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ABSTRACT
In this study, we obtain an exact time-dependent solution of the chemical master equation (CME) of an extension of the two-state telegraph
model describing bursty or non-bursty protein expression in the presence of positive or negative autoregulation. Using the method of spectral
decomposition, we show that the eigenfunctions of the generating function solution of the CME are Heun functions, while the eigenvalues
can be determined by solving a continued fraction equation. Our solution generalizes and corrects a previous time-dependent solution for
the CME of a gene circuit describing non-bursty protein expression in the presence of negative autoregulation [Ramos et al., Phys. Rev. E 83,
062902 (2011)]. In particular, we clarify that the eigenvalues are generally not real as previously claimed. We also investigate the relationship
between different types of dynamic behavior and the type of feedback, the protein burst size, and the gene switching rate.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0188455

I. INTRODUCTION

It is well known that often the expression of a gene is related to
that of other genes. These gene–gene interactions are at the heart
of gene regulatory networks.1 Perhaps the simplest type of such
interactions is autoregulation, whereby a protein influences its own
transcription, leading to positive or negative feedback. This type
of regulation is common, e.g., it is estimated that about 40% of
Escherichia coli’s transcription factors self-regulate, mostly engaging
in autorepression.2,3

Over the past 20 years, many stochastic models of autoregula-
tion have been developed and their steady-state behavior has been
studied using both simulations and theory. Within the continuous-
time Markovian framework, some of these studies make headway by
modelling gene state changes implicitly and assuming that protein
numbers are real and positive (a continuum assumption).4–8 Other
studies have tackled the more realistic problem where the changes in
molecule numbers of both gene and protein, when reactions occur,

are integers.9–12 Of the latter class of models, some assume that
protein expression occurs one at a time,9,10 while others assume
that expression occurs in stochastic bursts.11,12 Another distinguish-
ing feature is that some models assume that there is no change in
the protein number when a protein copy binds to a gene or when
it unbinds,9,11 while others model the change explicitly.10,12 We
note that the majority of these stochastic models have been solved
exactly only in steady-state conditions. The exact time-dependent
solution, being a much harder mathematical problem, has received
considerably less attention—in Ref. 13, a model of non-bursty pro-
tein expression, including negative autoregulation, was purportedly
solved exactly. A recent review of the various types of stochastic
models of autoregulatory genetic circuits that also compares and
contrasts their predictions can be found in Ref. 14.

In the present paper, we construct and exactly solve in time a
stochastic model of bursty or non-bursty protein expression in the
presence of positive or negative autoregulation, where both gene
and protein numbers are modelled discretely. In Sec. II, the reac-
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tion scheme and the chemical master equation (CME) describing
the stochastic dynamics of the set of reactions are introduced. In
Sec. III, by means of the method of spectral decomposition, we show
that the eigenfunctions of the time-dependent generating function
solution of the CME are Heun functions, while the eigenvalues
obey a continued fraction equation that is obtained by considering
the holomorphism of the generating function. The accuracy of the
solution is verified by stochastic simulations. Crucially, we also show
that a previous time-dependent solution for the CME of a gene
circuit describing non-bursty protein expression in the presence of
negative autoregulation13 is incorrect because the eigenvalues are
generally not real as previously claimed. In Sec. IV, we investigate the
relationship between five different types of dynamic behavior and
the type of feedback, the protein burst size, and the gene switching
rate. We conclude with a discussion in Sec. V.

II. MODEL
Here, we consider stochastic gene expression dynamics in a

minimal coupled positive-plus-negative feedback loop with gene
state switching, protein synthesis, and protein decay (Fig. 1). Let
G and G∗ denote the inactive and active states of the gene, and
let P denote the corresponding protein. In the active state G∗, we
assume that the protein is produced in a non-bursty (constitutive)
or bursty manner. Both non-bursty and bursty gene expression are
commonly observed in naturally occurring systems. Bursty protein
synthesis is often due to rapid translation of protein from a sin-
gle, short-lived mRNA molecule;15,16 if the mRNA lifetime is quite
long (as common in mammalian cells17), then protein synthesis may
appear non-bursty.

Let n be the copy number of the protein. In the bursty case, the
reaction scheme underlying the coupled feedback loop is as follows
[Fig. 1(a)]:

G
a+�n��→G∗, G∗ b+νn��→G,

G∗ ρpk(1−p)����→G∗ + kP, k ≥ 1, P d�→?.
(1)

Due to feedback regulation, the protein number n will directly or
indirectly affect the switching rates between the two gene states.
Here, a and b are the spontaneous switching rates, � and ν char-
acterize the strengths of positive and negative feedback loops,
respectively, and d is the decay rate of the protein either due to
protein degradation or due to dilution during cell division.18 Specif-
ically, the protein decay rate can be represented as d = log 2�Tp+ log 2�Tc, where Tp is the protein half-life and Tc is the cell
cycle time. When the gene is in the active state G∗, the synthe-
sis of the protein occurs in bursts with frequency ρ and random
size k sampled from a geometric distribution with parameter p, in
agreement with experiments.19 Note that the model considered here
is more general than the classical model of autoregulatory feed-
back loops proposed by Kumar et al.11 In particular, the model
describes a positive autoregulatory loop if the negative feedback
strength ν vanishes, and it describes a negative autoregulatory loop
if the positive feedback strength � vanishes. In a coupled feed-
back loop, both � and ν are nonzero. Coupled gene circuits widely
exist in nature, and they have been shown to be a crucial network
motif to produce robust and tunable biological oscillations.20 Bio-
logical examples of coupled feedback loops can be found in Refs. 20
and 21.

FIG. 1. Models. (a) A minimal coupled gene circuit with positive-plus-negative feedback. When the gene is active, the protein is produced in a bursty manner with the burst
size having a geometric distribution. (b) Transition diagram of the Markovian dynamics for the model illustrated in (a). Note that translational bursting can cause jumps from
any microstate (1, n) to (1, n + k) [this is only shown for microstate (1, 0) in the figure but is also true for any other microstate (1, n)]. (c) Same as (a) except that the protein
is produced in a non-bursty manner when the gene is active, i.e., protein molecules are produced one at a time. (d) Transition diagram of the Markovian dynamics for the
model illustrated in (c).
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The microstate of the gene can be represented by an ordered
pair (i, n), where i is the gene state with i = 0, 1 corresponding to the
inactive and active states, respectively, and n is the protein number.
Let pi,n(t) denote the probability of having n protein molecules in an

individual cell when the gene is in state i. Then, the stochastic gene
expression dynamics can be described by the Markov jump pro-
cess shown in Fig. 1(b). The evolution of the Markovian dynamics
is governed by the CMEs,

�����������
ṗ0,n = d[(n + 1)p0,n+1 − np0,n] + [(b + νn)p1,n − (a + �n)p0,n],
ṗ1,n = ρ�n−1�

k=0
pn−k(1 − p)p1,k − pp1,n� + d[(n + 1)p1,n+1 − np1,n] + [(a + �n)p0,n − (b + νn)p1,n], (2)

where the term involving ρ on the right-hand side represents pro-
tein synthesis, the terms involving d represent protein decay, and
the terms involving a, b, �, and ν represent gene state switching and
feedback control.

In the non-bursty case, the reactions describing the coupled
feedback loop are as follows [Fig. 1(c)]:

G
a+�n��→G∗, G∗ b+νn��→G,

G∗ s�→G∗ + P, P d�→?.
(3)

Here, we assume that protein molecules are produced one at a
time with rate s when the gene is active. The Markovian dynamics
for this model is illustrated in Fig. 1(d). Note that the non-bursty
model described by Eq. (3) is a limiting case of the bursty model
described by Eq. (1).22,23 Since the protein burst size is geometri-
cally distributed, its expected value is given by B = ∑∞k=1 kpk(1 − p)= p�(1 − p). It is easy to see that when ρ→∞ and B→ 0, while
keeping ρB = s as constant, we have p→ 0 and

ρp(1 − p)→ s, ρpk(1 − p)→ 0, k ≥ 2. (4)

This shows that the bursty model reduces to the non-bursty one in
the above limit. Hence, in the following, we will first derive analytical
results for the bursty model and then use them to obtain relevant
results for the non-bursty model by taking the above limit.

We emphasize that the exact time-dependent distributions for
the non-bursty model have been discussed in Ref. 13 in the special
case of negative autoregulation (� = b = 0). However, we find that
the solution given in Ref. 13 is both mathematically inconsistent and
incomplete (the detailed reasons will be explained later). Here, we
generalize and correct the results obtained in previous studies by
taking translational bursting and coupled feedback into account.

III. SOLVING THE TIME-DEPENDENT
MASTER EQUATION
A. Time-dependent solution for the bursty model

We first compute the time-dependent distributions of protein
numbers for the bursty model. To this end, we define a pair of
generating functions,

fi(t, z) = ∞�
n=0

pi,n(t)zn, i = 0, 1. (5)

Moreover, let pn(t) = p0,n(t) + p1,n(t) denote the probability of
having n protein molecules in an individual cell and let
f (t, z) = f0(t, z) + f1(t, z) denote its generating function. Then,
Eq. (2) can be converted into the following set of partial differential
equations (PDEs):

�����������
@t f0 = d(1 − z)@z f0 − a f0 − �z@z f0 + b f1 + νz@z f1,

@t f1 = ρp(z − 1)
1 − pz

f1 + d(1 − z)@z f1 + a f0 + �z@z f0 − b f1 − νz@z f1.

(6)

Following Ref. 13, we use the method of spectral decomposition
to solve this set of PDEs. To this end, we assume that the generating
functions fi have the variable separation form of fi(t, z) = eλt f̃ i(z).
Here, λ is called an eigenvalue of the PDEs given in Eq. (6) and f̃ i(z),
i = 0, 1, are called the corresponding eigenfunctions. Inserting it into
Eq. (6) yields

�����������
λf̃ 0 = d(1 − z)@z f̃ 0 − af̃ 0 − �z@z f̃ 0 + bf̃ 1 + νz@z f̃ 1,

λf̃ 1 = ρp(z − 1)
1 − pz

f̃ 1 + d(1 − z)@z f̃ 1 + af̃ 0 + �z@z f̃ 0 − bf̃ 1 − νz@z f̃ 1.

(7)

Moreover, let f (t, z) = eλt f̃ (z) with f̃ (z) = f̃ 0(z) + f̃ 1(z). Adding
the two identities in Eq. (7), we obtain

f̃ 1 = 1 − pz
ρp(z − 1) �λf̃ − d(1 − z)@z f̃ �. (8)

It then follows that

f̃ 0 = f̃ − f̃ 1 = f̃ − 1 − pz
ρp(z − 1) �λf̃ − d(1 − z)@z f̃ �. (9)

Substituting Eqs. (8) and (9) into the second row of Eq. (7) and elim-
inating f̃ 0 and f̃ 1, we find that f̃ satisfies the following second-order
ordinary differential equation (ODE):

d(z − 1)2(pz − 1)[(� + ν + d)z − d] f̃ ′′(z) + (z − 1)M1(z)f̃ ′(z)
+N1(z)f̃ (z) = 0,

(10)
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where

M1(z) = [(� + ν + 2d)λ + [d2 + (� + ν + a + b + ρ)d + �ρ]]pz2

− �(� + ν + 2d + 2dp)λ + �2d2 + (� + ν + a + b + 2ρ)d
+ �ρ]p + (a + b)d]z + 2dλ + (d2 + ρd)p + (a + b)d,

N1(z) = [λ2 + (a + b + ρ)λ + aρ]pz2 − �(p + 1)λ2 − [(a + b + d

+ � + ν + 2ρ)p + (a + b − d − � − ν)]λ − 2aρp]z + λ2

+ [(d + ρ)p + a + b − d]λ + aρp.

Note that the above ODE has four regular singularities 1, 1�p,
d�(� + ν + d), and∞. The crucial idea is to transform it into a Heun
differential equation.13 In fact, the regular singularities of the stan-
dard Heun differential equation are 0, 1, ξ, and∞ for some constant
ξ (Ref. 24, Sec. 31.2). Thus, we need to make a variable transforma-
tion that maps {d�(� + ν + d), 1, 1�p,∞} onto {0, 1, ξ,∞}. To this
end, we introduce a new variable

x = (� + ν + d)z − d
� + ν

.

Moreover, let h be the function with the variable x associated
with f̃ , i.e.,

h(x) = f̃ (z) = f̃�(� + ν)x + d
� + ν + d

�.
Then, Eq. (10) can be transformed into the second-order ODE,

x(x − 1)2(x − ξ)h′′(x) + (x − 1)M2(x)h′(x) +N2(x)h(x) = 0,

where ξ = (� + ν + d − dp)�[(� + ν)p] is a constant and

M2(x) = � + ν + d
(� + ν)2dp

M1�(� + ν)x + d
� + ν + d

�,

N2(x) = � + ν + d
(� + ν)2dp

N1�(� + ν)x + d
� + ν + d

�
are functions of x. To proceed, we define a new function h̃(x)= (x − 1)λ�dh(x). It is easy to check that h̃(x) satisfies the following
standard Heun differential equation:

h̃ ′′(x) + �γ
x
+ δ

x − 1
+ �

x − ξ
�h̃ ′(x) + αβx − q

x(x − 1)(x − ξ) h̃(x) = 0,

(11)
where

γ = (� + ν + d − dp)λ + (a + b + ρp)ν + (� + d − dp)(a + b)(� + ν + d)(� + ν + d − dp) ,

δ = − λ
d

, � = d2(1 − p) + (� + ν + ρ − ρp)d + �ρ
d(� + ν + d − dp) ,

αβ = (ad − λ�)ρ
d2(� + ν + d) , α + β = γ+ δ + � − 1, q = (� + ν)aρ + λ�ρ

d(� + ν + d)(� + ν) .

(12)

It is a classical result25,26 that the two general solutions of Eq. (11)
are given by

(x − 1)1−δHl(ξ, q1; α1, β1, γ, 2 − δ; x),
x1−γ(x − 1)1−δHl(ξ, q2; α2, β2, 2 − γ, 2 − δ; x),

where Hl is the local Heun function (it is also referred to as the
general Heun function25) and

q1 = q − (δ − 1)γξ, α1 = α + 1 − δ, β1 = β + 1 − δ,
q2 = q − (γ+ δ− 2)ξ− (γ− 1)�, α2 = α− γ− δ+ 2, β2 = β− γ− δ+ 2.

(13)

Hence, the two linearly independent solutions of Eq. (10) are
given by

(z − 1)Hl�ξ, q1; α1, β1, γ, 2 − δ;
� + ν + d

� + ν
(z − z0)�, (14)

(z − z0)1−γ(z − 1)Hl�ξ, q2; α2, β2, 2 − γ, 2 − δ;
� + ν + d

� + ν
(z − z0)�,

(15)
where z0 = d�(� + ν + d).

We next make a crucial observation that in our model, the
protein distribution pn(t) must decay exponentially with respect to
the protein number n when n ≥ 1 (see Sec. 1 of the supplementary
material for the proof). In other words, pn(t) must have the
following approximation:

pn(t) ∼ K(t)e−γn, n ≥ 1, (16)

where K(t) is a constant depending on t and γ > 0 describes the
decay rate of pn(t) with respect to n. This shows that

lim sup
n→∞

n
�

pn(t) ≤ e−γ < 1.

By the root test,27 the convergence radius of the power series given
in Eq. (5) must be greater than 1. Since z0 < 1, the generating func-
tion f (t, z), as well as the function f̃ (z), must be holomorphic at
both z = z0 and z = 1. Recall that f̃ (z) has two linearly independent
solutions. In Sec. 2 of the supplementary material, we prove that the
solution given in Eq. (15) cannot be holomorphic at both z = z0 and
z = 1. Hence, we only need to consider the other solution given in
Eq. (14).

Since the local Heun function Hl(ξ, q1; α1, β1, γ, 2 − δ; x) is
holomorphic in the unit disk �x� < 1, it is clear that the solution
given in Eq. (14) must be holomorphic at z = z0. On the other hand,
the solution given in Eq. (14) is holomorphic at z = 1 if and only
if the function Hl(ξ, q1; α1, β1, γ, 2 − δ; x) is holomorphic at x = 1.
Note that the parameters q1, α1, β1, γ, and δ are all functions of the
eigenvalue λ [see Eqs. (12) and (13)]. It is an important property of
the local Heun function (Ref. 24, Sec. 31.4) that Hl(ξ, q1; α1, β1, γ,
2 − δ; x) is holomorphic at x = 1 if and only if λ satis-
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fies the following continued fraction equation (also refer to
Ref. 28):

q1 = R(1)0 P(1)1(Q(1)1 + q1)−
R(1)1 P(1)2(Q(1)2 + q1)−

R(1)2 P(1)3(Q(1)3 + q1)− ⋅ ⋅ ⋅ , (17)

where

R(1)n = ξ(n + 1)(n + γ), P(1)n = (n − 1 + α1)(n − 1 + β1),
Q(1)n = n[(n − 1 + γ)(1 + ξ) + ξ(2 − δ) + α1 + β1 − γ + δ − 1].

Here, we have used the standard notation for continued fractions
(Ref. 24, Sec. 1.12), i.e.,

d1

e1±
d2

e2±
d3

e3± ⋅ ⋅ ⋅ =
d1

e1 ± d2

e2± d3
e3±⋅ ⋅ ⋅

.

Solving Eq. (17) gives an infinite set of discrete values λn, n = 1, 2, . . .,
and these values are actually all nonzero eigenvalues of Eq. (6). Recall
that the local Heun function Hl(ξ, q1; α1, β1, γ, 2 − δ; x) is called a
Heun function, denoted by Hf , if it is holomorphic at x = 1 (Ref. 24,
Sec. 31.4). Then, the eigenfunctions corresponding to all nonzero
eigenvalues are given by

f̃ λn(z) = (z − 1)H f �ξ, q1; α1, β1, γ, 2 − δ;
� + ν + d

� + ν
(z − z0)�, n ≥ 1,

where q1, α1, β1, γ, and δ are all functions of eigenvalue λn.
We emphasize that solving the continued fraction equation

can only give all nonzero eigenvalues. This is because for the zero
eigenvalue λ0 = 0, it follows from Eq. (12) that δ = 0 and αβx − q= aρ(x − 1)�[d(� + ν + d)]. In this case, the Heun differential equa-
tion given in Eq. (11) reduces to the hypergeometric differential
equation,

h̃ ′′(x) + �γ
x
+ �

x − ξ
�h̃ ′(x) + aρ

x(x − ξ) h̃(x) = 0.

Similarly, by solving this equation, we find that the eigenfunction
corresponding to the zero eigenvalue is given by

f̃ λ0(z) = 2F1(a1, b1; c1;w(z − z0)),

where

z0 = d
� + ν + d

, w = p(� + ν + d)
� + ν + d − dp

,

c1 = (a + b + ρp)ν + (� + d − dp)(a + b)(� + ν + d)(� + ν + d − dp) ,

a1 + b1 = c1 + (ρ − ρp)d + �ρ
d(� + ν + d − dp) , a1b1 = aρ

d(� + ν + d) .

(18)

So far, we have derived the eigenfunctions corresponding to all
eigenvalues. The eigenfunction corresponding to the zero eigenvalue
is a hypergeometric function, and the eigenfunctions corresponding
to the nonzero eigenvalues have the form of Heun functions. By the
Perron–Frobeniüs theorem, when the system is ergodic, one eigen-
value must be zero and the other eigenvalues must have negative real
parts. Hence, all eigenvalues can be arranged so that

0 = λ0 > Re λ1 ≥ Re λ2 ≥ ⋅ ⋅ ⋅ , (19)

where Re(z) denotes the real part of z.
Note that Eq. (17) must have an infinite number of solutions

(Ref. 24, Sec. 31.4). Roughly speaking, this is because a continued
fraction equation can be viewed as a polynomial equation of degree
infinity with respect to λ. To solve these solutions numerically,
we need to truncate Eq. (17) at a large integer N, with N being the
number of layers of the continued fraction equation. The truncated
equation is actually a polynomial equation of degree 2N + 2, and
thus, it must have 2N + 2 roots, denoted by λN

1 , λN
2 , . . . , λN

2N+2. These
2N + 2 roots could be arranged so that

Re λN
1 ≥ Re λN

2 ≥ ⋅ ⋅ ⋅ ≥ Re λN
2N+2.

As the truncation size N increases, λN
n rapidly converges to the true

eigenvalue λn, and thus, we can use λN
n as an accurate approximation

of λn when N is large. According to our simulations, for a fixed N, the
first N�2 roots of the truncated polynomial equation are very close
to the true eigenvalues (supplementary material, Table 1).

Recall that the stochastic dynamics of the coupled feedback
loop is described by the Markov jump process illustrated in Fig. 1(b).
In fact, all nonzero eigenvalues determined by solving Eq. (17)
are exactly the same as the all nonzero eigenvalues of the gener-
ator matrix for the Markov jump process. Table I compares the
first ten solutions of the continued fraction equation (truncated at
N = 20 with N being the number of layers of the continued frac-
tion equation) and the first ten nonzero eigenvalues of the generator

TABLE I. Comparison of the first ten nonzero eigenvalues computed using two different methods. All nonzero eigenvalues
of the PDEs given in Eq. (6) are the solutions to the continued fraction equation given in Eq. (17). These eigenvalues are in
excellent agreement with all nonzero eigenvalues of the generator matrix of the Markovian dynamics illustrated in Fig. 1(b).
The parameters are chosen as ρ = 10, B = 1, d = 1, � = 0.2, ν = 0.3, a = 1, and b = 1.5.

Eigenvalues λ1 λ2 λ3 λ4 λ5, λ6 λ7, λ8 λ9, λ10

Continued fraction −0.89 −1.82 −2.81 −3.66 −4.52± 0.33i −5.76± 0.50i −6.99± 0.57i
method

Generator matrix −0.89 −1.82 −2.81 −3.66 −4.52± 0.33i −5.76± 0.50i −7.00± 0.55i
method
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matrix (truncated at N = 200, with N being the maximum protein
number). Clearly, they coincide with each other perfectly and some
eigenvalues may be complex numbers since the system is far from
equilibrium.

We emphasize that when the protein number is large, the eigen-
values obtained using the generator matrix method may not be
accurate since we need to compute the eigenvalues of a very large
sparse matrix, which may lead to numerical instability. However, the
continued fraction method still works in this case. Moreover, due to
the rapid convergence of λN

n to λn, the truncation size for the con-
tinued fraction method is much smaller than that for the generator
matrix method.

Thus far, we have obtained all eigenvalues λn, n ≥ 0, and the
corresponding eigenfunctions f̃ λn are given by

f̃ λ0(z) = 2F1(a1, b1; c1;w(z − z0)),
f̃ λn(z) = (z − 1)H f �ξ, q1; α1, β1, γ, 2 − δ;

� + ν + d
� + ν

(z − z0)�, n ≥ 1.

(20)
It follows from Eq. (8) that f̃ λn

1 are given by

f̃ λn
1 (z) = 1 − pz

ρp(z − 1) �λnf̃ λn(z) + d(z − 1)@z f̃ λn(z)�, n ≥ 0. (21)

In this way, we can also determine f̃ λn
0 = f̃ λn − f̃ λn

1 . Finally, using the
method of spectral decomposition, the generating functions fi and
f have the following series form:

fi(t, z) = ∞�
n=0

Cneλnt f̃ λn
i (z), f (t, z) = ∞�

n=0
Cneλnt f̃ λn(z). (22)

Then, the time-dependent distribution of protein numbers can be
recovered by taking the derivatives of the generating function f at
z = 0, i.e.,

pn(t) = 1
n!

@n

@zn f (t, z)�
z=0

. (23)

The remaining question is how to determine the coefficients
Cn in Eq. (22) based on the initial conditions. To this end, it follows
from Eq. (22) that for any complex numbers z0, z1, . . . , zM ,

��������������������

f0(0, z0)
⋮

f0(0, zM)
f1(0, z0)
⋮

f1(0, zM)

��������������������

=

��������������������

f̃ λ0
0 (z0) f̃ λ1

0 (z0) ⋅ ⋅ ⋅
⋮ ⋮

f̃ λ0
0 (zM) f̃ λ1

0 (zM) ⋅ ⋅ ⋅
f̃ λ0

1 (z0) f̃ λ1
1 (z0) ⋅ ⋅ ⋅

⋮ ⋮
f̃ λ0

1 (zM) f̃ λ1
1 (zM) ⋅ ⋅ ⋅

��������������������

����������

C0

C1

⋮

����������
,

where f̃ λn
i (z), i = 0, 1, are determined by Eqs. (20) and (21)

and fi(0, z) = ∑∞n=0 pi,n(0)zn, i = 0, 1, are determined by the initial
conditions. Note that this is an infinite dimensional system of
linear equations with variables Cn. In order to compute Cn, we
need to truncate the system at a large integer M. To do this,
we use an approach similar to the inverse discrete Fourier trans-
form. Let M be a positive integer, and let zm = e2πmi/M , 0 ≤ m≤M − 1, be all Mth roots of unity. Clearly, when M � 1, the
coefficients Cn approximately satisfy the following set of linear
equations:

��������������������

f0(0, z0)
⋮

f0(0, zM−1)
f1(0, z0)
⋮

f1(0, zM−1)

��������������������

=

��������������������

f̃ λ0
0 (z0) f̃ λ1

0 (z0) ⋅ ⋅ ⋅ f̃ λ2M−1
0 (z0)

⋮ ⋮ ⋮
f̃ λ0

0 (zM−1) f̃ λ1
0 (zM−1) ⋅ ⋅ ⋅ f̃ λ2M−1

0 (zM−1)
f̃ λ0

1 (z0) f̃ λ1
1 (z0) ⋅ ⋅ ⋅ f̃ λ2M−1

1 (z0)
⋮ ⋮ ⋮

f̃ λ0
1 (zM−1) f̃ λ1

1 (zM−1) ⋅ ⋅ ⋅ f̃ λ2M−1
1 (zM−1)

��������������������

�������������

C0

C1

⋮
C2M−1

�������������
. (24)

This is a finite dimensional system of linear equations with 2M
variables, which can be solved either analytically or numerically
(the analytical expression can be obtained using Cramer’s rule).
However, the traditional numerical methods are not suitable for
solving these equations since the coefficient matrix in Eq. (24) is too
singular. Numerical computations indicate that traditional methods
behave poorly when M ≥ 20. To overcome this difficulty, note that
the solution x to the linear equations Ax = b is also the solution to
the optimization problem,

min
x
�Ax − b�2.

Following this idea, we transform Eq. (24) into the following
equivalent optimization problem:

min
Cn

M�
m=0

������� f0(0, zm) − 2M−1�
n=0

Cnf̃ λn
0 (zm)�

2

+ � f1(0, zm) − 2M−1�
n=0

Cnf̃ λn
1 (zm)�

2������, (25)

and then, we use the MATLAB function “quadprog” to solve it.
Thus far, we have obtained the full time-dependent solution for the
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FIG. 2. Comparison of the semi-analytical and numerical solutions for five different types of dynamic behavior at four time points. The blue curves show the semi-analytical
distributions given in Eqs. (22) and (23), the red circles show the numerical ones obtained from FSP, and the green vertical lines show the mean protein numbers. In the
semi-analytical solution, the eigenvalues λn are computed by solving Eq. (17) (the number of layers of the continued fraction equation is truncated at N = 200) and the
coefficient Cn are computed by solving Eq. (25) for M = 50. Here, we assume that initially the protein number is zero and the gene is off. (a) and (b) Unimodality. The
distribution is unimodal at all times. (a) Type-I unimodality. The distribution peaks at zero at all times. The parameters are chosen as ρ = 35, d = 1, � = 0.1, ν = 0.2, a = 0.2,
b = 1, and B = 1. (b) Type-II unimodality. The distribution has a zero peak at small times and has a nonzero peak at large times. The parameters are chosen as ρ = 35,
d = 1, � = 0.5, ν = 0.1, a = 80, b = 1, and B = 1. (c) and (d) Transient bimodality. The distribution is unimodal at small and large times and is bimodal at intermediate times.
(c) Type-I transient bimodality. The distribution has a zero peak at large times. The parameters are chosen as ρ = 35, d = 1, � = 0, ν = 0.3, a = 0.8, b = 0.1, and B = 1. (d)
Type-II transient bimodality. The distribution has a nonzero peak at large times. The parameters are chosen as ρ = 35, d = 1, � = 0.2, ν = 0.2, a = 1.2, b = 1, and B = 1.
(e) Stationary bimodality. The distribution is unimodal at small times and is bimodal at large times. The parameters are chosen as ρ = 35, d = 1, � = 0.3, ν = 0.2, a = 0.4,
b = 1, and B = 1.
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bursty model. Note that when computing the eigenvalues λn and the
coefficients Cn, there are numerical steps involved, and hence, our
solution is only semi-analytical. In the special case where the gene is
unregulated (� = ν = 0), both the eigenvalues and coefficients can be
computed exactly, allowing us to obtain a full analytical expression
of the time-dependent distribution (see the Appendix).

To test our semi-analytical solution, we compare it with the
numerical one obtained from the finite state projection algorithm
(FSP).29 The results are shown in Fig. 2. When using FSP, we trun-
cate the state space at a large protein number N and solve the
truncated master equation numerically using the MATLAB function
“ODE45.” The truncation size is chosen as N = 5ρB�d. Since ρB�d is
the typical protein number in the active gene state, the probability
that the protein number is outside this truncation size is very small
and practically can always be ignored. As expected, the two solu-
tions agree perfectly at all times. According to our simulations, for
most sets of model parameters, the semi-analytical solution is com-
putationally faster than FSP when the mean protein number is larger
than ∼500; this is because the protein number needs to be truncated
in FSP but does not in our solution.

B. Convergence to the steady-state solution
We next focus on the steady-state solution for the bursty model,

which can be recovered from the time-dependent solution by taking
t →∞. We have seen that when the system is ergodic, one eigen-
value is λ0 = 0 and the other eigenvalues λn, n ≥ 1, have negative
real parts. Hence, the only term in Eq. (22) independent of time
t is the first term, and all other terms tend to zero exponentially fast
as t →∞. Then, the steady-state generating function is given by

f (t →∞, z) = f̃ λ0(z)
f̃ λ0(1) = 2F1(a1, b1; c1;w(z − z0))

2F1(a1, b1; c1;w(1 − z0)) , (26)

where we have used the fact that f (t, 1) = 1. Taking the derivatives
of the generating function f at z = 0 yields the steady-state protein
distribution,

pn(t →∞) = wn(a1)n(b1)n

n!(c1)n

2F1(a1 + n, b1 + n; c1 + n;−wz0)
2F1(a1, b1; c1;w(1 − z0)) ,

(27)
where (a)n = a(a + 1) ⋅ ⋅ ⋅ (a + n − 1) denotes the Pochhammer
symbol. Note that this is exactly the steady-state solution obtained
previously in Ref. 22, which is a generalization of the special case of
pure autoregulatory feedback studied earlier in Ref. 11.

C. Time-dependent solution for the non-bursty model
Next, we focus on the time-dependent protein distributions for

the non-bursty model. In this case, the generating functions fi and f
still have the form of

fi(t, z) = ∞�
n=0

Cneλnt f̃ λn
i (z), f (t, z) = ∞�

n=0
Cneλnt f̃ λn(z).

Recall that the non-bursty model given in Eq. (3) is a limiting case
of the bursty model given in Eq. (1) when ρ→∞ and B→ 0 while

keeping ρB = s as constant. In this limit, for the zero eigenvalue
λ0 = 0, the corresponding eigenfunction reduces to [Ref. 24, Eq.
(13.18.2)]

f̃ λ0(z) = 2F1(a1, b1, c1;w(z − z0))→ 1F1(a2; c2;w′(z − z0)),
where 1F1(a; c; z) is Kummer’s confluent hypergeometric function
and

a2 = a
� + d

, c2 = a + b
� + ν + d

+ sν
(� + ν + d)2 , w′ = s(� + d)

d(� + ν + d) .

Moreover, in this limit, the Heun function Hf has the following limit
(see Sec. 3 of the supplementary material for the proof):

H f (ξ, q1; α1, β1, γ, 2 − δ; x)→ Hc(q3, α3, γ3, δ3, �3; x),
where Hc is the confluent Heun function30 and

q3 = −(λ + d)(a + b + λ)
d(� + ν + d) − [(� + ν)(a + λ) + dν]s

d(� + ν + d)2 ,

α3 = −(� + a + d + λ)(� + ν)s
d(� + ν + d)2 , γ3 = a + b + λ

� + ν + d
+ sν
(� + ν + d)2 ,

δ3 = 2 + λ
d

, �3 = −(� + ν)(� + d)s
d(� + ν + d)2 .

In addition, the continued fraction equation given in Eq. (17)
reduces to

q3 = R(3)0 P(3)1(Q(3)1 + q3)−
R(3)1 P(3)2(Q(3)2 + q3)−

R(3)2 P(3)3(Q(3)3 + q3)− ⋅ ⋅ ⋅ , (28)

where

R(3)n = −(n + 1)(n + γ3), P(3)n = α3 + (n − 1)�3,

Q(3)n = n[−(n − 1 + γ3) − δ3 + �3].
Similar to the bursty case, all nonzero eigenvalues λn, n ≥ 1, can be
obtained by solving Eq. (28), and the corresponding eigenfunctions
reduce to

f̃ λn(z) = (z − 1)H f �ξ, q1; α1, β1, γ, 2 − δ;
� + ν + d

� + ν
(z − z0)�

→ (z − 1)Hc�q3, α3, γ3, δ3, �3,
� + ν + d

� + ν
(z − z0)�, n ≥ 1.

So far, we have obtained all the eigenvalues λn and eigenfunctions
f̃ λn . Similarly, by solving the optimization problem given in Eq. (25),
we can compute all the coefficients Cn. This gives the complete time-
dependent solution for the non-bursty model.

We emphasize that for the non-bursty model, the time-
dependent solution has been discussed in Ref. 13 in the special
case of negative feedback loops (� = b = 0). However, the solu-
tion derived in that paper is questionable due to the following two
reasons. First, the authors did not show how to compute all the coef-
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TABLE II. Comparison of the correct and incorrect eigenvalues in a negative autoregulatory loop. The first two rows show the true eigenvalues (first eight nonzero eigenvalues),
and the third row shows the false eigenvalues computed using Eq. (29). The true eigenvalues are computed using both the continued fraction method (CFM) and the generator
matrix method (GMM). Specifically, the first row shows the eigenvalues obtained by solving Eq. (28), and the second row shows the eigenvalues the generator matrix for the
Markovian dynamics illustrated in Fig. 1(d). The parameters are chosen as s = 20, d = 1, ν = 0.1, a = 4, and � = b = 0.

Eigenvalues λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

Correct (CFM) −1.36 −2.97 −4.05 + 0.81i −4.05 − 0.81i −5.10 + 1.13i −5.10 − 1.13i −6.15 + 1.37i −6.15 − 1.37i
Correct (GMM) −1.36 −2.97 −4.05 + 0.81i −4.05 − 0.81i −5.10 + 1.13i −5.10 − 1.13i −6.15 + 1.37i −6.15 − 1.37i
Incorrect −1 −2 −3 −4 −5 −5.82 −6 −6.92

ficients Cn based on the initial conditions. Second, the eigenvalues
computed in Ref. 13 are incorrect. The authors claimed that the
system has two families of eigenvalues (these eigenvalues were first
reported in an earlier paper31 by the same authors),

λ1n = −nd, λ2n = −(n + k)(d + ν), n ≥ 0, (29)

where k = a�(d + ν) + sν�(d + ν)2. However, the correct eigenval-
ues should be all the solutions to the continued fraction equation.
Table II compares the correct eigenvalues obtained by using the
continued fraction and generator matrix methods and the incor-
rect eigenvalues given in Eq. (29). We observe significant deviations
between them; the former can be complex numbers, while the latter
are always real. In Sec. 4 of the supplementary material, we briefly
explain how the false eigenvalues come from and further compare
the true and false eigenvalues. Hence, the solution derived in Ref. 13
is both incomplete and incorrect. In the present paper, we addressed
the above two points.

IV. DYNAMICAL PHASE DIAGRAMS
We next investigate the shape of the time-dependent distri-

bution for the bursty model. In what follows, we assume that the
initial protein number is zero and the gene is initially in the inactive
state.2 This mimics the situation where the gene has been silenced by
some repressor over a period of time such that all protein molecules
have been removed via degradation. At time t = 0, the repressor
is removed, and we study how gene expression recovers. Under this
initial condition, it is easy to see that f0(0, z) = 1 and f1(0, z) = 0.

In experiments, there are three commonly observed patterns
for the protein distribution: a unimodal distribution with a zero peak
(decaying distribution), a unimodal distribution with a nonzero
peak (bell-shaped distribution), and a bimodal distribution with
both a zero and a nonzero peak.32,33 Our model is capable of pro-
ducing all these three distribution patterns (Fig. 2). Among the
three patterns, the bimodal one attracts the most attention since it
separates isogenic cells into two distinct phenotypes.34–36 To further
understand the shape of the time-dependent protein distribution, we
classify the dynamic behavior of our model into five different phases:
(i) the distribution is decaying at all times [Fig. 2(a)], (ii) the distri-
bution is decaying at small times and is bell-shaped at large times
[Fig. 2(b)], (iii) the distribution is decaying at small and large times
and is bimodal at intermediate times [Fig. 2(c)], (iv) the distribu-
tion is decaying at small times, is bimodal at intermediate times, and

is bell-shaped at large times [Fig. 2(d)], and (v) the distribution is
unimodal at small times and is bimodal at large times [Fig. 2(e)].
To distinguish between them, we refer to (i) as type-I of unimodal-
ity (U1), to (ii) as type-II of unimodality (U2), to (iii) as type-I of
transient bimodality (TB1), to (iv) as type-II of transient bimodal-
ity, and to (v) as stationary bimodality (SB). The semi-analytical
solution and numerical solution obtained from FSP indicate that all
the five dynamical phases can appear when model parameters are
appropriately chosen (Fig. 2).

To determine the regions for the five phases in the parameter
space, we illustrate the a–b phase diagrams of our model in Figs. 3
and 4. In all phase diagrams, there is a unique point separating the
five phases; this is analogous to the triple point in physics and chem-
istry where all three phases (gas, liquid, and solid) of a substance
coexist in thermodynamic equilibrium.37 Intriguingly, we find that
the regions for TB1 and TB2 are often not adjacent in the phase dia-
gram and are separated by the SB region (see, e.g., the middle row
of Fig. 4). This is why we distinguish type-I from type-II transient
bimodality in the present paper. Figure 3 shows the phase diagrams
under different gene switching rates (slow switching, intermediate
fast switching, and fast switching) and different feedback controls
(positive feedback, coupled feedback, and negative feedback). We
find that a positive feedback network fails to produce TB1, while
a negative or coupled feedback network can produce all the five
types of dynamical behavior. The region for transient and stationary
bimodality (TB1, TB2, and SB) shrinks significantly as the switching
rates increase. When the switching rates are relatively fast, the region
for SB totally disappears in negative feedback networks, which agrees
with the results found in Refs. 12 and 38, and the region for TB1
also disappears in all three types of networks. This indicates that
TB1 can only appear when the switching rates are relatively slow. In
particular, in the regime of relatively slow switching, positive feed-
back promotes the occurrence of SB and restrains the occurrence of
TB1, while negative feedback promotes the occurrence of TB1 and
restrains the occurrence of SB.

We next focus on Fig. 4, which illustrates the phase diagrams
under different protein burst sizes and feedback controls when the
switching rates are not too small. Again, TB1 is not found in the
positive feedback case and SB is not found in the negative feed-
back case (note that SB can be found when gene switching is very
slow, as previously shown in Fig. 3). From the phase diagram, as
the burst size B increases, the region for SB shrinks in positive and
coupled feedback networks; the region for TB2 enlarges significantly
in all three types of networks; the region for TB1 remains almost
unchanged in negative feedback networks, while the region for SB
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FIG. 3. Dynamical phase diagrams in the a–b plane (here, a and b are the spontaneous switching rates between the two gene states) under different switching rates and
feedback controls. The system can produce five different types of dynamical behavior: type-I unimodality (U1, dark blue), type-II unimodality (U2, light blue), type-I transient
bimodality (TB1, orange), type-II transient bimodality (TB2, brown), and stationary bimodality (SB, green). Note that in our model, the gene switching rates are a + �n and
b + νn, with � and ν being the strengths of positive and negative feedback loops, respectively. In slow switching conditions, the ranges of a and b are chosen to be 10−3–101,
and the feedback strengths are chosen as � = 0.0225, ν = 0 for positive feedback, � = 0.009, ν = 0.015 for coupled feedback, and � = 0, ν = 0.0225 for negative feedback.
In intermediate fast switching conditions, the ranges of a and b are chosen to be 10−2–102, and the feedback strengths are chosen as � = 0.225, ν = 0 for positive feedback,
� = 0.09, ν = 0.15 for coupled feedback, and � = 0, ν = 0.225 for negative feedback. In fast switching conditions, the ranges of a and b are chosen to be 10−1–103, and
the feedback strengths are chosen as � = 2.25, ν = 0 for positive feedback, � = 0.9, ν = 1.5 for coupled feedback, and � = 0, ν = 2.25 for negative feedback. The other
parameters are chosen as d = 1, B = 1, ρ = 15.

converts to that for TB1 in coupled feedback networks. In sum-
mary, we find that TB1 is mostly likely to occur in negative and
coupled feedback networks when gene switching is not too fast; TB2
is mostly affected by the burst size; and SB is sensitive to many fac-
tors and is mostly likely to occur in positive and coupled feedback
networks when gene switching is relatively slow and the burst size is
small.

Among the five dynamical phases, TB1 is of particular inter-
est because it can never occur when the gene is unregulated

(� = ν = 0). In fact, for the two-state telegraph model of stochastic
gene expression, it has been shown that it can produce U1, U2, TB2,
and SB but fails to produce TB1.39,40 In fact, TB1 has been observed
recently in single-cell experiments [see Fig. 2(c) in Ref. 41]. Previ-
ous studies have used a four-state gene expression model to fit the
data but the model does not involve feedback.41 Our results show
that the presence of negative or coupled feedback loops is possi-
bly another important origin for the experimentally observed TB1
dynamics.
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FIG. 4. Dynamical phase diagrams in the a–b plane (here, a and b are the spontaneous switching rates between the two gene states) under different burst sizes and feedback
controls. The system can produce five different types of dynamical behavior: U1 (dark blue), U2 (light blue), TB1 (orange), TB2 (brown), and SB (green). The protein burst size
is chosen as B = 0.25 (left), B = 1 (middle), and B = 4 (right). The feedback strengths are chosen as � = 0.2, ν = 0 for positive feedback (upper), � = ν = 0.1 for coupled
feedback (middle), and � = 0, ν = 0.2 for negative feedback (below). The other parameters are chosen as d = 1 and ρ is tuned so that the typical protein number ρB�d = 15
in the active gene state remains invariant.

V. CONCLUSION
In this work, we semi-analytically solved the CMEs and

obtained the full time-dependence of a minimal coupled positive-
plus-negative feedback loop with gene state switching, protein syn-
thesis, and protein decay. This coupled gene circuit includes positive
and negative autoregulatory feedback loops as special cases. In the
active gene state, our model assumes that the protein is produced
in a non-bursty or bursty manner. Following previous work,42 we
transformed the CMEs satisfied by the protein distribution into the
PDEs satisfied by the generating function. By using the method
of spectral decomposition, we represented the protein distribution
as a weighted sum of eigenvalue terms, which only depends on
time, and eigenfunction terms, which only depends on the spatial

variable. We then make nontrivial spatial and functional trans-
formations to obtain a Heun differential equation satisfied by the
eigenfunctions.

Interestingly, the eigenfunctions are all local Heun functions,
while the eigenvalues are those values such that these functions are
holomorphic on the unit disk and can be determined by solving a
continued fraction equation. In general, these eigenvalues cannot
be computed in closed form. However, in the special case where
the gene is unregulated, the eigenvalues can be solved exactly and
the eigenfunctions reduce to Gaussian hypergeometric functions.
We finally use a method similar to the inverse discrete Fourier
transform to compute the weights of these eigenvalue and eigen-
function terms based on the initial conditions. In particular, our
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TABLE III. Comparison of properties for self-adjoint operators, normal operators, and
the operator studied in this paper.

Type of operators Eigenvalues Eigenfunctions

Self-adjoint operators Real Orthogonal
Normal operators Complex Orthogonal
Differential operator in Eq. (6) Complex Non-orthogonal

time-dependent solution generalizes the one obtained in Ref. 38,
which can be applied only in fast switching conditions, and also gen-
eralizes and modifies the incomplete and incorrect solution obtained
in Ref. 13 for the non-bursty case. The eigenvalues obtained in
Ref. 13 are incorrect since they are all real, while the true eigenvalues
can be complex numbers. The complex eigenvalues may be related to
the oscillatory43,44 and adaptation45,46 phenomena observed in nega-
tive feedback networks. Finally, we investigated the dynamical phase
diagram of the coupled feedback loop by categorizing regions of
parameter space according to five distinct types of time-evolution.
This allowed us to deduce relationships between these phases and
the type of feedback loop (positive, coupled, and negative), the burst
size, and the speed of gene switching.

Our analytical theory also has mathematical importance. In
the classical functional analysis textbooks,47 spectral decomposition
for unbounded operators is only well developed when the operator
is self-adjoint or normal. For a self-adjoint operator, the eigenval-
ues are all real and the eigenfunctions are orthogonal. In this case,
the eigenvalues and eigenfunctions can sometimes be determined
analytically48,49 using, e.g., the Sturm–Liouville theory. However,
the unbounded operator studied in this paper, i.e., the differential
operator in Eq. (6), is neither self-adjoint nor normal (see Table III
for the comparison between the three types of operators). For this
operator, the eigenvalues can be complex and the eigenfunctions
are non-orthogonal. While we have showed that the eigenfunc-
tions satisfy an second-order differential equation [see Eq. (10)],
this equation cannot be transformed into a classical Strum–Liouville
problem, and thus, the conventional method fails. Here, we obtain
the complete spectral decomposition for a special non-self-adjoint
and non-normal operator. We anticipate that a new spectral the-
ory could be developed for general non-self-adjoint and non-normal
operators in the near future.

Our model has two notable limitations: (i) We assume that
there is no change in the protein number during gene activation and
inactivation. However, in reality, the protein number decreases by
one when a protein copy binds to a gene and increases by one when
unbinding occurs.10,12 In other words, the present model ignores
the protein–gene binding fluctuations, and hence, it may not be
accurate when the protein number is very small or when the feed-
back strength is very strong.12,50 The reason why we make this
approximation is that if we ignore the binding fluctuations, then the
differential equation satisfied by the eigenfunctions has four regular
singularities and, thus, can be transformed into a Heun differential
equation. However, if we take the binding fluctuations into account,
then the differential equation will have five regular singularities and,
thus, does not allow an existing special function representation. (ii)
The model does not have an explicit cell cycle description. In real-
ity, most proteins are not continuously degraded at some positive

rate, but rather because their half-lives are often much longer than
the cell cycle duration itself,17,51,52 they tend to accumulate during
the cell cycle and then (approximately) half at cell division. Under
some conditions, the modelling of protein degradation via a first-
order reaction (as in our current model) well approximates the
dilution due to cell division.53 Note that our model with d = 0 can
also be seen as predicting the time-dependent protein distribution
within a cell cycle where t = 0 corresponds to the birth of a cell, but
since there is no explicit modelling of cell division, it cannot pre-
dict how the distributions change from one generation to another.
In the forthcoming part II of this work, we will address some of these
issues.

SUPPLEMENTARY MATERIAL

The supplementary material contains detailed proofs and
calculations of some key results in the main text.
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APPENDIX: TIME-DEPENDENT SOLUTION
FOR UNREGULATED GENES

We focus on the time-dependent protein distributions
for an unregulated gene. If a gene is unregulated, then
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its expression dynamics can be described by the reaction
scheme,

G
a�⇀��
b

G∗, G∗ ρpk(1−p)����→G∗ + kP, k ≥ 1, P d�→?.

This is a special case of Eq. (1) when the positive and negative feed-
back strengths both vanish, i.e., � = ν = 0. We emphasize that for
an unregulated gene, the analytical time-dependent distributions of
protein numbers have been derived in Refs. 54 and 55. Here, we
will provide a different explicit expression of the time-dependent
solution.

When � = ν = 0, the expressions of the eigenvalues λn, eigen-
functions f̃ λn , and coefficients Cn in Eq. (22) can be simplified
to a great extent. In this case, the related parameters in Eq. (18)
reduce to

z0 = 1, w = B, c1 = a + b
d

, a1 + b1 = a + b + ρ
d

, a1b1 = aρ
d2 .

(A1)
It can be proved that the system has two families of eigenvalues
(see Sec. 5 of the supplementary material for details),

λ1n = −nd, λ2n = −(a + b + nd), n ≥ 0, (A2)

which can be computed explicitly. For the family of eigenvalues
λ1n = −nd, the corresponding eigenfunctions are given by

f̃ λ1n(z) = (z − 1)ny1(z),

and for the other family of eigenvalues λ2n = −(a + b + nd), the
corresponding eigenfunctions are given by

f̃ λ2n(z) = (z − 1)n+1y2(z),
where

y1(z) = 2F1(a1, b1; c1; B(z − 1)),
y2(z) = 2F1(a1 + 1 − c1, b1 + 1 − c1, 2 − c1; B(z − 1)),

and a1, b1, and c1 are given in Eq. (A1). Hence, for an unregulated
gene, the generating function f has the form of

f (t, z) = ∞�
n=0

C1ne−ndt(z − 1)ny1(z)
+ ∞�

n=0
C2ne−(a+b+nd)t(z − 1)n+1y2(z).

Finally, we show how to determine the coefficients C1n and C2n.
Let Fi

n be the unnormalized nth factorial moment of the protein
number at time t = 0 when the gene is in state i, i.e.,

Fi
n = ∞�

m=0
m(m + 1) ⋅ ⋅ ⋅ (m + n − 1)pi,m(0) = @n fi

@zn (0, z)�
z=1

.

It is easy to see that C10 = 1, and the remaining coefficients can be
computed inductively as follows (see Sec. 5 of the supplementary
material for details):

C1n = F0
n + F1

n −∑n−1
m=0 C1mm!ζn−m −∑n−1

m=0 C2m(m + 1)!ξn−m−1

n!
, n ≥ 1,

C2n = ∑n
m=0 C1mm!κn−m −∑n−1

m=0 C2mm!ηn−m +∑n−1
m=0 C2m(m + 1)!θn−m−1 − ρpF1

n(a + b − d)(1 − p)n!
, n ≥ 0,

(A3)

where

ζn = Bn(a1)n(b1)n(c1)n
, ξn = Bn(a1 + 1 − c1)n(b1 + 1 − c1)n(2 − c1)n

,

κn = (1 − p)ζn+1 − npζn, ηn = (a + b − d)[(1 − p)ξn − npξn−1],
θn = d[(1 − p)ξn+1 − npξn].

Now, we focus on the initial condition in Sec. IV, i.e., initially the
protein number is zero and the gene is inactive. In this case, we
have f0(0, z) = 1 and f1(0, z) = 0. This clearly shows that F0

0 = 1 and
F0

n = 0 for all n ≥ 1 and F1
n = 0 for all n ≥ 0. Inserting these values of

Fi
n into Eq. (A3) gives the values of all the coefficients C1n and C2n.
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