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On convex comparison for exterior Bernoulli problems
with discontinuous anisotropy

William M Feldman and Norbert Požár

Abstract. We give a new, intuitive proof of a convex comparison principle for exterior Bernoulli
free boundary problems with discontinuous anisotropy.

1. Introduction

Let 𝐾 be a closed convex subset of R𝑑 with nonempty interior. We will consider the con-
vexity properties of the minimal supersolution of the anisotropic Bernoulli problem

Δ𝑢 = 0 in {𝑢 > 0} \ 𝐾,
|∇𝑢 | = 𝑄(𝑛𝑥) on 𝜕{𝑢 > 0},
𝑢 = 1 on 𝐾.

(1.1)

Here 𝑛𝑥 is the inner unit normal to 𝜕{𝑢 > 0} at 𝑥 and 𝑄 : 𝑆𝑑−1 → (0,∞) is only assumed
to be bounded above and below and upper semi-continuous

𝑄(𝑛) ≥ lim sup
𝑛′→𝑛

𝑄(𝑛′).

Such problems, with discontinuous anisotropy, naturally arise from periodic homogeniza-
tion scaling limits [5, 7, 9, 10, 14].

In the context of homogenization and other scaling limits, one cannot directly show the
minimality property of the limiting supersolutions. Instead the following weak subsolution
property is natural. Essentially this is a viscosity subsolution property that only allows to
test the free boundary condition with one-dimensional test functions.

Definition 1.1. We say that 𝜑 ∈ 𝐶∞ (𝑈) is one-dimensional in𝑈 if it is of the form 𝜑(𝑥) =
𝑓 (𝑥 · 𝑝) in𝑈 for some 𝑓 ∈ 𝐶∞ (R) and 𝑝 ∈ R𝑑 , |𝑝 | = 1.

Definition 1.2. A weak subsolution of (1.1) is a nonnegative function 𝑢 ∈ 𝐶 (R𝑑) that is
compactly supported, satisfies 𝑢 ≤ 1 on 𝐾 , is harmonic in {𝑢 > 0} \ 𝐾 , and such that,
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whenever𝑈 is an open neighborhood and one-dimensional 𝜑 with Δ𝜑 < 0 touches 𝑢 from
above in {𝑢 > 0} at 𝑥 ∈ 𝜕{𝑢 > 0} ∩𝑈 with strict ordering 𝑢 < 𝜑 on {𝑢 > 0} ∩ 𝜕𝑈, then

|∇𝜑(𝑥) | ≥ 𝑄(𝑝),

where 𝑝 is from Definition 1.1.

The following supersolution definition is standard.

Definition 1.3. A supersolution of (1.1) is a nonnegative function 𝑢 ∈ 𝐶 (R𝑑) that is com-
pactly supported, 𝑢 ≥ 1 on 𝐾 , is harmonic in {𝑢 > 0} \ 𝐾 , and whenever 𝜑 ∈ 𝐶∞ (𝑈), 𝑈
open, Δ𝜑 > 0 and ∇𝜑 ≠ 0 in𝑈, touches 𝑢 from below at 𝑥 ∈ 𝜕{𝑢 > 0} ∩𝑈 then

|∇𝜑(𝑥) | ≤ 𝑄
( ∇𝜑
|∇𝜑 | (𝑥)

)
.

We give a new proof of the following theorem.

Theorem 1.4. A supersolution of (1.1) is minimal if and only if it satisfies the weak subsolu-
tion property Definition 1.2. In other words, a supersolution that is also a weak subsolution
is the unique minimal supersolution. Furthermore the minimal supersolution has convex
superlevel sets.

This result has already been proved in [10] by Smart and the first author. This compar-
ison principle, for discontinuous anisotropies, was an important component in the proof of
the homogenization scaling limit of minimal supersolutions in that work and in [9]. This
paper gives a new proof which we feel has valuable simplicity and intuition. The main new
ideas in this paper are in Lemma 3.4 and Corollary 3.7 below. We give a brief explanation
about those new ideas here.

The difficulty in using the weak subsolution condition is that, on a facet 𝐹 (see Sec-
tion 2.1 for definitions) with inward normal 𝑛 of the free boundary of a quasi-convex
subsolution 𝑢, the weak subsolution condition only guarantees that

max
𝐹

|∇𝑢 | ≥ 𝑄(𝑛).

Unfortunately if a supersolution touches 𝑢 from above on this facet it may not touch at the
point where the maximum in the subsolution condition is saturated. We would like instead
the strong subsolution condition

min
𝐹

|∇𝑢 | ≥ 𝑄(𝑛). (1.2)

The first idea, exploited in Lemma 3.4, is that the weak and strong subsolution conditions
above are the same at exposed points, facets 𝐹 which are singletons. By Straszewicz’s The-
orem, Theorem 2.2 quoted below, all extreme points are limits of exposed points so, along
with some additional convexity arguments we can show that weak subsolutions actually
satisfy the strong condition (1.2) on all facets at least when 𝑄 is continuous.
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This idea does not directly work in the case of upper semicontinuous 𝑄; if it did, all
facets of a solution would actually be trivial. However it turns out, somewhat unexpect-
edly, that we can use a simple monotone continuous approximation argument of the upper
semicontinuous 𝑄 to prove a comparison principle in the discontinuous case too. This is
the content of Corollary 3.7 below.

There have been several works on existence, uniqueness, convexity, and regularity of
solutions of Bernoulli-type problem (1.1) with 𝑄(𝑛) ≡ 1 or continuous. Classical work of
Beurling [2], and later Schaeffer [16] and Acker [1], showed the existence/uniqueness of a
convex solution in 2-d. Hamilton [11] gave a different proof in 2-d by a Nash-Moser implicit
function theorem. Later Henrot and Shahgholian [12, 13] gave proofs based on maximum
principle including nonlinear problems with 𝑥-dependent boundary conditions (satisfying
a concavity assumption). Bianchini [3] extended this to anisotropic interior Bernoulli prob-
lems and to Finsler metrics [4]. The present paper is most similar to these works [3,4,12,13];
for us the main difficulty is in proving comparison principle with only the weak subsolution
condition.

2. Convexity properties

2.1. Extreme and exposed points of convex sets

We recall several notions and results from convex analysis; see for example [15, Sec. 18].
For a convex set 𝑋 , a face is a convex subset 𝑌 ⊂ 𝑋 such that every line segment in

𝑋 with relative interior point1 in 𝑌 has both end points in 𝑌 . If a face of 𝑋 is a point, it is
called an extreme point of 𝑋 .

The convex set 𝑌 = {𝑥 ∈ 𝑋 : ℎ(𝑥) = max𝑋 ℎ} for some linear function ℎ is a face of 𝑋 ,
and it is called an exposed face. If an exposed face 𝑋 is a point, it is called an exposed point
of 𝑋 . Also we call a facet of 𝑋 to be a nontrivial exposed face, i.e. not the entire set 𝑋 .

The following two results about extreme points and exposed points will play a key role.

Lemma 2.1 ([15, Cor. 18.5.1]). A closed bounded convex set is the convex hull of its
extreme points.

Theorem 2.2 (Straszewicz’s Theorem[15, Th. 18.6]). Let 𝑋 be a closed convex set. Every
extreme point of 𝑋 is the limit of a sequence of exposed points of 𝑋 .

1 (1 − 𝑡 )𝑥 + 𝑡 𝑦 for 𝑡 ∈ (0, 1) are relative interior points of segment 𝑥–𝑦.
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2.2. Convexity properties of a gradient of a harmonic function

Let ∅ ≠𝑈 ⊂⊂ 𝑉 be two bounded open convex sets. We also assume that𝑉 is inner regular.
Let 𝑣 be the unique solution of 

Δ𝑣 = 0 in 𝑉 \𝑈,
𝑣 = 1 on 𝜕𝑈,
𝑣 = 0 on 𝜕𝑉.

(2.1)

By [8, Th. 2.1] the super-level sets {𝑣 > 𝑡} are convex for all 𝑡 ∈ (0,1). This implies convexity
of the super-level sets of |∇𝑣 | on the facets of 𝜕𝑉 .

Lemma 2.3. Let𝑈, 𝑉 and 𝑣 be as above and let Λ be a tangent hyperplane to 𝜕𝑉 . Recall
that𝑉 is uniformly inner regular. Set 𝐹 = 𝜕𝑉 ∩Λ. Then 1/|∇𝑣 | is convex on 𝐹. In particular,
its sublevel sets

{𝑥 ∈ 𝐹 : 1/|∇𝑣(𝑥) | < 1/𝜏} = {𝑥 ∈ 𝐹 : |∇𝑣(𝑥) | > 𝜏}

are convex for any 𝜏 > 0.

Proof. Let 𝑛 be the unit normal of Λ so that it is also the inner unit normal of 𝜕𝑉 on 𝐹.
Fix 𝜉0, 𝜉1 ∈ 𝐹 and set 𝜉𝑡 := (1 − 𝑡)𝜉0 + 𝑡𝜉1. For any 𝜃 > 0 we define

ℎ𝜃 (𝑡) := inf{ℎ > 0 : 𝑣(𝜉𝑡 + ℎ𝑛) > 𝜃}, 𝑡 ∈ [0, 1] .

By continuity of 𝑣 we have ℎ𝜃 (𝑡) > 0. Since {𝑣 > 𝜃} ↗ 𝑉 as 𝜃 → 0 and {𝑣 > 0} is inner
regular at 𝜉𝑡 we have ℎ𝜃 (𝑡) < ∞ for sufficiently small 𝜃 > 0 for all 𝑡 ∈ [0, 1]. In fact,
ℎ𝜃 (𝑡) → 0 as 𝜃 → 0. Since {𝑣 > 𝜃} is convex by [8], ℎ𝜃 is convex on [0, 1].

Therefore

|∇𝑣(𝜉𝑡 ) | = ∇𝑣(𝜉𝑡 ) · 𝑛 = lim
𝜃→0

𝑣(𝜉𝑡 + ℎ𝜃 (𝑡)𝑛)
ℎ𝜃 (𝑡)

= lim
𝜃→0

𝜃

ℎ𝜃 (𝑡)
.

By inner regularity and Hopf’s lemma |∇𝑣(𝜉𝑡 ) | > 0 for all 𝑡 ∈ [0, 1] and hence we deduce
that 𝑡 ↦→ 1/|∇𝑣(𝜉𝑡 ) | is convex since 𝑡 ↦→ ℎ𝜃 (𝑡)/𝜃 is convex and pointwise limits of convex
functions are convex.

Remark 2.4. It is not in general true that |∇𝑣 | is concave on 𝐹. Here is a counter-example
on an unbounded 𝑉 .

In 𝑑 = 2, consider the top half-space 𝑉 := {𝑥2 > 0} and the potential between a point
charge at (0, 1) and the plane {𝑥2 = 0} = 𝜕𝑉 :

𝑣(𝑥) = − log(𝑥2
1 + (𝑥2 − 1)2) + log(𝑥2

1 + (𝑥2 + 1)2),

and set𝑈 = {𝑣 > 1}, a convex set. We have

|∇𝑣(𝑥) | = 𝜕𝑣

𝜕𝑥2
(𝑥1, 0) =

4
𝑥2

1 + 1
, 𝑥 ∈ 𝜕𝑉,

which is not convex.
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3. Comparison principle

In this section we establish the proof of comparison between a weak subsolution and a
supersolution when at least one has convex support. When the supersolution has convex
support, we are able to directly show comparison with only semicontinuous 𝑄. However,
if only the weak subsolution has convex support we need to additionally assume that 𝑄 is
continuous. To finally use this result to establish uniqueness of function that is both a super-
solution and a weak subsolution with convex support when𝑄 is upper semicontinuous, we
monotonically approximate 𝑄 by continuous functions.

We recall the notions of sup- and inf-convolutions that we will use to regularize free
boundaries of the solutions. For a set 𝑉 we define

𝑉𝑟 := 𝑉 + 𝐵𝑟 , 𝑉𝑟 := {𝑥 : 𝐵𝑟 (𝑥) ⊂ 𝑉}. (3.1)

For a continuous 𝑢, we then define 𝑢𝑟 as the solution of (2.1) with 𝐾𝑟 and {𝑢 > 0}𝑟 in place
of𝑈 and 𝑉 . Similarly replacing𝑈 by 𝐾𝑟 and 𝑉 by {𝑢 > 0}𝑟 leads to 𝑢𝑟 .

If 𝑢 is a weak subsolution so is 𝑢𝑟 , and furthermore {𝑢𝑟 > 0} is uniformly inner regular
with radius 𝑟. Similarly, if 𝑢 is supersolution so is 𝑢𝑟 and {𝑢𝑟 > 0} is uniformly outer
regular.

Let us recall a stability property of supersolutions.

Lemma 3.1. Let 𝑄 be a upper semicontinuous function. Then supersolutions in the sense
of Definition 1.3 are stable under uniform convergence.

Proof. Let {𝑢𝑘} be a sequence of supersolutions and let 𝑢 be its uniform limit. Clearly 𝑢
is continuous, 𝑢 ≥ 1 on 𝐾 and 𝑢 is harmonic in {𝑢 > 0}.

Suppose that 𝜑 ∈ 𝐶∞ (𝑈), Δ𝜑 > 0 and ∇𝜑 ≠ 0 in𝑈, touches 𝑢 from below at 𝑥 ∈ 𝜕{𝑢 >
0} ∩ 𝑈. We can assume that 𝑢 − 𝜑 has a strict minimum at 𝑥. By uniform convergence,
all points of minimum of 𝑢𝑘 − 𝜑 converge to 𝑥 as 𝑘 → ∞. By maximum principle for
harmonic functions the minima are located on 𝜕{𝑢𝑘 > 0} ∩𝑈 for sufficiently large 𝑘 . Let
𝑥𝑘 be a sequence of such minima. For large 𝑘 we have ∇𝜑(𝑥𝑘) ≤ 𝑄(∇𝜑(𝑥𝑘)/|∇𝜑(𝑥𝑘) |).
By sending 𝑘 →∞ and by the upper-semicontinuity of𝑄 we deduce that this also holds at
𝑥. Therefore 𝑢 is a supersolution.

3.1. Outer regular points have a classical normal derivative

First we show a useful technical lemma: the normal derivative is well defined at outer regular
free boundary points, and for a supersolution it satisfies the supersolution condition.

Lemma 3.2. Suppose that 𝑢 is a supersolution, and 𝑥0 ∈ 𝜕{𝑢 > 0} is an outer regular free
boundary point. Then |∇𝑢(𝑥0) | is well-defined and

|∇𝑢(𝑥0) | ≤ 𝑄(𝑛𝑥0 ).
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Proof. Without loss assume that 𝑥0 = 0 and outward normal determined by the exterior
ball is −𝑒𝑑 . By [6, Lemma 11.18] the blow-up sequence

𝑢𝑟 (𝑥) =
𝑢(𝑟𝑥)
𝑟

→ 𝛼𝑥𝑑 in non-tangential cones for some 𝛼 ∈ [0, ∥∇𝑢∥∞] .

On the other hand the blow-up sequence 𝑢𝑟 (𝑥) is uniformly Lipschitz continuous with
𝑢𝑟 (0) = 0 and so every subsequence has a subsequence converging uniformly onR𝑛. Every
subsequential limit must be zero on 𝑥𝑛 ≤ 0 by the exterior ball condition, and must agree
with𝛼𝑥𝑛 on 𝑥𝑛 > 0 by the non-tangential limit. Thus the sequence actually converges locally
uniformly to 𝛼(𝑥𝑑)+. By Lemma 3.1 for upper semicontinuous 𝑄, the limit 𝛼(𝑥𝑛)+ is also
a viscosity supersolution and so 𝛼 ≤ 𝑄(𝑒𝑑).

3.2. Comparison principle: convex supersolution

Lemma 3.3. Assume 𝑄 is upper semicontinuous. Suppose that 𝑣 is supersolution of (1.1)
with 𝑉 := {𝑣 > 0} convex, and 𝑢 is a weak subsolution of (1.1). Then 𝑣 ≥ 𝑢.

Proof. By translation we can assume that the interior of 𝐾 contains the origin. Since 𝑣 and
𝑢 are harmonic in their positive sets, it is sufficient to show that {𝑢 > 0} =:𝑈 ⊂𝑉 := {𝑣 > 0}.

Let us suppose that this is not the case. Recall the sup and inf-convolutions (3.1). There
exist 𝑟 > 0 sufficiently small and 𝑎 > 1 such that𝑈𝑟 ⊂ 𝑎𝑉𝑟 , 𝜕𝑈𝑟 ∩ 𝑎𝜕𝑉𝑟 ≠ ∅ and 𝐾𝑟 ⊂ 𝑎𝐾𝑟

by convexity of 𝐾 . Set 𝑣̃(𝑥) := 𝑣𝑟 (𝑎−1𝑥). By maximum principle for harmonic functions,
𝑢𝑟 ≤ 𝑣̃. Moreover 𝑣̃ is a strict supersolution.

Let us refer to 𝑢𝑟 , 𝑣̃, 𝑈𝑟 and 𝑎𝑉𝑟 as 𝑢, 𝑣, 𝑈, 𝑉 , respectively, in the following. Let
𝑥0 ∈ 𝜕𝑈 ∩ 𝜕𝑉 . Since 𝑈 is inner regular and 𝑉 outer regular, there is a unique supporting
normal 𝑛0 at 𝑥0. Let 𝑃0 be the supporting hyperplane to 𝑉 at 𝑥0. Then Γ := 𝜕{𝑢 > 0} ∩ 𝑃0
is compact and all points of Γ are uniformly inner and outer regular points of 𝜕𝑉 and, by
Lemma 3.2,

|∇𝑣(𝑥) | ≤ 𝑄(𝑛0) − 𝛿 for all 𝑥 ∈ Γ,

for some 𝛿 > 0 by the strict supersolution property. By [10, Lemma 3.14]

𝑣(𝑥) ≤ (𝑄(𝑛0) − 𝛿 + 𝐶𝑟1/3) ((𝑥 − 𝑥0) · 𝑛0)+ on Γ + 𝐵𝑟 (0)

so taking 𝑟 = 𝑐𝛿3 we find that

𝜑(𝑥) = (𝑄(𝑛0) − 1
2𝛿) ((𝑥 − 𝑥0) · 𝑛0)+

touches 𝑢 from above on Γ with strict ordering on 𝜕 (Γ + 𝐵𝑟 (0)). This contradicts the weak
subsolution property of 𝑢.

3.3. Comparison principle: convex subsolution

Next we consider the case when a supersolution touches a convex weak subsolution from
above. In [10, Lemmas 3.15 and 3.16] this case relied on a geometric argument using con-
vexity allowing to compare the gradient of the touching supersolution at a sequence of
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points with normal 𝜈𝑛 approaching the touching direction 𝜈0 to the gradient of the subsolu-
tion on its 𝜈𝑛 facet. In place of this argument we are able to take advantage of well-known
results from convex analysis in the case of continuous𝑄. The idea is that the weak subsolu-
tion condition is not weak at exposed points, and we can exploit the quasi-convexity of the
gradient along with Straszewicz’s Theorem, Theorem 2.2, to derive a strong subsolution
condition on exposed faces.

Lemma 3.4. Suppose that 𝑣 is a weak subsolution of (1.1) with continuous 𝑄, harmonic
in {𝑣 > 0} \ 𝐾 . Further assume that 𝑉 = {𝑣 > 0} is convex and uniformly inner regular,
and 𝑛 is some normal direction with facet 𝑉𝑛 = {𝑥 ∈ 𝑉 : 𝑛 · 𝑥 = inf𝑥∈𝑉 𝑥 · 𝑛}. Then

min
𝑉𝑛

|∇𝑣 | ≥ 𝑄(𝑛).

Note that the weak subsolution property just says max𝑉𝑛
|∇𝑣 | ≥ 𝑄(𝑛). Actually this

allows us to conclude, in the setting of the Lemma, that 𝑉𝑛 must be trivial (a single point).
If we did not assume that 𝑄(𝑛) was continuous we would only obtain

min
𝑉𝑛

|∇𝑣 | ≥ lim inf
𝑛′→𝑛

𝑄(𝑛′).

Proof. Since𝑉𝑛 is the convex hull of its extreme points by Lemma 2.1 and the superlevel set
{𝑥 ∈ 𝑉𝑛 : |∇𝑣 | (𝑥) ≥ 𝑄(𝑛)} is convex by Lemma 2.3, it is enough to establish the inequality
at the extreme points of 𝑉𝑛.

Let 𝑥0 be an extreme point of𝑉𝑛. By inner regularity, 𝑛 is the inner unit normal of 𝜕𝑉 at
𝑥0. Clearly 𝑥0 is also an extreme point of𝑉 . By Theorem 2.2 there is a sequence 𝑥 𝑗 → 𝑥0 of
exposed points of𝑉 . At exposed points of𝑉 , we have by the subsolution condition directly

|∇𝑣 | (𝑥 𝑗 ) ≥ 𝑄(𝑛𝑥 𝑗
).

Since 𝜕𝑉 is uniformly inner and outer regular

|∇𝑣 | (𝑥0) = lim
𝑛→∞

|∇𝑣 | (𝑥 𝑗 ) ≥ lim
𝑗→∞

𝑄(𝑛𝑥 𝑗
) = 𝑄(𝑛),

where we used the standard gradient regularity in 𝐶1,1 domains, see [10, Lemma 3.13] for
proof.

Now applying Lemma 3.4 along with a typical dilation argument to create a touching
point we will get a comparison principle.

Lemma 3.5. Assume 𝑄 is continuous. Suppose that 𝑢 is supersolution of (1.1), and 𝑣 is a
weak subsolution of (1.1) with {𝑣 > 0} convex. Then 𝑣 ≤ 𝑢.

Proof. By translation we can assume that the interior of 𝐾 contains the origin. Since 𝑣 and
𝑢 are harmonic in their positive sets, it is sufficient to show that𝑉 := {𝑣 > 0} ⊂ {𝑢 > 0} =:𝑈.
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Let us suppose that this is not the case. Recall the sup and inf-convolutions (3.1). There
exist 𝑟 > 0 sufficiently small and 𝑎 > 1 such that𝑉𝑟 ⊂ 𝑎𝑈𝑟 , 𝜕𝑉𝑟 ∩ 𝑎𝜕𝑈𝑟 ≠ ∅ and 𝐾𝑟 ⊂ 𝑎𝐾𝑟

by convexity of 𝐾 . Set 𝑢̃(𝑥) := 𝑢𝑟 (𝑎−1𝑥). By maximum principle for harmonic functions,
𝑣𝑟 ≤ 𝑢̃.

At any point 𝑥 ∈ 𝜕𝑉𝑟 ∩ 𝑎𝜕𝑈𝑟 we have |∇𝑣𝑟 | ≥ 𝑄(𝑛) by Lemma 3.4. However, this is
a contradiction with the fact that 𝑢̃ cannot be touched from below by a test function with a
slope larger than 𝑄(𝑛)/𝑎 by supersolution property.

3.4. Existence and uniqueness of a quasi-convex solution

Now we can use the comparison principle, in the case of continuous𝑄, to show uniqueness
and quasi-convexity of solutions.

Theorem 3.6 (cf. [10, Th. 3.10]). Assume that𝐾 is nonempty convex compact set with inner
regular boundary and assume that 𝑄 is continuous. Then there exists a unique continu-
ous function 𝑢 with compact support that is both a supersolution and a weak subsolution.
Moreover {𝑢 > 0} is convex.

Proof. The existence follows by Perron’s method taking the infimum 𝑢 of supersolutions
with convex support. The support of 𝑢must be convex since all supersolutions are bounded
from below by a harmonic function with 1 on 𝐾 with support equal to the intersection
of the convex support of the supersolutions. A standard argument yields that 𝑢 is also a
supersolution. And 𝑢must be a weak subsolution for otherwise we could touch it from above
by a one dimensional 𝐶∞ test function that is a strong supersolution on a neighborhood
of the contact set. By shifting this test function down a smaller supersolution with convex
support can be created, leading to a contradiction. Finally, uniqueness follows from the
convex comparison in Lemma 3.3 and Lemma 3.5.

The comparison principle and convexity in the case of upper semicontinuous 𝑄 now
follows by a monotone approximation argument.

Corollary 3.7. Suppose𝑄 is upper semicontinuous and let 𝑢 be the minimal supersolution
of (1.1). Then:

(1) {𝑢 > 0} is convex
(2) Any supersolution is larger than 𝑢, and 𝑢 is larger than any weak subsolution, and

therefore any supersolution which is also a weak subsolution is identical to 𝑢.

Proof. Since𝑄 is upper semi-continuous there is a monotone decreasing sequence of con-
tinuous 𝑄 𝑗 : 𝑆𝑑−1 → (0,∞) with 𝑄 𝑗 ↘ 𝑄. Let 𝑢 𝑗 be the minimal supersolution of (1.1)
corresponding to the equation |∇𝑢 𝑗 | ≤ 𝑄 𝑗 (𝑛𝑥) on 𝜕{𝑢 𝑗 > 0}, and 𝑢 be the minimal super-
solution corresponding to |∇𝑢 | ≤ 𝑄(𝑛).

Since 𝑄 𝑗 ≥ 𝑄 we have 𝑢 is a supersolution of |∇𝑢 | ≤ 𝑄 𝑗 (𝑛𝑥) on 𝜕{𝑢 > 0} so

𝑢 ≥ 𝑢 𝑗 .



On convex comparison for exterior Bernoulli problems with discontinuous anisotropy 9

Similarly, since the𝑄 𝑗 are monotone decreasing, the𝑢 𝑗 are a monotone increasing sequence.
Call 𝑢∞ := lim 𝑗→∞ 𝑢 𝑗 ≤ 𝑢. We claim that 𝑢∞ is a supersolution of (1.1) which will

mean 𝑢∞ ≥ 𝑢 and hence 𝑢∞ = 𝑢. The supersolution condition is standard stability of the
viscosity solution property with respect to uniform convergence, Lemma 3.1.

By Theorem 3.6 the sets {𝑢 𝑗 > 0} are convex for all 𝑗 . Since they converge monotoni-
cally upwards to {𝑢 > 0} that set is convex as well.

Now let 𝑣 be a weak subsolution, since we now know that {𝑢 > 0} is convex we can
apply Lemma 3.3 to find 𝑣 ≤ 𝑢. If 𝑣 is also a supersolution of (1.1) then 𝑣 ≥ 𝑢, by the
minimality of 𝑢, and so we conclude that 𝑣 = 𝑢.
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