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The occurrence of surface tension gradient discontinuities
and zero mobility for Allen—Cahn and curvature flows
in periodic media

William M. Feldman and Peter Morfe

Abstract. We construct several examples related to the scaling limits of energy minimizers and
gradient flows of surface energy functionals in heterogeneous media. These include both sharp and
diffuse interface models. The focus is on two separate but related issues: the regularity of effective
surface tensions and the occurrence of zero mobility in the associated gradient flows. On regularity,
we build on the 2014 theory of Chambolle, Goldman, and Novaga to show that gradient discontinu-
ities in the surface tension are generic for sharp interface models. In the diffuse interface case, we
only show that the laminations by plane-like solutions satisfying the strong Birkhoff property gener-
ically are not foliations and do have gaps. On mobility, we construct examples in both the sharp
and diffuse interface case where the homogenization scaling limit of the L? gradient flow is trivial,
that is, there is pinning at every direction. In the sharp interface case, these are related to examples
previously constructed for forced mean curvature flow in Novaga and Valdinoci’s 2011 paper.

1. Introduction

1.1. Sharp interface models

The primary focus of the paper is on the analysis of sharp and diffuse heterogeneous sur-
face energy functionals. We start the exposition by introducing the sharp interface energy
on subsets S C R?

E.(S:U) = /asmUa(x)J(d_l(a’x), (1.1)

where U C R? is an open bounded domain, a is 74 periodic, and 1 < a(x) < A. The
energy is well-defined on locally finite perimeter subsets of R¢, and can also be made
sense of on a closed set with finite perimeter. The quantity of interest in this case is the
effective surface tension, which can be defined for each normal n by

o(n,a) = lim %inf{Ea(S;BT(O)) :SNIBr(0) = {x-n <0} NIBr(0)}.
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There is an equivalent definition using cubes aligned with the direction n.

A basic question of interest is the regularity of the . Chambolle, Goldman, and
Novaga [14] proved that, consistently with other models in Aubry—Mather theory, the
differentiability properties of & : S~ — [1, A] are largely determined by the geometry
of the so-called plane-like minimizers of (1.1). This leads to the observation that even
restricting to smooth coefficients a, there are examples for which & : S4~! — [1, A] has
gradient discontinuities at all lattice (rational) directions.

In this note, we show that the presence of gradient discontinuities at all rational direc-
tions appears not only in specially constructed examples, but is a generic feature in the
topological sense.

Theorem 1.1. Foreachn € S~ the sets of coefficients A, C C°(T?:[1, A]) for which
the associated surface tension ¢ has a gradient discontinuity at n is open and dense in the
topologies induced by C(T4:[1, A]) and WYP(T%;[1, A]) for d < p < +o0. Further-
more, (), csd-1 +n is also dense in those topologies.

This result will be proved below in Section 5. Note that the coefficients a in the
theorem are necessarily not laminar. Indeed, [14] shows that the surface tension is nec-
essarily C'! in some non-empty open set of S~ when the underlying medium is laminar.
From that point of view, the theorem shows that the general non-laminar case can be much
less regular than the laminar setting.

Associated with this energy is the heterogeneous curvature flow of an evolving set Sy,

Vi = —a(x)k — Da(x) - n, (1.2)

where 7 is the outward normal to dS;, V}, is the outward normal velocity of 95, and « is
the mean curvature oriented so that convex S has k > 0.

In this case, we are interested in the limiting behavior of the rescaled curvature flow
of S} starting from some compact initial data Sy,

Vi =—a(§)x—éDa(§)-n. (1.3)

By analogy with what has been proved in related models (cf. [9,10,37]), one would expect
that the limiting equation would be

Va = —p(n) divys (@ (1)),

where the additional anisotropic term 4 : S¢~! — [0, 00) is the mobility: the infinitesimal
velocity of the system induced by additive forcing (see below for more details). At the very
best, based on the examples of o, we are looking at something like a crystalline curvature
flow. However, the situation is even more delicate than this.

To start with, the construction of Theorem 1.1 also implies a certain kind of pathology
at the level of the gradient flow, which we state next using the language of level set PDE
for convenience.
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Corollary 1.2. There is a family of coefficients ¥ C C*®(T%;[1, A]), which is dense
in C(T4;[1, A]) such that if a € ¥, then the following statement holds: for each uq €
UC(R?), if (u®)e=0 are the solutions of the level set PDE

us = a(f)tr((ld — Dut ® Du#) Du®) + g—lpa(g) . Duf in R? x (0, 00),
u® = uy on R? x {0},
(1.4)
then
lim sup® u® > ugy > liminf, u®.

See Section 5 for the proof. The point is that wherever the front recedes some areas
of the positive phase are left behind, and wherever the front advances some areas of the
negative phase remain. We refer to this phenomenon as bubbling. Bubbling is well known
to occur in these kinds of interface motions; see Cardaliaguet, Lions, and Souganidis [13].
The only part which is possibly new about Corollary 1.2 is that the set of coefficients for
which it holds is dense. Despite this somewhat pathological behavior, it is still conceivable
that the “bulk” of the front moves by a limiting curvature flow. Put simply, instead of being
a transition between the 41 and —1 phases, it is actually a transition between some more
complicated + and — phases that include the bubbles left behind by the bulk of the moving
front.

Remark 1.3. Note that we do not prove topological genericity in Corollary 1.2, only den-
sity. The set of coefficients # which we construct is dense but not open in C(T¢;[1, A]),
and open but not dense in C'(T¢;[I, A]). It would be interesting to know whether the
occurrence of gaps in the lamination by strong Birkhoff plane-like solutions at every lat-
tice direction, which occurs generically in the uniform topology by Theorem 1.1, directly
implies bubbling as in Corollary 1.2.

1.2. Interface pinning

In fact, it can happen that the effective dynamics are in a sense “worse” than this—the
entire front can be pinned not only some compact bubbles. Through the construction of
a specific class of examples in dimension d = 2, we show that it is possible that the
mobility p(n) = 0, meaning the scaling limit is trivial. This is exactly the phenomenon
known as pinning, which occurs ubiquitously in problems involving interface motion in
heterogeneous media.

In a more formal discussion, we explain the so-called Einstein relation [24, 32, 44],
which identifies the friction term in the effective diffusivity as the mobility, the infinitesi-
mal response of the system to an external volume forcing. Consider the solution S;(n) of
the forced mean curvature flow for a constant large-scale forcing F' € R with planar initial
data

Vo =—a(x)k — Da(x)-n+ F with So = {x ‘n < 0}.
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Then, associated with each propagation direction n there are minimal and maximal asymp-
totic speeds

cx(n, F) = lim ! inf x-n and c*(n,F)= lim 1 sup x-n
t—o00 f x€dS; n—oo f x€dS;
which may not be the same. It is not difficult to check that both are monotone non-
decreasing in F and that c4«(n,0) = ¢*(n,0) = 0. Ignoring, for now, the possibility that
the two asymptotic propagation speeds do not agree in some cases, we define c(n, F) =
cx(n, F) = ¢*(n, F) and then define the mobility u(n) by

d
un) = TF _Oc(n, F). (1.5)

F=

Although both quantities are strictly monotone in the set where they are non-zero, there
can occur a non-trivial pinning interval [— F(n), F*(n)] > 0 so that

c*(n,F)=0 for F < F*(n) and cx(n,F) =0 for F > F.(n).

In this case (1) = 0, possibly at every direction n € S¢~!. This is a well-known phe-
nomenon which occurs in many related models of interface propagation in heterogeneous
media. See, for example, [21,22,25,26,39].

Physical intuition suggests that the existence of a non-trivial pinning interval at every
direction is, in some sense, a generic feature. Again, special assumptions (e.g., laminar-
ity) on the medium may produce positive mobility at some directions. Here, we prove
that there exists a medium in dimension d = 2 with non-trivial pinning interval at every
direction; actually, we make an even stronger statement.

Theorem 1.4. There is a medium a € C*°(T?; [1, A]) and an F, > 0 such that, for each
ug € UC(R?), if (u®)e>0 are the solutions of the level set PDE associated with (1.3) and
the initial datum ug and forcing F € (—F,, F,), that is, if they are the viscosity solutions
of the equations

ut = a(g)tr((ld — Du* @ Du#)D%uf) + %Da(f) . Duf + LF|Duf|
in R2 x (0, 00),

€ =g on R? x {0},

u

then

lim u® =ug locally uniformly inR? x [0, c0).
e—>0t

Furthermore, given any { > 0, we can choose a so that ||a — 1||peo(T2) < ¢.

Taking u¢ to be a linear function in the previous theorem, we see that a has a non-
trivial pinning interval.

Corollary 1.5. Ifa and F, are as in Theorem 1.4, then ¢*(n, F) and c«(n, F) as defined
above are well-defined for each F € (—F,, Fy)andn € S, andc*(n, F) = c«(n, F) = 0.
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The proof of Theorem 1.4 is based on the construction of a medium a such that station-
ary strict supersolutions are plentiful. The following lemma is the main technical result
used in its proof.

Lemma 1.6. There is a medium a € C®(T?; [1, A]), and a (numerical) constant C > 0
such that if K C R? satisfies an interior and exterior ball condition with large enough
radius, then there is a strict stationary supersolution S of (1.2) such that

{x € K :dist(x,0K) > C} C S, S CK+ Bc(0), du(dK,dS) <C.

The lemma immediately implies a quantitative pinning result for C? compact sets in
the homogenization limit.

Corollary 1.7. If a is the medium of Lemma 1.6, K is any compact subset of R? with C?
boundary, and S} is any solution of

1 1

Vi = —a(£>/< - —Da(£> ‘n+-F

e 2 e e

with initial data K and forcing F € (—F,, F,), then there is an go(K) > 0 such that, for

each ¢ € (0,&9(K)),

{x € K : dist(x,0K) = Ce} € () Sf. | SF € K + Be.(0).

t>0 t>0

supdy (0S7,0K) < Ce.

>0
All of the above results will be proved in Section 3.

Remark 1.8. The construction in Lemma 1.6 is stable with respect to uniform norm per-
turbations of a and Da, so we can also conclude that ;(-) = 0 on an open subset of
a € C'(T?;[1, A]). It is possible that there is also an open subset of C1(T?;[l, A]) on
which there is no pinning at any direction, although we have no evidence to suggest such
a set of data exists. The only explicitly understood case is that of laminar media of the
form a(x) = @(x - n) for some n € S!, where the mobility is always zero at the laminar
direction unless the medium is homogeneous; that property is again stable with respect to
small perturbations in the C'(T?2;[1, A]) norm.

1.3. Diffuse interface models

In the diffuse interface setting, we obtain results analogous to those in the sharp interface
model by exploiting the close connection between the two models as the diffuse interface
width vanishes. To be more precise, we consider diffuse interface functionals A‘Cz defined
on configurations 1 : R? — R of the form

5
ACS (U U) =/U(§||Du(x)||2+5—19(x)W(u(x))) dx, (1.6)
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in terms of the evolution equation on regions of R? given in (1.3), where 6 is a Z9-
periodic function satisfying 1 < 6 < A2, W : R — [0, c0) is a double-well potential with
{W =0} ={—1, 1} satisfying standard assumptions (see (4.2), (4.3), and (4.4) below), and
8 > 0 is a parameter that, roughly speaking, encodes the typical width of a (minimizing)
diffuse interface.

In summary, the next results show that when § is small enough, relative to the C 1 (Td)
norm of 6, A‘é"; and its L? gradient flow exhibit the same large-scale behavior as E N
and its flow.

At equilibrium, the large-scale behavior of A‘C‘g is described by a homogenized sur-
face tension, as in the sharp interface case. The following formula for the effective surface
tension can be derived:

. 1 . .
Gac(n.8.0) = lim_ Wlnf{f%f’z(u; Br(0)) : u € T (n, Br(0))}
- -1

where the admissible class is defined by
Tn,U) = {u € HY(U) : u = —tanh(n - x) on 8U}.

Note that the boundary data is just the plane separation data X(,.x<oy — X{n-x>0}, but
smoothed out at the unit scale to avoid technical difficulties associated with the discontin-
uous boundary condition.

We expect the subdifferential of the effective surface tension to be characterized by
the geometry of the plane-like minimizers of At"g, just as in the sharp interface case.
However, this has not yet been proved. Toward that end, we expect the next result will be
of interest; see Section 6 for the proof.

Theorem 1.9. For any dimension d > 2, there is a dense Gg set § C C(T?;[1, A?]) such
that if 0 € G, then there is an open set 1(6) C (0, 1) with 0 € 1(0) such that if § € 1(9),
then the following statements hold:

(i) Foreachn € S, the family Mg (n) of strongly Birkhoff plane-like minimizers
of Af‘; in the n direction has gaps.
(ii) Givenug € UC(R?;[-3,3]), if (u®)e=0 are the solutions of the Cauchy problem

St — Au®) +£728710(e7 )W (uf) =0 in R? x (0, 00),
u =uy on R? x {0},
then
limsup*u® =1 in{ug > 0}, liminf, u® = —1 in{uo < 0}.
Furthermore, the subset of § consisting of 0 for which 1(8) D (0, §g) for some
8¢ > 0 is dense in C(T?;[1, A2)).

The statements above remain true if C(T?;[1, A]) is replaced by WP (T4;[1, A])
for p € (d, 00).



Singular properties of interface motions in periodic media 573

Although the parameter ¢ is useful for the statements of our theorems, it is cumber-
some for the following informal discussion, so we set § = 1 for the next paragraph. The L?
gradient flow of the Allen—Cahn energy functional is well known to be

ur — Au~+0(x)W'(u) =0 in U x (0, 00). (1.7)
Considering the long time behavior of (1.7) in the parabolic scaling leads to the equation
uf — Au® + 8_29(5) W' u®) =0 in U x (0, 00). (1.8)

By analogy with what has been proved in related models (cf. [9,10,37]), one would expect
that, in the limit ¢ — 0, the interface between the positive and negative phases evolves by
a curvature flow

Vo = —pac (n) divys (Gac (n))

with the mobility jqc : S4~' — [0, 00), as before, being the infinitesimal response to
additive forcing. We will show (see Theorem 1.10 below) that, on an open set of coeffi-
cients in C(T?), this homogenization limit holds, but results in a trivial flow pu4c (n) = 0.

In fact, as in the sharp interface case, we give examples of coefficients 6 for which the
pinning interval associated to the gradient flow dynamics is uniformly bounded below with
respect to the direction, that is, the mobility is zero at every direction, and homogenization
scaling limit (1.8) results in a trivial flow even when an external force is added.

Theorem 1.10. There is an open set O C C(T?;[1, A?]) such that if € @ and § > 0 is
small enough, then there is an Fy > 0 (independent of §) such that, for each F € (—Fy, Fy)
and each ug € UC(R?;[-3,3)), ifu—(a) < u®(a) < u™t (o) are the critical points of the
potential W(u) — au and (uf)s~¢ are the solutions of the forced equation

S(ue — Auf) + 8—20(5)(5—1 W) — F) =0 in R2 x (0, 00),

(1.9)
uf =uyg on R? x {t = 0},

thenas e — 07,

u® — ut(F8) locally uniformly in {u¢ > u®(F38)} x (0, 00),
u® — u~(F§) locally uniformly in {uo < u®(F8)} x (0, 00).
Moreover; the constant function 0 = 1 is an accumulation point of © in C(T?;[1, A?]).
See Section 4 for the proof.

Remark 1.11. It is not hard to check that this result is stable with respect to small per-
turbations of the coefficients in the uniform norm. Thus, we can say that this pinning
phenomenon is not non-generic in the coefficient space C(T?2;[1, A2]).
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Remark 1.12. In the theorem, the reaction term 6(x)(W’(u) — F) appearing in (1.9)
satisfies

ut (F§)
/ O(x)(8'W'(u) — F)du| > c|F| foreach F € (—Fy, Fp).
u=(F$)

Thus, the result is a manifestation of the front-blocking phenomenon in the study of
bistable reaction diffusion equations (cf. Lewis and Keener [33]). In fact, we show below
that, for 8 € O, (1.9) has stationary, plane-like solutions for all forcing values F in this
interval (see Remark 4.2).

Remark 1.13. Our arguments also apply to diffuse interface energies where the hetero-
geneity appears on the gradient rather than the potential term, as well as those where it
multiplies both—that is, the same results apply to energies of the forms

/ <§9(x)||Du(x)||2 + S_IW(u(x))) dx, (1.10)
v \2
and P

/U(Enz)u(x)u2 +5—1W(u(x))),/9(x) dx. (1.11)

For more details, see Remarks 4.5 and 6.5 below.

1.4. Literature

The study of variational models in periodic media falls under the broad umbrella of
Aubry—Mather theory, which is named after the fundamental contributions of Aubry and
LeDaeron [2] and Mather [35], who investigated the (discrete) Frenkel-Kontorova model
and twist maps. In Aubry—Mather theory, one of the main questions is the existence and
structure of “plane-like” minimizers and its relation to the large-scale (or homogenized)
behavior of the energy itself. The investigation of continuum models via PDE methods
was initiated by Moser [38] with the fundamental structural theorems contributed by
Bangert [3,4].

The results of Moser and Bangert concern graphical energies modeled on the Dirichlet
energy. In more recent years, variational problems with more of a geometrical flavor have
been shown to possess the same basic structure. Caffarelli and de la Llave [12] extended
the basic existence results of Aubry—Mather theory to surface energies like those consid-
ered here. There has also been considerable interest in diffuse interface energies, including
contributions by many authors. For references and connections to the work of Moser and
Bangert, see the book of Rabinowitz and Stredulinsky [41] and the expository paper by
Junginger-Gestrich and Valdinoci [30].

Chambolle, Goldman, and Novaga [ 14] studied the effective energy for the sharp inter-
face model, giving a precise characterization of the differentiability properties in terms of
the existence (or not) of gaps in the corresponding laminations by plane-like solutions.
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They also gave specific examples where the effective surface tension has gradient dis-
continuities at every direction satisfying a rational relation. Ruggiero [42] and Pacheco
and Ruggiero [40] showed that media with gaps in the lamination at every direction are
residual (i.e., they form a dense Gg set) in two dimensions in the C! and C L8 norms,
respectively. Our result (Theorem 1.1) shows that the gap phenomenon is residual in
higher dimensions as well, at least for the rational directions, but only in the uniform
norm. It would be interesting to obtain a similar result for all directions satisfying a ratio-
nal relation or, even better, all directions, and in stronger topologies.

An analogous connection between gaps in the laminations by plane-like solutions and
surface tension regularity has not yet been established in the case of diffuse interfaces;
see [15,37] for partial results in this direction.

The front bubbling phenomenon, as discussed in Corollary 1.2, has also been known
for some time; examples were constructed for forced mean curvature flow by Dirr, Karali,
and Yip [21] and by Cardaliaguet, Lions, and Souganidis [13]. Novaga and Valdinoci [39],
in the setting of the forced mean curvature flow with homogeneous perimeter, have shown
that bubbling as in Corollary 1.2 occurs generically with respect to the L' distance on the
coefficient field in dimension 2. Note that this type of genericity is quite similar to our
result because their forcing term corresponds to Da in our setting.

Front pinning is another well known and fundamental feature of interface propagation
in heterogeneous media, and has been studied for many related models in both periodic
and random media [6, 16, 19,20,22,23,25,31]. In the reaction diffusion literature, this is
referred to as wave blocking [28, 33]. Examples of front pinning have been constructed
for various models in both periodic and random media: for the forced quenched Edwards—
Wilkinson equation, Dirr and Yip [22] have shown that pinning is generic and they have
also constructed pinning examples for the forced Allen—Cahn equation (homogeneous
energy, but heterogeneous volume forcing) in one dimension. The first author [25] gave
examples of front pinning at every direction for the Bernoulli free boundary problem in
heterogeneous media. Novaga and Valdinoci’s paper [39], which showed a similar result
to our Corollary 1.2 in the context of forced mean curvature flow (homogeneous surface
energy, but heterogeneous volume forcing), does not explicitly give an example of pin-
ning of the entire interface (as in our Corollary 1.7); we believe that a small modification
of their ideas would also yield an example of pinning in 2D. We also were recently made
aware of a paper by Courte, Dondl, and Ortiz [16] which considers a curvature-driven
motion with dry friction in random media with sparse obstacles. They show the occur-
rence of additional pinning by the Poissonian obstacles and establish the precise scaling
exponent of the additional pinning in the sparse obstacle limit. Their fundamental barrier
construction bears significant similarity to ours, patching together barrier pieces near con-
centrated obstacles (the example of [25, Section 5.2] is also similar, but patching barriers
is easier due to the particular nature of that problem).

In the context of bistable reaction diffusion equations in one-dimensional periodic
media, Xin [45] and Ding, Hamel, and Zhao [18] have constructed unbalanced reaction
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terms for which one nonetheless finds plane-like stationary solutions, a phenomenon asso-
ciated with pinning. Our results provide (non-laminar) examples of this in two dimensions.

1.5. Organization of the paper

We begin in Section 2 with some background on viscosity solution theory of interface
motions and related concepts. Following this, in Section 3, we construct a special class
of “highly pinning” media and use the construction to prove Theorem 1.4, Corollary 1.5,
Lemma 1.6, and Corollary 1.7. In Section 4, we prove Theorem 1.10, obtaining analogous
interface pinning results for diffuse interface models. In Section 5, we prove Theorem 1.1
and Corollary 1.2 on the genericity of surface tension gradient discontinuities for sharp
interface models. In Section 6, we prove Theorem 1.9, the analogous result on genericity
of surface tension singularities for diffuse interface models.

2. Preliminaries

2.1. Viscosity solutions and level set formulation

Given a positive periodic function @ € C'(T?) and a force F € R, we are interested in
sets moving with normal velocity given by

Vo = —a(x)k — Da(x)-n + F. 2.1

We will use the level set formulation, which amounts to studying the following nonlin-
ear PDE:

u; —a(x)tr((Id — Du® m)Dzu) — Da(x)- Du— F||Du| = 0. (2.2)
In the above, Du is a shorthand for the normal vector Du = | Dul||~! Du.

The level set formulation allows one to define (weak) solutions of (2.1) using viscosity
solutions of (2.2). Very roughly speaking, we say that a family of sets (S;);>0 is a viscosity
solution of (2.1) if the characteristic function' u(x, ) = ys,(x) determines a viscosity
solution of (2.2). We will not make this completely precise here, since the main technical
constructions of the paper only require time-stationary solutions. For a full account of the
level set theory, see the original survey articles [9] and [8] and the textbook [27].

2.2. Stationary viscosity solutions

The basic plan of attack of the article is the construction of (time-stationary) sets that act
as barriers of the evolution, that is, we are interested in sets solving the equation

—a(x)k — Da(x)-n+ F =0 2.3)

"Here and in what follows, ys(x) = 1if x € S and ys(x) = 0, otherwise.
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or, equivalently, functions u solving the PDE
—a(x)tr((Id — Du ® Du)D*u) — Da(x) - Du — F||Du| = 0. (2.4)

This is made precise next. To simplify the notation here and in what follows, we will
define the mean-curvature operators M€, ME* : R? x §; — R by

tw(d—[lpl™?p ® p)X) if p #0,
MEL(p, X) = ) de1 )
mln{tr((Id —e®e)X):ee S } otherwise;
w(1d—[lpl~?p ® p)X) if p #0,
ME*(p. X) = i .
max{tr((Id —e®e)X):eeS } otherwise.

We begin by defining precisely what it means for a function to be a time-independent
viscosity super- or subsolution of (2.2).

Definition 2.1. Given an open set U C R?, we say that a lower (resp. upper) semi-
continuous function u : U — R is a viscosity supersolution (resp. subsolution) of (2.4) if
the following property holds: given any point xo € U and any smooth function ¥ defined
in a neighborhood of x, if ¥ — 1 has a local minimum (resp. maximum) at xo, then

— a(xo) ME. (DY (x0), DY (x0)) — Da(xo) - DY (x0) — F[[ DY (x0)]| = 0
(resp. — a(xo) ME™ (DY (x0), D>Y (x0)) — Da(xo) - DY (x0) — F|[ Dy (x0)|| < 0).

As an abbreviation, we write that —a (x) M€ (Du, D?>u)—Da(x) - Du — F||Du| >0
holds in U if u is a viscosity supersolution of (2.4) in U. A similar convention will be used
for subsolutions.

Roughly speaking, a set S C R? is now a subsolution or supersolution of (2.1) pre-
cisely when its characteristic function yg is a viscosity subsolution or supersolution as
above. The precise definition is given next.

Definition 2.2. Given an open set U C R? and a closed set S C U, we say that S is a
supersolution of (2.3) in U if the characteristic function u = ys) is a viscosity super-
solution of (2.4)in U.

Similarly, given an open set U C R? and an openset V C U, V is called a subsolution
of (2.3) if the function v = 3 is a viscosity subsolution of (2.4) in U.

Finally, if S C R is such that the closure S is a supersolution of (2.3) and the inte-
rior Int(S) is a subsolution of (2.3), then we say that S is a solution of (2.3).

It is useful to bear in mind that, in the case of sets, the differential inequalities involved
in the definitions of a viscosity sub- and supersolution only need to be checked on the
boundary.

Proposition 2.3. Given an open set U C R% and a closed set S C U, S is a supersolution
in U if and only if, for every xo € 08 N U and every smooth function ¥ defined in a
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neighborhood of xo, if ym(s) — ¥ has a local minimum at xg, then
—a(xo) ME* (DY (x0), D*¥(x0)) — Da(xo) - DY (x0) — F || Dy (xo)]| = 0.

Proof. The “only if” is immediate. To see that the “if” direction holds, recall that S =
0S U Int(S). Further, if xo € Int(S), then sy = 1 in a neighborhood of xg, and then
the desired differential inequality follows directly from the second derivative test. ]

Finally, we make frequent use of the fact that the minimum of two supersolutions is
once again a supersolution. The next result states this in the context of sets.

Proposition 2.4. Given an open set U C R?, if the closed sets S1, S, C R? are superso-
lutions of (2.3) in U, then S1 N S is also a supersolution in U.

Proof. Note that xi(s,ns,) = Min{Ymys,), Xms,))- The result follows from the well-
known fact that the minimum of two supersolutions of (2.4) is also a supersolution. ]

2.3. Diffuse interfaces

In this section, we briefly provide definitions of solutions of our diffuse interface evolution
equations. Recall that the equation of interest, after scaling out the ¢ and § variables and
restriction to time-stationary solutions, is

—Au+0(x)(W'(u) — F) = 0. (2.5)

As in the last section, we will only define time-stationary sub- and supersolutions, since
those are all that is needed for our main technical results. (For relevant definitions for the
time-dependent equation, see, e.g., [17].)

Definition 2.5. Given an open set U C R?, we say that a lower (resp. upper) semi-
continuous function u : U — R is a viscosity supersolution (resp. subsolution) of (2.5)
in U if, for any xo € U and any smooth function y defined in a neighborhood of xg,
if u — ¢ has a local minimum (resp. maximum) at xo, then

—AY (x0) + 0(x0) (W' (u(x0)) — F) > 0 (resp. < 0).
2.4. Half-relaxed limits

We next recall the definition of half-relaxed limits, a notion that has been used extensively
in the theory of viscosity solutions since it was introduced by Barles and Perthame [7].

Definition 2.6. Given a family of functions (1s)s>0 in R?, the upper and lower half-
relaxed limits, lim sup™ u, and lim inf, u®, are the functions in R4 defined by

lim sup™ u.(x) = 1im+ sup{us(y) x—yll+e< 8},
§—0

liminf, us(x) = 1im+ inf{ua(y) x—yll+e< 8}.
§—0

See, for instance, the notes by Barles [5] for properties of half-relaxed limits and some
of their applications.
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3. Sharp interfaces: Medium with a non-trivial pinning interval at
every direction

We will construct a medium a(x) € C*(T?;[1, A]) which has a plane-like stationary
solution S, of
—a(x)k — Da(x)-n+ F =0 3.D

with the property that
85C{—C§x-e§C}

at every direction e and for every forcing | F| < F,. This implies that the mobility, defined
by (1.5), has

ue,a) = cle,F,a)=0 forall e S

d

aF | re
However, since we do not have any general theorem establishing the relationship between
this mobility and the homogenization of (1.3), we prove a slightly more general result,
stated above in Lemma 1.6 and Corollary 1.7: within a unit distance of any sufficiently
regular set K C R2, there is a stationary solution of (3.1).

The bulk of the work consists in proving the existence of certain sub- and supersolu-
tions. Toward that end, here is a statement of the main result of this section.

Lemma 3.1. There is an R > 0 (a numerical constant) and an a € C*(T?;[1, A]) for
which there is an F; > 0 and a C > 0 such that the following holds: if K C R? satisfies
an exterior and interior ball condition of radius R, then there is a supersolution S*(K)
of (3.1) with F = F, and a subsolution S« (K) of (3.1) with F = —F, such that

S«(K) C K C S*(K), du(S«(K),S*(K)) <=C, dy(dS«(K),dS*(K)) <C.
Furthermore, we can assume that S, (K) and S*(K) have piecewise smooth boundaries.

Once Lemma 3.1 is proved, we invoke a version of Perron’s Method to establish the
existence of solutions (Lemma 1.6). One could also construct a solution near K by con-
strained energy minimization and, as a result, find a pinned “local energy minimizer.”
While that is not the approach taken here, it is worth pointing out for the purpose of expo-
sition that these pinned solutions are not just unstable energy critical points.

As the reader familiar with homogenization will likely realize, Lemma 3.1 implies
homogenization of the gradient flow (Theorem 1.4). For completeness, the details are
provided at the end of the section.

The construction of stationary solutions relies on an explicit construction of super and
subsolutions, which is found in Section 3.7. These two cases are symmetric, so we will
only need to handle constructing supersolutions. At a technical level this involves repeated
patching together of supersolution pieces; in the d = 2 case we consider that this is just
concatenations of curves. However, in service of a possible future generalization to higher
dimensions, and to separate the arguments involving patching from the actual explicit con-
struction, we will start by setting up a framework which handles the topological issues of
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Figure 1. A depiction of one of the supersolutions obtained through our construction. The shaded
area is the interior of the supersolution. The dots indicate the points of the lattice ZZ. Notice that the
boundary of the supersolution consists of translated copies of certain basic curves, some of which
are circular arcs connecting lattice points (called “edges” in what follows) and others that are simple
closed curves surrounding one (called “nodes”).

the patching procedure. Additionally, since this patching will proceed using lattice cubes,
we will use certain facts about sets consisting of unions of such cubes.

The idea of the construction is to show that it is possible to find a coefficient a together
with certain curves that are stationary supersolutions of (1.2) on their boundaries. These
curves are chosen so that they can be combined to bound any union of lattice cubes—see
Figure 1 for the basic picture to keep in mind. The arguments showing that such an a can
be found are in Section 3.7—the reader may wish to start there—while the remainder of
the section formalizes the construction.

3.1. Regular Z?*-measurable sets

The construction of sub- and supersolutions uses the fact that smooth subsets of R? admit
nice discrete approximations. This leads us to define regular Z2*-measurable sets.

In what follows, Z2* is the dual lattice of Z2, that is, Z>* = Z? 4 (1/2, 1/2). This
is a convenient way of indexing the lattice cubes {z 4+ [—1/2, 1/2]?},cz2+ that will be
used in our approximations of smooth sets. These approximations will consist of unions
of such cubes, as in the next definition.

Definition 3.2. We say that A C R? is Z?*-measurable if there is a Z4 C Z>* such that

A= JGE+[-1/2.1/2P).

z€Zy
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The boundary of any Z2*-measurable set is a union of paths in a certain graph. This
will be convenient in the formalism that follows. By the graph (Z2, E?), we mean the set
7Z* C R? together with directed edges [x, y] consisting of the line segment connecting
two points x, y € Z? with ||x — y|| = 1. We identify [x, y] with the oriented line seg-
ment, oriented so that its tangent vector is parallel to y — x. The normal vector n[x
to this line segment is defined by rotating the tangent vector counter-clockwise (hence,
€., 1(0,0),(1,0] = (0. 1)).

In the discussion that follows, it will be useful to say that z, z" € 7.%* are neighbors
if either z = 2/, [z, 2'] € E2, or [/, z] € E2. We say that they are wired neighbors if
Iz = 2"l < 1.

Given a Z?*-measurable set A corresponding to the points Z4 C Z?*, we define the
associated boundary cubes A% and interior cubes A™ by

AP =z + -1/2,1/2P 12 € Za. (2 +[-1/2.1/21) N 04 # 0},

and
A" = |z +[=1/2.1/21 1z € Zy, 2 +[-1/2.1/2]* C Ini(A)}.

We will restrict our attention to a particularly nice class of Z2?*-measurable sets for
which the boundary 94 equals the image of simple paths in (Z2, E?). Toward that end,
the following definition will be convenient.

Definition 3.3. A set A C R? is said to be a regular Z.>*-measurable set if
(i) Foreachz +[—1/2,1/2)? C A? with z € Z>* thereisaz’ 4+ [—1/2,1/2]*> C A™
such that z/ € Z2* is a wired neighbor of z.
(ii) Foreachz +[—1/2,1/2)* C A® withz € Z?*,if 2/ +[-1/2,1/2]*> C A® and 2’
is a wired neighbor of z, then there is a z” € Z?* such that z” + [-1/2,1/2]> C A
and z” is a neighbor of both z and z’.

A topological argument proves that regular Z2*-measurable sets are determined by
simple paths. More precisely, given an interval E C Z, we say that y : E — Z? is a
path in (Z2,E?) if, for each i,i + 1 € E, we have that [y(i), y(i + 1)] € E2. It is
a simple path whenever y(i) = y(j) only if i = min £ and j = max E. Whenever
y(min E)= y(max E), we say that y is closed. A path that is both simple and closed
is called a simple closed path.

For convenience, we denote by {y} C R? the path traced out by y, that is, {y} =
U{i,i+1}CE [y(@@), y(i 4+ 1)], where the edges [y (i), y(i + 1)] are identified with the cor-
responding line segments in R2.

The next result shows that the boundary of a regular Z2*-measurable sets is the image
of a disjoint union of simple paths in the graph (Z2,[E2). Later, the orientation of the paths
will be important. Hence, before stating the result, we define what it means for a path to
traverse the boundary of a regular Z2*-measurable set in a clockwise fashion.
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Given a Z2*-measurable set A and an edge [x, y] € E? such that [x, y] C 34, we say
that [x, y] traverses A clockwise if n[y )] is parallel to the outward normal vector to 94,
or, more precisely,

1
{E(x +y)Finp, it €O, 1)} C R?\ A.

Otherwise, we say that [x, y] traverses dA counter-clockwise. Notice that the line seg-
ment [x, y] traverses dA clockwise if and only if [y, x| traverses it counter-clockwise.

Given a Z**-measurable set 4 and an interval £ C Z, we say that a path y : E —
7* N 3A traverses dA clockwise if, for each {i,i + 1} C E, the edge [y(i).y(i + 1)]
traverses dA clockwise.

Theorem 3.4. If A is a regular 7>*-measurable set, then there is a pairwise disjoint
collection (y 7)) jep of simple paths in Z? indexed by some P C N such that

9A = U {y(j)}

jeP

and, for each j € P, the path y) traverses A clockwise. Furthermore, the finite length
paths in (y) jep are all simple closed paths.

A sketch of the proof is given next; the details can be found in Appendix C.

Sketch of the proof. Start at a boundary vertex xo € A N Z2. By part (ii) in the definition
of regularity, there is a unique neighbor x; € 94 N Z? of xo such that [xo, x;] C 94 and
the (oriented) edge [x¢, x1] traverses dA clockwise. Apply this procedure again with x;
replacing xo, furnishing a neighbor x; of x; so that [x;, x;] traverses dA4 clockwise. Iterat-
ing this results in a path y : N U {0} — Z? given by y(j) = x;. If the image {y} is finite,
then it is necessarily a simple closed path; otherwise, in the infinite case, it is a simple
path.

If 94 \ {y} is non-empty, repeat the construction at a different boundary vertex. Since
the set Z? is countable, this process eventually decomposes 94 as a countable union of
pairwise disjoint simple paths in Z2, as claimed. |

3.2. Abstract framework for patching super/subsolutions

We set up an abstract framework which is useful to compartmentalize arguments relating
to patching together local smooth super/subsolutions to form a global super/subsolution.
We consider only the two-dimensional case, and we do not at all consider a fully general
notion of admissible patching. We expect that, with significantly more topological work,
these ideas could be generalized and would be useful for constructing examples in higher
dimensions.

Since we will be combining sets that only satisfy the supersolution property locally,
it will be convenient to track the domain together with the set. That is the purpose of the
next definition.
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Figure 2. Topology of a node supersolution and an edge supersolution.

Definition 3.5. Given an open set U C R? and a closed set S C U, we say that the
pair (S, U) is a local supersolution if S is a supersolution of (3.1) in U.

It will be convenient for us to impose some (but not too much) boundary regularity
on the local supersolutions we work with. This is the purpose of the next definition of
piecewise smooth local supersolution.

Definition 3.6. A bounded set E C R? is called a piecewise smooth domain if there is an
M e N and, foreach j € {I,..., M}, acompact interval /; C R and a piecewise smooth
simple closed curve y; : I; — R such that 0E = Ujuzl vi(L;)and {y1({1).....ym(Um)}
is pairwise disjoint.

A local supersolution (S, U) is called a piecewise smooth local supersolution if S
and U are both bounded and piecewise smooth.

> Given a local supersolution, we call ng the outward normal to dS and tg the
corresponding tangent vector, which is the outward normal rotated by 90 degrees
clockwise.

> We say that a pair of local supersolutions (S, Uy) and (S, U,) is disjoint if we
have that Uy N U, = 0.

> If U is doubly connected (i.e., U is connected and R? \ U consists of exactly two
connected components), we call o, U the boundary of the unbounded component
of the complement, 9;,U the boundary of the bounded component of the comple-
ment, and fill(U) the union of U with the bounded component of the complement.

> A piecewise smooth local supersolution (S, U) is called a smooth patch if 0S N U
equals the image of a single smooth curve.

As a basic building block, we will use so-called supersolution edges and supersolution
nodes, which we define next.
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Figure 3. Left: patching of two local supersolutions (the outlined boundary is the boundary of the
patch). Right: patching of three local supersolutions. Condition (3.2) is satisfied in both cases.

Definition 3.7. A piecewise smooth local supersolution (S, U) is called an edge if
(a) U is simply connected, and

(b) S splits both U and dU into exactly two components or, more precisely, there
is a piecewise smooth curve y : [0, 1] — S such that y((0, 1)) = S N U and

{y(0),y(1)} CIU.

A piecewise smooth local supersolution (S, U) is called a node if S and U are both
doubly connected sets; do, U C Int(S); and 3;,U C (R?\ S).

See Figure 2 for a graphic representation of a node and edge local supersolution.

Now our goal is to define an appropriate notion of combining supersolutions. We begin
with a patching operation that amounts to taking local intersections.

We use the following notation:

M Eo:= (ﬂ Eq U (R2\ KO,)) n (U Ka),

acl acl ael
xeKy
which is also
N Eaz{xe Uka: ] 1Ea(x)=1},
acl ael ael
x€Ky x€Kqy

to avoid writing the more (respectively) unintuitive and lengthy formulas on the right.

Lemma 3.8 (Simple patching). Suppose that {(S., Ue)}ecr is a finite collection of local
supersolutions such that for each e € I and each xo € U, there is a relatively open
set V, in U, such that xo € V, and

SeNVe2 () SenVe. (3.2)

e'el
xX0€U,
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Then,
patch((Se, Ueleer) == () Se.|J Ue)
xe:ﬁle ecl

is a local supersolution in UeEI U..

See Figure 3 for a visualization of the patch operation.

The idea of the condition in Lemma 3.8 is simply that a collection of supersolutions
on several overlapping domains can be patched together by locally taking the minimum as
long as each supersolution is not the minimal supersolution at any point of the boundary
of its own domain (which is in the closure of one of the other domains).

Proof of Lemma 3.8. Call (Sx, Ux) = patch((Se, Ue)eer). We just need to check, for any
interior point xo € Uy, there is a neighborhood N(x) in which S, is an intersection
only of S, for which N(x¢) C Ue,. In that case, —xs, is a minimum of supersolutions
in N(x¢) and so it is a supersolution in N(xg). More precisely, for a sufficiently small
neighborhood N(xg) of x¢, we claim

N(xo) N Sy = N Se N N(xo).
eel : N(xo)CU,

This is immediate unless xo € 0U, for some e.

In that case, call J = {e € I : xo € dU,}. For each e € J, let V, be the relatively
open set in U, such that xo € V, and (3.2) holds. Note that we can fix an open ball N(xg)
containing xo such that the following hold:

N(xo) C U, if x¢ € U,, N(xo) CR?2\ U, if xo € R?\ U,
Nxo)NU,CV, ifeel.

A direct argument involving (3.2) shows that

S N N(xo) = ﬂ Se N N(x0). "
el : N(xo)CU,

Of course, this patching procedure does not require the supersolutions involved to be
edges, however, the hypothesis will typically not hold when one of the supersolutions
involved is a node; see Figure 4. It is a bit more topologically delicate to explain how to
join a pair of edges to a node. Toward that end, we begin by defining a criterion for the
node and two edges to be admissible.

Definition 3.9. Given a node (S, U) and an edge (S’, U’), we say that (S, U’) is admis-
sibly incident on (S, U) if

(1) U’ N I[fill(U)] consists of exactly two points, and the corresponding arc of
douU separates U’ into two connected components.
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(ii) (S’ NU’) N AU consists of exactly two points: one in doy U, and the other in
dinU . (In particular, dS’ contains a piecewise smooth path y : [0, 1] — 35S’ N U’
such that y(0) € do U, y(1) € 0,,U, and y(¢) € U foreacht € (0,1).)
(iii) (88’ NU’) N (dS N U) consists of a single point.
If the path y in (ii) is such that the velocity y is parallel to the tangent vector ts: to 3S’,
then we say that (S’, U’) is incoming at (S, U). Otherwise, if y is anti-parallel to ts/, we
say that (S’, U’) is outcoming at (S, U).

Given a node (S,, U,) and a pair of disjoint incident edges (S, , Ue,) and (Se,, Ue,),
incoming and outgoing, respectively, we now explain how to patch and define an edge
supersolution (Sjoin, Ujoin), Where Uiy is defined by

Upgin := Ue, U fill(Uy) U U, .

See Figure 4 for a graphical representation of the patching procedure; the figure will be
used to describe Sjon. Let y be the curve obtained by starting at point (I); traversing
0S¢, N Ug, until point (/I); then traversing 9.5, counterclockwise until point (/I1); travers-
ing 9S,, N U, until point (IV); then following dU,, clockwise to (V); following dU,
to (VI); and, finally, proceeding to (1) along dU,, clockwise. In other words, y is the curve
that bounds the dark gray shaded region in the figure. We let Sjo, be the closure of the
domain bounded by y, that is, the shaded region, which is well-defined by the Jordan
Curve Theorem.

Note that although Figure 4 depicts a particular configuration of nodes and edges,
the construction above makes sense whenever (Se,, Ue,) is incoming at (Sy, U,) and
(Se,, Ue,) is outgoing at (Sy, Uy). The reason is that the points (1), (II), (III), (IV), (V),
and (VI) and the paths between them are well-defined, due to the definitions. For exam-
ple, (II) is the unique point in (3Se, N Ue,) N (3.5, N Uy), whose existence and uniqueness
is guaranteed by Definition 3.9.

In conclusion, we define the node join operation by

node.join((Sel 5 Uel), (Slh Uv)’ (Sezv Uez)) = (Sjoina []join)‘

Lemma 3.10. Let (Sy, Uy), (Se;, Ue,), (Se,, Ue,) be piecewise smooth local superso-
lutions, and suppose that (Se,, Ue,) and (Se,, Ue,) are disjoint (i.e., Ug, N U, = B).
If (Sy, Uy) is anode and (Se, , Ue, ) and (Se,, Ue,) are, respectively, incoming and outgo-
ing edges admissibly incident on (Sy, Uy), then the pair (Sjoin, Ujoin) is a local supersolu-
tion edge.

Proof. First, to see that U, is simply connected, observe that it equals the bounded com-
ponent of the simple closed curve obtained by starting at point (/) in Figure 4; proceeding
clockwise around dU,, until it first intersects dU,; continuing around oU, until it first
intersects dU,,; proceeding to (IV); then continuing on to (V), (VI), and back to (/). This
follows from the definition of Ujei,, Definition 3.9, and the Jordan Curve Theorem.
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av)

Figure 4. Two edges intersect a node. This figure shows how to patch to get a supersolution. The
darker shaded region is Sjoin.

Further, by construction, 3Sjoin N Ujoin €quals the part of 3Sjoin that starts at point (7),
then proceeds to points (II) and (I/II) before ending at (IV). Parametrizing this path as
Y 1 [0, 1]— 3Sjoin, we note that y([0, 1]) N dU = {y(0), y(1)}. Hence, (b) in Defini-
tion 3.7 holds.

Finally, by Propositions 2.3 and 2.4, to prove that S,y is a supersolution in Ujgiy, it suf-
fices to verify that, for any xo € 0Sjoin N Ujoin, there is an r > 0 such that Sjoin N B(xo,7)
equals a finite intersection of supersolutions inside B(xg, ). The only place this is delicate
is where (a) xo € dU, N U,, for some i € {1,2}, or (b) xo € U, N U, for some i. How-
ever, in case (a), by the definition of admissibly incident, Sjoin N B(xo,7) = Sy N B(xo,7)
for r small enough. Similarly, in case (b), Sjoin N B(x0,7) = Se; N B(xo, ) for small r.
Therefore, Sjoin is a supersolution in Ujein, and (Sjoin, Ujoin) is a local supersolution. [

3.3. (Z2, E?)-indexed local supersolution networks

We now show how to use the supersolution patching procedure to produce supersolutions
that approximate regular cube sets. To abstract away some of the details, we start by
defining a type of network that will allow us to associate a local supersolution to each
edge and vertex of the graph (Z2,[E?).

Definition 3.11. We say that a family of pairs (Se, Ue)peg2 and (Sy, Uy)yez2 forms a
(22, E?)-compatible local supersolution network if:

) There is an F € R such that, for any x € 72 and any e € E2, the pairs (Sy, Uy)
and (Se, U,) are piecewise smooth local supersolutions of (3.1).

(i) Foranyx € Z% and e € E2, (Sx, Uy) and (S,, U,) are smooth patches.
(iii) For any x € Z4, fill(Uy) is a neighborhood of x, and if y € Z¢ \ {x}, then
fill(U,) N fll(U,) = 0.

(iv) Ifeq, e, € E2 and the line segments e and e, are disjoint, then (S,,, U,, ) and
(Se,, Ue,) are disjoint.
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(iv)  For each [x, y] € E2, the pairs (S[x,y]. ULx,y)) and (Sx, Uy) and the pairs
(Six,y1s Ulx,y1) and (Sy, Uy) are admissibly incident, the former outgoing at x,
and the latter incoming at y.

(v)  Foreach [x,y] € E2,if z 4+ [-1/2,1/2]? is the (unique) Z>*-measurable cube
such that [x, y] traverses z 4+ d[—1/2, 1/2]? clockwise, then U[X,y] \ S,y C
R2\ (z + [-1/2,1/2]%).

(vi)  Foreach [x, y] € E2, fill(Uy) U Uy, U fill(U,) is a neighborhood of the line
segment [x, y].

(vii) For any [x, y] € E? and v € Z?, (Six4v,y+4v]» Uxtv,y+0]) = (0 + Spxy]s
v + Ulx,y)) and (Sx+v, Ux+v) = (v + Sx, v + Ux).

Remark 3.12. The translation invariance assumption, that is, condition (vii) in the above
definition, is useful for two reasons. First, it automatically implies that there is a constant
C > 0 such that diam(U,,) < C for each v € Z? U E2. Further, the functions parametrizing
the curves {35, N Uy}, ez2ur2 satisfy uniform C? estimates.

Combining our abstract supersolution patching procedure with the notion of a local
supersolution network, we now describe how to approximate an arbitrary regular Z2*-
measurable set by a supersolution. We assume in the discussion that follows that we have
fixed a (Z2, E?)-compatible local supersolution network consisting of edges (S, Ue),cz2
and nodes (Sy, Uy)yez2-

By Theorem 3.4, the boundary of every regular Z2*-measurable set is a disjoint union
of simple paths. Thus, to create a supersolution approximating such a boundary, we start
by describing the method to approximate a single simple path in (Z2, E?). To begin with,
given m,n € 7Z, suppose that y : {m, ..., n} — Z? is a finite simple path in E2; simple
paths with infinite length will be considered later. We can create an edge supersolution
along y by the following procedure: call X, = (S[y(m),y(m+1)]> Uly(m),ym+1)]) and then,
inductively, define

%; = node.join(Z;_1, (S, i), Uy))s (Siy@).rG+01> Uy ),y G +1)]))
form 4+ 1 <i < n — 1. Note that this results in a local supersolution edge
(Sy, Uy) = En—l

which is incident on y(m) and y(n), outgoing and incoming, respectively.

When y is a simple closed path, (S,,, U,), as defined above, joins all the nodes/edges
along y but misses the node at y(m). Of course, we can simply patch this node in using
basically the same procedure as before, although it is slightly awkward to phrase in our
terminology. Simply take (S, Ux) to be the node.join of the ordered triple

((Stym-1),y @1 Uy e=1),y 1) (Symys Uym)) s (Stym).y em+ 11+ Uly om),ym+1)1))-
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and then this can be joined with (S, U, ) by the patch operation
(Sy.Uy) = pateh((Sy. Uy). (Sx. Us)).

In the future, we will simply omit the bars and write (S,, U, ), abusing notation, in the
case when y is a simple closed path.

Lemma 3.13. If (S., Ue)ecr and (Sy, Uy)vey define a (Z?, E?)-compatible local super-
solution network, and if y : {m, ... ,nY — Z? is any simple path in (Z?*,E?), possibly
closed, then (S, U,) as defined in the paragraphs above is a local supersolution.

Furthermore, if y : Z. — 72 is a simple path in (Z*,E?) and if Yim,n] denotes the
restriction of y to {m, ..., n}, then the pair (S, U,) defined by

o0 o0
Sy = U Syewwy Uy = U Uy
N=1 N=1

also defines a local supersolution.

Proof. The first statement is a direct consequence of Lemmas 3.8 and 3.10. For the second
statement, first, observe that y is locally finite: that is, for each compact set K C R2,
#{i € Z : y(i) € K} < oo. Combining this with the diameter bound in Remark 3.12, we
find that (S, N K, Uy N K) = (Sy_yn N K, Uy_yy N K) forall N large enough. Thus,
as a local uniform limit of supersolutions, S, is a supersolution in U,,. |

Now we describe how to approximate regular Z2*-measurable sets by supersolutions.
If A is a regular Z?*-measurable set, it can be written as the sum of countably many
connected components A = | J,c; An for some J C N, where (4,),en are regular 7%+
measurable sets. Let us thus start in the case that 4 is simply connected.

First, let y : E — Z? be a simple path such that 34 = {y} and y traverses A clockwise;
such a path exists by Theorem 3.4 and simple connectedness. Let (S,, U, ) be the local
supersolution constructed as in Lemma 3.13.

It will be useful to know, and follows essentially from condition (vi) in Definition 3.11,
that 05, \ A C U,,.

Lemma 3.14. If A is a simply connected, regular Z.*>-measurable set and the curve y and
local supersolution (S, U, ) are as constructed above, then S, \ A C U,. Furthermore,
0S8, N U, is a piecewise smooth simple curve.

The proof is deferred to Appendix D.
Next, for each cube z + [—1/2,1/2]* C A, let (S, U,) denote the local supersolution

S, =z4+[-1/2,1/2>, U, =z +(—1/2,1/2)>.
Letting {z,}nen C Z2* be an enumeration of these cubes, define (S AD U Ag)neN recur-
sively by
(SA?, UA?) = patch((Sy, Uy), (Sz,, Uz,)),
(Sqp »Uge ) =patch((Syp, Ugp), (Szyis> Uzpy))-



W. M. Feldman and P. Morfe 590

Finally, let (Sg, Uys) be the limiting supersolution with Sy = (oo, S b and Uygp
=U, U b - As in the proof of Lemma 3.13, this defines a local supersolution.

It only remains to “fill in” the rest of A. Let {¢,}nen C Z>* be an enumeration of the
cubes ¢ + [—1/2, 1/2]? contained in A™. Define (S4, Uy4) by

Sa=Sp U J@n+[-1/2.1/2%), Us=Up U | J@n +[-1/2.1/2].

n=1 n=1

Note that, with this definition, A™ C Int(S,). Since each cube g, + [—1/2,1/2]? is sur-
rounded by cubes in A, one readily checks that (S4, Uyg) is a local supersolution. We claim
that, in fact, S4 is a supersolution in R2.

Lemma 3.15. Sy is a supersolution in R? with piecewise smooth boundary.

Proof. By Proposition 2.3, it suffices to check that, for every xo € 0S4, there is an open
set U containing x¢ such that Sy is a supersolution in U. If xo € dS4 N A, then this
is immediate, since A C Ug; Uy is open; and Sy is a supersolution in Uy. Otherwise, if
Xo € 0S4 \ A, then x¢ € 3S,,, by construction. Yet, Lemma 3.14 implies that S, \ A C U,,.
Since U, C Uy, we are done. [

We showed how to construct a supersolution Sy4 in the case that A is a simply con-
nected, regular 7Z.**-measurable set. If, on the other hand, 4 is only connected and not
simply connected, we proceed by letting S = S4,, where A; is chosen so that R2\ A4; is
the j th connected component of R? \ A. Since any compact set in R? sees at most finitely
many boundary paths of 4, ) ; S4; N B(0, R) equals a finite intersection of supersolutions
for any R > 0. Hence, Sq =) ; S4, 1s a supersolution itself.

When A is not even connected, we let {Sy4,} be the supersolutions associated to its
connected components. By Definition 3.11 and the regularity of A, these supersolutions
are pairwise disjoint. Hence, the union Sy := | J,, S, is also a supersolution.

Summing up, we have the following result.

Lemma 3.16. If (S, U,),cg2 and (Sy, Uy)yez2 form a (Z2,E?)-compatible local super-
solution network, then there exists a constant C > 0 such that, for each regular 7.%*-
measurable set A, there is a closed set S4, which is a supersolution in R2, such that
A" C Int(S4) and

dg(0S4,04) < C, dg(S4,A) <C.

Proof. We only need to verify the distance bounds. Since any point in S4 \ A4 is contained
in the set S, as defined above, the diameter bound in Remark 3.12 implies that S4 C 4
+ Bc. At the same time, A™ C Int(Sy) so, by condition (i) in the definition of regularity,
we have A C Sy + B 5. This gives dg (S4, A) < C. Since the union of the images of the
paths y defined above is precisely dA, the same reasoning shows dg (0S4,04) < C. =m
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3.4. Approximating smooth sets

We still need to show that we can approximate sufficiently smooth sets by regular Z2*-
measurable sets. Toward that end, the main technical result we need follows.

Lemma 3.17. There is an R > 0 such that if K C R? satisfies an interior and exterior
ball condition of radius R, then the 7**-measurable approximation Ag of K defined by

Ag = U{z +[=1/2,1/2? 1z € Z**, (z +[-1/2,1/2) N K # 0}
is regular. Furthermore,
K C Ax, du(K,Ag) <R, dg(0K,04Ax) <R.

Proof. To show that conditions (i) and (ii) in Definition 3.3 hold for R > 0 large enough,
we argue by contradiction. Where condition (ii) is concerned, if the lemma is not true,
then, after translating and rotating, we can find sets (K, ),en such that, foreachn € N, K,
satisfies an interior and exterior ball condition of radius n and

Kn 0 ((=1/2,1/2) + [~1/2,1/21%) # 0,
Kn 0 ((1/2,-1/2) + [-1/2.1/21%) # 0.

Kn 0 ((1/2,1/2) + [1/2.1/2) = Ku 0 ((=1/2.-1/2) + [-1/2,1/2])
= 0.

(3.3)

By compactness of [—1/2, 1/2]2, we conclude that there is a half-space Ko, C R? still
satisfying (3.3). This is readily shown to be impossible.

A similar approach establishes condition (i).

The remaining claims follow directly from the definitions. ]

3.5. Proofs of the main lemmas

All that remains to prove Lemmas 1.6 and 3.1 is to show that the preceding discussion is
not vacuous. In other words, we need to show there is a medium a € C*°(T?;[1, A]) for
which a local supersolution network can be constructed. This is true, and it will be proved
in Section 3.7. Let us state it as its own proposition for now.

Proposition 3.18. There is ana € C®(T?;[1, A]) for which a (Z*,E?)-compatible local
supersolution network (Definition 3.11) exists for some force F > 0. In fact, given { > 0,
this can be done so that ||a — 1| poo(pay < &

Combining this with Lemmas 3.16 and 3.17, we obtain Lemmas 1.6 and 3.1.

Proof of Lemma 3.1. Let R be the constant of Lemma 3.17 and a be a medium as in
Proposition 3.18. Let F, = F > 0 be the associated force. Given a set K satisfying an inte-
rior and exterior ball condition of radius R, let Ax be the approximation of Lemma 3.17.
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By applying Lemma 3.16 to a and F,, we obtain a closed set S = S4, which is a super-
solution of (3.1) with F = F,. We note that S*(K) = Sk has all the desired properties
by concatenating the bounds and inclusions of the two lemmas.

To obtain a subsolution with the desired properties, we repeat the previous procedure
with K replaced by R? \ K, which still satisfies interior and exterior ball conditions of
radius R, since K does. This leads to a closed set Sz g containing R2 \ K which is
a supersolution of (3.1) with F' = F,. We conclude by defining the open set Sx(K) =
R2\ Sr2\x and noting that S« (K) is a subsolution of (3.1) with F = —F, < 0. |

Proof of Lemma 1.6. Let a be a medium as in Lemma 3.1 and let R and F, be the con-
stants of that same lemma. Given a set K C R? satisfying exterior and interior ball
conditions of radius R, and given any F € (—F,, F,), let $*(K) and S (K) be the respec-
tive super- and subsolution guaranteed by Lemma 3.1. The conclusions of Lemma 3.1
readily imply that the hypotheses of Proposition A.1, which is Perron’s Method in this
context, apply in this situation. Thus, we obtain a solution S C R? of (3.1) such that
S«(K) C S C §*(K). Further, a quick computation shows that the claimed inclusions
and distance bound also hold. ]

Finally, Corollary 1.7 follows by scaling.

Proof of Corollary 1.7. If K is compact with C2 boundary, then there exists a § > 0
such that K satisfies exterior and interior ball conditions of radius §. Hence, there is an
£0(K) > 0such that s~ ! K satisfies exterior and interior ball conditions of radius R for any
e € (0,e9(K)). Applying Lemma 3.1 and blowing down space by a factor &, we obtain,
for each ¢ > 0, a stationary subsolution S¢ and a stationary supersolution S$* of (3.1)
such that

SEC K CS™, dy(SE8*) < Ce, dy(dSE,a8*%) < Ce.

Therefore, if (S7);>0 is the solution flow of (3.1) with initial datum K, then, for each
t > 0, the comparison principle implies

S CS;cS™e.
We then use the distance bounds on S¢ and S** to deduce those for S; and K. m

3.6. Homogenization of the level set PDE

In view of Corollary 1.7, it is straightforward to conclude that solutions of the level set
PDE are also pinned.

Proof of Theorem 1.4. As in Definition 2.6, define half-relaxed limits #* = lim sup™® u®
and u, = liminf, u®. We claim that ¥* = %, = ug. To avoid repetition, we will only
prove that 4, > ug; similar arguments show that uy > u*.
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Fix xo € R¥. We will show that, for each § > 0 and ¢ > 0, it (x9,7) > uo(x¢) — 8. To
see this, choose an > 0 such that B, (x9) CC {up > uo(x9) — 8}. By comparison, for
each ¢ > 0, if (S7);>0 are the solutions of (1.3) with So = B, (xo), then

Sy C {u®(-.1) > ug(xg) — 8} foreach ¢ > 0.
At the same time, Corollary 1.7 implies that, for all sufficiently small ¢ > 0, we have
By/2(x0) C {u°(-,1) > uo(xo) — §}.

This implies #x(xg,1) > ug(xg) — 6 forall > 0. |

3.7. Supersolutions: Edge and node construction

Below we construct a scalar field a : T2 — [1, 2] of the form a(x) = 1 + ¢(x) with the
goal of constructing a (Z2, E?)-indexed local supersolution network. In other words, we
will prove Proposition 3.18.

Let ¢ > 0. In what follows, we will construct a @ € C®(T %) so thata = 1 + ¢ admits
a local supersolution network and

0<e(x)<¢ inT2

We break the construction down into steps. The idea is ¢ will be a bump function
(in T?) centered at zero.

Step 1: Edge supersolutions. We begin with the edge supersolutions corresponding to
each directed edge of Z? (near which the node supersolutions will be constructed) via
certain (oriented) circular arcs. The circular arcs will have small positive curvature which
will create the positivity needed for the supersolution property. We just need to ensure that
the interiors of any two distinct edges are disjoint.

By translation invariance, we can fix our attention on (0, 0) and the 8 directed edges
incident on (0, 0) connecting to its Z? neighbors (&1, 0) and (0, &1). It is convenient to
start by defining the arcs connecting (0, 0) to (1, 0) and (1, 0) to (0, 0), since the other
arcs are constructed the same way. We will construct two arcs y*, yT for the directed
edge [(0,0), (1,0)] and y~ for the directed edge [(1,0), (0,0)]; see Figures 5 and 6 for the
role each plays.

Notice that the point (1/2, —t) is equidistant to (0, 0) and (1, 0), no matter the choice
of ¢, due to the distance being R(¢) = /2 + 1/4. For ¢t > 0 sufficiently large (to be fixed
later), let ¥+ be the circular arc connecting (0, 0) to (1, 0) with radius of curvature R(¢)
and center (1/2,—t) and Yy~ be the “reflected” arc obtained by doing the same construc-
tion, but with center (1/2,¢). Each arc y ¥ is oriented by the outward normal vector to the
corresponding ball. In particular, each arc has small positive mean curvature

1
Ky:t = m
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Figure 5. A translate of y in the boundary of the supersolution of Figure 1.

Figure 6. A translate of y— in the boundary of the supersolution of Figure 1.

Choosing R large enough, we can guarantee that the circular arcs are close to the line
segment [(0, 0), (1, 0)]:

dp (v, 1(0,0). (1.0)]) < i (3.4)

The interiors of these arcs are clearly disjoint, being separated by the chord connect-
ing (0,0) and (1, 0). Notice, further, that the angle formed between the tangent line to y+
(or y7) at (0, 0) and the aforementioned chord goes to zero as ¢t — +oo.

Repeat the same construction between (0, 0) and each of its other Z? nearest neigh-
bors. This results in 8 distinct arcs. By the previous observation on tangent lines at (0, 0)
all 8 arcs are disjoint, except for possible intersections at their endpoints, provided the
radius of curvature R is chosen large enough. This condition, along with (3.4), fixes our
choice of R.

Analogously, for any directed lattice edge e € E2, we define an associated arc y, by
translating the corresponding arc incident at the origin. (Note that this hides the &+ notation
we have used here in Step 1 inside of the directed edge e.)

Step 2: Node shape. We add nodes to our network at each Z? vertex. The same construc-
tion will be repeated at each one so we restrict attention to (0, 0). The key point is to create
large radial gradients to allow for a node supersolution, but also to enforce that the incom-
ing/outgoing edge supersolutions are tangential to Da so that the large gradients will not
destroy their supersolution property.
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Figure 7. Perturbing a circle so that it intersects arcs orthogonally.

To start with, let B, denote the disk centered at (0, 0) with radius » < 1. Each of
the 8 arcs y incident on (0, 0) passes through dB, at some point. As just discussed, the
injectivity of the map sending arcs to tangent vectors shows that each arc is associated
to a unique intersection point on dB,, provided r is small enough. By making a small
perturbation of R? \ B,, we can construct a smooth region (9 with the property that each
arc emanating from 0 intersects d( at a unique intersection point, and the normal vector
of 90 is parallel to the tangent line of the arc at the intersection point; see Figure 7. We
can also choose O to be symmetric with respect to /2 rotations and R? \ O C By/4(0),
so that 00 only intersects the arcs incident on (0, 0) and

d (R?\ 0.{0}) < i

Step 3: Construction of ¢ (part 1). Since O is smooth, there is a v > 0 such that the
signed distance function dg (positive in (0 and negative outside) is smooth in {|dg| < v}.
Let n : [-v,v] — [0, 1] be a smooth function such that

n(s) = lInllLeqvop if s <-v/2, n(s) =0 if s>v/2,
7' (0) = [1n'[| oo ((=v,v1)-
Define ¢ : (—1/2,1/2] x (=1/2,1/2] — [0, 1] by
n(do(x)) if |[do(x)| < v,
P(x) =140 if do(x) > v,
I7llzo vy if do(x) <—v

Extend ¢ Z2-periodically to R2.
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Define the parameter
A= 1'(0) = [0l zoo (-]
which we will need to choose large below using our freedom to choose 7.

Let ny@ be the outward pointing normal to @ and kg, the mean curvature (following
the sign convention k39 = —tr(D?de)). Modify 7 if necessary so that A satisfies

A > 2||(k30)-IlL>@0)- (3.5)

We then find, for each x € 909,

—(1 4+ ¢(x)kpe (x) — D(x) - nge (x) < 2[(kae)-llLx@o) — A <O.

In other words, Oisa supersolution of (3.1) for some F; > 0 or, in level set form, u = X ¢
is a supersolution of the equation

—(1 + ¢(x))tr((Id — Du ® Du)D*u) — De(x) - Du— Fy|Du| >0 in R2.

Step 4: Construction of ¢ (part 2). We proceed to ensure that the edges of the network
satisfy the necessary differential inequalities outside of | J,cz2(k + R? \ ) (actually,
outside of a neighborhood of the closure). Given an edge y in the network, orient it so that
its normal vector points away from the center of the corresponding circle. If @, and O,
are the two regions intersecting y at either end, first, assume that x € y N {dp, > v} N
{dw, > v}. It follows that ¢ vanishes in a neighborhood of x and, thus,

1
_(1 + (p(x))/cy(x) - D‘P(X) . ny(x) = —Ky(x) = _E <0,

where R is the radius of curvature fixed earlier.

It remains to check the requisite inequalities near a vertex, which we can take to
be (0,0), by symmetry. Assume that x € y N {|dw| < v}. We are only interested in the part
of y in a small neighborhood of O, so as long as we can prove the requisite supersolution
property for dp(x) in a neighborhood of [0, v], we will be done (in particular, for small
negative values of dg, since values > v have already been handled).

We start at the intersection point X € y N d@ and work outwards. By construction,

ny(X) -ne(x) =0.
Thus, by continuity, there is a v’ € (0, v/2) such that x € y N {—V’ < dp < v’} implies
|ny (x) - Ddyo (x)] < 2RA).

Hence, for such x, we find

(1 + 900y (1) = Dp(x) -y (3) <~ + Alny () - Dilgo ()] = —5
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Next, we consider the case when x € y N {v > dg, > —v’}. Recall that in the construc-
tion of ¢ through 7, so far we have only needed to know that (0) = A = ||n’|| Leo([—v,v])
with A a fixed constant satisfying (3.5). Hence, we are still free at this stage to require the
following condition on 7:

')l < @R if s € [-v, =],

With this condition in hand, we find

(1 + () () = Dplx) 1y () < = + 1/ (o ()| =~

Also notice that the restrictions on 7’ are loose enough that we can still require
17l Loo((=v,v1) < ¢, where { was the small parameter fixed at the start of the proof.

To summarize, in this step of the proof, we have shown that there is a constant > > 0
such that, for any x € y satisfying dy 1 o (x) > —v' for all k € Z?2, we have

—(1+ @)y (x) = Do(x) - ny(x) < —F,.

Step 5: Defining F, (Se, Ue)eecr2, and (Sy, Uy)yez2. Finally, we define the local super-
solutions that comprise our network. To begin with, let F' = min{Fy, F>}.

Recall from condition (vii) in Definition 3.11 that we require translation invariance,
that is, (Sy4x, Uptx) = x + (S,, U,) for all x € Z? and v € Z? U E?; hence, we only
need to construct the supersolution node (Sy, Up) associated with the origin and the super-
solution edges (S., U,) for edges e containing the origin.

Let us begin with the node (Sg, Up). Recall the smooth open set @ defined above. Let
Uy = {x € B14(0) : do(x) > —c} for some small ¢ € (0,1/2) to be determined and let
So=0n{xeB0,C):dy(x) > —c}.

Note that dS¢ N Uy = 90O so (S, Up) is a local supersolution of (3.1) by Step 3 of the
proof and Proposition 2.3.

Next, we construct the edge supersolutions (S, U, ) for edges e containing the origin.
We begin with e = [(0,0), (1,0)]. Let y* be the circular arc constructed above connect-
ing (0,0) to (1,0). Let § < 1 and define (S,, U,) as follows:

Ue = Briy+5((1/2.—1)) N {x € R? : x; > =8, do(x) > —2¢, d0)+0(x) > —2c¢},
Se = Bry(1/2,—1) N {x € R? : x3 = =6, do(x) = —2¢, dg0+0(x) = —2¢}.
Notice that S, N U, = y N U, by construction, and hence, (S., U,) is a local supersolu-
tion of (3.1) with F = F,. Furthermore, U, \ S, is disjoint from the cube (1/2,—1/2) +
[~1/2,1/2)? (cf. condition (vi) in Definition 3.11).

For the remaining edges, we use symmetries of Z2. Define the rotation map I and

reflection map R by I (x1,x2) = (—x2,x1) and R(x1,x2) = (x1,—x2). Let S[(1,0),(0,0)] =
R(S100,0),(1,001) and U[(1,0)1,00,0)] = R(U[0,0),(1,0)1)- In a similar manner, we define

10,000,101 = L(S70,0,1,01):  U10,00,00,01 = L(Uj0,0),1,001)>
S10,1,0,01 = L(S11,0,00,01):  Ut0,1),00,01 = L (U[c0,1),00,01)-
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The remaining edge supersolutions (S,, U, ) with e 5 0 are prescribed by translation invari-
ance:

(S1(-1,0,00.01: Ut(1,0),00.00) = (=1.0) + (S(0,0).1,001- U[(0.0).(1,001)
(510,0).(-1,01 U10,0).(-1,01) = (=1.0) + (S[(1,0).0.0)]- U[(1,0).(0,0)))
(5100.0).00.-11 U10,0).00.-1)1) = (0, =1) + (S10,1).(0.0)1- UL0.1),0.0)1)
(S10,~1).,0,01: Ut0,-1),00,0) = (0. =1) + (S{(0,0).(0,101- U[(0,0).(0,10))-

It is not hard to verify that if the constants § and ¢ are small enough, then the con-
structed network satisfies the conditions in Definition 3.11. The details are left to the
reader.

4. Pinning in a diffuse interface model

In this section, we treat the diffuse interface setting, completing a construction analo-
gous to that in Section 3. The basic idea is straightforward: we have proven the existence
of pinned super/subsolutions for a non-trivial interval of forcing parameters in the sharp
interface model—this gives us the room to approximate these solutions by a diffuse inter-
face in the natural way and maintain the strict sub/supersolution property.

At a technical level there are two main issues that we need to address. First, the
super/subsolutions we constructed in the previous section are not smooth—they have
corner-type gradient discontinuities at a discrete set of points.

Further, as we will see, (1.2) differs from (1.9) by a square root. Hence, in what fol-
lows, we let a be as in Section 3 and define # € C*®°(T?) by

6(x) = a(x)>.

Before proceeding further, notice that the first equations in (1.9) are related through the
scaling (x,t) — (¢7'x, e72t). Accordingly, in what follows, we will be frequently inter-
ested in the unscaled equation

S(us,; — Aug) + 0(x)(§' W' (ug) — F) =0 in R? x (0, 00). 4.1)

Lastly, we need to make explicit our assumptions on W':

W e C3([-3,3];[0,00), {W' =0}={-1,0-1}, 4.2)
(-1,00c{W' >0}, (0.1)C{W <0}, (4.3)
min{W”" (1), W' (1)} >0, W"(0) <0. (4.4)

Next is the main technical result of this section, which will be the key component of
the proof of Theorem 1.10.
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Lemma 4.1. If a is as in Lemma 1.6, then there are constants g, f3, F, C > 0 such that,
for each K C R? satisfying an interior and exterior ball condition with large enough
radius and each § € (0, 8y), there is a continuous, stationary supersolution ut of (4.1)
with F = F and a continuous, stationary subsolution u™ of (4.1) with F = —F such that

{x e RY\ K :dist(x,0K) > C} C {u™ = —1-88, ut =—1+285},
{xeK:dist(x,BK)ZC} C{u_z 1—-2B88, u™ =1+,38},
14288 <ut <1+B8, —1-B8§<u” <1-286.

In particular, for each F € [—F, F), there is a stationary solution u of (4.1) taking values
in [—(1 + B3), 1 + B&] such that

{x € K :dist(x,K) > C} C {1 —B§ <u <1+ B},
{x e R*\ K :dist(x,K) > C} C {—(1+ BS) <u <—1+ Bs}.

The construction of the supersolution u™ proceeds in three steps. First, for a sharp
interface supersolution E as in Section 3, we construct a “level set function” d with the
property that the interfaces {d = s} are sharp interface supersolutions close to dJE for
all s close enough to zero. The second and third steps follow [9]. In the second step, we
use d and the standing wave solution of the homogeneous Allen—Cahn equation to build
a diffuse interface supersolution in the domain {|d| < y} for a suitable y > 0. Lastly, we
extend this diffuse interface supersolution to the entire space.

The subsolution u~ is built analogously. These sub- and supersolutions will be used
to prove that the scaled problem in (1.9) is pinned (Theorem 1.10).

By taking K to be a half-space, we establish the existence of plane-like stationary
solutions.

Remark 4.2. Givene € S!, let K = {x ¢ R? : x - ¢ < 0} in Lemma 4.1 and let u be
the associated stationary solution. If § is small enough, then it is not hard to show that u
satisfies
lim sup{[u(x) —u*(@8)|: £(x-e) > s} =0,
s—+oo

where u™ (a§) < u™ (ad) are the unique stable critical points of W(u) + a8u. Hence, u is
a plane-like solution heteroclinic to the two spatially homogeneous stationary solutions.

4.1. Preliminaries

In what follows, we let D¢ : R? x R? — [0, co) be the metric induced by a. Specifically,
this is the function defined by

T
D(x.y) = inf] [0 a7 ds : T > 0.y € AC((0.T]: R?).

y(0) =x, y(T) = y}-
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Recall that D¢ is a metric on R? equivalent to the Euclidean metric. Furthermore, D¢ is
invariant under integer translations in the following sense:

Dex +k,y+k)=D%x,y) ifx,yeR? keZ.

Given a (non-empty) set 4 C R2, define the a-distance dist? (-, A) : R? — [0, 00) to 4
as follows:
dist?(x, A) = inf{Da(x,y) 1y € A}.

We also introduce the Allen—Cahn one-dimensional transition front associated with
the homogeneous energy function with 6 = 1. We call g : R — R the solution of the
second-order ODE

Gg=W/(q) with lim g(s) =—1 and lim g(s) = 1. 4.5)
§—>—00 §—>00

Standard computations find that
q = v2W(q).

and from this first-order ODE plus the previous boundary conditions at +o0, it is easy to
see
qge(—1,1) and g >0.

4.2. Modifying the interfaces

Given a set K satisfying exterior and interior ball conditions of radius R, let £ = E(K)
be the supersolution of (3.1) constructed by the algorithm of Section 3. Let dg : R? — R
be the signed distance to E, that is, the function given by

dist*(x,R?\ E) ifx € E,

deg(x) =
£(x) {—dist“(x,E) if x € x € R2\ E.

If E were smooth and compact, then it would be easy to see that, at least close to E, dg is
a supersolution of a stationary level set PDE. Our setting complicates things slightly, but
not irredeemably.

The following property about E is sufficient for our immediate purposes.

Property 4.3. There is a collection of local supersolutions (S;, U;)|;es of (3.1) with some
positive forcing F = Fy > 0 such that the sets dS; N U; are smooth uniformly in i and
there is an r > 0 so that, for all xo € 0E, there is a finite sub-collection I’(xg) C I such
that
ENB(vo)=( () Si)0Br(xo).
iel’(xo)

In other words, the supersolutions constructed in Section 3 are, locally, an intersec-
tion of a finite number of local smooth supersolutions. See the proofs of Lemma 3.8 and
Lemma 3.10, which show that the patch and node.join operations create a supersolution
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which is, locally, an intersection of the input supersolutions. (Recall from Definition 3.11
and Remark 3.12 after that the “basic building block™ supersolution edges and nodes in
the network are uniformly smooth.)

Proposition 4.4. There is an r > 0 depending on the network constructed in Section 3, but
not the particular choice of E, such that dg satisfies the following viscosity inequalities:

IDdg|? > a(x)* in{0<dg <r}, (4.6)

F
—a(x)ME(DdE, D?dg)—Da(x) - Ddg > 7°||DdE|| in {0 <dg <r).

Proof. Let (S;, U;) be the collection of supersolutions from Property 4.3. The S; have
smooth boundary in U; uniformly in i, so there is 1 > 0 such that the signed a-distance
functions dg; in the tubular neighborhoods {|ds;| < r1} N U; are smooth and satisfy the
following differential inequalities in the classical sense:

IDds, |I> = a(x)?,

—_— —_— F
—a(x)tr((Id — Dds, ® Dds,)D*ds,) — Da(x) - Dds, > 70||Ddsl. I.

Let xo € 0E. By Property 4.3, there is r, > 0 (independent of x¢ and, without loss of
generality, smaller than 5%-) so that

E 0 Bpy(xo) = ((1) $1) N Bra(xo)
iel’
for some subcollection I’ C I. We can also add the following requirement without loss
of generality: dS; N By, (xo) # @ for all I € I’. With this additional property, and since
r2 < 5k
By, (x0) C {lds;| <ri} forall i el
and so d, are supersolutions of (4.6) in By, (xo) foralli € I’.
Further, note that for x € By, (xo), the unsigned distance satisfies

|de(x)] < D(x,x0) < Aar and |dp,(x,)(x)| = (1 —)r,

and so,
dg(x) = dgnB, (x)(x)  forx € B_r (xo).
Thus,
dg(x) = inf ds,(x) forx € B r, (xo) NE. 4.7
iel’ 1+A
Letus call r3 = lfr—zA

By formula (4.7), and since the minimum of supersolutions is a supersolution, we find
that dg is a supersolution of (4.6) in the region

By, (xo) N Int(E).
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Since xo € JE was arbitrary and the radius r3 did not depend on the particular x(, we have
that dg is a supersolution of (4.6) in the region

(0E + B,(0) N E D {0 < dg(x) <r3}. n

4.3. Diffuse interface near JoE

It will be convenient in what follows to recenter around dg = r/2 by
r
d(x) =dg(x) — o

Hence, we have {—r/2 < d < r/2} ={0 < dg < r}. Note that this changes none of the
viscosity inequalities we have proven above, since they are all invariant under addition
of constants.

For the moment, let §, 8 > 0 be free variables. Define vs : {—r/2 <d <r/2} — [-2,2]
by

vs(x) = q( (x)> + 288,

where ¢(s) is the solution of equation (4.5). We claim that if § and B are chosen appro-
priately, then vg is a strict supersolution of (4.1) in {—r/2 < d < r/2} for sufficiently
small ¢ > 0.

Note that ¢ is increasing and smooth, so if a smooth test function ¢ touches vg from
below at some point xg, then 8¢~! (¢ — 288) touches d from below at xo. We will com-
pute as if d is smooth, but technically one does the computations on a smooth touching
test function, as is standard in viscosity solution theory (also, the specific d under con-
sideration is smooth at any point where it can be touched from below by a smooth test
function in the neighborhood considered). We compute

d
8800 + 570 s = 570 (L) (1 pd o)1 ~ ()
d d
- 4( (x ))Ad(x) +286()W" (a( ESX)»
+ 0(B%5),
where the O(B28) error term can be bounded, more precisely, by

28286(x) sup |W"|.
[-1.1]

Since || Dd||? = a? in a neighborhood of x, it follows that D?d (x) Dd(x) = a(x)Da(x).
Thus,

—Ad(x) = —tr((Id — Dd (x) ® Dd(x))D2d(x)) — a(x)"2D2%d(x)Dd(x) - Dd(x)

= —tr((Id — Dd(x) ® Dd (x))D%d(x)) — a(x) ' Da(x) - Dd(x) > ?
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Recalling that W” is bounded from below away from 0 in a neighborhood N of {—1, 1},
we can choose § > 0 small so that

F,
4‘)[ i . V2W(q) — 2BA sup (W")_| = 0
1,1

and

B sup |[W"| < 1an”
[—1,1]

Then, as in [9, Lemma 4.3], we deduce that there is F; (Fo, W) > 0 such that, forany § < 1,
— 8Avs(x) + 8710 (x) W' (vs(x))

: q(dgx)) + 2/39(x)W"(q(@)) —2B286/(x) SuP W" = Fi. 48)

Remark 4.5. This section is the only part of the argument where we use the specific
form of (1.6). If instead we wanted to build sub- or supersolutions for the Euler-Lagrange
equation associated with the energy model in (1.10), the L? gradient flow is

S(us,; — 0(x)Aug — DO(x) - Dug) + 8§ ' W' (us) = 0.

Hence, when we invoke an ansatz of the form ug(x, ) = q(@) + ..., wefind

0=2¢" ( 9(x)q( )||Dd||2+W’( (‘;)))+q(%)(—Ad—De(x)-Dd)+...

Notice that, in this case, the highest-order term suggests the identity a(x)?||Dd(x)|? =
6(x)||Dd(x)||?> = 1. Thus, the only change necessary is to replace the Riemannian met-
ric D¢ above by D (ie., interchange a with a™1).

Where (1.11) is concerned, since a = Vo , the gradient flow is

8(uss —a(x)Aus — Da(x) - Dug) + §Ya(x)W' (us) = 0.

Employing the ansatz ug(x,t) = q(§7'd(x)) + ..., we obtain

d d d
_ 1 s 2 l “ 2\ (_ _ .
0=4 a(x)( q(8)||Dd|| +W (q(g))) +q(8 )( a(x)Ad — Da(x)-Dd) + . ..
Accordingly, in this case, the Euclidean distance should replace D¢ in the definition of d.

4.4. Diffuse interface outside of {—r/2 < d < r/2}

We proceed to extend vg to the whole space. On the one hand, when d > r/2, the func-
tion vg as defined above is almost 1, so we can simply take the minimum. When d < —r/2,
we interpolate between vg and —1 using a partition of unity.
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Most of the work is in the interpolation. Let A : R — [0, 1] be a smooth, increasing
function such that A(u) = 0 if u < —%’ and A(w) = 1if u > —¢. We wish to define
us :{—r/2 <dg <r/4} - [-2,2] by

us(x) = Md(x)vs(x) + (1 = A(d () (=1 + 285)

for some suitable smoothed function d approximating d.

Lemma 4.6. There is a smooth functiond : {—r/2 < d < r/2} — R with bounded first
and second derivatives such that the following inclusions hold:

=T el eli= )iz g ezl cle=g)

Proof. Given a mollifying family (p¢)¢o, define d by

a0 = [ deipste=ydy +c

for small constants ¢, ¢ > 0. The boundedness of || Ddg || implies d has bounded first and
second derivatives with bounds depending only on ¢. Further, for the same reason, ¢ can
be chosen independently of E (or K). ]

It is now a more-or-less straightforward adaptation of [9] to show that ug is a superso-
lution in {—7/2 < d(x) < 0}.

Lemma 4.7. There isa §; > 0 and an F > 0 depending only on 6, W, and the choice of
the network in Section 3 such that if § € (0, 81) is sufficiently small, then ug is a superso-
lution of

—8Aus + 87 10(x)W'(us) > FO(x) in {d(x) < r/2}. 4.9)

Proof. First note that ug = vg in {d(x) > —r/8} so, since vs is supersolution of (4.8), so
isugin{—r/8 <d(x) <r/2}.

Meanwhile, in {d(x) < —7r/16}, we have ug = —1 + 26, which is also supersolution
of (4.10) for small enough §, since W”(—1) > 0.

It remains to check the region {—7r/16 < d(x) < —r/8}. Note that the supersolution
property in (4.8) for vg does hold in this region.

If d and, correspondingly, vs were smooth, then the computation of [36, Lemma 6]
(cf. [9, Lemma 4.5]) would go through exactly to find (4.9) for § > 0 sufficiently small.

As is standard in viscosity solution theory, we can carry over the computations which
rely on differentiability to a touching test function. The only issue is that x > A(d(x)) is
not strictly positive, so some care is required at the points where this function vanishes.

To address this, for n € N, define u((g") by

Ul (x) = Ad(x)) + 171 8)vs(x) + (1 — Ad(x)(~1 — 288).
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Now if ¢ is a smooth test function touching ugn) from below at some point, then

@(x) — (1 — A(d(x)))(—1—286)
Ad(x) +n18

g(x) =

will touch vg from below at the same point.

Arguing as in [36, Lemma 6], we see that there is a 6; > 0 such that if § € (0, §y),
then ufg") is a supersolution of (4.9) as soon as #n is large enough. Sending n — oo, we
deduce that ug is a supersolution, by stability.

As for the dependence of §;, we only need to be able to eliminate the error terms in
the construction above; and these depend only on A, W, and the size of the derivatives
of d, which are determined by ¢. ]

Finally, we extend ug to a supersolution g as follows:

_ _ min{ug(x), 1+ ,38} if d(x) <r/2,

=1 s if d(x) > r/2.
Proposition 4.8. There are constants § > 0 and F > 0 depending on the network con-
structed in Section 3 and on W, but not on E, such that if § € (0, 8) is sufficiently small,
then s is continuous in R? and satisfies the following differential inequality in the vis-
cosity sense:

—8As + 8§ 10(x)W'(i15) > FO(x) in R2. (4.10)

Proof. Given Lemma 4.7, we just need to check that the constant function 1 + 8§ is a
supersolution of (4.10) and that #® is identically equal to 1 + 8§ in a neighborhood of
{d(x) =r/2}.

Since W”(1) > 0 and 6 > 0, the constant 1 + 8§ is a supersolution of (4.10) as soon
as § > 0 is small enough.

If x € {d(x) > g} then, from the exponential convergence of ¢,

,
us(x) =vs(x)>1-— Cexp(—ﬁ) +2B8>1+ 6
for § > 0 sufficiently small. Therefore, s = 1 + Bd in {d(x) > g}. |

The next remark puts the computations above into some context.

Remark 4.9. By reprising the arguments just presented, one can show that, as § — 07,
solutions of the Cauchy problem

{a(u,g,t — Aug) —8710(x)W'(us) =0 in R2 x (0, 00),

us = uo on R? x {0}
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concentrate along interfaces whose motion is governed by the level set partial differential
equation

{a(x)u*,, — a(x)tr((Ild — Duy ® Duy)D?us) — Da(x) - Duy =0 in R2 x (0, 00),

Usx = Uy on R? x {0}.

This can be seen using the ansatz ug(x,t) = q(§~'d(x.t)), where d is the signed distance
to {u(-,¢) = 0} with respect to the Riemannian metric D¢ above.

Similarly, arguing as in [1], one can show that the energy in (1.6) I"-converges to (1.1)
as$§ — 07,

4.5. Proof of Lemma 4.1

The computations of the previous three sections readily lead to a proof of the main result
on stationary solutions with non-zero forcing.

Proof of Lemma 4.1. Given K, Lemma 1.6 furnishes a stationary supersolution E of (3.1)
with positive forcing Fy > 0 such that K C E and dy (K, E) + dg (0K, dE) < C. The
arguments of the previous subsection show that, for § > 0 small enough and depending
only on the coefficient a, there is a stationary supersolution ut of (4.1) witha = F > 0
such that

ut =1+ 68 in{x e E :dist(x,dE) > r},

ut <—-1+B8 inR2\E.

We are taking r < 1, so we have

{x € K :dist(x,dK) > C + 1} C {ut =1+ B5},
{x e R\ K :dist(x,0K) > C + 1} C {ut < -1+ B5}.

As in the sharp interface setting, the existence of supersolutions implies the existence
of subsolutions. To see this, notice that v is a subsolution of (4.1) if and only if —u is a
supersolution of (4.1) with W’ replaced by the function u — —W'(—u) and « replaced
by —c«. This does not change a (and the equation for E is correspondingly changed) so
the construction goes through.

Finally, given o € [—F, F], we construct a stationary solution u with the desired prop-
erties employing Perron’s Method with u™ and u™ serving as barriers. ]

4.6. Sharp interface limit

Using the stationary solutions furnished by Lemma 4.1, we now prove that for any suffi-
ciently small external force o € [—F, F|, the macroscopic interfaces associated with (4.1)
are pinned, that is, we prove Theorem 1.10.

In view of assumptions (4.2), (4.3), (4.4) on W, there is g > 0 so that for any
o € [—ag, ag], the perturbed potential Wy given by Wy (u) = W(u) — au satisfies the
same assumptions. This follows directly from the Implicit Function Theorem.
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In particular, for & € [—ag, &), we can let u™ () < u®(a) < u™(«) denote the critical
points of W, in [-3, 3], and W, satisfies

We =0} = @@ u @}, W@ @) >0, Ww@) <o,
u (@), u’(@)) C {WOZ > 0}, w°(@).ut (@) C {Wo; < O}’

and, for each j € {+,—,0},
lu? () — u’ (0)] < Ca.

Note that this implies there is an F; € [0, ap) (depending on f from Lemma 4.1 and C
from the previous line) such that, for § < 1 and F € [—Fy, F}], we have

(1 +B8) <u~(F8) < —1+ B8 <u®(F8) <1— B8 <ut(F§) <1+ 8.

In the proof that follows, we will invoke the next “initialization” result, which ensures
that solutions of (4.1) concentrate at the minimizers u™ («) and u™ ().

Proposition 4.10. Fix an a € C(T2;[1, A]), § € (0,1), and F € [—-Fy, Fy]. Suppose
that yo € R?, rg > 0, ug € UC(R?;[-3,3]), and By,(yo) C {uo > u®(F$)}. For each
v € (0, rg), there are constants t,, &, > 0 such that if (u®)¢~¢ are the solutions of (1.9),
then, for each ¢ € (0, ¢,),

u* (- te? | 1og(e)]) = (Ut (F8) — )X, () — (1 + B8 Xa\g, () in R2.

The proof of Proposition 4.10, which follows as in [9] and [36], is briefly reviewed
at the end of this section. Note that a symmetrical result applies if instead B;,(yo) C
{ug < u®(F§)}.

Proof of Theorem 1.10. Let a be the coefficient field constructed in Section 3 and let
6(x) = a(x)2. Also recall §, F > 0 from Proposition 4.8 and F; from the discussion
preceding Proposition 4.10. If necessary, we can make F and § smaller so that F < F,
and § < 1.

Given F € [-F, F] and § € (0, §), we will show below that the solutions (1¢)g=0
of (1.9) converge to u*(F§) locally uniformly in {ug > u®(F§)} x (0, 00). The corre-
sponding argument for {1y < u®(F8)} x (0, c0) is left to the reader.

Fix yo € R? and r > 0 such that B := B, (y¢) CC {ug > u®(F8)}.If & > g9(B), then
the ball =1 B satisfies the hypotheses of Lemma 4.1. Thus, for such e, there is a stationary
subsolution #~>¢ of (4.1) such that

{y €' B :dist(y,d(s"'B)) > C} C {i* > 1 — B§},
{y eR2\ ¢ !B :dist(y,d(c"'B) > C} C {u_"’3 =-1 —ﬁS}.

%

Henceforth, define 1™ by u™¢(x) = & ¢(¢~x). It is a subsolution of (1.9).
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Fix a small v > 0 such that B,,(yo) C {uop > u™(F3§)}. Proposition 4.10 implies
that there are constants 7., £+« > 0 depending only on v such that if ¢ < g4, then

ut (-, %] log(e)|) > ™t (F8) — E)XB, 4,0 — (1 + ﬂS)XRz\Br+v/2(y0) in R2.

Since u™ (F8) > 1 — B, it follows that, for all & > 0 sufficiently small,
WH(F8) —e)XB,,, 00 — (1 + BEXR2\B, ., )0 = 4 ° in R,
Therefore, by the comparison principle,
ub(- + (0, 74| log(e)])) = u™* in R? x (0, 00).

Since u™¢ > 1 — B8 > u®(F38) in Bs,,/4(yo) for small enough e, we can apply Propo-
sition 4.10 again to find Txx, €4 > 0 such that

(- + (0, (ts + Tx)?|log(e)]) = (uF (F8) = €)Xp, ,,(r0)
—(1+ /BS)XRZ\BrO/z(J’O) in R? x (0, 00).
From this, we conclude
liminfy u® > ut(F8) in By, /2(y0) x (0, 00).

In particular, since B was an arbitrary ball, it follows that lim inf ¢ > u™* (F8) in {ug >
u®(F§)} x (0, 00).

On the other hand, since u¢ < 3 in R2, it follows that u® < v® in R? x (0, 00), where
vé(x,t) = U(¢2t) is determined by the solution of the ODE

T=—8"W@+Fv inR,  7(0)=23.
It is easy to check from the phase line analysis that T(7) — u™*(F§) as T — oo. Thus,

lim sup® u® < lim+ v& =ut(F§) inR? x (0, 00).
e—0

We conclude that u® — u* (F§) locally uniformly in {1 > u®(F8§)} x (0, 00).
A similar argument proves convergence to u~ (F§) in {ug < u®(F8)} x (0,00). m

Finally, here is a sketch of the proof of Proposition 4.10.

Sketch of proof of Proposition 4.10. We argue as in [9, Proposition 4.1], constructing the
desired subsolution as in [36, Appendix A]. In the notation of the latter reference, in the

present setting, f is defined by

=8 W (u) ifue[-3,u"(F§)|U[u’(F8),ut(F§),

70 = {—A_IS‘IWES(M) if u€u (F8),u’(F8)]Uut(F§),3].
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5. Surface tension with gradient discontinuities at all directions
satisfying a rational relation

In this section, we prove Theorem 1.1 concerning generic discontinuities of Do and The-
orem 1.4, which proves that “bubbling” is a generic feature of the gradient flow. The basic
strategy involves building compact subsolution barriers and the results apply in all dimen-
sions d > 2.

On the one hand, where the behavior of Do is concerned, we avail ourselves of the
work of Chambolle, Goldman, and Novaga [14]. They prove that the behavior of the
subdifferential of the surface tension o closely mirrors the structure of the plane-like
minimizers of the energy. In particular, the key question is whether or not the plane-like
minimizers in a given direction foliate space or not. At least philosophically, it is clear that
sliding arguments can be used to show that the existence of barriers is an obstruction to
the formation of foliations. This is precisely the strategy taken in what follows.

At the level of the gradient flow, on the other hand, the maximum principle implies
that if a smooth open subset is a strict subsolution of the flow, then any set that initially
contains the subsolution continues to do so at later times. Accordingly, such subsolutions
are also relevant for the dynamics.

5.1. Plane-like minimizers

We need to consider plane-like minimizers which only have locally finite perimeter. It is
natural to consider the class of sets which minimize E, under compact perturbations. In
the literature, these are referred to as Class A minimizers and we repeat the definition here
for clarity.

Definition 5.1. A set S of locally finite perimeter is called a Class A minimizer of E,
if S minimizes E,(-; Br) with respect to compact perturbations in Bg for all R > 1.
More precisely, given any R > 0, if ' C R is a set of locally finite perimeter and the
symmetric difference S’AS satisfies S’AS CC Bg, then

Ea(S; BR) =< Ea (S/; BR)-

Following [14], given n € S9!, we say that an open set of locally finite perimeter
S C R? is a strongly Birkhoff plane-like minimizer in the n direction if (i) S is a Class A
minimizer of (1.1); (ii) S equals its set of Lebesgue density one points; (iii) there is a
¢ € Rand an M > 0 such that

{xe]Rd:x'n<c—M}CSC{xeRd:x~n<c+M};
and (iv) S has the strong Birkhoff property, that is,
S+kcS ifkez?andk-n<0, SCS+k ifkeZ’andk-n=>0.

We denote the family of all such sets by M (7).
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We will need the following proposition.

Proposition 5.2. The following properties of M(n) hold:

(1) ([14, Corollary 4.20]) M(n) is totally ordered, that is, for each S, S’ € M(n),
either S C S’ or S’ C S.

(ii) ([14, Proposition 3.1]) For eachn € S~ and K CC R?, the set of S C M(n)
such that 3S N K # @ is compact in L} _(R%).

loc
(iii) ([11, Corollary 1]) If a € CY(T?;[1, A)), then any S € M(n) is a stationary
viscosity solution of the unforced equation

—a(x)k — Da(x)-n = 0. 5D

Concerning property (iii), Caffarelli and Cordoba [11] show the viscosity solution
property just for the perimeter functional, but small modifications of their arguments work
for our heterogeneous energy in (1.1) as well.

In [14], the authors observe that, for energies of the form in (1.1) (isotropic), a result
of Simon [43] implies that the interfaces {dS : S € M(n)} are disjoint so that M(n) is a
lamination. For more general types of surface energy (anisotropic), it is only known that
no intersections can occur at regular points [ 14, Proposition 3.4]. Although it is convenient
for sliding-type arguments, we will avoid using this fact below so that our arguments apply
to other forms of energy as well (cf. Remark 5.10 below).

5.2. Gaps

Before proceeding to the proof of Theorem 1.1, we define the notion of a gap and recall
the main result of [14].

Definition 5.3. We say that a compact set K C R¢ with non-empty interior is a gap at
direction n for the medium a if 0S N K = @ for every S € M(n).

In the next result, we show that the property of having a gap at a direction n € §4~!
is an open condition with respect to uniform norm perturbations of the medium.

Lemma 5.4. If a compact set K C R? with non-empty interior is a gap for the medium a
at direction n, then there exists § > 0 so that if b € C(T?;[1, A]) with ||b — alleeray <6,
then K is a gap for b at direction n.

In the proof of the lemma, we will need to know that Class A minimizers are well-
behaved under perturbation of the coefficient a. More precisely, we will use the following
fact, which is proved in Appendix B.

Lemma 5.5. Suppose that (ax)ren C C(T?) converges uniformly to some positive func-
tiona € C(T%) and S and (Sy)ren are sets of locally finite perimeter such that S — S
in Llloc(Rd) as k — oo. If Sk is a Class A minimizer of E,, for eachk € N, then S is a
Class A minimizer of E,.
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Proof of Lemma 5.4. We will prove the contrapositive, that is, that the set of coefficients
for which K is not a gap is closed. Suppose that there is a sequence ay — a uniformly
on T¢ and Sy € M(n,ay) with 3S; N K # @. We claim that there is an S € M(n, a)
such that S N K # 0.

The limit S can be obtained as a subsequential limit of (Sg)zen. To see this, recall
that standard local perimeter bounds give that the S have uniformly bounded perimeter
on any compact region. Thus, by standard BV compactness results, we can choose a
subsequence, not relabeled, so that

Sk _>Lllnc S

and, for any R > 0,
E.(S; Br) <liminf E,(Sk; BRr).
k—o00

By Lemma 5.5, S is a Class A minimizer of E,.
As for the strong Birkhoff property, for each k € N,

Sk+yDS if yeZ%andy -n=>0,
Sk +y C Sk inyZdand y-n <0,
so the same holds for the limit S.

It remains to prove that d.S N K # @. By density estimates (e.g., [ 14, Proposition 3.1]),
for any x € 05 and any r > 0,

|B(x) N S| A |Br(x)\ S| > cr?

for a positive constant ¢ depending only on d, A. By assumption, we can fix x; € S N K
for all k € N. Let x« € K be any limit point of the sequence x. By the Llloc convergence,
forany r > 0,

|S N Br(x:)| ABr(xs)\ S| = klingo |S N Br(xg)| A|Br(xg)\ S| > er?.

Since r > 0 was arbitrary, we conclude that x, € 9S. [

Next, we recall the main result of [14], which gives a direct relationship between
regularity of the effective surface tension and the existence of gaps in M(n).

Theorem 5.6 ([14, Theorem 5.11). Let n € S~ and let V(n) be the subspace of R¢
spanned by the rational relations satisfied by n. If dim(V(n)) = 0, we say n is totally
irrational. The following statements hold:

e Ifn is totally irrational, then Do (n) exists.
*  The above point holds if M(n) has no gaps.

o If n is not totally irrational and M(n) has a gap, then 3o (n) is a convex subset of
V(n) of full dimension.
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In [14, Section 6], the authors give some examples of media where ¢ is not differen-
tiable at any direction satisfying a rational relation. We will show that this phenomenon is
generic in the topological sense.

The strategy of proof uses the Euler—Lagrange equation. The key observation is that if
the equation associated to a admits a smooth, bounded open set as a strict subsolution, or
the complement of a smooth, bounded open set as a strict subsolution, then these will act
as a barrier to foliations.

Lemma 5.7. Given amediuma € C(T%;[1,A]), if there is a non-empty C? bounded open
set 2 C R? such that the indicator function Xg is a strict subsolution of (5.1), then for
eachn € S471, the family of strongly Birkhoff plane-like minimizers of (1.1) has a gap.

The main result of this section shows that compact barriers exist generically.

Lemma 5.8. For any medium a € C(T?;[1, A]) and any § > 0, there exist a medium
as € CY(T4:[1,A]) with ||a —as lceray <danda C? open set Q, which is bounded and
non-empty, such that X is a strict subsolution of (5.1).

If. in addition, a € C2(T?;[1,A]) and p € [1,00), then this estimate can be improved
1o |la —as|lwrp(ray < 6.

Once Lemmas 5.7 and 5.8 are proved, Theorem 1.1 follows easily, as we now show.
Proof of Theorem 1.1. Givenn € S~ let A, be the family of coefficients a given by
Ay = {a e C®(T4; [1, A]) : there is a gap at direction n for a}.

By Lemma 5.4, A, is open in C*®(T¥¢;[1, A]) with the C(T?) norm topology. Since
the inclusion W2 (T9) — C(T?) is continuous for p € (d, 00), A, is also open in the
W1L-2(T4) norm topology. Combining Lemma 5.7, Lemma 5.8, and Theorem 5.6, we see
that (), cga—1 #» is dense in either topology. m

The remainder of this section is devoted to the proofs of Lemmas 5.7 and 5.8 and
Theorem 1.4.

5.3. Gap barriers

We now show that compact subsolution barriers occur generically. The proof proceeds
by exploiting the structure of the level sets of a generic medium. We start with a few
preliminary reductions.
First of all, we make some room by observing that any function in C(T¢;[1, A]) can
be approximated by functions (a,)nen in C%(T?,[1, A)) satisfying
ma:lx a, <A foreachn € N. 5.2)
T
Therefore, in what follows, we always assume (5.2) holds.
The next lemma shows we can also assume that ¢ attains its maximum at unique,
non-degenerate critical points.
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Lemma 5.9. If a € C*(T¢) satisfies (5.2) and § > 0, then there is an as € C*(T?)
satisfying (5.2) such that the following holds:

(M) lla —asllczeray < 6.
(2) There is an xo € T? such that

{xo} = {x € T? :a(x) = supa}, DZ?as(xo) <O.
Td

Proof. Let xo € T¢ be a point where a achieves its maximum. Let f € cx (R%) be a
radially decreasing bump function satisfying

fO)y=max £, D2f(0) <0, f =0 inR%\ B/, 0).
R4

Then, let f =) rezd S (- —xo + k) which is periodic on R? . Tt is easy to see that a5 =
a + § f has the desired properties provided § is small enough. |

With these preliminaries out of the way, we are prepared for the proof. The strategy
is as follows: replacing a by aj; if necessary, we assume that a attains its maximum at a
unique, non-degenerate critical point. This implies that there is ¢ > 0 close to max a such
that {a = c} is a topologically trivial hypersurface in T¥.

Using a tubular neighborhood of 022 = d{a > ¢}, we define a function ¢ such that

—a(x)(1 + p(x)kae(x) — (1 + ¢(x)) Da(x) - nye(x) — cDe(x) - naa(x) >0
if x € 0Q2.

It follows that the set = {a > ¢} is a strict subsolution associated to the coefficient
ay = (1 + ¢) - a. The complement of © will, correspondingly, be a strict supersolution.

Proof of Lemma 5.8. By the previous considerations, we can assume that a € C2(T%)
satisfies (5.2) and attains its maximum at a unique, non-degenerate critical point x¢. Fix
&> 0and p € (d, 00). We will find a function a, € CZ(Td) satisfying (5.2) such that a,
satisfies the conclusions of the theorem and [la; — ally1.p(pay < (2 + [[Dallpoo(ra))e-
Notice that this is enough to obtain an estimate in C(T¢), by Morrey’s inequality.

To start with, notice that if ¢ is close enough to a(x¢), then {a > ¢} is an open, simply
connected subset of T¢ with C2 boundary. Let Q = {a > c}.

Fix r > 0 such that the signed distance d to Q2 = {a = c}, positive in Q and negative
outside, is smooth in an r-neighborhood of the surface. Letting v € (0, r) be a small
constant to be determined, choose a smooth function 7 : (—v,v) — [—¢/2A, &/2A] such
that

2llkaellzeom) = 11 L q—vuy = 1'(0) > lkoellepe),  1(0) =0,
n =0 in a neighborhood of {—v, v}.
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Define ¢ : T¢ — [—¢/2A,g/2A] by
_ Jnd(x)) if [d(x)] < v,
p(x) =

0 otherwise.

This is a C2 function by the choice of 7.
Letay, = (1 + ¢) - a. Notice that [|ay — @[ eo(p4) < € and, by the co-area formula,

v

| 1ppenr ax - /{ L e dx = [ b ds =27 kil gy

-V
Thus, if v is sufficiently small, we obtain
—1 1
lag — allwroeray < (14 [ Dallpo(ray)e + A2 |oallLo@ayv?
< (2 + ”Da”Loo(Td))S.
Finally, we claim that £2 has the desired properties for the medium a,. To see this,

start by noting that Da and D¢ are aligned with the outward normals to 2 along 9€2, that
is, for x € 092,

Da(x) -nsa(x) = —|Da(x)] and  De(x)-nsa(x) = —1'(0).
Accordingly, for each x € d$2, we have
—ay(X)kpn(x) — Dag(x) - npa(x) = —ckpg(x) + [Da(x)| + cn'(0)
> c('(0) = llkaellL=oe))
> 0.
Thus, the indicator function Xg is a strict subsolution of (5.1). ]
Remark 5.10. The approach above provides a general strategy for showing that the plane-
like minimizers of a given surface energy has gaps, even when the energy does not have

the form in (1.1). For example, given a ¥ € C°°(T%;R%) such that [V Loocray < 1,
consider the energy given by

f (1 + ¥ (x) - n(x) K (dx). (5.3)

0E

By the Divergence Theorem, the Euler—Lagrange equation associated with this energy is
k +divy =0.

Up to making a small perturbation, we can assume that div i # 0. Hence, there is a ball B
such thatdivys < 0in B, and then we can find a smooth perturbation v, which is arbitrarily
close to ¥ in C(T?), such that

Kap + div& <0 in 0B.

Thus, B is a smooth compact subsolution and we deduce that a small perturbation of (5.3)
has gaps in every direction. In particular, by [14], typically, the associated surface tension
is non-differentiable at every lattice direction.
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5.4. Existence of gaps

Once a smooth compact barrier is known to exist, no plane-like minimizer can touch it if
the subsolution property is strict. By the monotonicity of the family of strongly Birkhoff
plane-like minimizers, this means the barrier has to be contained in a gap. As we will
see below, proving this is somewhat technical compared to the diffuse interface case—the
basic issue being that, for the sake of generality, we will not use the fact that the collection
{0E : E € M(n)} is pairwise disjoint.

We will need the following lemma.

Lemma 5.11. If M(n) does not have a gap, then, for every S € M(n),
S = U{S’ eM@n):S'CS}= ﬂ{S’ € M(n):S C S’} Lebesguea.ce.

Proof. The arguments are symmetric, so we just do the intersection case. Using [12,
Lemma 6.3] and [ 14, Proposition 3.1], if we define $** C R4 by

¥ = ({8 € Mn): " S},

then the set S* of unit-density Lebesgue points of S** is in M(n). Note that, by the
ordering property of M (n) and density estimates (i.e., [ 14, Proposition 3.1]), the inclusion
S C §* C §** holds.

Suppose that xo € S* \ S. Applying density estimates again, we can find a ball B C
$*\ S close to xo. If § € M(n) and dS N B # @, then S must be a strict subset of $* and a
strict superset of S. In particular, S € § € §* C $**, in violation of the definition of S**.
Hence, B is a gap according to Definition 5.3, which contradicts the hypothesis. |

Now we show how to use the lemma in a sliding argument.

Proof of Lemma 5.7. We argue by contradiction. Fix n € S9! and let M (n) denote the
family of strongly Birkhoff plane-like minimizers in the n direction. Assume M (n) has
no gaps.
Let ©2 be the bounded strict subsolution which was assumed to exist in the statement.
Define
S* =S eMmn):QcCS}

and let S* be the set of Lebesgue density one points of S**. By [12, Lemma 6.3] and [14,
Proposition 3.1], $* € M(n). Furthermore, since 2 is open, 2 C S* necessarily holds.

We claim that, due to the “no gap” assumption, we must have dS* N IQ # 0.
Since M (n) has no gaps, by Lemma 5.11,

S*=(J{SeMmn):Scs* §#S5*}

If Q\ S # @ forall S C S* then, by compactness (cf. [14, Proposition 3.2]), there is an
x € QN3IS* = 4S* N IQ. Otherwise, Q C S for some S C S*, which contradicts the
definition of S*. Thus, henceforth we can fix xo € 3S™ N 9Q2.
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Let dg be the signed distance function to Q with {dg > 0} = Q. Since Xg is a strict
subsolution of (5.1), it follows that there is an r’ > 0 such that dg is smooth in {|dg| < r’}
and

—a(x)Adg — Da(x)- Ddg <0 in By(xp). 5.4)

It is straightforward to check that there is an r > 0 such that Xg+ — dg achieves its
minimum in B, (xg) at xo. Since S* is a plane-like minimizer, X s+ is a viscosity superso-
lution of (5.1) by Proposition 5.2. Thus, the following inequality holds:

0 < —a(xo)Adq(xo) — Da(xo) - Ddg(xo).

However, this directly contradicts (5.4).
We conclude that M (1) has gaps, no matter the choice of n € 471, ]

5.5. Proof of Corollary 1.2

The previous arguments show that the existence of a smooth, compact strict subsolu-
tion of (3.1) forces the surface tension o to have corners. It also has consequences for
the gradient flow, as we now show. While we do not know if it implies pinning in the
strongest sense (i.e., pinning of the entire interface, as considered in the example of Sec-
tion 3), it does seem to rule out the possibility of homogenization in the usual way by
pinning some compact connected components of the negative-phase. This phenomenon
has been observed many times in the study of interface homogenization; see, for example,
Cardaliaguet, Lions, and Souganidis [13].

Proof of Corollary 1.2. Suppose that xo € R?, ¢ € R, and u¢(xo) > ¢. We will show that
u*(xo,t) > c forall t > 0.

Let @ C R? be a C2 bounded open set such that X is a strict stationary subsolution
of (5.1). Given & > 0, choose a k; € Z¢ such that e xo — (x + k,)| < 1. Define X by
() = {c ife_ly.eks—i—ﬁ,

—oo otherwise.
This is now a time-stationary subsolution of the e-scaled mean curvature flow (1.4).
Since u is continuous, we know that e(k, + Q) CC {ug > c} if ¢ > 0 is small enough.
Thus, since X® is a stationary subsolution, it follows that u*(-,#) > X* for each ¢ > 0. From
this, we find that u*(xg,7) > c.
The statement for i, follows the same way using the complement compact supersolu-
tion R? \ Q. "

6. Gaps in the plane-like minimizer lamination are generic: Diffuse
interface case

In this section, we prove results on the existence of gaps and weak pinning analogous to
those of the previous one. Once again, we proceed by perturbing around the sharp interface
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8 = 0 setting. The existence of a compact strict subsolution for the sharp interface model
will imply the same for the diffuse interface model when § > 0 is small. By a sliding
argument, the existence of such barriers causes a gap in the family of strong Birkhoff
plane-like minimizers just as in the sharp interface case.

We stop short of proving any results concerning the gradient of the diffuse surface
tension 64¢ . The reason is that there is currently no proven analogue of the result of [14]
in the diffuse interface case. We believe that such an analogue does hold and leave its
proof to future work.

As in the previous section, the results presented in this section apply in all dimen-
sions d > 2.

6.1. Plane-like minimizers and gaps

Let us introduce some notation and terminology to be used in what follows. To begin with,
as in the sharp interface case, we recall the definition of a Class A minimizer of the diffuse
interface energy A‘C‘g (see (1.6)).

Definition 6.1. A function u : R — [—1, 1] is said to be a Class A minimizer of the
energy functional A€ if, for any R > 0 and any v € u + H}(Bg),

ACY(u: BR) < AC(v: Bp).

Given 0 € C(T%;[1,A?]), 8 >0, and n € S9!, we say that a Class A minimizer
u:R?4 - (—1,1) of A‘Cg is a strongly Birkhoff plane-like minimizer in the direction n if,
foreach k € 74,

u(x —k)>u(x) ifk-n>0,
u(x —k) <u(x) ifk-n<o.

Notice that limy.,— 400 u(x) = F1 automatically holds, since the only periodic Class A
minimizers are the constants 1 and —1.
We let Mg (n) denote the family of all strongly Birkhoff plane-like minimizers.
Arguing as in [4] (cf. [29]), one can prove that Mg (n) forms a lamination, that is, for
each uy,u, € Mg (n),

either u; < u, inIRd, Uy > Us ian, or Uy = Us in RY.

(For the connection between Moser—Bangert theory and (1.6), which allows us to invoke
results from [4], see [30] and the introduction of [41].)

We will say that Mg (n) has a gap if the graphs of its elements fail to foliate the space
R¥ x (=1, 1), that is, M$(n) has a gap if

{(ou(x) 1 x e R, u e My(n)} # RY x (=1, 1).
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6.2. Parametrizations of M g (n)

As in the sharp interface case, it will be convenient to know that Mg (n) has no gaps if and
only if it admits a continuous parametrization.

Proposition 6.2. If Mg (n) does not have a gap, then there is a bijection y + u(-;y)
from R onto Mg (n) such that:

(i) y = u(-;y) is continuous with respect to the topology of local uniform conver-
gence;

(i) Ify1 < ya, then u(x; y1) < u(x; y2) for each x € R<.

In fact, Mg (n) has no gaps if and only if, in the terminology of [37], there is a pulsating
standing wave U, € UC(R x T%) in the direction n (cf. Remark 6.6 below). To keep
things short, we will not prove this stronger statement here.

Proof. Given y > 0, let u(-; y) be the unique element of Mg (n) such that

u(0;y) = —tanh(y).

The existence of such an element follows from the assumption that Mg (n) has no gaps;
uniqueness follows from the fact that it forms a lamination.

The monotonicity of y > u(-; y) also follows from the lamination property. It remains
to check the continuity.

Suppose that y € R, (yx)reny C R, and limg_, o, yx = ¥. Elliptic estimates imply
that (u(-; Yx))ken is compact in the topology of local uniform convergence. Further, it
is not hard to show that any subsequential limit is itself in Mg (n). Thus, given a sub-
sequence (k;j);en C N, there is a further subsequence (kj,)¢en and a % € Mg (n) such

that u(:; ykj() — # locally uniformly. In particular, #(0) = — tanh(y), so & = u(-;¥).
Since (kj)jen was arbitrary, we are left to conclude that u(:;y) = limg_ o0 u(-; Y&),
as desired. |

6.3. Obstruction

We saw above that if there are no gaps, we can continuously parametrize Mg (n). There-
fore, in that case, classical sliding techniques can be used to rule out the existence of
certain (sub- or super-) solutions of equation (1.7). In particular, bump (strict) subsolu-
tions cannot occur.

Proposition 6.3. If there is an upper semi-continuous function ug : R — [=2,1] and an
F > 0 such that
—8Aus + 8 '0(x)W'(us) < —F in R?

and such that {us > —1} is compact, {ug > —1} is non-empty, and ug is smooth in a
neighborhood of {us > —1}, then, for eachn € %71, Mg(n) has gaps.
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Proof. To start with, observe that there is a constant ¢ € (0, 1) such that us < 1 —c in R?.
Indeed, were this not the case, then, by the compactness of {ug > —1}, we could find an
xo € R¥ such that ug(xo) = 1 = maxpga Ug, but this would contradict the strict subsolution

property.
We argue by contradiction. If Mg (n) has no gaps, then Proposition 6.2 implies that
there is a continuous, increasing parametrization y — u(-;y) of Mg (n). Define T € R by

T =inf{y e R:u(-;y) > us in R},

Since us < 1 —c, {u® > —1} is compact, and {us > —1} is non-empty, it follows
that 7 < oo.

We claim that u(-; T') touches us above at some point X € R?. Indeed, this follows
from the fact that the parametrization is continuous and increasing. Note that us(X) =
u(x;T) > —1. Since ug is smooth in a neighborhood of {us > —1}, the viscosity solution
property of u(-; T') yields

0 < —8Aus(x) + 87 '0(X)W' (us(x)).
This contradicts the strict subsolution property of ug. |

6.4. Dynamics

As in the sharp interface case, the previous construction also has a dynamical interpreta-
tion. (Below, we once again use the half-relaxed limit notation from Definition 2.6.)

Proposition 6.4. If for some § > 0 there exist a smooth function us : R — [-2, 1] and
a constant F > 0 satisfying the hypotheses of Proposition 6.3 and such that {ug > 0} is
non-empty, then, for eachug € UC(R%;[=3,3)), if (u®)s=0 are the solutions of the Cauchy
problem

S(us — Au) + e—zs—le(f) W) =0 inR? x (0, 00),

u® = uop on R4 x {0},
then

limsup*u® =1 in {uo > 0}.
Similarly, if there is a smooth vs : R — [—1,2] and an F > 0 such that

—8Avs 4+ 8 10(x)W'(vs) = F  in R?

and {vs <1} is compact and {vs < 0} is non-empty, then there is a symmetrical conclusion
for the e-scaled problem above:

liminf, u® = —1 in {up < 0}.
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Proof. Note, as in the proof of Proposition 6.3, that maxgas us < 1 — ¢ for some ¢ € (0, 1).

Since us < 1 —c in R?, {ug > —1} is compact, and {us > 0} is non-empty, we con-
clude the proof by combining ideas from the proofs of Corollary 1.2 and Theorem 1.10
(especially Proposition 4.10). ]

6.5. Proof of Theorem 1.9

In what follows, we let 4 denote the family of all a € C 1(T"!; [1, A]) such that there
is a smooth, bounded open set Q2 C R4 such that Xg is a strict subsolution of (3.1).
By Lemma 5.8, 4, is a dense subset of C(Td; [1, A]) and Wl’”(Td; [1, A]) for each
p € (d, 00).

Proof of Theorem 1.9. Define ®5 C C'(T%;[1, A?]) by
Oa = {0 € CH(TY;[1,A%]) : VO € A4}

Notice that the map 6 Vo is a homeomorphism sending C(T¢; [1, A?]) onto
C(T4;[1,A]) and WHP(T4;[1, A]) onto WP (T9;[1, A]). Thus, by the density of #,
we know that ®  is dense in both spaces.

If 6 € ©4, then there is a smooth, bounded open set £ such that Xg is a strict sub-
solution and Xga\q is a strict supersolution of (1.2). Arguing exactly as in Sectlon 4,
th1s 1mphes we can find an Fy > 0, adg € (0, 1), and continuous functions (“3 )36(0 59)»
(vS )56(0 89 C UC(R?;[-2, 1]) satisfying

—$au? + 5710y W' W) < —Fp inRY,
880 + 5700w () > Fy in RY

for which the sets {{u(e) > —1}, {v(e) < 1}}5¢(0,8,) are all compact, the sets {{u((ge) > 0},

{v§ < 0}}5¢(0,8,) are all non-empty, and u(e) and v(g) are smooth in {u(ge) > —(1+4 B6)}
(6)
and {vg
functions u
setting.)

Now define open sets {&, }nen C C(T?:[1, A?]) by

Gy = U gn(e),

9€®A
Gn(0) := {6 € C(T4;[1, A%]) - 2n[|W/|| oo 3,316 — Ol po(ray < Foly}-

< 1 + B3}, respectively. (The construction shows that it is possible to make the
©) and vé ) smooth away from these extreme values, since €2 is smooth in this

Observe that g, is dense in C(T¢;[1, A?]), since @ is.
Next, notice that if 0 € §, for some n € N, then there exists a 6 € @4 such that

0 € 9,(0). In particular, for each 6 € [579 89),
Fy

—6A ) §1O ()W’ Oy o 29
us + (x) (”5 ) < )

in R4
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and 7
—8Av§0) + 8_1§(x)W/(v§9)) > 79 in RY.

Accordingly, for such choices of §, Proposition 6.3 and Proposition 6.4 (in both subsolu-
tion and supersolution form) apply to 6.

Let § = (),,cy »- This is dense in Cc(T4; [1, A?]) since § D Op. If § € G, then
there is a sequence (™), en such that 8 € §,(0™) for each n. Hence, 6 satisfies the
conclusions of the theorem with 7(6) given by

o0

10 = (5‘;(”) ,59(,,>).

Since sup,, g < 1 by construction, we know that 0 € 1(6).
Notice that if 6 € © 5, then we can take 8 = 6 for all n above. Thus, 1(6) = (0, 8g)
in this case. Since © 4 is dense, this proves the penultimate assertion of the theorem.
Finally, we observe that the same considerations apply to wl.p (Td; [1, A]) since,
for each n, the set §,(6) N WHP(T9;[1, A]) is open and ®, remains dense in this
topology. |

Remark 6.5. Theorem 1.9 remains true if (1.6) is replaced by the variants (1.10) or (1.11).
As in Remark 4.5, smooth diffuse interface subsolutions can be constructed from the sharp
interface subsolutions of Lemma 5.8. The only difference in the proof is that since 6
appears multiplied by derivatives of us in the PDE, we need to change the definition
of §,(0) accordingly. This is not a problem, since the construction of Section 4 implies
that us has bounded second-order derivatives in the set {ug > —(1 + 86§)}.

Remark 6.6. Theorem 1.9 provides examples of diffuse interface models in periodic
media in which, in every direction n € S?~!, there is no continuous pulsating standing
wave. See [37] for a discussion of the relevance of pulsating standing waves to the analysis
of the energy in (1.6) and the homogenization of its gradient flow.

Givenann € S9!, a pulsating standing wave of (1.6) is a function U, € L>°(R x T¢)
that is a distributional solution of the PDE

(nds + Dy)*(nds + Dy)U, + a(x)W'(U,) =0 in R x T4,
lim Un(S,y) = :Fl, ”Un”LOO(]RXTd) E 1, 8SU,, S 0.
s—>to0

A pulsating standing wave can be interpreted as a generating function (or hull function) for
the plane-like minimizers in the »n direction (see [37, Section 6]). Such functions always
exist, but they can be discontinuous.

Indeed, if U, is a pulsating standing wave and it is a continuous function in R x T4,
then the plane-like minimizers of (1.6) in the n direction form a foliation by [37, Propo-
sition 1]. Therefore, Theorem 1.9 shows that it is possible that there are no continuous
pulsating standing waves in any direction.
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A. Perron’s Method

In this appendix, for the sake of completeness, we prove a version of Perron’s Method for
sharp interfaces:

—a(x)tr((1d — Du ® Du)D*u) — Da(x) - Du — F||Du| = 0. (A1)

It shows that provided there are sufficiently regular (but not necessarily smooth) sets
E. C E* defining stationary sub- and supersolutions, it is possible to find a stationary
solution E between them.

Proposition A.l. Ler E*, E, C R? be open sets such that E, C E* and R? \ E*
= R?\ E*. Define v € LSC(R4;{0,1}) and v € USC(R¥;{0, 1}) by

_ 1 if x e E*, 1 if x € E,,
v(x) = v(x) =
0 otherwise, 0 otherwise.

If U is a supersolution of (A.1) and v a subsolution, then there is an open set E C R¢ sat-
isfying Ex C E C E* such that X g is a discontinuous viscosity solution of (A.1) (i.e., Xg
is a viscosity supersolution and X is a viscosity subsolution).

In the proof, we will use semi-continuous envelopes. In particular, given a locally
bounded function w : RY — R, we denote by w*, wy : RY — R the upper and lower
semi-continuous envelopes defined by

w*(x) = lim sup{w(y) : ¥ =y <8},
wx(x) = lim inf{w(y) : |x — y|| <&}
+(0) = lim inf{w(y) : lx -yl <8}
The proof of this level set version of Perron’s Method rests on the fact that if an open

set defines a subsolution but fails to be a supersolution, then it is possible to find a larger
subsolution containing it. More precisely, we have the following.

Proposition A.2. Suppose that w € USC(R?;{0,1}) is a subsolution of (A.1), xo € R?,
r > 0, and there is a smooth function \ such that ws« — V¥ has a strict local maximum
at xo in By (xg) and | Dy (xo)|| > 0. If ¥ satisfies the differential inequality

—a(xo)tr((1d — DY (x0) ® DY (x0)) D2¥ (x0)) — Da(xo) - DY (xo) < FI|DY(xo)|

at xo, then there is a ® € USC(R?;{0, 1}), which is a subsolution of (A.1), such that
o >winRY, @ =winR?\ B,(xo), and © # w.

Proof. The construction follows along the lines of the usual proof; see, for example, [17,
Section 4]. A little care is needed to ensure that the gradient of the smooth subsolution built
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in the argument never vanishes. At the end of the argument, we will have a subsolution W
taking values in R. The proof is completed upon defining w by

w(x)z{l if B(x) > 8,

0 otherwise,

for some suitable small § > 0. [

Proof of Proposition A.1. To start with, observe that the identity R4 \ E* = R? \ E*
implies that, at the level of semi-continuous envelopes, we have (v*), = v. This will be
needed later in the argument.

Let § denote the family of subsolutions w € USC(R?;{0, 1}) of (A.1) satisfying v <
w < vinR?. Note that § is non-empty precisely because Ex C E*. Letv : R? — {0, 1}
be the pointwise maximum of this family:

v(x) = sup{w(x) : w € §}.

As the supremum of a family of subsolutions, v* is also a subsolution.

We claim that v, is a supersolution. To see this, assume that xy € R4 and Y is a
smooth function such that v, — v has a strict local minimum at x¢ and || Dy (x)| > 0.
There are two cases to consider: (i) v«(xg) = V(xg), and (ii) v«(xg) < V(xg).

In case (i), observe that v« < (v*)« = v. Thus, U — ¥ has a strict local minimum at xg.
This implies that

—a(xo)tr((Id — DY (x0) ® D (x9)) D*Y (x0)) — Da(xo) - DY (x0) = F || DY (xo)]-

In case (ii), it necessarily follows that v(x¢) = 1. Since E* is open, there is an r > 0
such that {v = 1} = E* D B,(xo). With this wiggle room, we can argue by employing
a geometric version of the standard Perron argument: if v does not satisfy the desired
differential inequality at xo, then Proposition A.2 implies that there is a w € § such that
w > v* and w # v*. However, this would contradict the definition of v.

We proved that v is a {0, 1}-valued (discontinuous) solution of (A.1) withv < v <.
Therefore, to conclude, we can set E = {v, = 1}. ]

B. Proof of Lemma 5.5

Proof of Lemma 5.5. Recall that we are assuming as given a sequence a; — a uniformly
in T? and sets S and (Sk)ken of locally finite perimeter such that Sy — S in LlloC (Rd)
and Sg is a Class A minimizer of E,, for each k. We wish to prove that S is a Class A
minimizer of the limiting energy E,. This is a standard argument: we follow [34, Chap-

ter 21].
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As a preliminary step, we will argue that ay F9~! [3sk—*\ a ! J5s. On the one
hand, from S} =L S, we know that if v is any weak- limit point of az ¢! (95,
then

aJei! fos < V.

At the same time, if v = lim; o0 ag; Jed-1 [BSk for some subsequence (k;);en C N,
and if x € R9, then, by testing the minimality property of S; with the set Ex = (S N
B(x,s)) U (Sk \ B(x,s)), we find, for almost every s > 0,

V(B(x,s)) = kll>nc1>o E.(Sk; B(x,s5)) < E4(S; B(x,s)).

Hence, v < a #?~" |45 also holds. In particular, we have v = a 971 [5g, so this proves
ag 41 [35,(—*\ a H41 yg, as claimed.

Now we proceed with the heart of the argument. Suppose S’ is a perturbation of §
so that SAS’ is compactly contained in some ball Bg(0). Let us fix R’ < R so that
S’ASC Bg/(0). Making R > 0 larger if necessary, we can assume that #¢~1(3S N dR)
= 0. By the co-area formula, we can choose R” € (R’, R) so that

lim #¢1(3Brs N (SkAS)) =0, HI™1(DS NIBgr) = 0.

k—o00

Hence, testing the minimality property of Sj against the set Fy = (S’ N Bgrs) U
(Sk \ BRH), we find

lim Eg, (Sk: Br) < Ea(S": Brr) + lim E,, (Sk: Br \ Brr).
k—o00 k—o00

Since aj H41 [;;Ski a #1155 and HA71(S N IBR) = 0, the left-most term
is E4(S; Br). Similarly, given that a; — a uniformly and #¢~1(3Sx N Bg) is uniformly
bounded, the right-most term is E£,(S; Bg \ Brr). In particular,

Eq(S; BR) < Eq(S"; Brr) 4+ Eo(S; BR \ Br) = Ea(S'; Br).

This proves that S is a Class A minimizer of E,. |

C. Proof of Theorem 3.4

The proof of Theorem 3.4 will rely on the following lemma, which demonstrates the utility
of the second condition in the definition of regular Z2*-measurable set.

Lemma C.1. If A is a Z**-measurable set satisfying condition (ii) in Definition 3.3 and
Xo € 04 N Z2, then xg has a unique pair of neighbors x1,x_1 € Z? such that:
(a) x1,x_1 € 0A.

(b) The edge [xg, x1] is contained in A and it traverses 0A clockwise.
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(¢) The edge [xo, x—1] is contained in 0A and it traverses dA counterclockwise. (In
particular, [xX_1, Xo) is contained in 0A and it traverses 0A clockwise.)

Proof. The main idea of the proof is that condition (ii) is really a local property. Hence, it
is only necessary to consider the geometry of A in the vicinity of xq.

To simplify the notation, observe that, up to replacing A by A — xo, we can assume
that xo = 0. This is no loss of generality, since the translate of a regular Z2*-measurable
set by an integer vector remains a regular Z2*-measurable set.

Since 0 € 94 N Z?, we can fix a z € Z>* such that 0 € z + [—1/2,1/2]®> C A. There
is no loss of generality in assuming that z = (1/2, —1/2). (Indeed, we can reduce to this
case by replacing A by t(A), where 7 is one of the transformations t(x, y) = (—x, y),
7(x,y) = (x,—y),or t(x, y) = (—x,—y). As in the case of integer translations, the class
of regular Z?*-measurable sets is invariant under these transformations.)

We complete the proof arguing by cases. In particular, from the fact that 0 € dA, we
can choose a z’ € Z2* such that 0 € z/ + (—1/2,1/2)? C R? \ A. There are three possible
cases: (1) z/ = (1/2,1/2), (2) z/ = (—1/2,—1/2), and (3) z/ = (—1/2, 1/2). Since the
other cases follow similarly, we will only treat Case (1).

We split further into three sub-cases:

(la)y AN[=1,11> = (1/2,-1/2) + [-1/2,1/2]?,

(Ib) AN[=L11?=[(1/2,-1/2) +[-1/2,1/2P] U [(=1/2,~1/2) + [-1/2,1/2]?],

(Ic) [1, 112\ 4 = (1/2,1/2) + (—=1/2,1/2)%.

Note that the only possibility that is missing is when 4 N [—1, 1]> = [(1/2,—1/2) +
[-1/2,1/2]2]U[(=1/2,1/2) + [-1/2,1/2]?]. However, that configuration is impossible
due to condition (ii) in the definition of regular 7.%-measurable set. Hence, the three cases
above are exhaustive.

In Case (la), we take x; = (1,0) and x_; = (0, —1). Uniqueness is immediate,
since [0, x1] and [0, x_1] are the only edges emanating from O that are entirely contained
in 04.

In Case (1b), we take x; = (1,0) and x_; = (—1,0). In Case (1c), we take x; = (1,0)
and x_; = (0, 1). In either case, uniqueness follows as in Case (1a). ]

Proof of Theorem 3.4. We define P and {y )} jep recursively. To begin, let P = @. Sup-
pose, for some k € N U {0}, that we are at stage k of the construction. At this stage,
the set P is simply P = {1,2,...,k}, and we have already constructed pairwise disjoint
paths {y(j)}je(l,z ,,,,, k}» each of which traverse 04 clockwise. If 04 = Ull;l{y(j)}, we ter-
minate the construction. Otherwise, we can choose an edge e C 04\ U;¢(12..... k}{y(j N,
(To ensure that the algorithm eventually hits all of dA, we choose e to be as close as
possible to the origin, that is, choose e = [x, x’] such that min{||x]|, ||x’||} is as small as
possible.)
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Since A is Z2*-measurable and e C 0A, there is a z € Z%* such that e C z
+9[—1/2,1/2]? and z + [—1/2,1/2]?> C A. In particular, we can define xg, x; € 04 N Z?
so that e = [xg,x1] C z + 8[—1/2,1/2]? and the edge [xo, x;] traverses dA clockwise.

By Lemma C.1, there is a unique neighbor x, € 4 N Z? of x; such that [xy, x5] C
04 N Z? and [x;, x,] traverses dA clockwise. We iterate this process, obtaining a path
{x0,Xx1,X2,...} CdAN 72 such that, for any i > 0, the pair {x;, x;+1} has the following
property:

[xi,xi+1] C0A and [x;, x;41] traverses dA clockwise. (C.1)

We claim that either {xg, x1, X2, ...} is a simple closed curve (in the case that it is
bounded) or else it is an infinite simple path for which || x;|| — oo asi — oo.

Case 1: {xg,X1,...} is bounded. Suppose that {xg,X1,X2,...} is abounded subset of Z?2.
Since Z?2 is discrete, we deduce that {x0, X1, X2, ...} must be a finite subset. In particular,
we can define j € N by

j = inf{m € N : x, = x for some k > m}

In particular, x; = x;4p for some M € N. Observe that M > 2 necessarily holds as
Xj # Xj41, by construction.

We claim that j = 0. To see this, we assume that j > 1 and argue by contradiction.
Toward that end, note that j + M — 1 > 1, since M > 2. Thus, x; 4 p—1 is well-defined.

The construction implies that the edge [x; 1 a—1,X;] = [xj+am—1, Xj 4] is contained
in 04 and it traverses 0A clockwise. In particular, [x;, x; +ar—1] C 04 and it traverses 0A
counterclockwise. Thus, by Lemma C.1 and the property in (C.1) withi = j — 1, we must
have xj_1 = xj4pm—1. Yet, j — 1 < j, so this contradicts the definition of ;.

We conclude that j = 0, as claimed. From the identity xo = xp7, we deduce by
construction that x; = xps41, and then this implies that x;z = xp74% for all k € N by
induction. In particular, {x¢, x1, ..., Xy} = {xo, X1, . .. }. Furthermore, by taking M to
be as small as possible, we find that the path y*+1 : {0, 1,..., M} — Z? given by
y®+tD (i) = x; is a simple closed path in Z2, as claimed.

Case 2: {x¢, X1, ...} is unbounded. In this case, we set aside the infinite path {x¢, x1,...}
for the moment. Let us return to xo, but this time we proceed in reverse. By Lemma C.1,
we can let x_; € 94 N Z? denote the unique neighbor of xo for which [xp, x_1]
C 0A and such that [xg, x_1] traverses dA counterclockwise. We then turn our atten-
tion to x_1, letting x_, be the unique element of 94 N Z2 with [x_;, x_»] C 94 and
such that [x_1, x_,] traverses the boundary counterclockwise. Continuing in this way, we
obtain a path {xg, x_1, x_5, ...} such that, for any i > 0, the following property holds:

[x—i,x_G+1] €04 and [x_;, x_G41)] traverses dA counterclockwise. (C.2)

We claim that {xg, x_1, X_2, ... } must also be unbounded. Indeed, were this not the
case, then we could argue as above to deduce that {xq, x_1, Xx_3, ...} is a simple closed
curve {Xg, X_1,X-2,...} = {Xo,X_1,...,x_r} forsome L € N, with x_¢ ) = x_; for



Singular properties of interface motions in periodic media 627

every i > 0. Yet, by (C.1) and (C.2), this would yield the following implications:
(A) [x0,x—@-1)] = [x—L,X—(z—1)] C 04 traverses dA clockwise.
(B) [x0,Xx1] C 04 traverses dA clockwise.

Therefore, by Lemma C.1, x; = x_(z—1). Applying the lemma again with x; in place
of xo, we see that x, = x_(1_2). By recursion, we conclude that x; = x_(z_x) for
every k < L. This implies that xo = xr, hence xx = x4, for every k € N by con-
struction, but then this would contradict the assumption that {xg, x1, ...} is infinite. We
conclude that {x¢, x_1, X_3, ...} is unbounded.

In summary, we showed that {xg, x1, ...} and {x¢, Xx_1, ... } define two infinite paths
emanating from xg. By arguments similar to those in the previous paragraph, {xg, x1, ...}
N {xo, X_1, ...} = {xo}. Thus, if we define y**tV : 7 — 72 by y*+V (i) = x;,
then y**1 is a simple path in 94 N Z2.

Conclusion. It only remains to show that the updated collection of curves given by
{y(-i)}je{l,z,...,k+1} = {)/(j)}je{l,z,..‘,k} U {y**D} is pairwise disjoint. To see this, let
us argue by contradiction: assume it is not pairwise disjoint. In particular, there is a
j e{l,2,... k}suchthat {y(D} N {y*+Dy L g

Since {y} N {y*+D} £ g, it follows that we can choose i, £ € Z such that
y®**tD i) = yU)(£). By Lemma C.1 and the construction, it follows that y *+1 (i 4 m)
=y (€ 4+ m) as long as i + m is in the domain of y*+ 1 In particular, y/) is a finite,
simple closed curve if and only if y*+1D is a finite, simple closed curve. Hence, in the
finite case, we readily conclude that {y *+D} = {3}, Yet, we originally chose e in such
away thate ¢ {y )}, and yet the construction implies that e = [xo,x1] C {y* 1D}, which
is a contradiction.

If instead y**1 is infinite, then it is not hard to argue that actually y*+1 (i 4+ m)
=y (¢ 4+ m) also holds for m € Z; this is a direct consequence of the construction
and Lemma C.1. Hence, {y**V} = {y()} follows, leading to a contradiction as in the
finite case.

We conclude that our algorithm outputs a pairwise-disjoint collection of paths
{)/(j)}jepu{k+1} contained in dA. We update P by setting P = {1,2,...,k + 1}, and
repeat the process.

Finally, if the algorithm never terminates (i.e., if we can always find an edge e as
above), then we conclude with P = N. To see that d4 = |_J ; eN{y(j )} in this case, recall
that the edge e at each stage was chosen to be as close as possible to the origin. Thus,
since Z? is discrete, the algorithm must eventually hit every boundary curve of 9A. ]

D. Proof of Lemma 3.14
Proof of Lemma 3.14. Recall that S, = Uy en Sy_yn» Uy = Unen Uy_y.yy» and, for

any compact set K C R?, there is an N such that S),_, N K = S, , N K and
Uy o N K = Uy_yu for all M > N. At the same time, for any N € N, the local
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Uy +11

Figure 8. Condition (vi) of Definition 3.11.

supersolution (Sy_y v;» Uy_y.y;) is an edge. Thus, there are three piecewise smooth curves
e o [-N,N] — R2, n{3) " [~N,N] — R? and ") : [-N, N] — R? such that

’ nbottom

bottom

0y = 15 (=N, N U ([N, N]),
n$ ) (=N.N)) C Uy -

Wy yny = N (=N, N]) U i (=N, N]),

In view of the facts mentioned above, it is possible to parametrize these curves so that, for
any M > N and * € {top, bottom, S}, we have r],(kM) = niN) in the interval [—N, N]. In

particular, the limit 7, = limy o r)iN) exists for any choice of *. Furthermore,

8Uy = mop(R) U Nbottom (R), aSy = Ns(R) U Npoom(R),  ns(R) C Uy~

Since ns(R) C Uy, to complete the proof that 95, \ A C U,, it only remains to show that
nbottum(R) C A.

To begin the proof that fpewom(R) C A, we start by observing that either (a) 7,0p(R) C
R? \ A and Npotrom (R) C Int(A), or (b) ntop(R) C Int(A4) and Nporom(R) C R? \ 4. To
understand why, first, note that [y (i), y (i + 1)] C fill(U, ;) U Upy ¢,y +1) Y ill(Uy i +1))
C U, for any i € Z, by condition (vi) in Definition 3.11. Thus, d4 C U,, and hence, the
boundary curves of U,, do not intersect 04, that is, y«(R) N 04 = @ for * € {top, bottom}.
From this and the connectedness of A, we conclude that one boundary curve must be in A
and the other must be in R? \ A. To conclude the proof, we establish that (a) holds.

Finally, to see that (a) holds, pick any i € Z and consider the edge (line segment)
[y(@), y(i + 1)] C fill(Uy ) YU U ),ya+11 Y fill(Uy i +1y) C Uy. By construction, we
have Sty ),yG+n1 \ [ill(Uy ) U fill(U,, i +-1y)] C Sy . Further, by condition (vi) in Defini-
tion 3.11 (see Figure 8), we have Up, (). i+1)] \ Siy@).yi+1)] C R? \ A. Thus, that part
of dU, is outside of A, and the only remaining possibility is the part of dU,, contained
in Sy ; in other words, Nyorom (R) is inside A. ]
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