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We investigate electrical charge transport in hot magnetized plasma using first-principles quan-
tum field theoretical methods. By employing Kubo’s linear response theory, we express the electrical
conductivity tensor in terms of the fermion damping rate in the Landau-level representation. Uti-
lizing leading-order results for the damping rates from a recent study within a gauge theory, we
derive the transverse and longitudinal conductivities for a strongly magnetized plasma. The analyt-
ical expressions reveal drastically different mechanisms that explain the high anisotropy of charge
transport in a magnetized plasma. Specifically, the transverse conductivity is suppressed, while the
longitudinal conductivity is enhanced by a strong magnetic field. As in the case of zero magnetic
field, longitudinal conduction is determined by the probability of charge carriers to remain in their
quantum states without damping. In contrast, transverse conduction critically relies on quantum
transitions between Landau levels, effectively lifting charge trapping in localized Landau orbits. We
examine the temperature and magnetic field dependence of the transverse and longitudinal electri-
cal conductivities over a wide range of parameters and investigate the effects of a nonzero chemical
potential. Additionally, we extend our analysis to strongly coupled quark-gluon plasma and study
the impact of the coupling constant on the anisotropy of electrical charge transport.
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I. INTRODUCTION

A relativistic plasma is a fundamental state of matter
subject to very high temperatures or densities, where the
characteristic energies of particles are comparable to or
exceed their rest mass energies. Although achieving such
extreme conditions in a laboratory is challenging [1, 2],
they are relatively common inside and around compact
stars [3–5]. For example, the magnetospheres of mag-
netars are predominantly composed of electron-positron
plasma [6, 7]. Other forms of relativistic plasmas existed
in the early Universe [8]. One of them is the strongly
interacting quark-gluon plasma (QGP), which was fill-
ing the early Universe until about 10 milliseconds after
the Big Bang [9]. In laboratory settings, small droplets
of QGP are produced in relativistic heavy-ion collisions
[10–12].
Relativistic plasmas are often strongly magnetized. In

magnetospheres of magnetars, plasma formation itself
results from the strong magnetic field. The primordial
plasma in the early Universe was also highly magnetized
[8, 13, 14], and the corresponding seed fields provide a
natural explanation for the presence of nonzero magnetic
fields on intergalactic scales. In heavy-ion collisions, siz-
able magnetic field are generated by the electrical cur-
rents produced by colliding positively charge ions [15–
19].
This study aims to investigate the electrical conductiv-

ity of magnetized relativistic plasma using first-principles
quantum field theory. While conductivity is a key trans-
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port characteristic, our understanding of it in the pres-
ence of strong background fields is incomplete. For plas-
mas in a weak magnetic field, it was studied in some de-
tail in Refs. [20, 21]. For QGP in a quantizing magnetic
field, several studies have been conducted using analyti-
cal methods [22–25] and lattice calculations [26–29]. Ad-
ditionally, some estimates of electrical conductivity have
been obtained from holographic models of quantum chro-
modynamics (QCD) [30, 31] and other phenomenological
models [32–36]. Many authors have also used a kinetic
theory approach to study the electrical conductivity of
magnetized relativistic plasmas [37–40]. However, due to
the inherent limitations of kinetic theory, it does not pro-
vide deep insights into the regime of strong fields. More-
over, many studies rely on the relaxation-time approxi-
mation, which lacks detailed knowledge of the collision
integral.

Leveraging recent progress in developing quantum-field
theoretic methods that utilize the Landau-level represen-
tation for Green’s functions [41, 42], in this study we
investigate the anisotropic charge transport in strongly
magnetized relativistic plasmas. We rely on Kubo’s for-
malism to calculate the electrical conductivity within a
gauge theory framework. We use a neutral quantum elec-
trodynamics (QED) plasma, composed of equal numbers
of electrons and positrons, as the primary testing ground
for our study. We rely on the previously obtained fermion
damping rate in the Landau-level representation to calcu-
late the dependence of electrical conductivity on temper-
ature and magnetic field. As we showed, at leading order
in coupling, the corresponding damping rate is driven
by quantum transitions between Landau-level states of
charge carriers, which are accompanied by emission or
absorption of photons. The conductivity results are also
extrapolated to the case of strongly coupled QGP. We
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should mention that, with some minor modifications, the
study can be extended to other types of relativistic plas-
mas. Some of our key results were briefly outlined in
Ref. [43].
The paper is organized as follows. We start from the

definition of the electrical conductivity tensor in terms of
the current-current correlator in Sec. II. By making use of
a spectral representation for the fermion propagator, we
relate the electrical conductivity to the damping rate of
charge carriers. In Sec. III, we discuss the damping rate
in the Landau-level representation that was derived in an
earlier study [42]. The damping rate, which was obtained
at the leading order in coupling, takes into account the
dependence on the Landau-level index and the longitu-
dinal momentum. The results for the conductivity are
presented in Sec. IV. We study the dependence of the
transverse and longitudinal conductivities on the tem-
perature, the magnetic field, and the electrical chemical
potential. In addition to QED plasma made of massive
charge carriers, we also consider the chiral limit of QED
plasma. In Sec. V, we extend the study to a strongly cou-
pled QGP. Finally, we summarize our main results and
conclusions in Sec. VI. Several technical derivations and
auxiliary results are given in the Appendixes at the end
of the paper.

II. ELECTRICAL CONDUCTIVITY

Using Kubo’s linear response theory, one can express
the electrical conductivity tensor σij in terms of the re-
tarded current-current correlation function,

σij = lim
Ω→0

Im [Πij(Ω + i0;0)]
Ω

. (1)

In a QED-like theory with Nf fermion species having
electric charges ef , the correlation function (polarization
tensor) at the leading one-loop order is given by the fol-
lowing expression [41]:

Πij(iΩl;0) = 4πα
Nf∑
f=1

q2fT
∞∑

k=−∞
∫ d3k

(2π)3
× tr [γiḠf (iωk,k)γjḠf(iωk − iΩl,k)] ,(2)

where α = e2/(4π) = 1/137 is the fine structure constant,
qf = ef/e, and e is the absolute value of the electron
charge. By definition, k = (k⊥, kz), where k⊥ = (kx, ky)
and kz are the transverse and longitudinal momenta, re-
spectively. Note, however, that the transverse part k⊥
does not represent conventional momenta of any quan-
tum states in a magnetized plasma. It is a momentum-
like quantity introduced by the Fourier transform of

the translation invariant part of the fermion propagator
Ḡf(t− t′,x−x′). At the tree level, an explicit expression
of the corresponding Fourier transform reads as [44]

Ḡf(k0,k) = ie−k2

⊥ℓ
2

f

∞∑
n=0
(−1)nD

(0)
n,f(k0,k)
k20 −E2

f,n

, (3)

where ℓf = 1/√∣efB∣ is the magnetic length, Ef,n =√
2n∣efB∣ +m2

f
+ k2z are the Landau-level energies, and

D
(0)
n,f
(k0,k) = 2 [(k0γ0 − kzγ3 +mf]

× [P+Ln (2k2⊥ℓ2f) −P−Ln−1 (2k2⊥ℓ2f) ]
+ 4(k⊥ ⋅ γ⊥)L1

n−1 (2k2⊥ℓ2f) . (4)

It is instructive to emphasize that we use a bare vertex
in the expression for the polarization tensor in Eq. (2).
This approximation is justified at the leading order in
coupling. As demonstrated in Ref. [22], vertex correc-
tions give only subleading contributions to the conduc-
tivity in strong magnetic fields. This observation is also
consistent with findings in Ref. [45] concerning plasmas
without magnetic fields.

In Eq. (2), the effects of nonzero temperature are cap-
tured by using the imaginary-time formalism. By defi-
nition, the fermionic and bosonic Matsubara frequencies
are ωk = (2k + 1)πT and Ωl = 2lπT , respectively. After
calculating the Matsubara sum, the retarded expression
for the polarization tensor is obtained by performing the
analytic continuation: iΩl → Ω + iǫ. To streamline the
calculation, it is convenient to render the fermion prop-
agator in the spectral form

Ḡf(iωk,k) = ∫ ∞

−∞

dk0A
f
k
(k0)

iωk − k0 + µf

, (5)

where A
f

k
(k0) is the spectral function and µf is the

electrical chemical potential for fermions of flavor f .

The spectral function Af

k
(k0), which carries information

about the quasiparticle properties in plasma, is formally
defined in terms of the advanced and retarded propaga-
tors as follows:

A
f

k
(k0) = 1

2πi
[Ḡf(k0 − i0,k)− Ḡf(k0 + i0,k)] . (6)

After substituting the spectral representation Eq. (5) into
Eq. (2), calculating the Matsubara sum, and performing
the appropriate analytic continuation, we derive the fol-
lowing result for the imaginary part of the polarization
tensor

Im [Πij(Ω;0)] = − α
4π

Nf∑
f=1

q2f ∫ dk0d
3ktr [γiAf

k
(k0)γjAf

k
(k0 −Ω)] (tanh k0 − µf

2T
− tanh k0 −Ω − µf

2T
) . (7)
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Then, substituting this expression into the definition for the conductivity tensor (1), we finally obtain

σij = − α

8πT

Nf∑
f=1

q2f ∫ dk0d
3k

cosh2
k0−µf

2T

tr [γiAf
k
(k0)γjAf

k
(k0)] . (8)

As is clear, the spectral density Af

k
(k0) on the right-hand

side encapsulates the main information that determines
charge transport. Specifically, it depends on the damp-
ing rates Γf,n(kz) of charge carriers in their quantized
Landau-level states [42], which are crucial for quantify-
ing their individual contributions to plasma conductivity.

In a noninteracting theory, for example, the damping
rate is zero, and the spectral density is represented by a
sum of zero-width δ-function peaks located at the exact
particle energies, i.e., k0 = λEf,n where λ = ±1. Con-
sequently, each pair of coinciding peaks from the two
spectral densities in Eq. (8) gives an infinite contribu-
tion to the conductivity. As we demonstrate later, this
explains why the longitudinal conductivity (σ∥ ≡ σ33) is
indeed infinite in the free theory. In contrast, the trans-
verse conductivity (σ⊥ ≡ σ11 = σ22) vanishes in the free
theory. This seemingly surprising result arises from the
Dirac structure of the spectral density in Eq. (6). For
the transverse conductivity, the trace in Eq. (8) is pro-
portional to products of spectral peaks from neighboring
Landau levels that do not overlap. From a physics view-
point, the magnetic field confines charges to fixed Landau
orbits, thus preventing transport in the perpendicular di-
rections. Only interactions allow these charges to escape
trapping through transitions between neighboring Lan-
dau orbits, thereby contributing to the conductivity.

In an interacting theory, the peaks in the spectral den-
sity have finite widths, which are determined by the par-

ticle damping rates. At weak coupling, an explicit expres-

sion for Af

k
(k0) can be derived from its free-theory coun-

terpart by replacing the δ-function peaks with Lorentzian
functions of width Γf,n(kz),

δ(k0 − λEf,n)→ 1

π

Γf,n

(k0 − λEf,n)2 + Γ2
f,n

. (9)

Then, by making use of the fermion propagator in the
Landau-level representation [44] and using the definition
in Eq. (6), we derive

A
f

k
(k0) = ie−k

2

⊥ℓ
2

f

π
∑
λ=±

∞∑
n=0

(−1)n
Ef,n

{[Ef,nγ
0 − λkzγ3 + λmf ]

× [P+Ln (2k2⊥ℓ2f) −P−Ln−1 (2k2⊥ℓ2f)]
+ 2λ(k⊥ ⋅ γ⊥)L1

n−1 (2k2⊥ℓ2f)} Γf,n

(k0 − λEf,n)2 + Γ2
f,n

,

(10)

where P± = (1 ± is⊥γ1γ2)/2 are the spin projectors,
s⊥ = sign(efB), and Lα

n (z) are the generalized Laguerre
polynomials [46]. To simplify the notation, an explicit
dependence of Ef,n and Γf,n on the longitudinal momen-
tum kz was suppressed.
Substituting spectral density (10) into Eq. (8), calcu-

lating the traces, and integrating over k⊥, we derive the
following expressions for the transverse and longitudinal
conductivities,

σ⊥ = α

π2T

Nf∑
f=1

q2f

ℓ2
f

∞∑
n=0
∫ ∞

−∞
∫ ∞

−∞

dk0dkz

cosh2
k0−µf

2T

Γf,n+1Γf,n [(k20 +E2
f,n + Γ2

f,n) (k20 +E2
f,n+1 + Γ2

f,n+1) − 4k20 (k2z +m2
f)]

[(E2
f,n
+ Γ2

f,n
− k20)2 + 4k20Γ2

f,n
] [(E2

f,n+1 + Γ2
f,n+1 − k20)2 + 4k20Γ2

f,n+1]
,(11)

σ∥ = α

2π2T

Nf∑
f=1

q2f

ℓ2
f

∞∑
n=0

βn ∫ ∞

−∞
∫ ∞

−∞

dk0dkz

cosh2
k0−µf

2T

Γ2
f,n [(E2

f,n + Γ2
f,n − k20)2 + 4k20 (2k2z + Γ2

f,n)]
[(E2

f,n
+ Γ2

f,n
− k20)2 + 4k20Γ2

f,n
]2

, (12)

respectively. In the derivation, we used the results for
Dirac traces and two types of sums in Appendix A. In the
expression for longitudinal conductivity, we introduced
the shorthand notation βn ≡ 2 − δn,0 to represent the
spin degeneracy factor. These general expressions for the
conductivities are our main analytical results.

Note that the Hall conductivity σH ≡ σ12 = −σ21 is also
nonvanishing when the chemical potential µf is nonzero.

Moreover, its leading contribution is of zeroth order in
coupling and is proportional to the electric charge den-
sity. The Hall conductivity is an example of nondissi-
pative transport, which explains why it remains nonzero
even in the free theory. In this study, we primarily focus
on the dissipative transport represented by the transverse
and longitudinal conductivities.

In the limit of a small damping rate, assuming that the
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spectral peaks from neighboring Landau levels do not
overlap and are well separated, the integration over k0
in Eqs. (11) and (12) can be performed approximately.
Before deriving the corresponding approximate results,

let us note that the expressions in the square brackets in
the denominators of Eqs. (11) and (12) can be further
factorized, e.g.,

(E2
f,n + Γ2

f,n − k20)2 + 4k20Γ2
f,n = [(k0 −Ef,n)2 + Γ2

f,n] [(k0 +Ef,n)2 + Γ2
f,n] . (13)

By using such factorizations and rendering the integrands in the form of partial fractions, one can then reduce the
energy integrations to the following two types:

1

π
∫ ∞

−∞

dk0F (k0)Γ2
1

[(k0 −E1)2 + Γ2
1]2

= F (E1)
2Γ1

, (14)

1

π
∫ ∞

−∞

dk0Γ1Γ2F (k0)
[(k0 −E1)2 + Γ2

1] [(k0 −E2)2 + Γ2
2] =

Γ2F (E1)
(E1 −E2)2 + Γ2

2

+ Γ1F (E2)
(E1 −E2)2 + Γ2

1

, (15)

where F (k0) is a slowly varying function near k0 = E1 and k0 = E2.
Thus, in the limit of narrow spectral peaks, from Eqs. (11) and (12), we derive the following approximate expressions

for the transverse and longitudinal conductivities

σ⊥ ≈ α

2πT

Nf∑
f=1

q2f

ℓ2
f

∞∑
n=0
∫ ∞

0
dkz
⎛
⎝

1

cosh2
Ef,n−µf

2T

+ 1

cosh2
Ef,n+µf

2T

⎞
⎠

Γf,n+1f (Ef,n)
[(Ef,n −Ef,n+1)2 + Γ2

f,n+1] [(Ef,n +Ef,n+1)2 + Γ2
f,n+1]

+ α

2πT

Nf∑
f=1

q2f

ℓ2
f

∞∑
n=0
∫ ∞

0
dkz
⎛
⎝

1

cosh2
Ef,n+1−µf

2T

+ 1

cosh2
Ef,n+1+µf

2T

⎞
⎠

Γf,nf (Ef,n+1)
[(Ef,n −Ef,n+1)2 + Γ2

f,n
] [(Ef,n +Ef,n+1)2 + Γ2

f,n
] ,

(16)

σ∥ ≈ α

4πT

Nf∑
f=1

q2f

ℓ2
f

∞∑
n=0

βn ∫ ∞

0

dkz (2k2z + Γ2
f,n)

Γf,n (2E2
f,n + Γ2

f,n)
⎛
⎝

1

cosh2
Ef,n−µf

2T

+ 1

cosh2
Ef,n+µf

2T

⎞
⎠ , (17)

where we introduced the shorthand notation

f(k0) = (k20 +E2
f,n + Γ2

f,n) (k20 +E2
f,n+1 + Γ2

f,n+1)
k20− 4 (k2z +m2

f) . (18)

It should be emphasized that the approximate expres-
sions for the conductivities in Eqs. (16) and (17) should
be used with great caution. Their validity is limited
to the weakly coupled regime, where the damping rates
are sufficiently small to prevent any overlaps of spectral
peaks of different Landau-level states. Additionally, by
scrutinizing the expression the transverse conductivity,
which is given in terms of function f(k0) in Eq. (18), one
finds that the approximation fails in the massless limit.
Indeed, the lowest Landau-level energy (with k20 = k2z at
mf = 0) gives a divergent contribution due to a singu-
larity in the integrand at the vanishing longitudinal mo-
mentum. This is clearly an artifact of the approximation,
as the original expression (11) is finite even in the mass-
less limit. The same reasoning extends to the case of
superstrong magnetic fields, even if the fermion mass is
nonzero but m2

f /∣efB∣ is small. In such a regime, the ap-

proximate result for the transverse conductivity becomes
unreliable due to an artificially increased sensitivity of
the integrand to the infrared region near kz = 0.
Despite their limited validity, the approximate expres-

sions for the transverse and longitudinal conductivities
in Eqs. (16) and (17) are invaluable for providing a
deeper insight into the underlying mechanism of charge
transport in strongly magnetized plasmas. As one can
see, both conductivities are given by weighted sums of
Landau-level contributions. The weights are determined
by the plasma temperature T , the electric chemical po-
tentials of individual fermion flavors µf , as well as the
damping rates Γf,n.

As we see from Eq. (17), different Landau levels
contribute to the longitudinal conductivity as distinct
species of charge carriers. The explicit expression sug-
gests that each level contributes proportionally to the
inverse damping rate: σ∥ = ∑f,n σ∥,f,n, where σ∥,f,n ∝
1/Γf,n. In the free theory (with Γf,n → 0), in particular,
the longitudinal conductivity becomes infinite.

In contrast, the partial contributions to the transverse
conductivity in Eq. (16) are associated with quantum
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transitions between adjacent Landau levels with indices
n and n + 1. Furthermore, the individual contributions
are proportional to the damping rates rather than their
inverse values, i.e., σ⊥,f,n ∝ Γf,n. In the free theory
(with Γf,n → 0), therefore, the transverse conductivity
of a strongly magnetized plasma vanishes. This indicates
that the underlying mechanism for transverse transport
is qualitatively different. This difference is not surprising,
as a strong background magnetic field confines charged
carriers in the transverse direction. As mentioned ear-
lier, conduction occurs only as a result of interactions
that provide a transport pathway via quantum transi-
tions between Landau levels [43].

III. DAMPING RATE

To calculate the electrical conductivities given by
Eqs. (11) and (12), or their approximate counterparts in
Eqs. (16) and (17), one needs to know the damping rates
Γf,n(kz) for the charge carriers in a strongly magnetized

plasma. Using the Landau-level representation, the cor-
responding results were obtained in Ref. [42] within a
gauge theory framework at the leading order in coupling.
As shown in Ref. [42], the damping rate Γf,n(kz) of

a state with a given Landau-level index n is determined
by the three types of quantum processes: (i) transitions
to Landau levels with lower indices n′ (ψn → ψn′ + γ
with n > n′), (ii) transitions to Landau levels with higher
indices n′ (ψn+γ → ψn′ with n < n′), and (iii) transitions
to Landau-level states with negative energies (i.e., the
annihilation process ψn + ψ̄n′ → γ for any n and n′).
The leading-order contributions are of the order of

α∣efB∣/T . In the absence of a magnetic field, how-
ever, the corresponding one-to-two and two-to-one pro-
cesses are kinematically forbidden. Instead, the damp-
ing rate is determined by the two-to-two processes, i.e.,
ψn + γ → ψn′ + γ and ψn + ψ̄n′ → γ + γ, which contribute
at order α2T . In the rest of this study, therefore, we will
assume that ∣efB∣/T 2 ≫ α, which guarantees that the
leading-order processes dominate.
The expression for the spin-averaged damping rate of

a particle state with Landau-level index n reads as [42]

Γ
(ave)
f,n
(kz) = α∗

2βnℓ2fEf,n

∞∑
n′=0

∑
s′=±1

∑
s1=±1

∑
s2=±1

∫ dξ
Mn,n′(ξ) [1 − nF (s1Ef,n′,s′) + nB(s2Eq,s′)]

s1s2
√(ξ − ξ−)(ξ − ξ+) , (19)

where ξ± = 1
2
[√2n′ + (mf ℓf)2 ±√2n + (mf ℓf)2]2 are

the threshold parameters that depend on both Landau-
level indices n and n′. For simplicity, we omit these in-
dices in the notation to avoid making analytical expres-
sions unnecessarily cumbersome.

We would like to stress that Eq. (19) defines the spin-
averaged damping rate for charged particles in the nth
Landau level. This rate was obtained by generalizing
Weldon’s well-known method [47], which was previously
applied only to cases with vanishing magnetic fields, to a
strongly magnetized plasma in Ref. [42]. Since the low-
est Landau level contains only one spin state, while Wel-
don’s method inherently accounts for two spin states, we
corrected the expression by introducing the Landau-level
dependent spin degeneracy factor βn ≡ 2− δn,0 in the de-
nominator of Eq. (19). This adjustment ensures that the
damping rates in both the lowest and higher Landau lev-
els are accurate and consistent with the results obtained
from the pole locations in the fermion propagator [42].

In the rate definition in Eq. (19), the coupling constant
α∗ is given by αq2f in a QED-like theory, where fermions
have flavor-dependent electric charges ef = qfe. In QCD,
on the other hand, α∗ = αsCF where αs = g2/(4π) is the
strong coupling constant and CF = (N2

c −1)/(2Nc) = 4/3,
assuming Nc = 3.
The energies of the final fermion and the photon that

appear in the distribution functions in Eq. (19) are given

by the following expressions:

s1Ef,n′,s′ = Ef,n

2

⎛
⎝1 +

2n′ +m2
fℓ

2
f − 2ξ

2n +m2
f
ℓ2
f

⎞
⎠

+s′kz
√(ξ − ξ−)(ξ − ξ+)

2n +m2
f
ℓ2
f

, (20)

s2Eq,s′ = Ef,n

2

⎛
⎝1 −

2n′ +m2
fℓ

2
f − 2ξ

2n +m2
f
ℓ2
f

⎞
⎠

−s′kz
√(ξ − ξ−)(ξ − ξ+)

2n +m2
f
ℓ2
f

, (21)

respectively. These are obtained by explicitly solving the
energy conservation equation for the underlying one-to-
two and two-to-one processes. It should be noted that,
for simplicity, we retain only the original indices in the
notation for the fermion and photon energies, Ef,n′,s′

and Eq,s′ , respectively, even though they depend on both
Landau level indices n and n′, as well as other kinematic
parameters.
Function Mn,n′(ξ) in the integrand of Eq. (19) is de-

termined by the squared amplitude of the leading-order
processes [48]. Its explicit form is given by

Mn,n′(ξ) = − (n + n′ +m2
f ℓ

2
f) [In,n′0 (ξ) + In−1,n′−10 (ξ)]

+(n + n′) [In,n′−10 (ξ) + In−1,n′0 (ξ)] , (22)
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and function In,n′0 (ξ) is defined in Eq. (B14) in Ap-
pendix B. Note that the integration range in ξ depends
on the choice of signs s1 and s2, representing different
types of processes, i.e.,

ψn → ψn′ + γ (s1 > 0, s2 > 0) ∶ 0 < ξ < ξ−, (23)

ψn + γ → ψn′ (s1 > 0, s2 < 0) ∶ 0 < ξ < ξ−, (24)

ψn + ψ̄n′ → γ (s1 < 0, s2 > 0) ∶ ξ+ < ξ <∞. (25)
In the next two sections, we use the spin-averaged damp-

ing rate Γ
(ave)
f,n
(kz) in order to calculate the electrical con-

ductivities, defined by Eqs. (11) and (12), for QED and
QCD plasmas. Before proceeding to those calculations,
several comments are in order.
Firstly, one may wonder whether it would be preferable

to use a more refined approximation for the rate with-
out relying on spin averaging. The corresponding rates

for the spin-up and spin-down states, Γ
(+)
f,n

and Γ
(−)
f,n

, in

higher Landau levels (n ≥ 1) were obtained in Ref. [42].
They were extracted from the location of poles in the
full propagator. It was found, however, that the rates
for both spin states are very close to the spin-averaged

value, Γ
(ave)
f,n

≡ (Γ(+)
f,n
+ Γ(−)

f,n
) /2.

The other comment concerns the chiral limit in the
strongly magnetized plasma. By examining the analytic
expression for the rate in Eq. (19), one finds that the
massless limit is singular. The problem stems from the
contribution of the lowest Landau level. When one sets
mf = 0 and n = 0, the energies in Eqs. (20) and (21)
become ill-defined. The singularities are an artifact of
additional kinematic constraints on the one-to-two and
two-to-one processes involving the gapless Landau level
when mf = 0. To resolve the issue, below we rederive the
rate in the lowest Landau level in the chiral limit.
By analyzing the energy-momentum conservation in

the massless case, we find that the final fermion and the
photon energies change when n = 0. Specifically, the
expressions in Eqs. (20) and (21) are replaced by

s1Ef,n′ = −(ξ − n′)2 + 2n′k2zℓ2f
2ℓ2

f
∣kz ∣(ξ − n′) , (26)

s2Eq = ∣efB∣(ξ − n′)2 + 2ξk2z
2∣kz ∣(ξ − n′) , (27)

respectively. Note that, unlike the n = 0 case at nonzero
mass, where there are two different solutions labeled by
s′, there is only one solution when mf = 0. After sub-
stituting these energies into Eq. (19), we calculate the
corrected rate in the lowest Landau level (n = 0). As for
the damping rates in higher Landau levels (n ≥ 1), their
expressions remain the same but are evaluated atmf = 0.

IV. ELECTRICAL CONDUCTIVITY IN QED

PLASMA

Let us now apply the general theory of Secs. II and
III to calculate the transverse and longitudinal electri-

cal conductivities in a magnetized QED plasma, made
of electrons and positrons. In this case, we have a sin-
gle flavor (Nf = 1) of charged carriers with ef = −e and
mf = me = 0.511 MeV. Because of the smallness of the
coupling constant in QED, the expected range of valid-
ity of the leading-order approximation, ∣eB∣ ≳ αT 2, may
extends down to moderately weak magnetic fields.
Before calculating the conductivities, one needs to ob-

tain the damping rates first. Thus, we start by producing
tabulated data sets for the electron damping rates in a
wide range of temperatures, 15me ≤ T ≤ 80me, and mag-
netic fields, (15me)2 ≤ ∣eB∣ ≤ (200me)2. We generate nu-
merical data for up to nmax = 50 Landau levels and about
50 points of the longitudinal momentum. When using
Eq. (19) to calculate the rates, we account for all pro-
cesses that include the final electron states with Landau-
level indices up to n′max = 2nmax. The corresponding data
is then interpolated before used in numerical calculation
of the conductivities defined by Eqs. (11) and (12). It
should be mentioned that, in a wide range of model pa-
rameters, the transverse and longitudinal conductivities
in QED can be well approximated by Eqs. (16) and (17).
Nevertheless, all numerical data presented in Fig. 1 below
are obtained by using the exact expressions in Eqs. (11)
and (12).

A. Scaling dependence of dimensionless

conductivities and the chiral limit

When considering sufficiently high temperatures (T ≫
me) and strong magnetic fields (∣eB∣ ≫ m2

e), we might
expect that effects of a nonzero electron mass are negli-
gible. Then, using dimensional arguments, one can argue
that the conductivities measured in units of temperature,
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FIG. 1. The transverse and longitudinal conductivities in
units of temperature as functions of the dimensionless ratio
∣eB∣/T 2. Empty circles and interpolating dashed lines repre-
sent the conductivities in the chiral limit. Special symbols
represents the results for the lowest temperatures: T = 2.5me

(stars), T = 15me (squares), T = 20me (rhombi), T = 25me

(triangles).
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σ̃⊥ ≡ σ⊥/T and σ̃∥ ≡ σ∥/T , should be well approximated
by some universal functions of the dimensionless ratio∣eB∣/T 2. (At this point, we assume that the electron
chemical potential is zero.) To some degree, the univer-
sal scaling is indeed supported by our numerical data for
the conductivities in Fig. 1.
In Fig. 1, we present a compilation of over hundred

data points for the transverse and longitudinal conduc-
tivities at various temperatures and magnetic fields. The

corresponding numerical values of the conductivities are
provided as data files in the Supplemental Material [49].
Filled markers represent the data for QED with a nonzero
fermion mass.
For comparison, we also include results for a massless

(chiral) QED plasma, represented by empty circles. In
the figure, we use dashed lines as a convenient visual
guide to interpolate the chiral data. The latter are well
approximated by the following Padé approximants:

σ̃
QED

⊥,chiral ≃ 0.076
1+ 0.13b3/2 − 0.002b2 + 0.0026b7/2

1 + 6.5b + 31.6b2 + 13.2b3 , (28)

σ̃
QED

∥,chiral
≃ 2.47

1 − 0.172b+ 0.125b2 − 0.0058b3 + 8.1 × 10−4b4 − 8.6 × 10−6b5 + 2.88 × 10−7b6
1 − 0.013b+ 5.4 × 10−5b2 − 5.6 × 10−8b3 , (29)

where b = ∣eB∣/T 2. The quality of these fits are better
than about 2% in the whole range of values 0.1 ≲ b ≲ 100.
It should be mentioned that σ̃QED

⊥,chiral and σ̃
QED

∥,chiral have

local minima at bmin,⊥ ≈ 12 and bmin,∥ ≈ 0.6, respectively.
We observe from Fig. 1 that the QED data closely

approaches the chiral limit over a wide range of small to
moderately larges values of ∣eB∣/T 2. However, significant
deviations occur when ∣eB∣/T 2 ≳ 10. In the latter region,
the lowest Landau level is expected to provide the domi-
nant contribution to charge transport. To further illumi-
nate the effect, we used special symbols to mark the data
points for several lowest temperatures, T = 2.5me (stars),
T = 15me (squares), T = 20me (rhombi), T = 25me (tri-
angles), where me is the electron mass. As seen, the
smaller the values of T /me or the larger the values of∣eB∣/T 2, the more significant deviations from the chi-
ral limit. As discussed in the previous two sections,
the expressions for the conductivities and the damping
rates are highly sensitive to the kinematics of the low-
est Landau level in the infrared region near kz = 0 when
me → 0. Therefore, it is not surprising that deviations
from the chiral limit are substantial at low temperatures
and strong magnetic fields.

In the strong-field limit where ∣eB∣/T 2 ≫ 1, longitudi-
nal transport is dominated by charge carriers in the low-
est Landau level. Naively, since the Landau-level den-
sity of states is proportional to the field strength, one
might expect that the longitudinal conductivity σ̃∥ would
also be proportional to the field. However, by analyz-
ing the data in Fig. 1, we find that σ̃∥ increases much
more rapidly than linearly with the magnetic field when∣eB∣/T 2 ≫ 1. In fact, the numerical data in the chiral
limit indicates that the longitudinal conductivity might
be growing as σ̃∥ ∝ bγ , where b = ∣eB∣/T 2 and the power
γ might be as large as 6 to 8. (By comparison, in the case
of nonzero mass, the growth appears to be also a power
law but with a smaller value of γ.) This additional en-
hancement is attributed to the damping rate Γf,0(kz),
which is suppressed by the magnetic field.

To support the claim, we show representative results
for the damping rates in the lowest Landau level at sev-
eral fixed values of ∣eB∣/T 2 in Fig. 2. For simplicity, here
we consider the chiral limit, which involves fewer dimen-
sionless parameters. To demonstrate that the maximum
damping rate scales as T 3/∣eB∣, we present numerical re-
sults for the rescaled quantity Γf,0(kz)∣eB∣/T 3 as a func-
tion of the longitudinal momentum. As shown in the left
panel, the maximum values of the rescaled rates are ap-
proximately constant, although their dependence on kz
differs. As the magnetic field increases, the peak posi-
tions shift to higher kz values.

After rescaling the longitudinal momentum with the
magnetic field, we replot the data in the right panel in
Fig. 2. Observing that nearly all the rescaled data aligns
along the same curve, we reconfirm that the maximum
damping rates are inversely proportional to ∣eB∣, and the
locations of their maxima scale linearly with ∣eB∣.
The damping rates for the lowest Landau level, pre-

sented in Fig. 2, are calculated by fully accounting for
transitions to all higher Landau levels. Moreover, con-
trary to a naive expectation, transitions within the lowest
Landau level alone do not dominate the numerical results
for Γf,0(kz), even under very strong magnetic fields. This
is especially important in the limit of a small (or vanish-
ing) fermion mass or nonzero longitudinal momenta. For
instance, our numerical results at ∣eB∣/T 2 ≃ 50 reveal that
quantum transitions to the n′ = 1 and even n′ = 2 Lan-
dau levels play a significant role in determining Γf,0(kz).
This is not unexpected, as the naive strong-field approxi-
mation, where only transitions within the lowest Landau
level are considered, produces a zero damping rate when
mf → 0 [22, 23]. Indeed, as seen from Eq. (22), the corre-
sponding squared amplitude M0,0(ξ) is proportional to
m2

f , which vanishes in the chiral limit. Therefore, the

primary contributions to Γf,0(kz) come from transitions
to higher Landau levels when the fermion mass is small or
vanishing. One can also verify that transitions to higher
Landau levels dominate at sufficiently large longitudinal
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FIG. 2. Scaling behavior of the damping rate in the lowest Landau level for several fixed values of the magnetic field.

momenta kz even when mass is not very small.
Let us now turn to the behavior of the transverse con-

ductivity σ̃⊥ at large b = ∣eB∣/T 2. As shown in Fig. 1, it
also increases as b becomes sufficiently large, albeit much
more slowly than σ̃∥. Numerically, its functional depen-

dence is well approximated by σ̃⊥ ≃ 1.5 × 10−5√b, which
is an outcome of two competing effects: the growing de-
generacy of states and the suppression of damping rates
in the n = 0 and n = 1 Landau levels. Ultimately, the in-
crease in degeneracy slightly outweighs the suppression
of the damping rates.
In general, when the fermion mass is nonzero, the di-

mensionless conductivities in QED, σ̃⊥ and σ̃∥, should be
given by some functions that depend on the two unitless
ratios, ∣eB∣/T 2 and me/T . Therefore, in the utrarela-
tivistic regime, which assumes ∣eB∣ ≫ m2

e and T ≫ me,
one might expect that the results can be approximated
by the following Taylor expansions:

σ̃⊥ ≃ σ̃⊥,chiral (b) + me

T
f⊥,1 (b) + m2

e

T 2
f⊥,2 (b) +⋯, (30)

σ̃∥ ≃ σ̃∥,chiral (b) + me

T
f∥,1 (b) + m2

e

T 2
f∥,2 (b) +⋯. (31)

The numerical data in Fig. 1 reveals that the longitudinal
conductivity deviates from the chiral limit a lot more
than the transverse conductivity. This implies that the
Taylor coefficients f⊥,i (i = 1,2, . . .) are small compared
to their longitudinal counterparts f∥,i (i = 1,2, . . .).
As shown in Fig. 1, the strong anisotropy between

the transverse and longitudinal conductivities diminishes
with a decreasing magnetic field, but it does not com-
pletely vanish, even for the smallest values of ∣eB∣/T 2

displayed. While the two conductivities are expected to
converge in the zero magnetic field limit, this limit is non-
trivial. In particular, when only one-to-two and two-to-
one processes are considered and two-to-two processes are
neglected, the damping rates Γn must approach zero as
B → 0. As a result, both conductivities formally diverge,
though not necessarily at the same rate. The anisotropy
will only completely disappear in the true zero-field limit,

where nonzero rates Γn arise from two-to-two processes.
From a technical viewpoint, it is crucial to note that

the partial Landau-level contributions to the longitudi-
nal and transverse conductivities in Eqs. (11) and (12)
behave differently. While each term in σ∥ is proportional
to 1/Γn and diverges as B → 0, the analogous contribu-
tions to σ⊥ are proportional to Γn, which formally van-
ish. However, the sum over infinitely many Landau levels
in σ⊥ still diverges. Thus, both σ∥ and σ⊥ diverge, al-
beit at different rates, accounting for the relatively high
anisotropy that persists even at ∣eB∣/T 2 ≃ 0.1. As we will
demonstrate in the following subsection, accurately cal-
culating the conductivities for smaller values of ∣eB∣/T 2

requires summing over many more Landau levels than
currently used.

B. Convergence of Landau-level contributions

We find that the number of Landau levels significantly
contributing to σ̃⊥ and σ̃∥ increases as ∣eB∣/T 2 decreases.
This behavior is expected because the energy separation
between Landau levels decreases with a weaker magnetic
field, and the number of occupied levels grows with ris-
ing temperature. Both effects imply that more Landau
levels contribute to transport. However, it is instructive
to investigate in greater detail the convergence of the
Landau-levels sums in both transverse and longitudinal
conductivities, as defined by Eqs. (11) and (12).
The corresponding numerical results are summarized

in Fig. 3, where we present the conductivities calculated
by using different truncations of the Landau-levels sums:
nmax = 0 (blue), nmax = 5 (green), nmax = 20 (red), and
nmax = 50 (black). Note that the rates Γf,n(kz) them-
selves are calculated by accounting for all relevant quan-
tum transitions and full kinematic details. For simplic-
ity, here we use the QED plasma in the chiral limit. The
convergence in the case of massive QED should be com-
parable, if not better.
Fig. 3 illustrates that the longitudinal conductivity is
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FIG. 3. Comparison of the numerical results for the transverse (left) and longitudinal (right) conductivities when the sum over
Landau levels is truncated at different values of nmax.

dominated by the lowest Landau level contribution when
b ≳ 5. For the transverse conductivity, however, the anal-
ogous approximation with nmax = 0 works well only when
b ≳ 15. It is crucial to emphasize that, in our analysis,
setting nmax = 0 in the expression for σ⊥ is not equiva-
lent to the lowest Landau level approximation. Instead,
it describes charge transport mediated by quantum tran-
sitions between the zeroth and first Landau levels. Such a
fundamentally different mechanism is also likely respon-
sible for the reduced sensitivity of σ⊥ to the fermion mass
as the chiral limit is approached.
Generally, for small values of b, a large number of Lan-

dau levels contribute to both components of the conduc-
tivity. Based on the numerical data in Fig. 3, we estimate
that one should use nmax ≳ 30/b and nmax ≳ 10/b to re-
duce the error to a few percent in the calculation of the
transverse and longitudinal conductivities, respectively.
This suggests that the approximation with nmax = 50
Landau levels should be reliable only down to about
b ≈ 0.6 for σ⊥ and about b ≈ 0.2 for σ∥. As b decreases
beyond those values, the accuracy of the approximation
gradually deteriorates.
In principle, as we argued in the previous section,

the validity of the leading-order approximation for the
fermion damping rate can be extended down to b ≳ 0.01.
Therefore, the same should hold true for the conductiv-
ity. However, to achieve sufficiently high precision for σ⊥
and σ∥ at values of b as low as 0.01, it may be necessary
to include hundreds, if not thousands, of Landau levels.
While computationally more challenging, such calcula-
tions can be performed in principle.

C. Temperature and magnetic field dependence of

conductivity

While the dependence of σ⊥/T and σ∥/T on the dimen-

sionless ratio ∣eB∣/T 2 in Fig. 1 is interesting from a the-
oretical viewpoint, it might be even more instructive to
explore how temperature and magnetic field affect the ab-

solute values of the transverse and longitudinal conduc-
tivities. Several representative sets of such dependences
are shown in Fig. 4. The temperature dependence of σ⊥
(dashed lines) and σ∥ (solid lines) in the left panel reveals
several interesting features. For a fixed magnetic field

and sufficiently high temperatures, T ≳ 0.2
√∣eB∣, the

transverse conductivity tends to increase with tempera-
ture, resembling the behavior observed in conventional
semiconductors. Conversely, the longitudinal conductiv-
ity decreases with temperature, similar to the behavior
seen in metals.

The analogy between the temperature dependence of
σ⊥ and σ∥ in a magnetized plasma and the well-known
qualitative behavior of the conductivity in semiconduc-
tors and metals, respectively, is useful to consider. The
effect of a magnetic field, which inhibits transverse trans-
port in the plasma, superficially resembles the effect of a
gap between the valence and conduction bands in semi-
conductors. In both cases, raising the temperature in-
creases electrical conductivity. In semiconductors, this
increase is due to a higher density of charge carriers in the
conduction band induced thermal excitations. In a mag-
netized plasma, raising the temperature tends to enhance
the transition rates between Landau orbits, which are re-
sponsible for transverse transport. On the other hand,
the longitudinal conductivity in a magnetized plasma is
suppressed by thermal effects because they increase par-
ticle scattering. This is essentially the same mechanism
that reduces conductivity in metals as temperature rises.

The behavior of σ⊥, shown in the left panel of Fig. 4,
may seem puzzling at low temperatures. In a finite range

of parameters, namely T ≲ 0.2√∣eB∣, the transverse con-
ductivity remains nearly independent of the tempera-
ture before starting to increase at higher values. Ad-
ditionally, the ordering of conductivities at fixed mag-
netic fields reverses compared to their ordering at high
T . The low-temperature regime roughly corresponds to
b ≳ 2bmin,⊥ ≈ 25 in Fig. 1. In this range, transitions be-
tween the lowest and first Landau levels dominate the



10

●

●
● ● ● ● ● ●

● ●
●

●
●

● ● ● ● ● ● ● ● ● ●

● ● ● ●
●

●
●

●
● ● ● ● ● ● ●

◆
◆

◆

◆
◆

◆
◆

◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

0 20 40 60 80

✵☎✵✵✆

✆

✆✵✵✵

T/me

σ
⊥
/m
e

✱

σ
∥
/m
e

● |eB|=(50me)2

● |eB|=(100me)2

● |eB|=(200me)2

●●●●●●●●
● ●

●
●

●
●

●

●●●●●●●● ● ● ● ●
●

●

●

●●●●●●●● ● ● ● ● ● ●
●

◆
◆
◆◆
◆
◆
◆
◆

◆ ◆
◆ ◆ ◆ ◆ ◆

◆◆◆◆
◆◆
◆
◆

◆
◆

◆ ◆
◆ ◆ ◆

◆◆◆◆
◆◆
◆◆

◆
◆

◆
◆

◆ ◆
◆

● T=40me

● T=60me

● T=80me

0 10000 20000 30000 40000

0.01

1

100

10
4

|eB|/me
2

σ
⊥
/m
e

✝

σ

✞

/m
e

FIG. 4. The transverse (dashed lines) and longitudinal (solid lines) conductivities as functions of temperature (left) and
magnetic field (right) for three fixed choices of the magnetic field (left) and three fixed temperatures (right), respectively.

dimensionless conductivity σ̃⊥. As discussed earlier, it
increases as the square root of b, i.e., σ̃⊥ ≃ 1.5 × 10−5√b.
Therefore, the corresponding dimensionful conductivity

remains nearly constant, i.e., σ⊥ ≡ T σ̃⊥ ≃ 1.5× 10−5√∣eB∣
when T ≲ 0.2√∣eB∣.
The dependence of the conductivities σ⊥ and σ∥ on the

magnetic field is presented in the right panel in Fig. 4.
The transverse and longitudinal conductivities are inter-
polated by dashed and solid lines, respectively. The three
data sets correspond to different values of the tempera-
ture, T = 40me (blue), T = 60me (green), and T = 80me

(red). In accordance with the general expectations, σ⊥
has the tendency to go down and σ∥ to go up with in-
creasing the magnetic field. The transverse conductiv-
ity is suppressed by the magnetic field because it en-
hances trapping of the charged carriers in Landau-level
orbits. On the other hand, the longitudinal conductivity
becomes higher at large ∣eB∣ because the damping rates
get suppressed and the density of states in the Landau
levels grows linearly with the field.
Although our primary focus was on the ultrarelativistic

regime, qualitatively similar temperature and magnetic
field dependences of the transverse and longitudinal con-
ductivities can be observed in regimes with much weaker

fields (me ≲ √∣eB∣ ≲ 5me) and much lower temperatures
(me ≲ T ≲ 5me). Interestingly, while the absolute values
of the two transport coefficients differ significantly, the
dimensionless characteristics σ̃⊥ and σ̃∥ closely follow the
scaling behavior shown in Fig. 1, provided b ≲ 1. At larger
b values, both σ̃⊥ and σ̃∥ tend to be smaller than their
scaling values in Fig. 1. Specifically, σ̃⊥ becomes quanti-
tatively much smaller with increasing b, whereas devia-
tions for σ̃⊥ remain moderate (≲ 25%) even for b ≃ 25.

D. Electrical conductivity at nonzero chemical

potential

It is instructive to discuss briefly the effect of a nonzero
chemical potential µ on the electrical conductivity. In

the case of a QED plasma, including a nonzero µ has
significant implications. Most importantly, having a
nonzero chemical potential for the electrons implies that
the plasma is not neutral overall unless there are also
protons (or other positively charged particles) to com-
pensate for the negative charge of the electrons. Here, we
will ignore this complication and analyze only the partial
contribution of electrons to the conductivity. This sim-
plification is justified at leading order in coupling when
only one-to-two and two-to-one processes contribute to
the damping rate. Indeed, electron scattering on protons
is a two-to-two process that contributes to the damping
rate at the subleading order in coupling.

A nonzero chemical potential µ affects conductivity in
two main ways. Firstly, it modifies particle distributions
in the plasma, which appear explicitly in the definition
of the conductivities in Eqs. (11) and (12). Secondly,
it changes the fermion damping rates. In this analysis,
we account for the former but not the latter. In other
words, we will ignore the direct dependence of the damp-
ing rates on the chemical potential, assuming that it is
less significant at small values of µ.

Furthermore, for simplicity, we will consider only the
case of chiral QED, where the chemical potential intro-
duces one additional dimensionless parameter, µ/T . The
corresponding numerical data for the transverse and lon-
gitudinal conductivities as functions of the dimensionless
ratio ∣eB∣/T 2 are presented in Fig. 5. We show the re-
sults for three different values of the electron chemical
potential: µ/T = 0 (blue), µ/T = 2 (orange), and µ/T = 5
(green).

The data in Fig. 5 reveals that the electrical chemical
potential has very different effects on the transverse and
longitudinal conductivities. The transverse conductivity
generally increases with the addition of a nonzero chemi-
cal potential. This effect is localized primarily in a finite
region at small values of ∣eB∣/T 2, but the width of this
region grows as µ increases. The impact on the longi-
tudinal conductivity is different. It is enhanced by the
chemical potential when ∣eB∣/T 2 is small but suppressed
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FIG. 5. The transverse (left) and longitudinal (right) conductivities in units of temperature as functions of the dimensionless
ratio ∣eB∣/T 2 for three different choices of the electron chemical potential: µ/T = 0 (blue), µ/T = 2 (orange), and µ/T = 5
(green).

when ∣eB∣/T 2 is large.
When ∣eB∣/T 2 ≲ 5, the effect of µ on the longitudinal

conductivity is similar to that in metals. It expands the
phase space of charge carriers that fill many Landau lev-
els. Roughly speaking, this is analogous to an increasing
density of states at the Fermi surface when B = 0, result-
ing in an enhanced value of σ̃∥. In contrast, σ̃∥ tends to

be suppressed by µ at large ∣eB∣/T 2. In this regime, only
the lowest Landau level contributes to the conductivity,
and its dimensional reduction (from 3 to 1 spatial direc-
tions) makes the effect of a moderate µ negligible. As
in one-dimensional systems, the density of states at the
Fermi surface is independent of µ. The only effect of µ
is to shifts the phase space from being centered kz ≈ 0 to
kz ≈ µ. Since the damping rate of charge carriers tends to
increase with kz, their contribution to the conductivity
gets suppressed.
A different mechanism behind transverse transport ex-

plains why µ has a negligible effect on σ̃⊥ at large ∣eB∣/T 2.
Indeed, transverse conductivity is driven primarily by
quantum transitions between the lowest and first Lan-
dau levels. Recall that we neglected the direct effect of
a nonzero chemical potential on the damping rates. Re-
garding the effect on particle distributions, they affect σ̃⊥
only minimally when ∣eB∣/T 2 ≫ 1.

V. ELECTRICAL CONDUCTIVITY IN QGP

Let us now turn to the case of strongly magnetized
QGP made of the lightest up and down quarks. Unlike
weakly coupled QED plasma, QGP consists of strongly
interacting quarks. Due to this strong coupling, most
perturbative techniques cannot be rigorously applied to
study such a system. However, at sufficiently high tem-
peratures, QGP is expected to become weakly interacting
due to the QCD property of asymptotic freedom. There-
fore, in this study, we assume the temperature is high
enough to justify using the leading-order approximation

in calculating the quark damping rates.

Without loss of generality, we assume the masses of
both up and down quarks are the same, m = 5 MeV.
However, we account for their different electrical charges,
qu = 2e/3 and qd = −e/3, which affect their interaction
with the background magnetic field.

As in the QED study in the previous section, we focus
primarily on the regime of high temperatures (T ≫ m)
and strong magnetic fields (∣eB∣≫m2), where the effects
of nonzero quark masses are small. This regime is partic-
ularly relevant for heavy-ion collisions, where deconfined
QGP is produced. Typical temperatures of such plasma
are well above the deconfinement value, Tc ≃ 160 MeV,
and the magnetic field is of the order of ∣eB∣ ≳m2

π accord-
ing to many theoretical estimates [15–19]. It is worth not-
ing, however, that the rapid evolution of QGP fireballs
can drastically reduce the background magnetic field in
the plasma [50–52].

Similarly to the QED case, the quark damping rates in
QGP are determined by one-to-two and two-to-one pro-
cesses. However, in the corresponding processes, photons
should be replaced by gluons. Therefore, when calculat-

ing ΓQGP

f,n
(kz) using Eq. (19), we should replace the cou-

pling constant α∗ with αsCF , where αs is the strong cou-
pling constant, CF = (N2

c − 1)/(2Nc) = 4/3, and Nc = 3.
Note that the strong coupling constant at temperatures
relevant for heavy-ion physics is expected to be of the
order of 1.

Considering the ultrarelativistic regime of QGP, it is
convenient to express conductivities in units of temper-
ature, σ̃⊥ ≡ σ⊥/T and σ̃∥ ≡ σ∥/T . It is reasonable to
expect that the dimensionless conductivities σ̃⊥ and σ̃∥,
can be approximated by some scaling functions of the
ratio ∣eB∣/T 2.

Our numerical data for the QGP conductivities are
presented in Fig. 6, which includes a large set of data
points for a wide range of temperatures, 0.85mπ ≲ T ≲
3mπ and magnetic fields, 0.3m2

π ≲ ∣eB∣ ≲ 82m2
π. The nu-

merical values of the conductivities are also provided as
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FIG. 6. The transverse and longitudinal conductivities in
two-flavor QGP in units of temperature as functions of the
dimensionless ratio ∣eB∣/T 2. Empty circles and interpolating
dashed lines represent the conductivities in the chiral limit.

data files in the Supplemental Material [49]. For these
calculations, we used αs = 1. While such a large value
may be outside the validity range of the leading-order
approximation, it can still provide useful qualitative es-
timates for the conductivities in QGP.

Following the same approach as in the QED case in the
previous section, we combine the results for both massive
and massless (chiral) versions of QGP in Fig. 6. Filled
markers correspond to the QGP with a nonzero (phys-
ical) quark mass, while empty circles represent data in
the chiral limit of QGP. To provide a visual guide, the
chiral data are interpolated by dashed lines.

We find that the transverse and longitudinal conduc-
tivities in the chiral limit of QGP can be well approxi-
mated by the following Padé approximants:

σ̃
QCD

⊥,chiral ≃ σ̃⊥,0
1 + 12.5b+ 0.643b2 + 0.08b3 + 0.00081b4 − 9.8 × 10−7b5

1 + 3.7b + 0.35b2 + 0.021b3 , (32)

σ̃
QCD

∥,chiral
≃ σ̃∥,0

1 − 0.06b + 0.0292b2 − 10−4b3 + 6.2 × 10−5b4 + 1.32 × 10−8b6
1 − 0.0087b+ 2.4 × 10−5b2 − 1.67 × 10−8b3 , (33)

where σ̃⊥,0 ≈ 5 × 10−3, σ̃∥,0 ≈ 2.7 × 10−2, and b = ∣eB∣/T 2.
The quality of the fit is better than about 2% for the
transverse and 10% for the longitudinal conductivity in
the whole range of parameters studied, ∣eB∣/T 2 ≲ 60.
For comparison, in Fig. 6, we also include the QCD

lattice results for the electrical conductivities obtained in
Ref. [28]. They are represented by the orange and blue
shaded bands, where the edges of the bands correspond
to different choices of the zero-field conductivities, i.e.,
σ0 = 0.3CemT and σ0 = 0.6CemT , respectively, with Cem =
5e2/9.
As seen, our numerical data for the transverse conduc-

tivity are of the same order of magnitude as the lattice
results, although the general profile of its dependence
on ∣eB∣/T 2 looks different. In contrast, the longitudi-
nal conductivity is much larger compared to the lattice
data. We can only speculate that this difference is due
to higher-order processes contributing significantly to the
damping rates and, more generally, the spectral densities
of quarks. The longitudinal conductivity appears to be
quite sensitive to the damping rates even in the case of
QED. It is reasonable to expect that this sensitivity is
exacerbated in a strongly coupled QGP.

Since the value of the QCD coupling constant αs is
not well known under conditions relevant for heavy-ion
physics, it is useful to examine how varying αs affects the
transverse and longitudinal conductivities. The corre-
sponding numerical data for two different values, αs = 0.5
and αs = 2, are shown in Fig. 7. The values of the conduc-
tivities can also be found in the Supplemental Material

[49].
By comparing the data in the two panels of Fig. 7, we

see that the two conductivities get closer together as the
coupling constant increases. This is consistent with the
underlying mechanisms of the transverse and longitudi-
nal conductivities: while the former is proportional to the
damping rate, the latter is inversely proportional to it,
and thus to the strong coupling constant. This suggests
that the ratio σ⊥/σ∥, which quantifies the anisotropy of

electrical charge transport, should scale as α2
s. Of course,

the real situation is more complex because the conduc-
tivities are affected very differently by temperature and
magnetic field.

VI. DISCUSSION AND SUMMARY

In this paper, we studied the transverse and longi-
tudinal electrical conductivities of strongly magnetized
relativistic plasmas within the gauge field theory frame-
work. We relied on the Kubo formula and detailed knowl-
edge of the fermion damping rates of charge carriers in
the Landau-level representation. In the regime of strong
fields, the leading-order results for the damping rates are
determined by the following three types of one-to-two
and two-to-one processes: ψn → ψn′ + γ, ψn + γ → ψn′ ,
and ψn + ψ̄n′ → γ. The corresponding rates were cal-
culated using full kinematics and exact amplitudes in
Ref. [42]. We argue that such an approximation is re-
liable when the magnetic field and temperature satisfy
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the inequality ∣eB∣/T 2 ≫ α. In this regime, the sublead-
ing two-to-two processes are suppressed. It is important
to keep in mind, however, that they would become dom-
inant when the magnetic field becomes sufficiently weak,
i.e., ∣eB∣ ≲ αT 2. In such a weak-field regime, the impor-
tance of the Landau-level quantization diminishes.

We investigated in detail the temperature and mag-
netic field dependence of the electric charge transport. In
the ultrarelativistic regime, the transverse and longitudi-
nal conductivities are approximated by universal scaling
functions of a single dimensionless parameter ∣eB∣/T 2.
The shape of the corresponding functions is established
by considering the chiral limit of QED plasma, which as-
sumed that the fermion mass vanishes. When the mass is
nonzero, the scaling appears to work really well only for
the transverse component of conductivity. The longitu-
dinal conductivity, on the other hand, shows significant
deviations from the chiral limit even for relatively large
values of T /me, especially when ∣eB∣/T 2 ≳ 10.
For a QED plasma, the corresponding numerical re-

sults are presented in Fig. 1. We find that underlying
mechanisms of charge transport are very different in the
transverse and longitudinal directions with respect to the
magnetic field. The nature of longitudinal transport is
similar to that in metals, where an increasing damping
(or scattering) rate, e.g., due to raising the plasma tem-
perature, suppresses the conductivity. Transverse trans-
port, on the other hand, is somewhat similar to that in
semiconductors, where the conductivity grows with tem-
perature. The reason for such a behavior of the trans-
verse conductivity is an entrapment of charge carriers in
Landau orbits. In essence, this is the same argument of
a dimensional reduction, 3 + 1 → 1 + 1, that one uses in
the theory of magnetic catalysis [44]. A strong magnetic
field restricts the transverse motion of charged fermions
down to spatial scales of the order of the magnetic length

ℓ = 1/√∣eB∣. As a result, the transverse conductivity hap-
pens only as a result of transitions between Landau levels.
Therefore, the conductivity grows with rising temper-

ature because it enhances the corresponding transition
rates.

The drastically different mechanisms of the transverse
and longitudinal transport imply that conductivity is
highly anisotropic in a strong magnetic field. This effect
is amplified when the coupling constant α is small. The
transverse conductivity is proportional to the damping
rate, whereas the longitudinal conductivity is inversely
proportional to the damping rate, resulting in the ratio
σ⊥/σ∥ scaling as α2. In the case of QED, we find that
the values of σ⊥ are typically 2 to 7 orders of magnitude
smaller than σ∥.

It should be noted that our study goes well beyond
the previous attempts to calculate σ∥ in Refs. [22, 23],
which relied on a naive lowest Landau-level approxima-
tion. Formally, our analytical result appears to agree
with those in Refs. [22, 23], provided σ∥ is implicitly ex-
pressed in terms of the damping rate Γ0(kz). However,
as we discussed in Sec. IVA, the inclusion of the transi-
tions only within the lowest Landau level is insufficient
for the calculation of the damping rate Γf,0(kz), even
under very strong magnetic fields. This limitation is par-
ticularly important when the fermion mass is small and
the longitudinal momentum is large.

In this study, we utilized recent state-of-the-art results
for the fermion self-energy in the Landau-level represen-
tation [42] to calculated the damping rates, properly ac-
counting for contributions from all Landau levels. This
approach was crucial for obtaining reliable results for the
longitudinal conductivity at leading order in coupling,
as well as for calculating the transverse conductivity σ⊥
for the first time within a gauge theory. In comparison,
the transverse conductivity is not even accessible in the
kinetic theory approach used in Refs. [23–25].

It is worth noting that the magnetic field dependence of
the longitudinal conductivity is consistent with the qual-
itative results for negative magnetoresistance observed
in Dirac and Weyl semimetals [53–60]. This reconfirms
the same conclusion reached in Ref. [24, 25] that a self-
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consistent treatment of electrical charge transport within
gauge theory is sufficient to reproduce negative magne-
toresistance, without the need for additional phenomeno-
logical assumptions about the interplay between the chi-
ral magnetic effect and chiral charge diffusion. This
should not be surprising, of course, since the quantum
chiral anomaly is inherently embedded in our first prin-
ciples field-theoretic analysis. Furthermore, this is consis-
tent with the claim made in Ref. [61] that the anomaly is
entirely captured by the topological nature of the lowest
Landau level. Beyond reproducing longitudinal negative
magnetoresistance, our analysis of the transverse conduc-
tivity also enables us to calculate magnetoresistivity for
any arbitrary angle between the magnetic field and the
electric current.
We additionally investigated the effects of a nonzero

chemical potential µ on the transverse and longitudinal
conductivities. We found that both transport character-
istics tend to increase with the chemical potential when∣eB∣/T 2 ≲ 5. This effect is similar to that observed in
metals in condensed matter physics, where conductivity
increases due to a higher density of states at the Fermi
surface. However, at large ∣eB∣/T 2, the longitudinal con-
ductivity is suppressed by µ due to an increasing damp-
ing rate for the relevant states at a dimensionally reduced
Fermi surface. In contrast, the transverse conductivity,
which is determined by the rate of transitions between
the zeroth and first Landau levels, remains almost insen-
sitive to µ at large ∣eB∣/T 2.
It should be noted that when studying a magnetized

plasma at a nonzero chemical potential, we accounted
only for the effects of µ on particle distributions, not
on fermion damping rates. The latter are expected to
become increasingly important as the chemical potential
increases. Before conducting a corresponding study, it is
necessary to generalize the results for fermion damping
rates in Ref. [42] to nonzero µ. This is a problem we plan
to address in the future.

We have extended our study of electrical conductivity
from a weakly coupled QED plasma to a strongly coupled
QGP in the presence of a backgroundmagnetic field. Our
key findings are presented in Figs. 6 and 7, where we used
three different values of the coupling constant αs. Al-

though the leading-order results might not be as reliable
as those in QED, we believe that our model accurately
captures the qualitative physics of charge transport. We
hope our findings will help guide research in heavy-ion
physics and identify qualitative features of QGP associ-
ated with a strong magnetic field. With that said, further
theoretical research is needed to investigate the role of
subleading processes and nonperturbative effects in the
charge transport.
Electrical conductivity is crucial for QGP produced

in heavy-ion collisions, as it determines the timescales
for the trapping and diffusion of the magnetic field and
may influence observed charged particle correlations. Re-
cently, the STAR collaboration provided the first exper-
imental results for conductivity, as reported in Ref. [62].
We hope that future experiments will detect the effects
of a nonzero magnetic field in the measured transport
characteristics of QGP.
Reliable results for the conductivity of the electron-

positron plasma are crucial for realistic simulations of
pulsar magnetospheres [63–65]. Specifically, the inverse
of σ∥ quantifies the deviation from the force-free condi-
tion in the plasma, the magnitude of the parallel compo-
nent of the electric field, and the electrical current dissi-
pation rate. These factors determine the energy balance
and activity of the magnetosphere, which, in turn, affect
the observational signatures of pulsars. Therefore, our
results are likely to be useful for a better understanding
of magnetosphere physics and interpreting pulsar activ-
ity.
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Appendix A: Dirac traces

To calculate individual components of the conductivity
tensor in Eq. (8), we used the following results for Dirac
traces:

T 11
aa = tr[γ1 (Enγ

0 − λkzγ3 + λmf) (P+Ln −P−Ln−1)γ1 (En′γ
0 − λ′kzγ3 + λ′mf) (P+Ln′ −P−Ln′−1) ]

= −2 (LnLn′−1 +Ln′Ln−1) [EnEn′ − λλ′(k2z +m2
f)] , (A1)

T 12
aa = −T 21

aa = tr[γ1 (Enγ
0 − λkzγ3 + λmf ) (P+Ln −P−Ln−1) γ2 (En′γ

0 − λ′kzγ3 + λ′mf) (P+Ln′ −P−Ln′−1) ]
= 2is⊥ (LnLn′−1 −Ln′Ln−1) [EnEn′ − λλ′(k2z +m2

f)] , (A2)

T 33
aa = tr[γ3 (Enγ

0 − λkzγ3 + λmf) (P+Ln −P−Ln−1)γ3 (En′γ
0 − λ′kzγ3 + λ′mf) (P+Ln′ −P−Ln′−1) ]

= 2 (LnLn′ +Ln−1Ln′−1) [EnEn′ + λλ′ (k2z −m2
f)] , (A3)
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T 11
bb = −T 22

bb = 4λλ′tr [γ1(k⊥ ⋅ γ⊥)L1
n−1γ

1(k⊥ ⋅ γ⊥)L1
n′−1] = 16λλ′ (k2x − k2y)L1

n−1L
1
n′−1, (A4)

T 12
bb = T 21

bb = 4λλ′tr [γ1(k⊥ ⋅ γ⊥)L1
n−1γ

2(k⊥ ⋅ γ⊥)L1
n′−1] = 32λλ′kxkyL1

n−1L
1
n′−1, (A5)

T 33
bb = 4λλ′tr [γ3(k⊥ ⋅ γ⊥)L1

n−1γ
3(k⊥ ⋅ γ⊥)L1

n′−1] = −16λλ′k2⊥L1
n−1L

1
n′−1, (A6)

T 11
ab = 2λ′tr [γ1 (Enγ

0 − λkzγ3 + λmf) (P+Ln −P−Ln−1)γ1(k⊥ ⋅ γ⊥)L1
n′−1] = 0, (A7)

T 12
ab = −T 21

ab = 2λ′tr [γ1 (Enγ
0 − λkzγ3 + λmf) (P+Ln −P−Ln−1)γ2(k⊥ ⋅ γ⊥)L1

n′−1] = 0, (A8)

T 33
ab = 2λ′tr [γ3 (Enγ

0 − λkzγ3 + λmf) (P+Ln −P−Ln−1)γ3(k⊥ ⋅ γ⊥)L1
n′−1] = 0. (A9)

Note that similar traces of the Lorentz components with one transverse (i = 1,2) and one longitudinal (j = 3)
index do not contribute to the conductivity tensor. Indeed, one can verify that T 13

aa = T 23
aa = T 13

bb = T 23
bb = 0, while

T 13
ab ∼ (a1kx + b1kx)kz and T 23

ab ∼ (a2kx + b2kx)kz . The latter two do not contribute to σij because they are odd
functions of the spatial components of the momentum k.
In the derivation of the transverse and longitudinal conductivities in Eqs. (11) and (12), we also made use of the

following sums over λ and λ′:

∑
λ=±
∑
λ′=±

Γn

(k0 − λEn)2 + Γ2
n

Γn′

(k0 − λ′En′)2 + Γ2
n′

= 4ΓnΓn′ (k20 +E2
n + Γ2

n) (k20 +E2
n′ + Γ2

n′)
[(E2

n + Γ2
n − k20)2 + 4k20Γ2

n] [(E2
n′ + Γ2

n′ − k20)2 + 4k20Γ2
n′] , (A10)

∑
λ=±
∑
λ′=±

λΓn

(k0 − λEn)2 + Γ2
n

λ′Γn′

(k0 − λ′En′)2 + Γ2
n′

= 16k20EnEn′ΓnΓn′

[(E2
n + Γ2

n − k20)2 + 4k20Γ2
n] [(E2

n′ + Γ2
n′ − k20)2 + 4k20Γ2

n′] . (A11)

Appendix B: Amplitude of leading-order processes

As we stated in the main text, the damping rates
in the Landau-level states, Γf,n(kz), are determined by
three types of one-to-two and two-to-one processes: (i)
ψn → ψn′ + γ, (ii) ψn + γ → ψn′ , and (iii) ψn + ψ̄n′ → γ.
In Ref. [42], these rates were derived from the fermion
self-energy by using two different methods. The final
result is quoted in Eq. (19) in the main text, which is
given in terms of functionMn,n′(ξ) defined in Eq. (22).
The latter is claimed to be proportional to the amplitude
squared of the corresponding one-to-two and two-to-one
processes. In this Appendix, we support this claim by
calculating the squared amplitude explicitly.

Let us start from considering the following one-to-two
process: ψn(P ) → ψn′(P ′) + γ(K). (The amplitudes
squared for the other two processes are the same.) The
S-matrix element for the process with an electron in the
initial Landau level n and the final Landau level n′ reads
as

Sfi = g∫ d4u ⟨e(P ′, n′)γ(K) ∣ψ̄γµAµψ∣ e(P,n)⟩ , (B1)

where uµ ≡ (t, x, y, z) is the space-time coordinate. Us-
ing the solutions of the Dirac equation presented in Ap-
pendix C, we can write the fermion field operator as fol-
lows:

ψ(u) = ∑
s=±

∞∑
n=0
∫ dpydpz(2π)2√2En

[fs(n, py, pz)e−ip∥⋅u∥−is⊥pyyUs(xp, n, pz) + f̂ †
s(n, py, pz)eip∥⋅u∥+is⊥pyyVs(x̃p, n, pz)],(B2)

where fs(n, py, pz) is the annihilation operator for a fermion and f̂ †
s(n, py, pz) is the creation operator for an antifermion

in the nth Landau-level state with quantum numbers py and pz. The expressions for spinors Us(xp, n, pz) and
Vs(x̃p, n, pz) in the Landau-level states with positive and negative energies are given in Appendix C. The one-fermion
states are defined by

∣n, py, pz⟩ =√2Enf
†
s(n, py, pz) ∣0⟩ . (B3)

The Dirac conjugate of the fermion field is given by

ψ̄(u) = ∑
s=±

∞∑
n=0
∫ dpydpz(2π)2√2En

[f †
s (n, py, pz)eip∥⋅u∥+is⊥pyyŪs(xp, n, pz) + f̂s(n, py, pz)e−ip∥⋅u∥−is⊥pyyV̄s(x̃p, n, pz)].(B4)

The creation and annihilation operators satisfy the anticommutation relation

{fs(n, py, pz), f †
s′(n′, p′y , p′z)} = (2π)2δss′δnn′δ(py − p′y)δ(pz − p′z), (B5)

the operators f̂ and f̂ † satisfy a similar relation, while all other anticommutation relations give zeros. The equal
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time anticommutation relation for the fermion field op-
erators reads

{ψ(u), ψ†(u′)} = δ3(u −u′), (B6)

assuming t = t′. The photon field operator takes the
conventional form,

Aµ(u) = ∫ d3k

(2π)3√2ωk

∑
r

ǫµr (are−ik⋅u + a†
re

ik⋅u), (B7)

where ǫµr are photon polarization vectors.

By making use of the definitions of the field operators
and the one-particle states, we derive

Sfi = (2π)3δ2 (p′∥ + k∥ − p∥) δ (p′y + ky − py)Mij , (B8)

where

Mij = g∫ dxeikxxŪs′(x′p, n′, p′z)γµǫrµUs(xp, n, pz). (B9)
Averaging over the initial spin states and summing over
all final states (i.e., photon polarizations r and fermion
spin states s′), we obtain

∑
r,s,s′

∣Mij ∣2
βn

= − g2
βn
∫ dx∫ dx′eikx(x−x′)tr [PU(x′p′ , xp′ , n′, p′z)γµPU(xp, x′p, n, pz)γµ]

= −4g2
βn
∫ dx∫ dx′eikx(x−x′)[m2

f{φn(xp)φn(x′p)φn′(xp′)φn′(x′p′) + φn−1(xp)φn−1(x′p)φn′−1(xp′)φn′−1(x′p′)}
+(m2

f − p0p′0 + pzp′z){φn(xp)φn(x′p)φn′−1(xp′)φn′−1(x′p′) + φn−1(xp)φn−1(x′p)φn′(xp′)φn′(x′p′)}
+2√n∣efB∣√n′∣efB∣{φn(xp)φn−1(x′p)φn′(xp′)φn′−1(x′p′) + φn−1(xp)φn(x′p)φn′−1(xp′)φn′(x′p′)}], (B10)

where we used the Landau-level spin degeneracy factor βn ≡ 2−δn,0 and took into account that ∑r(ǫrµ)∗ǫrν = −gµν . The
definition of the bi-spinor functions PU(xp, x′p, n, pz) and the orbital wave functions φn(xp) are given in Appendix C.
To integrate over x and x′, we use the following result:

∫ ∞

−∞

dxφn(xp)φn′(xp′)eikxx = (2n(n′)!
2n′n!

)1/2e− 1

2
ζ+ i

2
kx(py+p

′
y)ℓ2f(ℓf

2
(py − p′y − ikx))

n−n′

Ln−n′

n′ (ζ), (B11)

where ζ = 1
βn
[k2x + (py − p′y)2]ℓ2f . Taking into account that py − p′y = ky due to the δ-function in Eq. (B8), we can

replace ζ with ξ = (k⊥ℓf)2/2 in the amplitude squared. Then, result in Eq. (B10) reduces down to

∑
r,s,s′

∣Mij ∣2
βn

= −2g2
βn
{m2

f ℓ
2
f [In,n′0 (ξ) + In−1,n′−10 (ξ)] − ℓ2f(m2

f − p0p′0 + pzp′z) [In,n′−10 (ξ) + In−1,n′0 (ξ)] − 2In−1,n′−12 (ξ)}
= 2g2

βn
{ − (n + n′ +m2

f ℓ
2
f) [In,n′0 (ξ) + In−1,n′−10 (ξ)] + (n + n′) [In,n′−10 (ξ) + In−1,n′0 (ξ)]}. (B12)

As we see, the squared amplitude is proportional toMn,n′(ξ)/βn, which is indeed the function that appears
in the definition of the damping rate in Eq. (19). To ob-
tain the final expression, we used the following relation:

p0p
′

0 − pzp′z = (n + n′ − ξ)∣efB∣ +m2
f , (B13)

which follows from the energy-momentum conservation
[42]. We also used the following functions [41]:

In,n′0 (ξ) = (n′)!
n!

e−ξξn−n
′ (Ln−n′

n′ (ξ))2
= n!(n′)!e−ξξn′−n (Ln′−n

n (ξ))2 , (B14)

In,n′2 (ξ) = n + n′ + 2
2

[In,n′0 (ξ) + In+1,n′+10 (ξ)]
− ξ
2
[In+1,n′0 (ξ) + In,n′+10 (ξ)] . (B15)

Appendix C: Dirac equation in a uniform magnetic

field

The Dirac equation in the presence of a magnetic field
is given by

(iγµDµ −mf)ψ(u) = 0, (C1)

where the covariant derivative is Dµ = ∂µ+iefAµ and the
background gauge field is A = (0,Bx,0). By using the
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Dirac representation of γ matrices:

γ0 = ( I2 0
0 −I2 ) , γi = ( 0 σi−σi 0

) , (C2)

where σi are the Pauli matrices, we derive the following
positive-energy solutions of the Dirac equation:

Φ+n,p,s(u) = 1√
2π
e−ip∥ ⋅u∥−is⊥pyyUs(xp, n, pz), (C3)

with the pair of nth Landau-level spinors Us(xp, n, pz)
given by

U+(xp, n, pz) = √En +mf

⎛⎜⎜⎜⎜⎜⎜⎝

φn(xp)
0

pz

En+mf
φn(xp)

−i√2n∣efB∣
En+mf

φn−1(xp)

⎞⎟⎟⎟⎟⎟⎟⎠
,

(C4)

U−(xp, n, pz) = √En +mf

⎛⎜⎜⎜⎜⎜⎜⎝

0
iφn−1(xp)

−√2n∣efB∣
En+mf

φn(xp)−i pz

En+mf
φn−1(xp)

⎞⎟⎟⎟⎟⎟⎟⎠
.

(C5)

Here xp = x/ℓf + pyℓf , ℓf = 1/√∣efB∣ is the magnetic

length, and En =
√
2n∣efB∣ + p2z +m2

f
is the Landau-level

energy. In the last two expressions, we assumed that
s⊥ = sign(efB) > 0. The expressions for the spinors are
similar when s⊥ = −1, but functions φn(xp) and iφn−1(xp)
switch places. Similar spinors (for s⊥ = −1) were found in
Ref. [66]. The orbital wave functions have the following
explicit expressions

φn(xp) = 1√
2nn!
√
πℓf

Hn (xp) e−x2

p/2, (C6)

where Hn(x) are the Hermite polynomials.
When calculating the amplitudes squared of the

leading-order processes in Appendix B, one uses the fol-
lowing bi-spinor functions, obtained by summing the
Landau-level spinors over the spins of the initial (final)
states,

PU(xp, x′p, n, pz) = ∑
s

Us(xp, n, pz)Ūs(x′p, n, pz) = 1

2
{(Enγ

0 − pzγ3 +mf) [φn(xp)φn(x′p) + φn−1(xp)φn−1(x′p)]
+iγ1γ2 (Enγ

0 − pzγ3 +mf) [φn(xp)φn(x′p) − φn−1(xp)φn−1(x′p)]
+√2n∣efB∣(iγ1 + γ2)φn−1(xp)φn(x′p) +√2n∣efB∣(−iγ1 + γ2)φn(xp)φn−1(x′p)}. (C7)

This is analogous to the result obtained in Ref. [66]. Following the same approach, one can also derive the negative
energy spinors,

Φ−n,p,s(u) = 1√
2π
eip∥ ⋅u∥+is⊥pyyVs(x̃p, n, pz), (C8)

where x̃p = x/ℓf − pyℓf and

V+(x̃p, n, pz) = √En +mf

⎛⎜⎜⎜⎜⎜⎝

pz

En+mf
φn(x̃p)

i
√

2n∣efB∣
En+mf

φn−1(x̃p)
φn(x̃p)

0

⎞⎟⎟⎟⎟⎟⎠
,

(C9)

V−(x̃p, n, pz) = √En +mf

⎛⎜⎜⎜⎜⎜⎝

√
2n∣efB∣
En+mf

φn(x̃p)−i pz

En+mf
φn−1(x̃p)
0

iφn−1(x̃p)

⎞⎟⎟⎟⎟⎟⎠
,

(C10)

assuming s⊥ = sign(efB) > 0. When s⊥ = −1, functions φn(x̃p) and iφn−1(x̃p) switch places in the definition of
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Vs(x̃p, n, pz). The bi-spinor function obtained from the negative-energy spinors reads as

PV (x̃p, x̃′p, n, pz) = ∑
s

Vs(x̃p, n, pz)V̄s(x̃′p, n, pz) = 1

2
{(Enγ

0 − pzγ3 −mf) [φn(x̃p)φn(x̃′p) + φn−1(x̃p)φn−1(x̃′p)]
+iγ1γ2 (Enγ

0 − pzγ3 −mf) [φn(x̃p)φn(x̃′p) − φn−1(x̃p)φn−1(x̃′p)]
−√2n∣efB∣(iγ1 + γ2)φn−1(x̃p)φn(x̃′p) −√2n∣efB∣(−iγ1 + γ2)φn(x̃p)φn−1(x̃′p)}. (C11)

[1] G. Sarri et al., Nature Commun. 6, 6747 (2015).
[2] H. Chen and F. Fiuza,

Physics of Plasmas 30, 020601 (2023).
[3] P. A. Sturrock, Astrophys. J. 164, 529 (1971).
[4] M. A. Ruderman and P. G. Sutherland,

Astrophys. J. 196, 51 (1975).
[5] J. Arons, Astrophys. J. 266, 215 (1983).
[6] R. Turolla, S. Zane, and A. Watts,

Rep. Prog. Phys. 78, 116901 (2015),
arXiv:1507.02924 [astro-ph.HE].

[7] V. M. Kaspi and A. Beloborodov,
Ann. Rev. Astron. Astrophys. 55, 261 (2017),
arXiv:1703.00068 [astro-ph.HE].

[8] D. Grasso and H. R. Rubinstein,
Phys. Rep. 348, 163 (2001), arXiv:astro-ph/0009061.

[9] K. Yagi, T. Hatsuda, and Y. Miake, Quark-Gluon

Plasma: From Big Bang to Little Bang, Vol. 23 (Cam-
bridge University Press, Cambridge, UK, 2005).

[10] J. Adams et al. (STAR), Nucl. Phys. A 757, 102 (2005),
arXiv:nucl-ex/0501009.

[11] K. Adcox et al. (PHENIX),
Nucl. Phys. A 757, 184 (2005), arXiv:nucl-ex/0410003.

[12] B. B. Back et al. (PHOBOS),
Nucl. Phys. A 757, 28 (2005), arXiv:nucl-ex/0410022.

[13] R. Durrer and A. Neronov,
Astron. Astrophys. Rev. 21, 62 (2013), arXiv:1303.7121.

[14] T. Vachaspati, Rep. Prog. Phys. 84, 074901 (2021),
arXiv:2010.10525 [astro-ph.CO].

[15] V. Skokov, A. Y. Illarionov, and
V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009),
arXiv:0907.1396 [nucl-th].

[16] V. Voronyuk, V. D. Toneev, W. Cassing,
E. L. Bratkovskaya, V. P. Konchakovski, and
S. A. Voloshin, Phys. Rev. C 83, 054911 (2011),
arXiv:1103.4239 [nucl-th].

[17] W.-T. Deng and X.-G. Huang,
Phys. Rev. C 85, 044907 (2012),
arXiv:1201.5108 [nucl-th].

[18] J. Bloczynski, X.-G. Huang, X. Zhang,
and J. Liao, Phys. Lett. B 718, 1529 (2013),
arXiv:1209.6594 [nucl-th].

[19] X. Guo, J. Liao, and E. Wang,
Sci. Rep. 10, 2196 (2020), arXiv:1904.04704 [hep-ph].

[20] H. van Erkelens and W. van Leeuwen,
Physica A 123, 72 (1984).

[21] O. J. Pike and S. J. Rose,
Phys. Rev. E 93, 053208 (2016).

[22] K. Hattori and D. Satow,
Phys. Rev. D 94, 114032 (2016),

arXiv:1610.06818 [hep-ph].
[23] K. Hattori, S. Li, D. Satow, and H.-

U. Yee, Phys. Rev. D 95, 076008 (2017),
arXiv:1610.06839 [hep-ph].

[24] K. Fukushima and Y. Hidaka,
Phys. Rev. Lett. 120, 162301 (2018),
arXiv:1711.01472 [hep-ph].

[25] K. Fukushima and Y. Hidaka,
J. High Energy Phys. 04, 162 (2020),
arXiv:1906.02683 [hep-ph].

[26] P. V. Buividovich and M. I. Polikar-
pov, Phys. Rev. D 83, 094508 (2011),
arXiv:1011.3001 [hep-lat].

[27] P. V. Buividovich, M. N. Chernodub, D. E. Kharzeev,
T. Kalaydzhyan, E. V. Luschevskaya, and M. I.
Polikarpov, Phys. Rev. Lett. 105, 132001 (2010),
arXiv:1003.2180 [hep-lat].

[28] N. Astrakhantsev, V. V. Braguta, M. D’Elia,
A. Y. Kotov, A. A. Nikolaev, and F. San-
filippo, Phys. Rev. D 102, 054516 (2020),
arXiv:1910.08516 [hep-lat].

[29] G. Almirante, N. Astrakhantsev, V. V. Braguta,
M. D’Elia, L. Maio, M. Naviglio, F. Sanfilippo, and
A. Trunin, (2024), arXiv:2406.18504 [hep-lat].

[30] K. A. Mamo, J. High Energy Phys. 08, 083 (2013),
arXiv:1210.7428 [hep-th].

[31] K. Fukushima and A. Okutsu,
Phys. Rev. D 105, 054016 (2022),
arXiv:2106.07968 [hep-ph].

[32] S.-i. Nam, Phys. Rev. D 86, 033014 (2012),
arXiv:1207.3172 [hep-ph].

[33] B. O. Kerbikov and M. A. Andre-
ichikov, Phys. Rev. D 91, 074010 (2015),
arXiv:1410.3413 [hep-ph].

[34] S. Satapathy, S. Ghosh, and
S. Ghosh, Phys. Rev. D 104, 056030 (2021),
arXiv:2104.03917 [hep-ph].

[35] S. Satapathy, S. Ghosh, and
S. Ghosh, Phys. Rev. D 106, 036006 (2022),
arXiv:2112.08236 [hep-ph].

[36] A. Bandyopadhyay, S. Ghosh, R. L. S. Farias,
and S. Ghosh, Eur. Phys. J. C 83, 489 (2023),
arXiv:2305.15844 [hep-ph].

[37] M. Kurian and V. Chan-
dra, Phys. Rev. D 96, 114026 (2017),
arXiv:1709.08320 [nucl-th].

[38] A. Das, H. Mishra, and R. K. Mo-
hapatra, Phys. Rev. D 101, 034027 (2020),
arXiv:1907.05298 [hep-ph].



19

[39] L. Thakur and P. K. Srivas-
tava, Phys. Rev. D 100, 076016 (2019),
arXiv:1910.12087 [hep-ph].

[40] J. Dey, S. Samanta, S. Ghosh, and S. Sa-
tapathy, Phys. Rev. C 106, 044914 (2022),
arXiv:2002.04434 [nucl-th].

[41] X. Wang and I. Shovkovy,
Phys. Rev. D 104, 056017 (2021),
arXiv:2103.01967 [nucl-th].

[42] R. Ghosh and I. A. Shovkovy,
Phys. Rev. D 109, 096018 (2024),
arXiv:2402.04307 [hep-ph].

[43] R. Ghosh and I. A. Shovkovy,
Phys. Rev. D 110, 096009 (2024),
arXiv:2404.01388 [hep-ph].

[44] V. A. Miransky and I. A. Shovkovy,
Phys. Rep. 576, 1 (2015), arXiv:1503.00732.

[45] G. Aarts and J. M. Martinez Resco,
JHEP 11, 022 (2002), arXiv:hep-ph/0209048.

[46] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Se-

ries, and Products, 5th ed. (Academic Press, New York,
1980).

[47] H. A. Weldon, Phys. Rev. D 28, 2007 (1983).
[48] The proof that the squared amplitude of the leading-

order processes is proportional to function Mn,n′(ξ) is
given in Appendix B.

[49] “See Supplemental Material for numeri-

cal data for the electrical conductivity in

strongly magnetized QED and QCD plasmas,”
https://www.dropbox.com/scl/fo/7tmcx67idkl5mo4k6k307/APVt4p-MWBYdArWYcmz0dkQ?rlkey=un1vl1jrabzof0outfvz62pc6&dl=0 .

[50] L. McLerran and V. Skokov,
Nucl. Phys. A 929, 184 (2014),
arXiv:1305.0774 [hep-ph].

[51] K. Tuchin, Phys. Rev. C 93, 014905 (2016),
arXiv:1508.06925 [hep-ph].

[52] L. Yan and X.-G. Huang,
Phys. Rev. D 107, 094028 (2023),
arXiv:2104.00831 [nucl-th].

[53] H.-J. Kim, K.-S. Kim, J. F. Wang, M. Sasaki, N. Satoh,
A. Ohnishi, M. Kitaura, M. Yang, and L. Li,
Phys. Rev. Lett. 111, 246603 (2013), arXiv:1307.6990.

[54] Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosic,
A. V. Fedorov, R. D. Zhong, J. A. Schneeloch,
G. D. Gu, and T. Valla, Nature Phys. 12, 550 (2016),
arXiv:1412.6543.

[55] J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan,
M. Hirschberger, W. Wang, R. J. Cava, and N. P. Ong,
Science 350, 413 (2015).

[56] J. Feng, Y. Pang, D. Wu, Z. Wang, H. Weng,
J. Li, X. Dai, Z. Fang, Y. Shi, and L. Lu,
Phys. Rev. B 92, 081306 (2015).

[57] C.-Z. Li, L.-X. Wang, H. Liu, J. Wang, Z.-M. Liao, and
D.-P. Yu, Nature Commun. 6, 10137 (2015).

[58] H. Li, H. He, H.-Z. Lu, H. Zhang, H. Liu,
R. Ma, Z. Fan, S.-Q. Shen, and J. Wang,
Nature Commun. 7, 10301 (2016).

[59] X. Huang et al., Phys. Rev. X 5, 031023 (2015),
arXiv:1503.01304.

[60] C. Zhang et al., Nature Commun. 7, 0735 (2016),
arXiv:1601.04208.

[61] J. Ambjorn, J. Greensite, and C. Peterson,
Nucl. Phys. B221, 381 (1983).

[62] M. I. Abdulhamid et al. (STAR),
Phys. Rev. X 14, 011028 (2024),
arXiv:2304.03430 [nucl-ex].

[63] J. Li, A. Spitkovsky, and
A. Tchekhovskoy, Astrophys. J. 746, 60 (2012),
arXiv:1107.0979 [astro-ph.HE].

[64] C. Kalapotharakos, D. Kazanas, A. Harding,
and I. Contopoulos, Astrophys. J. 749, 2 (2012),
arXiv:1108.2138 [astro-ph.SR].

[65] C. Kalapotharakos, A. K. Harding, D. Kazanas,
and I. Contopoulos, Astrophys. J. Lett. 754, L1 (2012),
arXiv:1205.5769 [astro-ph.HE].

[66] K. Bhattacharya and P. B. Pal,
Pramana 62, 1041 (2004), arXiv:hep-ph/0209053.


