaust line
with a PID-controlled back-pressure regulator and (2) a heated sample
line towards the diagnostic equipment. The experimental pressure is
maintained at 1.02 atm with better than 1% uncertainty [57]. To
minimize wall reactions in the sample line, the stainless steel tubes
have been coated with a SilcoNert coating, an inert non-reactive silica
coating. Condensation of low-volatility mixture components is avoided
through the use of a resistive heater wrapped around the coated tubes
to maintain a temperature of ∼385 K.

Three online, rapid-throughput diagnostics draw from the sample
line: (1) a four-column Inficon Fusion micro gas chromatograph (GC),
which can measure mole fractions for a wide array of common combus-
tion products with typical measurement times under 3 min, (2) an Eco
Physics AG nCLD 844 CMhr chemiluminescence analyzer (CLA), which
can measure real-time mole fractions of NO, NOx, and NOx/amines in
the general range of 25 ppb to ∼500 ppm (with the max depending
somewhat on the mixture conditions, e.g., see [57,65]), and (3) Infrared
Industries IR 208 gas analyzers containing four infrared (IR) channels,
which can measure real-time mole fractions of NO, NO2, N2O, and
NH3 at various ranges, and an electrochemical cell (ECC), which can
measure real-time mole fractions of NO up to 5000 ppm. All of these
diagnostics are controllable from a remote PC via API tools, enabling
automated operation and data retrieval.
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2.2. Optimal design for experiment selection

Automated experiment selection uses the established paradigm of
model-based optimal design [19–23], where a set of possible experi-
ments are simulated using a model based on prior knowledge and then
experiments are selected to minimize the Shannon entropy of a model
or uncertainty in a QoI (e.g., a specific rate constant, flame speed, or
ignition delay time). While highly sophisticated methods can choose an
optimal set of experiments [20] or consider nonlinear responses of pre-
dictions to model inputs [19], the present work uses a simple method
(similar to [23]) that assumes a linear response of simulated experi-
mental observables to model inputs and chooses the best experiments
one at a time. The main innovations here involve: (1) consideration
of uncertainties in the experimental conditions (leveraging the unique
capabilities of the MultiScale Informatics (MSI) approach [32,68,69]
employed); (2) fidelity of experimental capabilities and uncertainties to
an actual apparatus (leveraging our in-house knowledge of our experi-
ment); and (3) consideration of many-component mixtures (leveraging
our unique experimental setup and the notion of ‘‘chemical sensitizers’’
inspired by kinetic perturbation studies [38–42]).

Before optimal (future) experiments are selected, an uncertainty-
quantified model, whose uncertainties are constrained by prior (ex-
isting) data, is created. Here, this is accomplished using our MSI
approach. Like many other inverse UQ procedures [23,30,31], MSI
seeks to optimize and quantify uncertainties for a set of active model
parameters, 𝒙, based on a set of target data, 𝒚t, via minimization of the
uncertainty-weighted, least-squares error

𝐸(𝒙) =
∑

(

𝑦t𝑖 − 𝑓𝑖(𝒙)
𝑧𝑖

)2

(1)

here 𝑓𝑖(𝒙) is the model prediction of the 𝑖th target and 𝑧𝑖 is a
eighting factor for the 𝑖th target proportional to the uncertainty of
he 𝑖th target, 𝜎𝑖; and the posterior uncertainty is approximated via a
ocally linear surrogate model in the vicinity of the optimized values,
∗,

(𝒙) ≈ 𝒇 (𝒙∗) + 𝑺(𝒙 − 𝒙∗) (2)

here 𝑺 is a matrix whose elements are given by

𝑖𝑗 =
(

𝜕𝑓𝑖
𝜕𝑥𝑗

)

𝒙=𝒙∗
(3)

ielding a covariance matrix,

=
(

𝒔𝑇 𝒔
)−1 (4)

here each row of the normalized sensitivity matrix, 𝒔, is equal to each
ow of 𝑺 divided by the corresponding weighting factor, 𝑧𝑖. Prediction
ncertainties for the QoI(s) can then be evaluated via uncertainty
ropagation according to

𝑄𝑜𝐼 =
[

𝑺QoIΣ𝑺𝑇
QoI

]1∕2
(5)

here 𝑺QoI is the sensitivity of the QoI prediction to active parameters.
Unlike other inverse UQ methods, the active parameters within
SI can include both molecular parameters (within theoretical kinetics
alculations) and physical model parameters (to account for uncertain-
ies in nominal experimental conditions) in addition to rate constant
arameters. Furthermore, the data used as targets in MSI can include
olecular properties calculated ab initio in addition to rate constant
eterminations, macroscopic observables (e.g., species mole fractions
n an experiment), and any priors for the active model parameters.
After this uncertainty-quantified model based on prior knowledge

s created, each predicted observable, 𝑓 (𝑒)
𝑖 , in a potential experiment,

, and sensitivity of each observable to model parameters (including
he physical model parameters describing the experimental conditions),
(𝑒)
𝑖 , can be calculated using the model. For the present experiment,
he observable is considered to be ln(𝑋(𝑒)), where 𝑋(𝑒) is the JSR outlet
4

𝑜,𝑖 𝑜,𝑖
mole fraction for a species to be measured. The relative uncertainty
of each potential species mole fraction measurement, 𝜎(𝑒)𝑖 , notably
ncludes contributions due to a percent reading uncertainty (e.g., 10%),
𝑟(𝑒)
𝑖 , and a minimum uncertainty (e.g., 10 ppm), 𝜎̃𝑚(𝑒)𝑖 , characteristic of
ach diagnostic via

(𝑒)
𝑖 =

√

(𝜎𝑟(𝑒)𝑖 )2 + (𝜎̃𝑚(𝑒)𝑖 ∕𝑋(𝑒)
𝑜,𝑖,𝑝)2 (6)

here𝑋(𝑒)
𝑜,𝑖,𝑝 is the predicted JSR outlet mole fraction for the correspond-

ng species. Physical model parameters for each experiment are also
ncluded among the active model parameters with prior uncertainties
haracteristic of each instrument used to measure them.
Appending the normalized sensitivity matrix, 𝒔(𝑒) (defined as be-

ore), for each experiment to the previous normalized sensitivity ma-
rix, 𝒔, and recalculating the covariance matrix,Σ(𝑒), enables evaluation
f the QoI prediction uncertainty, 𝜎(𝑒)𝑄𝑜𝐼 , that would result from having
un the 𝑒th experiment. Once 𝜎(𝑒)𝑄𝑜𝐼 is calculated for each experiment,
the experiment with the lowest estimated 𝜎(𝑒)𝑄𝑜𝐼 is selected as the best
future experiment to perform. To find additional experiments, the
procedure is repeated using a normalized sensitivity matrix, 𝒔, that
includes each of the previously selected experiments. The procedure
can be repeated until a certain number of experiments are selected
and/or a desired 𝜎𝑄𝑜𝐼 is achieved.

2.3. Automated post-processing for experimental data integration into im-
proved models

Once experiments are performed using the computer-controlled ex-
perimental apparatus (Section 2.1) at the conditions selected by optimal
design (Section 2.2), automated integration of the experimental data
into improved models is then achieved via an in-house post-processing
script and our MSI software.

This post-processing script retrieves experimental data directly from
the instruments, post-processes the measurements and associated meta-
data, quantifies the associated uncertainties, and produces MSI-
compatible YAML files for each experiment. Within the script, the
uncertainties for experimental conditions are assigned on the basis of
prior detailed analysis of the available equipment (i.e., temperature
controller, pressure controller, mass flow controllers, etc.); uncertain-
ties in the measurements are calculated by combining various specified
sources of uncertainty from the diagnostic manufacturers and other
sources of error such as calibration error or drift (cf. [70]). The YAML
files generated contain the values of all measured species, complete
metadata describing the experiment (including the reactor temperature,
pressure, residence time, and inlet mole fractions), and associated
uncertainties for each measurement and physical model parameter.

Thereafter, optimization and inverse UQ within MSI is performed
using the new experimental data along with any previous theoretical
and experimental data by including the new experimental data among
those used in Eqs. (1) and (4).

2.4. Implementation for N2O kinetics as a demonstration

To demonstrate the effectiveness of this cohesive platform for exper-
imental data selection, generation, and integration, it is implemented
here to decipher the main products of the N2O + O reaction, which has
apparently evaded unambiguous determination previously [53]. With
the branching ratio uncertainty being dominated by the uncertainty in
𝑘2, we chose 𝑘2 as the QoI here. While the optimal design procedure
can consider previous data, the analysis in the present paper uses
no previous theoretical calculations or experimental measurements—
to aid in a completely independent investigation of N2O + O from the
analysis of previous data presented in our companion paper [53].

Our analysis here is based on an active kinetic model that adopts
the model of Glarborg et al. [51] (with corrected collision efficiencies
for key pressure-dependent reactions, e.g., ∼2.2 for the He efficiency
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Table 1
The list of reactions within the kinetic model, associated prior uncertainties expressed
as uncertainty factors (UF), and ratios of rate constants in the MSI (optimized) model
to those of the prior model, 𝑘∗𝑖 ∕𝑘𝑖,0.

Reaction Uncertainty factor 𝑘∗𝑖 ∕𝑘𝑖,0
R1 N2O (+M) ⇌ N2 + O (+M) 3.2 1.19
R2 N2O + O ⇌ N2 + O2 10 0.05
R3 N2O + O ⇌ NO + NO 2.0 1.02
R4 NO + O (+M) ⇌ NO2 (+M) 2.0 1.36
R5 NO2 + O ⇌ NO + O2 1.2 1.20
R6 O + O + M ⇌ O2 + M 1.3 1.00
R7 N + O2 ⇌ NO + O 3.2 1.00
R8 N + NO ⇌ N2 + O 2.0 1.00
R9 NO2 + NO2 ⇌ NO + NO + O2 2.0 1.00
R10 NO2 + NO2 ⇌ NO + NO3 5.0 0.98
R11 NO2 + O (+M) ⇌ NO3 (+M) 5.0 0.53
R12 NO3 + O ⇌ NO2 + O2 10.0 1.00
R13 NO2 + NO3 ⇌ NO + NO2 + O2 10.0 1.00
R14 N2O + NO ⇌ N2 + NO2 10.0 1.00

in (R1) [71]), which notably assumes a median value for the 𝑘2/𝑘3
ranching ratio (𝑘2/𝑘3 = 1), as the prior model. While the MSI ap-
roach allows for a wider variety of active kinetic parameters, only
re-exponential factors are considered here (to enable a purely exper-
mental determination within the limited temperature window of the
resent experiments). Specifically, the active kinetic parameters for
ach reaction are ln(𝐴𝑖∕𝐴𝑖,0) (where 𝐴𝑖 is the pre-exponential factor
or the 𝑖th reaction and 0 subscripts refer to the nominal values). Prior
ncertainties for each ln(𝐴𝑖∕𝐴𝑖,0) are assumed to follow a normal distri-
ution with two-standard-deviation values equal to ln(UF). Uncertainty
actors, UF = 𝑘𝑖,0∕𝑘𝑖,𝑙𝑜𝑤𝑒𝑟 = 𝑘𝑖,𝑢𝑝𝑝𝑒𝑟∕𝑘𝑖,0, are taken from the compilation
f Cornell et al. [65] (if available) or set to 10 (otherwise), cf. Table 1.
In simulating the information content of potential experiments in

he optimal design, active physical model parameters are considered
ith prior uncertainty estimates based on our prior experiments (1%
or temperature and pressure, and 5% for mole fraction and residence
ime). Measurement uncertainties, calculated according to Eq. (6), com-
ine contributions from a 5%-of-reading uncertainty for all measured
pecies and minimum uncertainties specific to each species (50 ppm
or N2O, O2, and N2 and 5 ppm for NO and NO2) based on diagnos-
ic specifications and prior experiments [57,65,66]. (Note that, while
hese estimates are used for experimental design, the post-processing
lgorithm automatically recalculates and reassigns these uncertainties
nce experiments have been performed.)
The potential experimental condition space to be explored for op-

imal design was mapped onto a grid of three temperatures, five
esidence times, and 25 mole fractions per reactant spanning the ranges
iven in Table 2 at 1.02 atm pressure. The specific inlet mole fraction
anges for each reactant (e.g., with much lower fractions of NO and
O2 than N2O) were chosen to yield outlet mole fractions suitable to
ach diagnostic. While the apparatus can achieve temperatures over a
uch wider range (up to ∼1200 K), a limited temperature window is
onsidered here based on an initial (ad hoc) screening of conditions
long with the desire to reduce all rate constant uncertainties to those
f a single temperature-independent factor. In contrast to previous
xperimental studies used to constrain 𝑘2, which merely consider un-
omplicated mixtures of diluent and N2O, the condition space explored
ere also includes ‘‘chemical sensitizers’’ whose inclusion in reactant
ixtures might increase the information content of the experiments.
For example, chemical sensitizers could include other O/N species

e.g., N2, O2, NO, NO2, and O3) without greatly expanding the number
f reactions (and associated interpretation uncertainties). Among these,
2, O2, NO, NO2, and their mixtures with inert diluents are com-
ercially available in gas cylinders. Preliminary design calculations
evealed minimal gains from N2 and O2 in reactant mixtures, such that
5

O and NO2 were ultimately selected for optimal design.
Table 2
Range of experimental conditions considered by the optimal design algorithm. Four
scenarios were investigated, with increasing complexity of the mixture from scenario
S1 to S4.
Scenario T (K) P (atm) 𝜏 (s) XN2O XNO XNO2

S1 1000–1100 1.02 0.45–1.5 0.005–0.2 None None
S2 1000–1100 1.02 0.45–1.5 0.005–0.2 0-0.00025 None
S3 1000–1100 1.02 0.45–1.5 0.005–0.2 None 0–0.0005
S4 1000–1100 1.02 0.45–1.5 0.005–0.2 0-0.00025 0–0.0005

Table 3
Compiled list of experimental conditions selected by optimal design from scenarios S3
and S4 (ID 1–17, cf. Section 2.4). Note that the equivalent set of diluted conditions (ID
1d–17d, not listed below) was simply obtained by dividing all reactant mole fractions
by three. The pressure for all conditions is 1.02 atm.
ID T (K) 𝜏 (s) N2O (%) NO (ppm) NO2 (ppm)

1 1050 0.45 20.0 0 356
2 1100 1.5 20.0 250 0
3 1050 0.45 20.0 0 0
4 1050 0.45 20.0 10 356
5 1050 0.45 20.0 10 0
6 1100 1.5 6.82 250 180
7 1050 0.45 20.0 11.5 356
8 1050 0.45 20.0 0 10
9 1100 1.5 6.82 250 214
10 1050 0.45 20.0 11.5 0
11 1050 0.45 20.0 0 356
12 1100 1.5 20.0 0 0
13 1050 0.45 20.0 0 0
14 1050 0.45 20.0 0 300
15 1050 0.45 20.0 0 10
16 1050 0.45 20.0 0 11.9
17 1100 1.5 5.85 0 422

The optimal design procedure is implemented for four different
condition spaces of varied complexity in mixture composition to as-
certain the utility of many-component mixtures and identify especially
effective ‘‘chemical sensitizers’’: (S1) N2O/He, (S2) N2O/NO/He, (S3)
N2O/NO2/He, and (S4) N2O/NO/NO2/He. The procedure was also
implemented for five different sets of measured species to ascertain the
utility of measuring more species.

Then, experiments were performed for three sets of conditions.
First, experiments were performed for a set of conditions (ID 1–17,
Table 3) compiled from the first 10 experiments chosen by optimal
design from S3 and S4 (the two most effective mixture scenarios),
where some conditions from S3 were removed if they were also selected
from S4 (resulting in a list of only 17 conditions). Second, experiments
were performed for a set of conditions (ID 1d–17d) identical to the
first set in every way except that the reactant mole fractions were
reduced three-fold—in order to detect any influence from wall reac-
tions, which have influenced some previous intermediate-temperature
experiments [51,72]. Third, experiments were performed for a set of
conditions identical to the most effective experiment identified (ID1)
except that the inlet mole fraction of NO2, which was found to be the
most effective ‘‘chemical sensitizer’’ (cf. Fig. 2), was varied.

Based on the conditions selected, only the IR, ECC, and GC diag-
nostics were used; the IR detector measured NO2, ECC measured NO,
and GC measured N2, O2, N2O, and NO. Multi-point GC calibrations
were performed over the full range of relevant mole fractions for each
species before any experiments were conducted and tested after all ex-
periments were completed—enabling quantification of the calibration
drift. The zero and span values for the IR detector and ECC were tested
and recalibrated in between all experiments (similar to our previous
work)—indicating negligible calibration drift. Calibrations for each di-
agnostic were tested for linearity and for dependence on the N2O mole
fraction up to 20% (revealing negligible effects). These uncertainties,
measured noise, and estimated minimum detectable mole fractions of

each diagnostic are reported in Table 4. Physical model parameter
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Table 4
Estimated measurement uncertainties specific to each diagnostic instrument. Entries
with — indicate uncertainty contribution is negligible compared to other sources of
uncertainty. Note that calibrations for species measured on the GC are multipoint
calibrations (where a range of mole fractions were used to generate a calibration curve),
such that measurement error due to calibration, which is therefore a function of the
measurement itself, cannot be easily tabulated below but is included in the estimated
uncertainty for each data point (and reflected in Tables S1–S6 in the Supplementary
Material). In all cases, the combined uncertainties for each data point are given in the
Supplementary Material.
Observable N2Oa N2

a NOa NOc NO2
b O2

a

Calibration Multi- Multi- Multi- 1500 ppm 50.0 ppm Multi-
point point point ±2.3% ±6.4% point

Drift ±1% ±1% ±1% — — ±1%
Linearity ±1% ±1% ±1% ±2% ±10% —
Noise (1𝜎) ±5% ±2% ±0.5% ±1% ±1% ±2%
Min. Detectable 50 ppm 50 ppm 50 ppm 1 ppm 5 ppm 20 ppm

a Gas chromatography (GC)
b Infrared absorption (IR)
c Electrochemical cell (ECC)

uncertainties were also reassessed, indicating reactant mole fraction
uncertainties of 2% (instead of 5% used in the optimal design) and
uncertainties for temperatures, pressures, and residence times of 1%,
1%, and 5%, respectively, (as used in the optimal design). Independent
tests using a DryCal flow meter confirmed the calibration for each MFC
to be accurate within 1%. All experimental data and uncertainties are
tabulated in the Supplementary Material.

Inverse UQ is then performed based on the first and second experi-
mental datasets to generate an improved kinetic model. In principle, the
improved model could be then subjected to another iteration of optimal
design, experimentation, and inverse UQ (i.e., an iterative approach
similar to Lehn et al. [23]). However, optimal design performed for the
model optimized against the dataset described above revealed minimal
gains from additional experiments.

3. Results and discussion

3.1. Experiments selected by optimal design

The estimated reduction in 𝑘2 uncertainty from experiments se-
lected by optimal design from each mixture scenario (cf. Table 2)
shown in Fig. 2 illustrates several key ideas. First, only a few (optimally
selected) experiments are required to achieve substantial estimated
uncertainty reductions. Second, the estimated uncertainty reduction is
much greater for mixtures containing more distinct reactants (e.g., NO
and/or NO2)—with notable gains over the N2O/diluent mixtures used
in previous experiments. Third, the estimated uncertainty reductions
are greater for any mixtures that include NO2. In fact, mixtures with
both NO and NO2 are only marginally better than mixtures just doped
with NO2—such that experiments including NO2 as a reactant appear
particularly effective in constraining 𝑘2.

For the purposes of illustrating the utility of measuring multiple
species simultaneously, the experimental design procedure was also
implemented for scenario S1 (i.e., N2O/He mixtures) with varied num-
ber of measured species. The estimated uncertainty reductions, shown
in Fig. 3, demonstrate the value of measuring many different species
in each experiment. Furthermore, while measuring O2 in addition to
N2O, NO, and N2 yields negligible estimated gains, measuring NO2
n addition to the other species yields notably greater uncertainty
eductions.
To aid in understanding these trends as well as the specific condi-

ions selected, it is useful to examine the values for a factor defined by

̂𝑖𝑗 = 𝑆𝑖𝑗
𝜎𝑗
𝜎𝑖

(7)

hich reflects the sensitivity of the 𝑖th measurement to the 𝑗th model
arameter times the 𝑗th model parameter uncertainty divided by the 𝑖th
6

g

Fig. 2. Ratio of the estimated uncertainty in ln(𝑘2) after 𝑛 experiments to that of the
prior model (i.e., 𝑛 = 0) as a function of the number of new JSR experiments, 𝑛, selected
by the optimal design algorithm. Results are shown for each of the four scenarios of
Table 2 considering N2O, NO, N2, O2, and NO2 to be measured in each experiment.

Fig. 3. Ratio of the estimated uncertainty in ln(𝑘2) after 𝑛 experiments to that of the
prior model (i.e., 𝑛 = 0) as a function of the number of new JSR experiments, 𝑛, selected
by the optimal design algorithm. Results are shown for scenario S1 from Table 2 under
ive different sets of species considered to be measured.

easurement uncertainty. The values of this parameter, shown in Fig. 4
or each species to be measured in the first five selected experiments
nd the five most important reactions (R1–R5), reflect the expected
nformation content of a specific measurement.
For context, a |𝑆̂𝑖𝑗 | much less than 1 implies minimal information

bout the 𝑗th parameter can be gained from the 𝑖th measurement; and
igher |𝑆̂𝑖𝑗 | values imply that more information is provided by the
th measurement about the 𝑗th parameter (albeit in a manner coupled
o other parameters with high |𝑆̂𝑖𝑗 |). For example, measurements of
2O, which is predicted to maintain outlet mole fractions similar to
he inlet mole fractions, have low |𝑆̂𝑖𝑗 | and would therefore provide
inimal information; by contrast, |𝑆̂𝑖𝑗 | for measurements of other
pecies can reach ∼10 and would therefore be very informative of
pecific combinations of parameters.
Qualitatively, the experiments selected for mixtures of N2O/He and

2O/NO/He show very similar behavior, with the sign of 𝑆̂𝑖𝑗 being
enerally the same for each reaction for a given measured species. By
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Fig. 4. Values (on the x-axis) for doubly-uncertainty-weighted sensitivities, 𝑆̂𝑖𝑗 = 𝑆𝑖𝑗𝜎𝑗∕𝜎𝑖, of the five species to be measured (in different rows of panels) to the five most important
reactions (labeled on the 𝑦-axis of each panel) for the first five selected experiments (in different bars for each reaction in each panel) in each of the four scenarios of Table 2 (in
different columns of panels).
F
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contrast, mixtures doped with NO2 display different behavior specifi-
cally for measurements of NO2. In addition to having higher absolute
values of 𝑆̂𝑖𝑗 , the sign of the sensitivity of NO2 measurements to 𝑘1
and 𝑘2 in S3 and S4 varies from experiment to experiment. Notably,
in contrast to all other species and in contrast to all species for S1
and S2 (without NO2 addition), the sensitivity of predicted NO2 outlet
mole fraction to 𝑘1 is negative for experiments with NO2 (the first and
fourth selected experiments in S3 and S4). Therefore, measuring NO2 in
reactant mixtures with NO2 aids in removing the correlation among rate
constants in the information provided by measurements of other species
and in other mixtures (explored further in Section 3.3). Altogether,
7

M

igs. 2–4 suggest a unique value in measuring NO2 in mixtures with
O2 addition—which has not been done in any previous experiments.

.2. Experimental results and model comparisons

Given that scenarios with NO2 addition (S3 and S4) were found
ost effective, experiments were performed for the optimally selected
onditions from S3 and S4 (ID 1–17, Table 3) and for the equivalent
‘diluted’’ conditions (ID 1d–17d, cf. Section 2.4). Inverse UQ based on
hese data and the priors for the rate constant parameters (cf. Table 1)
and physical model parameters (cf. Section 2.4) yields an (optimized)
SI model (with rate constant adjustments indicated in Table 1) that
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Fig. 5. Distribution of uncertainty-weighted errors, (𝑦t𝑖 − 𝑓𝑖)∕𝜎𝑖, for model predictions,
𝑓𝑖, relative to the present experimental measurements, 𝑦t, using several models: the
prior model (adopted from Glarborg et al. [51]) (red), the prior model with 𝑘2 from
eagher and Anderson [52] (green), the prior model with 𝑘2 from González et al. [73]
pink), and the MSI model (blue). (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)

Fig. 6. Square root of the sum of squared uncertainty-weighted errors for model
redictions, 𝑓𝑖,𝑠, relative to the present experimental measurements, 𝑦t, for each species
s using several models: the prior model (adopted from Glarborg et al. [51]) (red), the
prior model with 𝑘2 from Meagher and Anderson [52] (green), the prior model with
𝑘2 from González et al. [73] (pink), and the MSI model (blue). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

is generally consistent with the present data and priors. Specifically, all
rate and physical model parameters lie within their prior uncertainties
except for 𝑘2, where the 5-order-of-magnitude spread in previously pro-
posed values at intermediate temperatures suggests a much larger prior
uncertainty anyway. Notably, 𝑘2 in the MSI model is substantially re-
duced from that of the prior model (adopted from Glarborg et al. [51]),
yielding a branching ratio for the N2O + O that greatly favors NO + NO
as the main products (consistent with González et al. [51]).

The agreement of this MSI model with the present experimental data
is excellent, with uncertainty-weighted errors, (𝑦t𝑖 − 𝑓𝑖)∕𝜎𝑖, generally
less than 1 and tightly centered about ∼0 with a standard deviation
of ∼0.5 (consistent with experimental uncertainty estimates reflecting
the 2𝜎 level). Furthermore, with the exception of NO2, whose values
are close to the minimum detection error in many diluted experiments,
the MSI model reproduces the experiments at undiluted (ID 1–17) and
diluted (ID 1d–17d) conditions with very similar uncertainty-weighted
error statistics for each species—suggestive of minimal impact of wall
reactions.

Statistics for the uncertainty-weighted errors against the experimen-
tal data for the MSI model are shown in Figs. 5–7, where three other
8

Fig. 7. Distribution of uncertainty-weighted errors, (𝑦t𝑖 − 𝑓𝑖)∕𝜎𝑖, for model predictions,
𝑓𝑖, relative to the present experimental measurements, 𝑦t, for N2, O2, and NO using
several models: the prior model (adopted from Glarborg et al. [51]) (red), the prior
model with 𝑘2 from Meagher and Anderson [52] (green), the prior model with 𝑘2
from González et al. [73] (pink), and the MSI model (blue). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

models are also shown for comparison: (1) the prior model (adopted
from Glarborg et al. [51]), (2) the prior model with 𝑘2 from Meagher
and Anderson [52], and (3) the prior model with 𝑘2 from González
et al. [73]. Compared to the MSI model, the uncertainty-weighted
errors for the other three models are noticeably larger. By contrast to
the MSI model, prior model, and prior model with 𝑘2 from González
et al. [73] (which all have 𝑘2/𝑘3 ≤ 1), the uncertainty-weighted errors
re especially large for the model with 𝑘2 from Meagher and Ander-
son [52] and, even more so, for a model with 𝑘2 from Pham and
Lin [74] (not shown), which both have 𝑘2/𝑘3 >> 1.

Inspection of the sums of the squared uncertainty-weighted errors
for each species (shown in Fig. 6) reveals that the majority of these
errors for the models with 𝑘2 from Meagher and Anderson [52] (or
Pham and Lin [74]) is concentrated in measurements of N2, O2, and
NO—which would be consistent with errors in the 𝑘2/𝑘3 branching
ratio in these models. In fact, the distributions of uncertainty-weighted
errors for N2, O2, and NO (shown in Fig. 7) further support this notion.
Specifically, the prediction errors (𝑦t𝑖 − 𝑓𝑖)∕𝜎𝑖 for the models with 𝑘2
from Meagher and Anderson [52] (or Pham and Lin [74]) are always
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Fig. 8. Square root of the sum of squared uncertainty-weighted errors for model
redictions, 𝑓𝑖, relative to the present experimental measurements, 𝑦t, for MSI models
optimized for a range of fixed values of 𝑘2 at 1050 K. Vertical dashed lines indicate
2(1050 K) from (A) González et al. [73], (B) the MSI model optimized with 𝑘2 among
he active parameters, (C) Glarborg et al. [51], (D) Meagher and Anderson [52], and
E) Pham and Lin [74].

egative for N2 and O2 but positive for NO. That is, the models with
2 from Meagher and Anderson [52] or Pham and Lin [74] overpredict
2 and O2 (the products of (R2)) and underpredict NO (the products of
R3)), which is consistent with 𝑘2/𝑘3 being too high in those models.
That being said, while the discussion above seems to imply that the

ata support lower values of 𝑘2/𝑘3, previous experimental data could
f course be equally well reproduced with 𝑘2/𝑘3 values much greater
han 1 and much less than 1—depending on the rate constants for other
eactions in the model [53]; and, except for the MSI model, all models
n Figs. 5–7 differ only in their values for 𝑘2.
Therefore, to ensure that the present conclusions are not model-

ependent in the same way as previous experimental studies, a series
f alternative optimizations were carried out where 𝑘2 was fixed at a
eries of different values while all other model parameters were opti-
ized. The sums of squared uncertainty-weighted errors for this series
f optimizations, shown in Fig. 8, reveal that the minimum residual
rrors can be achieved for a broad range of 𝑘2—at least for 𝑘2(1050
) lower than ∼107 cm3 mol−1 s−1, which notably encompasses the
heoretical calculations of González et al. [73]. For 𝑘2 below this value,
he present experiments alone cannot distinguish among different 𝑘2
alues (which also poses a challenge for typical methods for quantifying
osterior uncertainties, including that used here). (That being said,
onsideration of theoretical calculations [73] among the data, as done
n our companion paper [53], leads to a well-defined optimum value
ith a more easily quantifiable posterior uncertainty.)
However, for 𝑘2 values higher than ∼107 cm3 mol−1 s−1, the residual

rrors rapidly increase with increasing 𝑘2—rising from a factor of two
igher for 𝑘2 ≈ 108 cm3 mol−1 s−1 (corresponding to 𝑘2/𝑘3 ≈ 1 as
in the prior model adopted from Glarborg et al. [51]) to a factor of
∼10 higher for 𝑘2 values from Meagher and Anderson [52] and Pham
and Lin [74]. In other words, branching ratios 𝑘2/𝑘3 greater than 1 are
simply inconsistent with the experimental data regardless of the choices
of rate constants for the other reactions.

Consequently, the present experiments seem to have constrained 𝑘2
at intermediate temperatures in a manner that previous experiments
have not. Notably, the present experiments are apparently the first
to employ varied NO2 addition, which the optimal design results of
Section 3.1 reveal to have unique advantages in constraining 𝑘2—
motivating the following section intended to understand the role of NO2
addition in deciphering the main products of N O + O.
9

2

3.3. Further analysis of NO2 addition

Examination of the inlet NO2 mole fraction dependence aids in
both visually assessing the performance of the models with different
𝑘2 and further understanding why NO2 addition is as effective as the
optimal design results indicate. Consistent with the statistics reported in
Section 3.2, Fig. 9 reveals that models with lower 𝑘2 better reproduce
he experimentally observed values and trends with inlet NO2. Even
mong the models with lower 𝑘2 values (including the prior model,
SI model, and model with 𝑘2 from González et al. [73]), models
ith 𝑘2(1050K) ≪∼108 cm3 mol−1 s−1 (the MSI model and model
ith 𝑘2 from González et al. [73]) better reproduce subtle qualitative
eatures in the measurements such as the lack of inlet NO2 mole fraction
ependence of outlet N2 mole fractions.
Furthermore, model predictions with high 𝑘2 (from Meagher and

nderson [52] and Pham and Lin [74]) are inconsistent with not
nly the experimentally observed species mole fractions but also their
rends with inlet NO2 mole fraction. For example, models with high 𝑘2
redict decreasing N2 with increasing inlet NO2 (instead of constant
2 as observed) and constant O2 with increasing inlet NO2 (instead
f increasing O2 as observed). The qualitative differences are most
ronounced for outlet mole fractions of NO2, which exhibited very
ifferent sensitivity coefficients with and without inlet NO2 (Fig. 4).
amely, models with high 𝑘2 underpredict outlet NO2 by a factor of
10 with 0 inlet NO2 and overpredict outlet NO2 by a similar amount
ith 356 ppm inlet NO2.
Analysis of the reactions responsible for production/consumption of

ach species calculated with the MSI model and the model with 𝑘2 from
eagher and Anderson [52] (Fig. 10) sheds light on these observations.
hile both models predict NOx to be formed exclusively via (R3) (and
xchanged between NO and NO2 via R4 and R5), the two models show
mportant differences in the reactions responsible for the other main
pecies (N2O, N2, O2, and O). Notably, in the MSI model predictions,
R2) is not a significant production or consumption pathway for any
pecies—N2O is consumed mostly by (R1) and partially by (R3), N2 is
xclusively formed via (R1), O2 is exclusively formed via R4, and O is
onsumed mostly by R4 and R5 and partially by (R3). The fact that
2 is exclusively formed via (R1) serves to explain the lack of inlet
O2 dependence in the MSI model—with the outlet N2O mole fraction
emaining close to its inlet value, the rate of (R1) and likewise the rate
f N2 production is independent of inlet NO2.
As an aside, the fact that (R2) is not a significant production or

onsumption pathway for any species also serves to explain the fact
hat the experiments cannot distinguish among 𝑘2 values that are
ufficiently low (cf. Fig. 8). After all, the rates of production of all
easured species that are reactants (N2O) or products (N2 and O2) of
R2) have two distinct terms

̂N2O = −𝑘1[N2O] − (𝑘2 + 𝑘3)[N2O][O] (8)

̂N2
= 𝑘1[N2O] + 𝑘2[N2O][O] (9)

̂O2
= 𝑘2[N2O][O] + 𝑘5[NO2][O] (10)

iven the typical mole fractions observed for NO (∼700 ppm) and NO2
∼20 ppm), the reasonably established values for 𝑘1, 𝑘4, and 𝑘5 (of
.4 × 10−2 s−1, 7 × 1010 cm3 mol−1 s−1, and 3.0 × 1012 cm3 mol−1
−1 for 1050 K, 1 atm, and He bath), and the fact that O is essentially
quasi-steady-state species,

O] ≈
𝑘1[N2O]

𝑘2[N2O] + 𝑘3[N2O] + 𝑘4[NO] + 𝑘5[NO2]
(11)

the 𝑘2 term in each of these equations is only significant when 𝑘2 >∼108
cm3 mol−1 s−1 (consistent with the results of Fig. 8). This serves to
explain the only minor qualitative differences for inlet NO2 dependence
of N for the prior model (where 𝑘 ≈ 108 cm3 mol−1 s−1), which
2 2
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Fig. 9. Species mole fractions in the outlet mixture as a function of NO2 mole fraction in the inlet (reactant) mixture (along with 20% N2O and balance He). Symbols indicate the
present experimental measurements and lines indicate model predictions using the prior model (adopted from Glarborg et al. [51]) (red), the MSI model (blue), the prior model
with 𝑘2 from Meagher and Anderson [52] (green), the prior model with 𝑘2 from González et al. [73] (pink), and the prior model with 𝑘2 from Pham and Lin [74] (yellow). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
predicts a decreasing dependence, and the MSI model and model with
𝑘2 from González et al. [73] (where 𝑘2 <∼107 cm3 mol−1 s−1), which
predict no dependence (consistent with the data).

On the other hand, in simulations using the model with 𝑘2 from
Meagher and Anderson [52], (R2) yields comparable contributions to
(R1) in N2O consumption and N2 production and dominates O2 pro-
duction and O consumption. With the correspondingly higher rates of
consumption predicted for O, the predicted O mole fractions are much
lower and, therefore, the rates of NO formation (and NO2 consumption)
are also much lower. Furthermore, with significant contributions of
(R2) to N2 and O2, the reduced O mole fractions for high inlet NO2,
which consumes O via R5 to form O2 and NO, lead to reduced rates of
(R2) and consequently lower N2 with increasing inlet NO2 but constant
O with increasing inlet NO given that (R2) and R5 both produce O .
10

2 2 2
The impact of the mechanistic differences for 𝑘2 ≫∼108 cm3 mol−1

s−1 on the inlet NO2 dependence of outlet NO2 mole fractions is
particularly interesting (especially in light of the sensitivity coefficients
for outlet NO2 in scenarios with NO2 addition). For conditions where
NO2 is produced on the net inside the reactor (e.g., for 0 inlet NO2),
models with high 𝑘2 values, which yield lower NO and O mole fractions
(and likewise lower NO2 production via R4), significantly underpredict
the outlet NO2 mole fraction. On the other hand, for conditions where
NO2 is consumed on the net inside the reactor (e.g., for 356 ppm inlet
NO2), models with high 𝑘2 values, which yield lower O mole fractions
(and likewise lower NO2 consumption via R5), significantly overpredict
the outlet NO mole fraction.
2
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Fig. 10. Rates of production for key species for the conditions of Fig. 9. Solid lines are calculated using the MSI model, while dashed lines are calculated using the prior model
with 𝑘2 from Meagher and Anderson [52].
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Altogether, these results serve to explain why NO2 addition (which
has not been employed in previous studies of 𝑘2) appears to be es-
pecially useful to deciphering the main products of N2O + O in the
present experiments in a way that previous experiments without NO2
addition have not. In particular, the present experiments appear to
preclude the possibility that N2 + O2 are the dominant products at
intermediate temperatures as reported by Pham et al. [55,74] and
Meagher and Anderson [52]. Instead, the present experiments can only
be explained with 𝑘2 values that are at most ∼108 cm3 mol−1 s−1
(corresponding to 𝑘2/𝑘3 ≈ 1, as suggested by Glarborg et al. [51]) as an
upper limit, though the experimental values and trends with NO2 are
more closely reproduced using 𝑘2 that are much lower (∼107 cm3 mol−1
−1 or below)—such as those from the theoretical study of González
t al. [73]; MSI analysis of the present data here; and MSI analysis of
he present data, theoretical data of González et al. [73], and raw data
rom previous experimental studies in our companion study [53].

. Concluding remarks

A platform for rapid kinetic model refinement and validation in-
olving selection, generation, and integration of experimental data
s presented. The platform combines optimal experimental design, a
omputer-controlled JSR experimental apparatus, a post-processing
11

ode that retrieves data from the instruments and produces self-
ontained files with all data and metadata (including uncertainties),
nd our MSI package for model optimization and uncertainty quantifi-
ation.
This platform was demonstrated for the rate constant of N2O + O ⇌

2 + O2 (R2) as the QoI to determine the main products of the N2O + O
eaction at intermediate temperatures. The results from optimal design
eveal that reactant mixtures with more species and measurements
or more species yield greater reductions in the QoI uncertainty. The
ptimal design results, in particular, identified that measurements of
utlet NO2 mole fractions for varied inlet NO2 mole fraction would
be especially effective. Experiments were then conducted for three sets
of conditions: (1) a set of conditions identified by optimal design, (2)
an analogous set with higher dilution (to ascertain any wall reaction
influences, of which we found none), and (3) a set with varied inlet
NO2 mole fraction (to visualize and explain the unique advantages of
NO2 addition to the reactant mixture).

All told, model predictions using higher proposed values of 𝑘2
(e.g., from Meagher and Anderson [52] and Pham and Lin [74]) are
simply inconsistent with the experimental data both quantitatively and
qualitatively—regardless of the choices of rate constants for the other
reactions. Instead, the data support 𝑘2(1050 K)<∼108 cm3 mol−1 s−1
consistent with González et al. [73]), which effectively preclude N2 +

O2 as the main products.
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Further analysis revealed the reasons (from a chemical perspec-
tive) for the effectiveness of mixtures containing NO2 as a ‘‘chemical
ensitizer’’—a term we use to refer to a species not present as a reactant
n the QoI that serves to increase information about the QoI. For ex-
mple, (R1) accelerates formation/consumption of NO2 and (R2) slows
ormation/consumption of NO2 without/with NO2 addition—leading to
pposite sensitivities of outlet NO2 to each reaction with and without
O2 addition (and, therefore, serving to remove common correlations
n the data). Consequently, models with higher 𝑘2 underpredict outlet
O2 for low inlet NO2, for which NO2 is produced on the net, and
verpredict outlet NO2 for high inlet NO2, for which NO2 is consumed
n the net.
Altogether, the present experimental platform achieved a goal that

o previous experiment over the past several decades appears to have
one: decipher the main products of N2O + O at intermediate tem-
eratures. The analysis indicated that this success can be largely at-
ributed to the present inclusion of NO2 as a reactant and analyte—
either of which were included in previous experimental studies and
oth of which are consistent with the unique design principles of our
xperimental platform (many-component reactants and many-species
iagnostics)—altogether implying that this experimental platform is
ikely to be a key tool in accelerating scientific discovery and kinetic
odel development.
More broadly, merging the present experimental platform—combinin

ptimal design, computer-controlled experiments, automated data post-
rocessing, and inverse UQ—with existing computational platforms
mplementing automated mechanism generation and automated theo-
etical kinetics calculations, in principle, would create a rapid, semi-
utonomous platform for model construction, refinement, and vali-
ation that incorporates all key elements of the model development
rocess. We envision that such a platform would be invaluable to
haracterizing the ever-expanding landscape of potential 21st century
uels on the timescales needed to address climate change and other
ressing societal issues.
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